JP2013139889A - Electrode drying method and electrode drying device - Google Patents

Electrode drying method and electrode drying device Download PDF

Info

Publication number
JP2013139889A
JP2013139889A JP2011289569A JP2011289569A JP2013139889A JP 2013139889 A JP2013139889 A JP 2013139889A JP 2011289569 A JP2011289569 A JP 2011289569A JP 2011289569 A JP2011289569 A JP 2011289569A JP 2013139889 A JP2013139889 A JP 2013139889A
Authority
JP
Japan
Prior art keywords
drying
electrode
solvent
electrode layer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011289569A
Other languages
Japanese (ja)
Other versions
JP5929190B2 (en
Inventor
Hitoshi Yamamoto
整 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011289569A priority Critical patent/JP5929190B2/en
Priority to KR1020120154479A priority patent/KR101467640B1/en
Publication of JP2013139889A publication Critical patent/JP2013139889A/en
Application granted granted Critical
Publication of JP5929190B2 publication Critical patent/JP5929190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/04Heating arrangements using electric heating
    • F26B23/06Heating arrangements using electric heating resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode drying method and an electrode drying device by which desirable drying conditions can be set while continuous drying state of an electrode layer are recognized.SOLUTION: An electrode drying method, for drying an electrode layer 40 formed by applying electrode slurry 20 containing a solvent 21 to current collecting foil 30 in a drying furnace 50, includes: setting drying reference values A1, A2 defined by a locus of an evaporation volume of the solvent 21 from the electrode layer 40 relative to time in advance; detecting drying factors including a temperature in the drying furnace 50, a wind speed, and a solvent concentration, and calculating a solvent evaporation volume M based on the drying factors; and drying the electrode layer 40 while controlling a heating part 80 for heating the inside of the drying furnace 50 and an air blowing part 70 for blowing air to the inside of the drying furnace 50 such that the solvent evaporation volume M follows the drying reference values A1, A2.

Description

本発明は、電極乾燥方法および電極乾燥方法に関する。   The present invention relates to an electrode drying method and an electrode drying method.

リチウムイオン二次電池は、蓄電密度が大きく、充放電を繰り返し行っても蓄電性能をよく保つことから、自動車や家電製品の電源として広く用いられている。   Lithium ion secondary batteries are widely used as power sources for automobiles and home appliances because they have a high storage density and maintain good storage performance even after repeated charging and discharging.

リチウムイオン二次電池の電極形成過程においては、まず、正極のアルミニウム箔、負極の銅箔のような電極箔上に、溶媒を含むスラリー状態の電極スラリーを一定重量塗布することによって電極層を形成する。次に、乾燥炉の中において、電極層に含まれる溶媒を蒸発させて乾燥させ、電極層の固形分と電極箔とを固着させている。電極乾燥工程においては、乾燥炉内において、電極箔上の電極層に熱風を吹きつける方法が一般的である(例えば、特許文献1を参照)。   In the process of forming an electrode of a lithium ion secondary battery, first, an electrode layer is formed by applying a certain weight of a slurry slurry containing a solvent on an electrode foil such as a positive electrode aluminum foil or a negative electrode copper foil. To do. Next, in the drying furnace, the solvent contained in the electrode layer is evaporated and dried to fix the solid content of the electrode layer and the electrode foil. In the electrode drying step, a method of blowing hot air to the electrode layer on the electrode foil in a drying furnace is common (see, for example, Patent Document 1).

特開2006―107780号公報JP 2006-107780 A

電極乾燥工程における溶媒の蒸発速度が速すぎると、電極層内での溶媒移動に伴い、電極スラリーに含まれるバインダーの移動を著しくさせ、電極層の上層へバインダーが偏在する。このようなバインダーの偏析が生じると、電極層の固形分と電極箔との間のバインダー量が減るために密着強度が低下し、電池内の抵抗値が高くなり、電極性能の低下を招くことになる。   If the evaporation rate of the solvent in the electrode drying step is too high, the binder contained in the electrode slurry is remarkably moved along with the movement of the solvent in the electrode layer, and the binder is unevenly distributed in the upper layer of the electrode layer. When such binder segregation occurs, the amount of binder between the solid content of the electrode layer and the electrode foil decreases, so that the adhesion strength decreases, the resistance value in the battery increases, and the electrode performance decreases. become.

また、電極乾燥工程における溶媒の蒸発速度が遅いと、密着強度は上がるが、電極スラリー内で材料に偏在が生じる可能性があり、この結果として、電池内の抵抗値が高くなり、電極性能の低下を招くことになる。   In addition, if the evaporation rate of the solvent in the electrode drying process is slow, the adhesion strength increases, but the material may be unevenly distributed in the electrode slurry, and as a result, the resistance value in the battery increases and the electrode performance is reduced. It will cause a decline.

したがって、溶媒の蒸発速度を適切に維持することが望ましいが、溶媒が蒸発するしたがって電極層内の溶媒の量が変化するため、望ましい蒸発速度を維持することは容易ではない。このため、例えば特許文献1では、電極乾燥工程を乾燥度により複数の領域に分割し、それぞれの領域での乾燥条件(温度、風速)を変更することで、電極層の乾燥度に応じて乾燥条件を変更している。   Therefore, it is desirable to maintain the solvent evaporation rate appropriately, but it is not easy to maintain the desired evaporation rate because the solvent evaporates and thus the amount of solvent in the electrode layer changes. For this reason, in Patent Document 1, for example, the electrode drying process is divided into a plurality of regions depending on the degree of drying, and the drying conditions (temperature, wind speed) in each region are changed, so that drying is performed according to the degree of drying of the electrode layer. The condition has been changed.

しかしながら、特許文献1に記載の方法は、溶媒の蒸発速度を測定できないため、経験と試行錯誤に基づいて乾燥条件を初期設定し、設定した条件を固定している。したがって、各領域での電極乾燥工程の終了時での乾燥状態の到達点を定義しているに過ぎず、品質に影響を与える連続的な乾燥状態を把握していない。   However, since the method described in Patent Document 1 cannot measure the evaporation rate of the solvent, the drying conditions are initially set based on experience and trial and error, and the set conditions are fixed. Therefore, it only defines the reaching point of the dry state at the end of the electrode drying process in each region, and does not grasp the continuous dry state that affects the quality.

本発明は、上記の課題を解決するためになされたものであり、電極層の連続的な乾燥状態を把握しつつ望ましい乾燥条件を設定できる電極乾燥方法および電極乾燥装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an electrode drying method and an electrode drying apparatus capable of setting desirable drying conditions while grasping the continuous drying state of the electrode layer. To do.

本発明に係る電極乾燥方法は、溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる電極乾燥方法である。当該電極乾燥方法は、時間に対する前記電極層からの溶媒の蒸発量の軌跡で定義される乾燥基準値を予め設定し、前記乾燥炉内の温度、風速および溶媒濃度を含む乾燥因子を検出して当該乾燥因子に基づいて前記溶媒の蒸発量を算出する。そして、当該溶媒の蒸発量が乾燥基準値に追従するように、乾燥炉内を加熱する加熱部および乾燥炉内に送風する送風部を制御しつつ前記電極層を乾燥させる。   The electrode drying method according to the present invention is an electrode drying method in which an electrode layer formed by applying an electrode slurry containing a solvent to a current collector is dried in a drying furnace. In the electrode drying method, a drying reference value defined by a trajectory of the evaporation amount of the solvent from the electrode layer with respect to time is set in advance, and a drying factor including a temperature, a wind speed, and a solvent concentration in the drying furnace is detected. The amount of evaporation of the solvent is calculated based on the drying factor. And the said electrode layer is dried, controlling the heating part which heats the inside of a drying furnace, and the ventilation part which ventilates in a drying furnace so that the evaporation amount of the said solvent follows a dry reference value.

本発明に係る電極乾燥方法によれば、乾燥因子に基づいて算出される溶媒の蒸発量が乾燥基準値に追従するように加熱部および送風部を制御するため、電極層の連続的な乾燥状態を把握しつつ、望ましい乾燥条件を設定することができる。   According to the electrode drying method of the present invention, the heating part and the air blowing part are controlled so that the evaporation amount of the solvent calculated based on the drying factor follows the drying reference value. This makes it possible to set desirable drying conditions.

実施形態に係る電極乾燥装置を示す概略構成図である。It is a schematic block diagram which shows the electrode drying apparatus which concerns on embodiment. 実施形態の乾燥方式によって電極層を乾燥させている状態を示す模式図である。It is a schematic diagram which shows the state which has dried the electrode layer with the drying system of embodiment. 実施形態に係る電極乾燥装置に設けられる乾燥ゾーンの1つを示す概略構成図である。It is a schematic block diagram which shows one of the drying zones provided in the electrode drying apparatus which concerns on embodiment. 図3の4−4線に沿う概略断面図である。FIG. 4 is a schematic cross-sectional view taken along line 4-4 of FIG. 乾燥炉通過時間に対する溶媒蒸発量を示すグラフである。It is a graph which shows the amount of solvent evaporation with respect to drying furnace passage time. 乾燥条件を変更した後の乾燥炉通過時間に対する溶媒蒸発量を示すグラフである。It is a graph which shows the amount of solvent evaporation with respect to the drying furnace passage time after changing drying conditions. 捕集用ノズルから吐出した空気によって蒸発した溶媒を捕集管へ導く際を示す概略断面図であり、(A)は層流を生じる場合、(B)は渦を生じる場合を示す。It is a schematic sectional drawing which shows when the solvent evaporated with the air discharged from the nozzle for collection is guide | induced to a collection pipe, (A) shows the case where a laminar flow is produced, (B) shows the case where a vortex is produced. 追加加熱部を作動させた際の乾燥ゾーンの1つを示す概略構成図である。It is a schematic block diagram which shows one of the drying zones at the time of operating an additional heating part. 溶媒濃度検出部の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a solvent concentration detection part. 追加加熱部の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of an additional heating part. 追加加熱部のさらに他の例を示す概略構成図である。It is a schematic block diagram which shows the further another example of an additional heating part.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation, and are different from the actual ratios.

図1〜3に示すように、電極乾燥装置10は、溶媒21を含む電極スラリー20を電極箔30(集電体に相当する)に塗布することによって形成された電極層40を乾燥炉50の中において乾燥させる装置である。この電極乾燥装置10は、電極層40が形成された電極箔30を乾燥炉50内において搬送する搬送部60と、電極層40を乾燥させる熱を付与する加熱部80と、加熱された空気を乾燥炉50内に送風する送風部70と、加熱部80とは異なる追加加熱部90と、を有している。さらに、電極乾燥装置10は、複数の計測手段を備えており、電極層40の温度を計測する電極温度検出部100と、乾燥炉50内の風速を計測する風速検出部110と、炉内の雰囲気温度を計測する炉内温度検出部120と、蒸発した溶媒の濃度を計測する溶媒濃度検出部130と、を有している。電極乾燥装置10は、構成する各部位が制御部160によって統括的に制御される。以下、詳述する。   As shown in FIGS. 1 to 3, the electrode drying apparatus 10 uses an electrode layer 40 formed by applying an electrode slurry 20 containing a solvent 21 to an electrode foil 30 (corresponding to a current collector) in a drying furnace 50. It is a device for drying inside. The electrode drying apparatus 10 includes a transport unit 60 that transports the electrode foil 30 on which the electrode layer 40 is formed in a drying furnace 50, a heating unit 80 that applies heat to dry the electrode layer 40, and heated air. It has the ventilation part 70 which ventilates in the drying furnace 50, and the additional heating part 90 different from the heating part 80. Furthermore, the electrode drying apparatus 10 includes a plurality of measuring means, an electrode temperature detection unit 100 that measures the temperature of the electrode layer 40, a wind speed detection unit 110 that measures the wind speed in the drying furnace 50, It has a furnace temperature detector 120 that measures the ambient temperature, and a solvent concentration detector 130 that measures the concentration of the evaporated solvent. In the electrode drying apparatus 10, each part of the electrode drying apparatus 10 is comprehensively controlled by the control unit 160. Details will be described below.

電極箔30は、集電体として用いられる。電極箔30は、適宜の材料、例えば、アルミニウム、銅、ニッケル、鉄、ステンレス鋼を用いることができる。具体的には、例えば、正極集電体にはアルミニウムなどの電極箔30を用い、負極集電体には銅などの電極箔30を用いることができる。電極箔30の具体的な厚さについて特に制限はないが、例えば、アルミニウムの場合には20μm、銅の場合には10μ程度の薄膜である。   The electrode foil 30 is used as a current collector. The electrode foil 30 can be made of an appropriate material such as aluminum, copper, nickel, iron, and stainless steel. Specifically, for example, an electrode foil 30 such as aluminum can be used for the positive electrode current collector, and an electrode foil 30 such as copper can be used for the negative electrode current collector. Although there is no restriction | limiting in particular about the specific thickness of the electrode foil 30, For example, in the case of aluminum, it is a thin film of about 20 micrometers, and in the case of copper, it is about 10 micrometers.

電極スラリー20には、正極を形成するために用いる正極スラリーと、負極を形成するために用いる負極スラリーとがある。   The electrode slurry 20 includes a positive electrode slurry used for forming a positive electrode and a negative electrode slurry used for forming a negative electrode.

正極スラリーは、例えば、正極活物質22、導電助剤24、およびバインダー23を有し、溶媒21を添加することで、所定の粘度にされる。正極活物質22は、例えば、マンガン酸リチウムである。導電助剤24は、例えば、アセチレンブラックである。バインダー23は、例えば、PVDF(ポリフッ化ビニリデン)である。溶媒21は、例えば、NMP(ノルマルメチルピロリドン)である。なお、正極活物質22は、マンガン酸リチウムに特に限定されないが、容量および出力特性の観点から、リチウム−遷移金属複合酸化物を適用することが好ましい。導電助剤24は、例えば、カーボンブラックやグラファイトを利用することも可能である。バインダー23および溶媒21は、PVDFおよびNMPに限定されない。溶媒21として水を用いることもできる。   The positive electrode slurry has, for example, a positive electrode active material 22, a conductive auxiliary agent 24, and a binder 23, and has a predetermined viscosity by adding a solvent 21. The positive electrode active material 22 is, for example, lithium manganate. The conductive auxiliary agent 24 is, for example, acetylene black. The binder 23 is, for example, PVDF (polyvinylidene fluoride). The solvent 21 is, for example, NMP (normal methyl pyrrolidone). The positive electrode active material 22 is not particularly limited to lithium manganate, but it is preferable to apply a lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics. For example, carbon black or graphite can be used as the conductive assistant 24. The binder 23 and the solvent 21 are not limited to PVDF and NMP. Water can also be used as the solvent 21.

負極スラリーは、例えば、負極活物質22、導電助剤24、およびバインダー23を有し、溶媒21を添加することで、所定の粘度にされる。負極活物質22は、例えば、グラファイトである。導電助剤24、バインダー23、および溶媒21は、例えば、アセチレンブラック、PVDF、およびNMPである。なお、負極活物質22は、グラファイトに特に限定されず、ハードカーボンや、リチウム−遷移金属複合酸化物を利用することも可能である。導電助剤24は、例えば、カーボンブラックやグラファイトを利用することも可能である。バインダー23および溶媒21は、PVDFおよびNMPに限定されない。
溶媒21として水を用いることもできる。
The negative electrode slurry has, for example, a negative electrode active material 22, a conductive auxiliary agent 24, and a binder 23, and has a predetermined viscosity by adding the solvent 21. The negative electrode active material 22 is, for example, graphite. The conductive auxiliary agent 24, the binder 23, and the solvent 21 are, for example, acetylene black, PVDF, and NMP. The negative electrode active material 22 is not particularly limited to graphite, and hard carbon or a lithium-transition metal composite oxide can also be used. For example, carbon black or graphite can be used as the conductive assistant 24. The binder 23 and the solvent 21 are not limited to PVDF and NMP.
Water can also be used as the solvent 21.

電極箔30に正極スラリーを塗布することによって形成した正極の電極層40および負極スラリーを塗布することによって形成した負極の電極層40を、乾燥炉50において乾燥し、正極および負極を形成する。このとき、電極スラリー20に含まれる溶媒21としてのNMPは、蒸発することによって電極スラリー20から除去する。   The positive electrode layer 40 formed by applying the positive electrode slurry to the electrode foil 30 and the negative electrode layer 40 formed by applying the negative electrode slurry are dried in a drying furnace 50 to form the positive electrode and the negative electrode. At this time, NMP as the solvent 21 contained in the electrode slurry 20 is removed from the electrode slurry 20 by evaporating.

電極乾燥装置10の乾燥炉50は、熱風通路および電極箔30の搬送路を形成するケーシング140を有している。乾燥炉50内は、複数(図示例にあっては、6個)に区画した乾燥ゾーン51〜56から構成されている。説明の便宜上、電極箔30を搬送する方向(以下、搬送方向という場合がある。)の上流側から順に(図1において左側から順に)、第1の乾燥ゾーン51、第2の乾燥ゾーン52、第3の乾燥ゾーン53、第4の乾燥ゾーン54、第5の乾燥ゾーン55、および第6の乾燥ゾーン56という。ケーシング140内に仕切り壁141を設けることによって、第1〜第6のそれぞれの乾燥ゾーン51〜56を形成している。搬送部60を配置するために、ケーシング140の端面、および仕切り壁141には開口部を設けている。第1〜第6の乾燥ゾーン51〜56のそれぞれには、搬送される電極箔30の上方位置から熱風を供給するための上ノズル142と、搬送される電極箔30の下方位置から熱風を供給するための下ノズル143と、乾燥ゾーン51〜56内から排気管190を介して排気するための排気口144とを設けている。   The drying furnace 50 of the electrode drying apparatus 10 includes a casing 140 that forms a hot air passage and a conveyance path for the electrode foil 30. The inside of the drying furnace 50 is composed of drying zones 51 to 56 divided into a plurality (six in the illustrated example). For convenience of explanation, the first drying zone 51, the second drying zone 52, in order from the upstream side in the direction in which the electrode foil 30 is transported (hereinafter sometimes referred to as the transport direction) (in order from the left side in FIG. 1), The third drying zone 53, the fourth drying zone 54, the fifth drying zone 55, and the sixth drying zone 56 are referred to. By providing the partition wall 141 in the casing 140, the first to sixth drying zones 51 to 56 are formed. In order to arrange the transport unit 60, an opening is provided in the end surface of the casing 140 and the partition wall 141. In each of the first to sixth drying zones 51 to 56, hot air is supplied from an upper nozzle 142 for supplying hot air from an upper position of the conveyed electrode foil 30 and from a lower position of the conveyed electrode foil 30. A lower nozzle 143 for exhausting air and an exhaust port 144 for exhausting air from the inside of the drying zones 51 to 56 through the exhaust pipe 190 are provided.

そして、各々の乾燥ゾーン51〜56ごとに、加熱部80、送風部70、追加加熱部90を設けている。さらに、各々の乾燥ゾーン51〜56ごとに、電極温度検出部100、風速検出部110、炉内温度検出部120、および溶媒濃度検出部130を設けている。   And the heating part 80, the ventilation part 70, and the additional heating part 90 are provided for each of the drying zones 51-56. Further, an electrode temperature detection unit 100, a wind speed detection unit 110, a furnace temperature detection unit 120, and a solvent concentration detection unit 130 are provided for each of the drying zones 51 to 56.

上ノズル142および下ノズル143は、熱風供給管150が接続されており、熱風供給管150には、加熱部80と、送風部70とが接続されている。加熱部および送風部70は、制御部160に接続されており、加熱温度および送風量を任意に制御可能となっている。送風部70には、外部から空気を取り込む吸気管170と、乾燥ゾーン51〜56内の空気を再利用するための循環管180とが接続されており、循環管180に設けられるバルブ181が開閉することで、循環管180から排出された空気を、吸気管170からの空気と任意の割合で混合して再び利用することができる。排気を再利用することで、低コストでの量産が可能となる。   A hot air supply pipe 150 is connected to the upper nozzle 142 and the lower nozzle 143, and a heating unit 80 and a blower unit 70 are connected to the hot air supply pipe 150. The heating unit and the air blowing unit 70 are connected to the control unit 160 and can arbitrarily control the heating temperature and the air flow rate. An intake pipe 170 that takes in air from the outside and a circulation pipe 180 for reusing the air in the drying zones 51 to 56 are connected to the blower unit 70, and a valve 181 provided in the circulation pipe 180 opens and closes. As a result, the air discharged from the circulation pipe 180 can be mixed with the air from the intake pipe 170 at an arbitrary ratio and reused. By reusing the exhaust, mass production at low cost becomes possible.

送風部70は、送風用のファン71を有している。加熱部80は、熱交換器であり、熱媒体(例えば、蒸気や蒸気還流水)との間で熱交換を行って空気を加熱する。なお、加熱部80は、空気を加熱できるのであれば熱交換器でなくてもよい。熱風の温度は、環境温度や電極スラリー20の種類などによって種々異なることから特に限定されないが、例えば100±40℃である。   The air blowing unit 70 has a fan 71 for air blowing. The heating unit 80 is a heat exchanger, and heats the air by exchanging heat with a heat medium (for example, steam or steam reflux water). The heating unit 80 may not be a heat exchanger as long as air can be heated. The temperature of the hot air is not particularly limited because it varies depending on the environmental temperature, the type of the electrode slurry 20, and the like, but is 100 ± 40 ° C., for example.

追加加熱部90は、搬送される電極箔30の上方位置から電極層40へ赤外線を照射する照射部91と、照射部91を覆うことが可能なシャッター92とを備えている。シャッター92は、モータ等の駆動源によって開閉可能であり、閉じた状態では、照射部91からの赤外線が電極層40へ照射されず、開いた状態となることで、搬送方向と直交する幅方向(図1、図3の紙面奥行方向。以下、幅方向という場合がある。)に延びる一定間隔のスリット93を形成する(図8参照)。スリット93を通して照射された赤外線は、電極層40を加熱するが、この際、スリット93の延びる方向(幅方向)には均一な照射率となり、スリット93の隙間方向(搬送方向)には、中央部を頂点として両方向へ照射率が減少する。   The additional heating unit 90 includes an irradiation unit 91 that irradiates the electrode layer 40 with infrared rays from a position above the conveyed electrode foil 30 and a shutter 92 that can cover the irradiation unit 91. The shutter 92 can be opened and closed by a driving source such as a motor. When the shutter 92 is closed, the infrared rays from the irradiation unit 91 are not irradiated to the electrode layer 40 and are opened, so that the width direction perpendicular to the transport direction is obtained. The slits 93 are formed at regular intervals extending in the depth direction of the paper in FIGS. 1 and 3 (hereinafter also referred to as the width direction) (see FIG. 8). The infrared rays irradiated through the slit 93 heat the electrode layer 40. At this time, the irradiation rate is uniform in the extending direction (width direction) of the slit 93, and the center in the gap direction (conveying direction) of the slit 93. Irradiation rate decreases in both directions with the part at the top.

溶媒濃度検出部130は、蒸発した溶媒を捕集するための捕集管131(排気経路)と、捕集管131へ向かう流れを乾燥炉50内に形成する捕集用ノズル132と、捕集管131内に設けられる溶媒濃度計134と、を有している。捕集管131および捕集用ノズル132は、間に電極層40を挟むように幅方向に対向して配置される。捕集用ノズル132は、バルブ151を有する熱風供給管150に接続されることで、加熱された空気を吐出でき、電極層40の上面に沿う空気の流れを形成して、捕集管131へ空気を導入させる。捕集管131は、捕集した空気を排気管190まで導く。溶媒濃度計134は、捕集された空気に含まれる溶媒の濃度を検出し、検出した信号を制御部160へ送信する。   The solvent concentration detection unit 130 includes a collection tube 131 (exhaust path) for collecting the evaporated solvent, a collection nozzle 132 that forms a flow toward the collection tube 131 in the drying furnace 50, and a collection. And a solvent concentration meter 134 provided in the tube 131. The collection tube 131 and the collection nozzle 132 are arranged to face each other in the width direction so as to sandwich the electrode layer 40 therebetween. The collection nozzle 132 is connected to a hot air supply pipe 150 having a valve 151 so that heated air can be discharged, and a flow of air along the upper surface of the electrode layer 40 is formed to the collection pipe 131. Introduce air. The collection pipe 131 guides the collected air to the exhaust pipe 190. The solvent concentration meter 134 detects the concentration of the solvent contained in the collected air and transmits the detected signal to the control unit 160.

電極温度検出部100は、例えば放射式温度計であり、離間した位置から電極層40の温度を検出し、検出した信号を制御部160へ送信する。   The electrode temperature detection unit 100 is, for example, a radiation thermometer, detects the temperature of the electrode layer 40 from a separated position, and transmits the detected signal to the control unit 160.

風速検出部110は、乾燥炉内の風速を検出し、検出した信号を制御部160へ送信する。   The wind speed detection unit 110 detects the wind speed in the drying furnace and transmits the detected signal to the control unit 160.

炉内温度検出部120は、例えば熱電対や抵抗温度計等であり、乾燥炉50内の雰囲気温度を検出して、検出した信号を制御部160へ送信する。   The furnace temperature detection unit 120 is, for example, a thermocouple, a resistance thermometer, or the like, detects the atmospheric temperature in the drying furnace 50, and transmits the detected signal to the control unit 160.

搬送部60は、電極スラリー20を塗布する前の電極箔30を供給する供給ロール61と、電極層40を乾燥させた後の電極箔30を巻き取る巻取りロール62と、供給ロール61と巻取りロール62との間に配置され電極箔30の下面を保持する複数のサポートロール63と、を有している。供給ロール61には、電極箔30を予め巻回してある。巻取りロール62には、巻取りロール62を回転駆動するモータMを接続してある。モータMを駆動して巻取りロール62を回転駆動すると、電極箔30は、供給ロール61から繰り出され、乾燥炉50内を搬送され、巻取りロール62に巻き取られる。このようにして、搬送部60は、長尺状の電極箔30をロール・トゥ・ロール方式によって連続的に搬送する。   The transport unit 60 includes a supply roll 61 that supplies the electrode foil 30 before the electrode slurry 20 is applied, a winding roll 62 that winds up the electrode foil 30 after the electrode layer 40 is dried, a supply roll 61 and a winding roll. A plurality of support rolls 63 that are arranged between the take-up roll 62 and hold the lower surface of the electrode foil 30. The electrode foil 30 is wound around the supply roll 61 in advance. A motor M that rotationally drives the winding roll 62 is connected to the winding roll 62. When the motor M is driven and the take-up roll 62 is rotationally driven, the electrode foil 30 is unwound from the supply roll 61, conveyed in the drying furnace 50, and taken up by the take-up roll 62. Thus, the conveyance part 60 conveys the elongate electrode foil 30 continuously by a roll-to-roll system.

電極スラリー20の塗布は、電極箔30を搬送しつつ、塗布部145によって行う。塗布部145は、溶媒21を含むスラリー状の電極スラリー20を電極箔30に塗布するコーター146を有している。コーター146は、電極箔30に対向し、電極箔30を搬送しながら間欠的に電極スラリー20を塗布する。これにより、電極スラリー20は、一定の間隔の隙間を空けて間欠的に配列する。コーター146を使っての間欠塗工方式では、ロール・トゥ・ロール方式で供給される集電箔に、電極スラリー20を、膜厚30〜300μm程度で均一に塗工し、連続生産を行う。   Application | coating of the electrode slurry 20 is performed by the application part 145, conveying the electrode foil 30. FIG. The application unit 145 includes a coater 146 that applies the slurry-like electrode slurry 20 containing the solvent 21 to the electrode foil 30. The coater 146 faces the electrode foil 30 and intermittently applies the electrode slurry 20 while conveying the electrode foil 30. Thereby, the electrode slurry 20 is intermittently arranged with a gap of a constant interval. In the intermittent coating method using the coater 146, the electrode slurry 20 is uniformly coated with a film thickness of about 30 to 300 μm on a current collector foil supplied by a roll-to-roll method, and continuous production is performed.

制御部160は、CPUおよびメモリを主体として構成され、動作を制御するためのプログラムがメモリに記憶されている。制御部160は、塗布部145の作動を制御して、電極スラリー20の塗布量、塗布厚さなどを調整し、各々の乾燥ゾーン51〜56ごとに加熱部80および送風部70の作動を制御して、給気の温度、風量などを調整する。制御部160はまた、モータMの作動を制御して、電極箔30の搬送速度を調整する。   The control unit 160 is composed mainly of a CPU and a memory, and a program for controlling the operation is stored in the memory. The control unit 160 controls the operation of the application unit 145 to adjust the application amount and application thickness of the electrode slurry 20, and controls the operation of the heating unit 80 and the air blowing unit 70 for each of the drying zones 51 to 56. Then, adjust the temperature of the supply air, the air volume, etc. The controller 160 also controls the operation of the motor M to adjust the conveyance speed of the electrode foil 30.

さらに、制御部160は、溶媒濃度検出部130、炉内温度検出部120、風速検出部110および電極温度検出部100から送信される信号から、溶媒蒸発量Mを算出する。すなわち、炉内における溶媒蒸発量Mは、雰囲気中の溶媒濃度、炉内温度、炉内の風速、および電極層40の温度の条件により決定されるため、これらの乾燥因子の計測値に基づいて、電極層40から蒸発した溶媒21の総量である溶媒蒸発量Mを算出する。なお、溶媒蒸発量Mは、雰囲気中の溶媒濃度が低く、炉内温度が高く、炉内の風速が高く、かつ電極層40の温度が高いほど上昇する。これらの乾燥因子に基づく溶媒蒸発量Mは、実験的に求めることができる。   Furthermore, the control unit 160 calculates the solvent evaporation amount M from signals transmitted from the solvent concentration detection unit 130, the furnace temperature detection unit 120, the wind speed detection unit 110, and the electrode temperature detection unit 100. That is, since the solvent evaporation amount M in the furnace is determined by the conditions of the solvent concentration in the atmosphere, the furnace temperature, the wind speed in the furnace, and the temperature of the electrode layer 40, it is based on the measured values of these drying factors. The solvent evaporation amount M, which is the total amount of the solvent 21 evaporated from the electrode layer 40, is calculated. The solvent evaporation amount M increases as the solvent concentration in the atmosphere is lower, the furnace temperature is higher, the furnace wind speed is higher, and the temperature of the electrode layer 40 is higher. The solvent evaporation amount M based on these drying factors can be determined experimentally.

また、制御部160には、図5に示すように、時間に対する溶媒蒸発量の軌跡で定義される乾燥基準値A1を予め記憶させる。そして、制御部160は、計測される乾燥因子から算出される溶媒蒸発量Mが乾燥基準値A1の範囲内に常に収まるように、加熱部80、追加加熱部90および送風部70を自動で調整する。加熱部80、追加加熱部90による加熱量を増加させ、かつ送風部70による送風量を上昇させるほど、溶媒蒸発量Mは上昇することになる。   Further, as shown in FIG. 5, the control unit 160 stores in advance a drying reference value A <b> 1 defined by a locus of the solvent evaporation amount with respect to time. Then, the control unit 160 automatically adjusts the heating unit 80, the additional heating unit 90, and the air blowing unit 70 so that the solvent evaporation amount M calculated from the measured drying factor is always within the range of the drying reference value A1. To do. The solvent evaporation amount M increases as the heating amount by the heating unit 80 and the additional heating unit 90 is increased and the blowing amount by the blowing unit 70 is increased.

なお、本実施形態では、乾燥基準値A1は、図5に示すように、溶媒蒸発量が幅を有する帯状の範囲で定義されているが、幅を有しない線で定義して、算出される溶媒蒸発量Mが線に極力追従するように制御してもよい。乾燥基準値A1は、実験等によって決定される。   In the present embodiment, the drying reference value A1 is defined as a band-shaped range having a width as shown in FIG. 5, but is defined and calculated by a line having no width. The solvent evaporation amount M may be controlled so as to follow the line as much as possible. The drying reference value A1 is determined by experiments or the like.

そして、乾燥基準値は、乾燥に必要な時間に応じて、複数(本実施形態では2つ)設けられる。図6は、図5に示す乾燥基準値A1よりも長い時間をかけて乾燥させる場合の乾燥基準値A2を示している。   A plurality (two in this embodiment) of reference drying values are provided according to the time required for drying. FIG. 6 shows a drying reference value A2 when drying is performed over a longer time than the drying reference value A1 shown in FIG.

本実施形態の作用を説明する前に、乾燥炉50に供給する給気の温度や風量が適切でないときに生じる不具合について説明する。   Before describing the operation of the present embodiment, a problem that occurs when the temperature and air volume of the supply air supplied to the drying furnace 50 are not appropriate will be described.

熱風を用いた乾燥炉50において乾燥速度の向上を図る場合には、熱風温度を高くするとともに風量を増加し、電極層40の表面と雰囲気57との界面部分における溶媒21(NMP)の除去量を増加させる。このような対応の場合、乾燥が早くなって、電極層40の表面近傍にバインダー23(PVDF)が偏析してしまう。このため、電極箔30に強く密着した塗膜つまり強密着の電極層40を得ることができなくなる。   When the drying rate is improved in the drying furnace 50 using hot air, the hot air temperature is increased and the air volume is increased, and the amount of solvent 21 (NMP) removed at the interface portion between the surface of the electrode layer 40 and the atmosphere 57 is increased. Increase. In such a case, drying is accelerated and the binder 23 (PVDF) is segregated near the surface of the electrode layer 40. For this reason, it becomes impossible to obtain a coating film strongly adhered to the electrode foil 30, that is, a strongly adhered electrode layer 40.

熱風温度を高くした場合にバインダー23の偏析が生じる原因として、次のようなものを挙げることができる。すなわち、乾燥時においてはバインダー23を溶媒21に溶かしたものが電極層40に含まれているので、電極層40を高い温度の環境下にさらすと、電極層40内において溶媒21自体が対流を起こす。その結果、溶解しているバインダー23が偏析してしまう。   The following can be cited as causes of segregation of the binder 23 when the hot air temperature is increased. That is, since the electrode layer 40 contains the binder 23 dissolved in the solvent 21 at the time of drying, the solvent 21 itself convects in the electrode layer 40 when the electrode layer 40 is exposed to a high temperature environment. Wake up. As a result, the dissolved binder 23 is segregated.

また、風量を増加した場合にバインダー23の偏析が生じる原因として、次のようなものを挙げることができる。すなわち、電極層40の表面近傍における溶媒21(NMP)だけが優先的に蒸発して表面近傍だけが先に乾き(表面先乾き)、この表面先乾き部分に生じた亀裂やホールなどによる毛細管現象によって、NMPを深部から表面に向けて吸い上げる。その結果、溶解しているバインダー23が偏析してしまう。   Moreover, the following can be mentioned as a cause of the segregation of the binder 23 when the air volume is increased. That is, only the solvent 21 (NMP) in the vicinity of the surface of the electrode layer 40 is preferentially evaporated and only the vicinity of the surface is dried first (surface pre-drying), and the capillary phenomenon due to cracks or holes generated in the surface pre-drying portion. The NMP is sucked from the depth toward the surface. As a result, the dissolved binder 23 is segregated.

乾燥時にバインダー23の偏析を生じ得る乾燥条件では、表面粗さが大きく、密着力も弱いことから、電極箔30と電極層40との接触量あるいは接触面積が少なくなる。このため、初期における電池内の抵抗値のみならず、充放電を繰り返した後の電池内の抵抗値も高くなり、電極性能の低下を招くことになる。   Under drying conditions that can cause segregation of the binder 23 at the time of drying, the surface roughness is large and the adhesion is weak, so the contact amount or contact area between the electrode foil 30 and the electrode layer 40 is reduced. For this reason, not only the resistance value in the battery in the initial stage, but also the resistance value in the battery after repeated charge / discharge increases, leading to a decrease in electrode performance.

発生したバインダー23の偏析を解消するために、乾燥後の電極をロールプレス機などによって圧縮する方法がある。しかしながら、乾燥が完了して電極層40が固着した後に強制的に構造変化させることになるため、電極層40の密着強度はさほど向上しない。しかも、低コストで量産を実現する観点から、乾燥工程の後に圧縮工程を付加することは避けることが望ましい。   In order to eliminate the segregation of the generated binder 23, there is a method in which the dried electrode is compressed by a roll press or the like. However, since the structure is forcibly changed after the drying is completed and the electrode layer 40 is fixed, the adhesion strength of the electrode layer 40 is not improved so much. Moreover, it is desirable to avoid adding a compression step after the drying step from the viewpoint of realizing mass production at a low cost.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

モータMを駆動して巻取りロール62を回転駆動し、電極箔30を、供給ロール61から繰り出し、巻取りロール62に巻き取る。コーター146は、移動している電極箔30の表面に間欠的に電極スラリー20を塗布する。制御部160は、塗布部145の作動を制御し、電極スラリー20の塗布量、塗布厚さなどを調整している。加熱部80および送風部70は、熱風を、上下のノズル142,143から熱風通路内に供給する。電極箔30の表面に溶媒21を含む電極スラリー20を塗布した後、電極層40を第1の乾燥ゾーン51〜第6の乾燥ゾーン56へ順次搬送しつつ、各々の乾燥ゾーン51〜56の乾燥炉50内において、電極層40に含まれる溶媒21を蒸発させる。   The motor M is driven to rotationally drive the take-up roll 62, and the electrode foil 30 is unwound from the supply roll 61 and taken up on the take-up roll 62. The coater 146 applies the electrode slurry 20 intermittently to the surface of the moving electrode foil 30. The control unit 160 controls the operation of the application unit 145 and adjusts the application amount and application thickness of the electrode slurry 20. The heating unit 80 and the air blowing unit 70 supply hot air from the upper and lower nozzles 142 and 143 into the hot air passage. After applying the electrode slurry 20 containing the solvent 21 to the surface of the electrode foil 30, the electrode layer 40 is sequentially transported to the first drying zone 51 to the sixth drying zone 56, and dried in each of the drying zones 51 to 56. In the furnace 50, the solvent 21 contained in the electrode layer 40 is evaporated.

また、各々の乾燥炉50内において、捕集用ノズル132からは、熱風供給管150から供給される加熱された空気を吐出し、電極層40の上面に沿う空気の流れを形成して、捕集管131へ空気を導入させる。空気の流れは、例えば、図7(A)に示すように電極層40に沿う層流としたり、または図7(B)に示すように直進性を有する渦状とすることができる。捕集管131は、捕集した空気を溶媒濃度計134に導いた後、排気管190へ排出する。このように、捕集用ノズル132および捕集管131を設けることで、電極層40から蒸発した溶媒を効果的に捕集することができ、溶媒21の蒸発に影響する電極層40の近傍の溶媒濃度を、溶媒濃度計134によって正確に計測できる。   Further, in each drying furnace 50, heated air supplied from the hot air supply pipe 150 is discharged from the collection nozzle 132 to form a flow of air along the upper surface of the electrode layer 40, thereby capturing the air. Air is introduced into the collecting tube 131. The air flow can be, for example, a laminar flow along the electrode layer 40 as shown in FIG. 7A, or a vortex having straightness as shown in FIG. 7B. The collection pipe 131 guides the collected air to the solvent concentration meter 134 and then discharges it to the exhaust pipe 190. Thus, by providing the collection nozzle 132 and the collection tube 131, the solvent evaporated from the electrode layer 40 can be collected effectively, and the vicinity of the electrode layer 40 that affects the evaporation of the solvent 21 can be collected. The solvent concentration can be accurately measured by the solvent concentration meter 134.

そして、各々の乾燥ゾーン51〜56において、溶媒濃度検出部130、炉内温度検出部120、風速検出部110および電極温度検出部100により、雰囲気中の溶媒濃度、炉内温度、炉内の風速、および電極層40の温度を逐次検出し、検出した信号を制御部160に送信する。制御部160は、受信した信号から、搬送中の電極層40からの溶媒蒸発量Mを、逐次算出する。このように、乾燥炉50内における溶媒蒸発量Mは、雰囲気中の溶媒濃度、炉内温度、炉内の風速、および電極層40の温度の条件により決定されるため、これらの乾燥因子を計測することで、電極層40から蒸発した溶媒蒸発量Mを算出することができる。なお、炉内温度と電極層40の温度を略同一と近似して、一方のみを計測して溶媒蒸発量Mの算出に利用することもできる。   In each of the drying zones 51 to 56, the solvent concentration detector 130, the furnace temperature detector 120, the wind speed detector 110, and the electrode temperature detector 100 allow the solvent concentration in the atmosphere, the furnace temperature, and the wind speed in the furnace. , And the temperature of the electrode layer 40 are sequentially detected, and the detected signal is transmitted to the controller 160. The controller 160 sequentially calculates the solvent evaporation amount M from the electrode layer 40 that is being transported from the received signal. Thus, since the solvent evaporation amount M in the drying furnace 50 is determined by the conditions of the solvent concentration in the atmosphere, the furnace temperature, the wind speed in the furnace, and the temperature of the electrode layer 40, these drying factors are measured. Thus, the solvent evaporation amount M evaporated from the electrode layer 40 can be calculated. Note that the furnace temperature and the temperature of the electrode layer 40 can be approximated to be substantially the same, and only one of them can be measured and used to calculate the solvent evaporation amount M.

そして、制御部160は、計測される乾燥因子から算出される溶媒蒸発量Mが、予め設定されている乾燥基準値A1の範囲内に常に収まるように、加熱部80および送風部70を制御して自動で調整する。   Then, the control unit 160 controls the heating unit 80 and the air blowing unit 70 so that the solvent evaporation amount M calculated from the measured drying factor is always within the range of the preset drying reference value A1. Adjust automatically.

そして、電極層40を第1の乾燥ゾーン51〜第6の乾燥ゾーン56へ順次搬送しつつ、各々の乾燥ゾーン51〜56の乾燥炉50内において、算出される溶媒蒸発量Mが予め設定されている乾燥基準値A1の範囲内に常に収まるように、電極層40に含まれる溶媒21を蒸発させる。このように、乾燥因子である雰囲気中の溶媒濃度、炉内温度、炉内の風速、および電極層40の温度を常に監視して溶媒蒸発量Mを乾燥基準値A1内に調整することで、時間の経過に応じて変化する乾燥基準値A1に追従するように、望ましい溶媒蒸発量Mを維持することができる。このため、剥離強度が強く性能の高い電極を安定して製造することができる。   The calculated solvent evaporation amount M is set in advance in the drying furnace 50 of each of the drying zones 51 to 56 while sequentially transporting the electrode layer 40 to the first drying zone 51 to the sixth drying zone 56. The solvent 21 contained in the electrode layer 40 is evaporated so that it always falls within the range of the dry reference value A1. Thus, by constantly monitoring the solvent concentration in the atmosphere, which is a drying factor, the furnace temperature, the wind speed in the furnace, and the temperature of the electrode layer 40, and adjusting the solvent evaporation amount M within the drying reference value A1, The desired solvent evaporation amount M can be maintained so as to follow the drying reference value A1 that changes with the passage of time. For this reason, an electrode having high peel strength and high performance can be produced stably.

そして、乾燥工程にかける時間を変更する必要が生じると、乾燥基準値A1を、図6に示す他の乾燥基準値A2に切り換える。   When the time required for the drying process needs to be changed, the drying reference value A1 is switched to another drying reference value A2 shown in FIG.

電極の製造工程には、電極スラリー20の固形分を溶媒21に分散する工程、電極スラリー20を電極箔に塗布する工程、電極スラリー20の乾燥工程、乾燥した電極層40をプレスする工程、そして電極を所定の形状に切断する工程が含まれており、これらの工程を連続的に行うことで、電極の高い生産速度を発揮する。しかしながら、各工程は個々の生産速度を有しており、工程間に、材料や生産物の受け渡しに伴う待ち時間や清掃時間等が発生する。しかしながら、電極乾燥装置10は、一旦停止させると再び起動するのに時間がかかるため、電極乾燥装置10が、停止させることなしに生産時間の増減を吸収できる能力を備えることが望ましい。そして、乾燥時間の異なる複数の乾燥基準値A1,A2を設けることで、乾燥時間を自在に変更可能とし、前後の工程との間での生産時間の増減を吸収することが可能となる。   The electrode manufacturing process includes a step of dispersing the solid content of the electrode slurry 20 in the solvent 21, a step of applying the electrode slurry 20 to the electrode foil, a step of drying the electrode slurry 20, a step of pressing the dried electrode layer 40, and A step of cutting the electrode into a predetermined shape is included, and a high production rate of the electrode is exhibited by performing these steps continuously. However, each process has an individual production speed, and waiting time, cleaning time, etc. accompanying the delivery of materials and products occur between the processes. However, since the electrode drying apparatus 10 takes time to start again once it is stopped, it is desirable that the electrode drying apparatus 10 has the ability to absorb the increase and decrease in production time without stopping. By providing a plurality of drying reference values A1 and A2 having different drying times, the drying time can be freely changed, and the increase or decrease in production time between the previous and subsequent steps can be absorbed.

したがって、例えば、容器に入れて一定量ずつ供給される電極スラリー20の容器を交換する場合に、電極乾燥装置10を停止させずに、乾燥基準値A2に切り換えて電極乾燥工程にかける時間を変更し、容器を交換する時間を稼ぐことができる。   Therefore, for example, when replacing the container of the electrode slurry 20 that is supplied in a constant amount in a container, the electrode drying apparatus 10 is switched to the drying reference value A2 without stopping the electrode drying apparatus 10, and the time taken for the electrode drying process is changed. And you can earn time to change containers.

乾燥基準値A2に切り換わると、制御部160は、モータMを制御して搬送速度を変更する。   When switching to the drying reference value A2, the control unit 160 controls the motor M to change the conveyance speed.

そして、制御部160は、計測される乾燥因子から算出される溶媒蒸発量Mが、予め設定されている乾燥基準値A2の範囲内に常に収まるように、加熱部80および送風部70を制御して自動で調整する。そして、電極層40を第1の乾燥ゾーン51〜第6の乾燥ゾーン56へ順次搬送しつつ、各々の乾燥ゾーン51〜56の乾燥炉50内において、算出される溶媒蒸発量Mが、変更された乾燥基準値A2の範囲内に常に収まるように、電極層40に含まれる溶媒21を蒸発させる。   Then, the control unit 160 controls the heating unit 80 and the air blowing unit 70 so that the solvent evaporation amount M calculated from the measured drying factor is always within the range of the preset drying reference value A2. Adjust automatically. And the solvent evaporation amount M calculated in the drying furnace 50 of each drying zone 51-56 is changed, conveying the electrode layer 40 to the 1st drying zone 51-the 6th drying zone 56 sequentially. The solvent 21 contained in the electrode layer 40 is evaporated so as to be always within the range of the dry reference value A2.

そして、乾燥基準値A2への切り換えに伴い、いずれかの乾燥ゾーン51〜56において炉内温度を上昇させる必要が生じた場合、加熱部80による加熱は乾燥炉50内の全体を昇温させるために時間を要することから、加熱部80による加熱量を上昇させつつ、追加加熱部90をも作動させる。追加加熱部90は、シャッター92を閉じた状態で照射部91を作動させておくことで、図8に示すようにシャッター92を開くと同時に、電極層40を迅速に加熱することができる。シャッター92を開くと、スリット93から赤外線が照射されるが、この際、スリット93の延びる方向(幅方向)に均一な照射率となっているため、電極層40を幅方向に均一に加熱することができる。また、スリット93から照射される赤外線は、スリット93の隙間方向(搬送方向)には、中央部を頂点として両方向(搬送方向の上流方向および下流方向)へ照射率が減少するため、搬送方向へ移動する電極層40が赤外線の照射範囲に入る際に、急激に加熱されず、溶媒の乾燥を良好に維持することができる。この後、加熱部80による加熱によって乾燥炉50内の温度が全体的に上昇するに従い、追加加熱部90による加熱量を低減させ、最終的に追加加熱部90を停止させる。   And when it becomes necessary to raise the furnace temperature in any one of the drying zones 51 to 56 with the switching to the drying reference value A2, the heating by the heating unit 80 raises the temperature inside the drying furnace 50. Therefore, the additional heating unit 90 is also activated while increasing the amount of heating by the heating unit 80. The additional heating unit 90 can heat the electrode layer 40 at the same time as opening the shutter 92 as shown in FIG. 8 by operating the irradiation unit 91 with the shutter 92 closed. When the shutter 92 is opened, infrared rays are emitted from the slit 93. At this time, since the irradiation rate is uniform in the extending direction (width direction) of the slit 93, the electrode layer 40 is uniformly heated in the width direction. be able to. Moreover, since the irradiation rate of the infrared rays irradiated from the slit 93 decreases in both directions (upstream and downstream directions of the transport direction) with the central portion at the apex in the gap direction (transport direction) of the slit 93, When the moving electrode layer 40 enters the infrared irradiation range, it is not heated rapidly and the solvent can be kept dry well. Thereafter, as the temperature in the drying furnace 50 rises as a whole due to heating by the heating unit 80, the amount of heating by the additional heating unit 90 is reduced and finally the additional heating unit 90 is stopped.

このように、乾燥因子である雰囲気中の溶媒濃度、炉内温度、炉内の風速、および電極層40の温度を常に監視して溶媒蒸発量Mを乾燥基準値A2内に調整することで、乾燥時間が変更されても、乾燥基準値A2に追従するように、望ましい溶媒蒸発量Mを維持することができる。このため、常に望ましい乾燥状態を維持できるため、バインダー23の偏析が生じることを防止できる。バインダー23の偏析を生じさせない条件にて電極層40を乾燥させているので、電極箔30と電極層40との密着性が向上し、電極箔30と電極層40との接触量あるいは接触面積が十分大きくなる。このため、初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電極性能の向上を図ることが可能となる。   In this way, by constantly monitoring the solvent concentration in the atmosphere, which is a drying factor, the temperature in the furnace, the wind speed in the furnace, and the temperature of the electrode layer 40, and adjusting the solvent evaporation amount M within the drying reference value A2, Even if the drying time is changed, a desirable solvent evaporation amount M can be maintained so as to follow the drying reference value A2. For this reason, since a desirable dry state can always be maintained, it can prevent that the segregation of the binder 23 arises. Since the electrode layer 40 is dried under conditions that do not cause segregation of the binder 23, the adhesion between the electrode foil 30 and the electrode layer 40 is improved, and the contact amount or contact area between the electrode foil 30 and the electrode layer 40 is increased. Become big enough. For this reason, not only the resistance value in the battery in the initial stage, but also the resistance value in the battery after repeated charging and discharging is reduced, and the electrode performance can be improved.

そして、電極スラリー20の容器の交換が終了すると、乾燥時間の短い(乾燥速度の速い)元の乾燥基準値A1に戻して、電極の乾燥を行うことになる。この際においても、いずれかの乾燥ゾーン51〜56において炉内温度を上昇させる必要が生じた場合、加熱部80による加熱量を上昇させるとともに、追加加熱部90を作動させる。そして、加熱部80による加熱によって乾燥炉50内の温度が全体的に上昇するに従い、追加加熱部90による加熱量を低減させ、最終的に追加加熱部90を停止させる。   When the replacement of the electrode slurry 20 container is completed, the electrode is dried by returning to the original drying reference value A1 having a short drying time (high drying speed). Also in this case, when it becomes necessary to raise the furnace temperature in any of the drying zones 51 to 56, the heating amount by the heating unit 80 is increased and the additional heating unit 90 is operated. Then, as the temperature in the drying furnace 50 rises as a whole due to heating by the heating unit 80, the amount of heating by the additional heating unit 90 is reduced and finally the additional heating unit 90 is stopped.

<実験例>
炉内の搬送方向の長さX(m)の乾燥炉を用いて、搬送速度0.5X(m/分)で乾燥実験を行った。乾燥炉内は複数の乾燥ゾーンに区分けし、乾燥ゾーンごとに温度および風速を個別に設定できるようにした。各乾燥ゾーンに、溶媒濃度検出部、炉内温度検出部、風速検出部および電極温度検出部を設けて、雰囲気中の溶媒濃度、炉内温度、炉内の風速、および電極層の温度を監視して記録した。そして、計測される乾燥因子に基づいて溶媒蒸発量を算出し、溶媒蒸発量の時間変化の軌跡を求めた。この際、乾燥因子を変化させるように設備条件を変更し、表1の実験例1〜5に示すように、複数の溶媒蒸発量の時間変化の軌跡を得た。そして、実験例1〜5の条件で電極を作製し、剥離強度と、充放電を100回繰り返した後の電池内の抵抗値を評価した。結果を表1に示す。
<Experimental example>
Using a drying furnace having a length X (m) in the conveying direction in the furnace, a drying experiment was performed at a conveying speed of 0.5 X (m / min). The inside of the drying furnace was divided into a plurality of drying zones, and the temperature and wind speed could be set individually for each drying zone. Each drying zone is equipped with a solvent concentration detector, furnace temperature detector, wind speed detector, and electrode temperature detector to monitor the solvent concentration, furnace temperature, furnace wind speed, and electrode layer temperature in the atmosphere. And recorded. Then, the amount of solvent evaporation was calculated based on the measured drying factor, and the time course of the solvent evaporation amount was obtained. At this time, the equipment conditions were changed so as to change the drying factor, and as shown in Experimental Examples 1 to 5 in Table 1, a plurality of time courses of solvent evaporation were obtained. And the electrode was produced on the conditions of Experimental Examples 1-5, and the resistance value in a battery after repeating peeling strength and charging / discharging 100 times was evaluated. The results are shown in Table 1.

Figure 2013139889
Figure 2013139889

結果として、実験例1および実験例5は、剥離強度が低く抵抗値が高くなっており、電池としての品質を満たさなかった。これに対し、実験例2〜実験例4は、剥離強度が高く抵抗値が低くなっており、電池としての品質を満たした。このように、作製される電池が良好な性能を示す溶媒蒸発量の軌跡を複数得ることができた。したがって、実験例2〜実験例4の条件の範囲で、電池の品質が成立するための乾燥基準値を設定することが可能となった。   As a result, in Experimental Example 1 and Experimental Example 5, the peel strength was low and the resistance value was high, and the quality as a battery was not satisfied. On the other hand, Experimental Example 2 to Experimental Example 4 had high peel strength and low resistance, satisfying the quality as a battery. As described above, it was possible to obtain a plurality of solvent evaporation trajectories in which the produced battery exhibited good performance. Therefore, it is possible to set a drying reference value for establishing the quality of the battery within the range of the conditions of Experimental Example 2 to Experimental Example 4.

次に、同一の乾燥炉を用いて、搬送速度を先の実験の半分の0.25X(m/分)で乾燥実験を行った。なお、搬送速度以外は、先の実験と同一の乾燥条件とした。そして、各乾燥ゾーンでの溶媒蒸発量が実験例1〜5と同様となるように、乾燥ゾーンごとに温度および風速を制御して、実験例6〜10の結果を得た。すなわち、実験例6〜10は、実験例1〜5より得られた溶媒蒸発量の軌跡を乾燥基準値として用いて、電極を作製したものである。結果を表2に示す。   Next, using the same drying furnace, a drying experiment was performed at a conveyance speed of 0.25 × (m / min), which is half of the previous experiment. The drying conditions were the same as in the previous experiment except for the conveyance speed. And the temperature and wind speed were controlled for every drying zone so that the amount of solvent evaporation in each drying zone might become the same as that of Experimental Examples 1-5, and the result of Experimental Examples 6-10 was obtained. That is, in Experimental Examples 6 to 10, the electrodes were produced using the trajectory of the solvent evaporation amount obtained from Experimental Examples 1 to 5 as the drying reference value. The results are shown in Table 2.

Figure 2013139889
Figure 2013139889

結果として、実験例1および実験例5に対応する実験例6および実験例10は、剥離強度が低く抵抗値が高くなっており、電池としての品質を満たさなかった。これに対し、実験例2〜実験例4に対応する実験例7〜実験例9は、剥離強度が高く抵抗値が低くなっており、電池としての品質を満たした。このように、搬送速度が変化して、炉内の各乾燥ゾーンを通過する時間が変化しても、品質が成立する乾燥基準値を用いることで、好ましい電極を得られることが確認された。   As a result, in Experimental Example 6 and Experimental Example 10 corresponding to Experimental Example 1 and Experimental Example 5, the peel strength was low and the resistance value was high, and the quality as a battery was not satisfied. On the other hand, Experimental Example 7 to Experimental Example 9 corresponding to Experimental Example 2 to Experimental Example 4 had high peel strength and low resistance value, satisfying the quality as a battery. Thus, it was confirmed that a preferable electrode can be obtained by using a drying reference value that establishes quality even if the transport speed changes and the time for passing through each drying zone in the furnace changes.

以上説明したように、本実施形態によれば、時間に対する電極層40からの溶媒21の蒸発量の軌跡で定義される乾燥基準値A1,A2を予め設定し、乾燥炉50内の温度、風速および溶媒濃度を含む乾燥因子を検出して当該乾燥因子に基づいて溶媒蒸発量Mを算出する。そして、当該溶媒蒸発量Mが乾燥基準値A1,A2に追従するように、加熱部80および送風部70を制御しつつ電極層40を乾燥させている。したがって、電極層40の連続的な乾燥状態を把握しつつ、望ましい乾燥条件を設定することができる。このため、連続的に設けられる望ましい乾燥条件で電極層40を乾燥させるので、バインダー23の偏析が生じることを防止できる。バインダー23の偏析を生じさせない条件にて電極層40を乾燥させているので、電極箔30と電極層40との密着性が向上し、初期における電池内の抵抗値はもちろんのこと、充放電を繰り返した後の電池内の抵抗値も低くなり、電極性能の向上を図ることが可能となる。   As described above, according to the present embodiment, the drying reference values A1 and A2 defined by the trajectory of the evaporation amount of the solvent 21 from the electrode layer 40 with respect to time are set in advance, and the temperature and wind speed in the drying furnace 50 are set. Then, a drying factor including the solvent concentration is detected, and the solvent evaporation amount M is calculated based on the drying factor. Then, the electrode layer 40 is dried while controlling the heating unit 80 and the air blowing unit 70 so that the solvent evaporation amount M follows the drying reference values A1 and A2. Therefore, desirable drying conditions can be set while grasping the continuous drying state of the electrode layer 40. For this reason, since the electrode layer 40 is dried under desirable drying conditions that are continuously provided, segregation of the binder 23 can be prevented. Since the electrode layer 40 is dried under conditions that do not cause segregation of the binder 23, the adhesion between the electrode foil 30 and the electrode layer 40 is improved, and charge / discharge is performed as well as the resistance value in the battery in the initial stage. The resistance value in the battery after the repetition is reduced, and the electrode performance can be improved.

乾燥炉50内に電極層40を保持する乾燥時間を変更する場合に、乾燥因子に基づいて算出される溶媒蒸発量Mが、変更した後の乾燥時間に対応する既定の乾燥基準値A1,A2に追従するように、加熱部80および送風部70を制御する。したがって、乾燥時間を自在に変更可能とし、前後の工程との間での生産時間の増減を吸収することが可能となる。   When the drying time for holding the electrode layer 40 in the drying furnace 50 is changed, the solvent evaporation amount M calculated based on the drying factor is a predetermined drying reference value A1, A2 corresponding to the changed drying time. The heating unit 80 and the air blowing unit 70 are controlled so as to follow the above. Therefore, it is possible to freely change the drying time, and it is possible to absorb the increase or decrease in production time between the previous and subsequent processes.

乾燥炉50内に電極層40を保持する乾燥時間を変更する場合に、加熱部80に加えて加熱部80と異なる追加加熱部90を用いて電極層40を加熱する。このため、電極層40を迅速に加熱することが可能となり、変更された乾燥条件へ迅速に移行することができる。   When the drying time for holding the electrode layer 40 in the drying furnace 50 is changed, the electrode layer 40 is heated using an additional heating unit 90 different from the heating unit 80 in addition to the heating unit 80. For this reason, it becomes possible to heat the electrode layer 40 rapidly, and it can transfer to the changed dry conditions rapidly.

乾燥炉50内に電極層40を保持する乾燥時間を変更する場合に、加熱部80による加熱量を増加させつつ追加加熱部90を作動させた後、追加加熱部90による加熱量を徐々に減少させる。このため、追加加熱部90を用いて変更された乾燥条件へ迅速に対応した後、加熱部80による加熱が効果を発揮するにつれて追加加熱部90による加熱を減少させることができ、望ましい乾燥条件を維持することができる。   When changing the drying time for holding the electrode layer 40 in the drying furnace 50, after the additional heating unit 90 is operated while increasing the heating amount by the heating unit 80, the heating amount by the additional heating unit 90 is gradually decreased. Let For this reason, after responding quickly to the drying conditions changed using the additional heating unit 90, the heating by the additional heating unit 90 can be reduced as the heating by the heating unit 80 is effective, and desirable drying conditions can be set. Can be maintained.

電極層40から蒸発した溶媒21を排気するための専用の捕集管131(排気経路)を設け、捕集管131に溶媒濃度検出部130を配置して溶媒の濃度を検出する。このため、電極層40から蒸発した溶媒21を効果的に捕集でき、溶媒21の蒸発に影響する電極層40の近傍の溶媒濃度をより正確に検出できる。   A dedicated collection tube 131 (exhaust path) for exhausting the solvent 21 evaporated from the electrode layer 40 is provided, and a solvent concentration detector 130 is disposed in the collection tube 131 to detect the concentration of the solvent. For this reason, the solvent 21 evaporated from the electrode layer 40 can be collected effectively, and the solvent concentration in the vicinity of the electrode layer 40 that affects the evaporation of the solvent 21 can be detected more accurately.

乾燥炉50内に専用の捕集管131(排気経路)へ向かう流体の流れを生じさせて捕集管131へ蒸発した溶媒21を導くため、蒸発した溶媒21をより効果的に捕集できる。   Since the flow of the fluid which goes to the exclusive collection pipe | tube 131 (exhaust path | route) is produced in the drying furnace 50 and the evaporated solvent 21 is guide | induced to the collection pipe | tube 131, the evaporated solvent 21 can be collected more effectively.

専用の捕集管131(排気経路)へ向かう流体の流れを生じさせる捕集用ノズル132を設け、捕集用ノズル132により捕集管131へ蒸発した溶媒21を導くため、望ましい流れを容易に形成でき、蒸発した溶媒21をより効果的に捕集できる。   A collection nozzle 132 for generating a fluid flow toward the dedicated collection pipe 131 (exhaust path) is provided, and the solvent 21 that has evaporated to the collection pipe 131 is guided by the collection nozzle 132, so that a desired flow can be easily generated. The evaporated solvent 21 can be collected more effectively.

(改変例)
乾燥炉50内を複数(6つ)の乾燥ゾーン51〜56に区画した実施形態を示したが、乾燥ゾーンは6つでなくてもよく、または1つだけの乾燥炉にも本発明を適用することはできる。
(Modification example)
Although the embodiment in which the inside of the drying furnace 50 is divided into a plurality of (six) drying zones 51 to 56 has been shown, the number of drying zones may not be six, or the present invention can be applied to only one drying furnace. Can do.

追加加熱部90は、赤外線の照射範囲が線状であると、照射範囲内のみで乾燥速度が急激に上昇しやすいため、照射率が電極層40の搬送方向に向かって徐々に変化するように、赤外線の透過率を設定できる赤外線反射膜を介して赤外線を照射してもよい。または、シャッター92を構成する材料に、赤外線反射膜を用いることもできる。   In the additional heating unit 90, when the infrared irradiation range is linear, the drying rate is likely to increase rapidly only within the irradiation range, so that the irradiation rate gradually changes toward the transport direction of the electrode layer 40. Infrared rays may be irradiated through an infrared reflecting film capable of setting infrared transmittance. Alternatively, an infrared reflecting film can be used as a material constituting the shutter 92.

また、図9に示すように、溶媒濃度検出部を捕集管に設けるのではなく、乾燥炉50内において電極層40からの距離が異なる複数個所に溶媒濃度検出部200,201を配置してもよい。このとき、溶媒濃度検出部200は、電極層40の上方に形成される気液境界層の上部に位置し、溶媒濃度検出部201は、電極層40の気液境界層の下部に位置している。これにより、複数の溶媒濃度検出部200,201による検出結果を平均化することで、場所による溶媒の濃度の偏りに左右されずに、正確な溶媒蒸発量Mを算出することができる。また、当然に、捕集管に設けられない1つの溶媒濃度検出部のみで構成することもできる。   In addition, as shown in FIG. 9, the solvent concentration detectors are not provided in the collection tube, but the solvent concentration detectors 200 and 201 are arranged at a plurality of locations in the drying furnace 50 at different distances from the electrode layer 40. Also good. At this time, the solvent concentration detector 200 is positioned above the gas-liquid boundary layer formed above the electrode layer 40, and the solvent concentration detector 201 is positioned below the gas-liquid boundary layer of the electrode layer 40. Yes. Accordingly, by averaging the detection results of the plurality of solvent concentration detection units 200 and 201, it is possible to calculate the accurate solvent evaporation amount M without being influenced by the deviation of the solvent concentration depending on the location. Of course, it can also be comprised only with one solvent concentration detection part which is not provided in a collection tube.

また、追加加熱部は、赤外線を照射する構成に限定されない。例えば、図10に示すように、サポートロール211に、サポートロール211自体を加熱する加熱源212と、サポートロール211内に冷媒を循環させてサポートロール211を冷却させる冷却手段213と、を設けた追加加熱部210とすることができる。加熱源212は、加熱可能であれば構成は限定されず、例えば電熱線、赤外線、熱交換器、または電磁誘導加熱等を利用できる。このような構成とすることで、サポートロール211に直接接する電極箔30を介して、電極層40を加熱することができる。また、冷却手段213が設けられることで、追加加熱部210による加熱が不要となった場合に、サポートロール211を迅速に冷却でき、目的の温度への追従性が向上する。また、加熱源212に電磁誘導加熱を利用する場合には、サポートロール211を加熱するのではなしに、金属製の電極箔30を直接加熱する構成としてもよい。   Moreover, an additional heating part is not limited to the structure which irradiates infrared rays. For example, as shown in FIG. 10, the support roll 211 is provided with a heating source 212 for heating the support roll 211 itself, and a cooling means 213 for circulating the refrigerant in the support roll 211 to cool the support roll 211. The additional heating unit 210 can be used. The configuration of the heating source 212 is not limited as long as it can be heated. For example, a heating wire, infrared rays, a heat exchanger, electromagnetic induction heating, or the like can be used. By setting it as such a structure, the electrode layer 40 can be heated via the electrode foil 30 which touches the support roll 211 directly. Further, by providing the cooling means 213, when the heating by the additional heating unit 210 becomes unnecessary, the support roll 211 can be quickly cooled, and the followability to the target temperature is improved. Further, when electromagnetic induction heating is used for the heating source 212, the metal electrode foil 30 may be directly heated instead of heating the support roll 211.

また、図11に示すように、加熱部80と並列に設けられて、加熱部80と同様に乾燥炉50内へ送風される空気を加熱する追加加熱部220を設けてもよい。追加加熱部220は、制御部160によってバルブ221を開閉することで、熱風供給管150への熱風の供給および停止を切り換え可能である。   As shown in FIG. 11, an additional heating unit 220 that is provided in parallel with the heating unit 80 and heats the air blown into the drying furnace 50 similarly to the heating unit 80 may be provided. The additional heating unit 220 can switch between supply and stop of hot air to the hot air supply pipe 150 by opening and closing the valve 221 by the control unit 160.

また、各乾燥ゾーン51〜56には、同様の構成の追加加熱部90を設けているが、各乾燥ゾーン51〜56に、異なる構成の追加加熱部を設けてもよい。   Moreover, although the additional heating part 90 of the same structure is provided in each drying zone 51-56, you may provide the additional heating part of a different structure in each drying zone 51-56.

また、電極箔30を連続して搬送する形態を図示したが、バッチ式で搬送する形態でもよい。   Moreover, although the form which conveys the electrode foil 30 continuously was illustrated, the form conveyed by a batch type may be sufficient.

さらに、本発明は、電極スラリー20を間欠的に塗布する場合に限られるものではなく、電極スラリー20を連続塗布する場合にも適用できることは言うまでもない。   Further, the present invention is not limited to the case where the electrode slurry 20 is intermittently applied, and it goes without saying that the present invention can also be applied to the case where the electrode slurry 20 is continuously applied.

10 電極乾燥装置、
20 電極スラリー、
21 溶媒、
40 電極層、
50 乾燥炉、
51〜56 第1〜第2の乾燥ゾーン、
60 搬送部、
70 送風部、
80 加熱部、
90,210 追加加熱部、
100 電極温度検出部、
110 風速検出部、
120 炉内温度検出部、
130,200,201 溶媒濃度検出部、
131 捕集管(専用の排気経路)、
132 捕集用ノズル、
134 溶媒濃度計、
145 塗布部、
160 制御部、
A1,A2 乾燥基準値、
M 溶媒蒸発量。
10 electrode drying device,
20 electrode slurry,
21 solvent,
40 electrode layers,
50 drying ovens,
51-56 first and second drying zones,
60 transport section,
70 Blower,
80 heating section,
90,210 Additional heating section,
100 electrode temperature detector,
110 wind speed detector,
120 furnace temperature detector,
130, 200, 201 solvent concentration detector,
131 Collection pipe (exclusive exhaust route),
132 Nozzle for collection,
134 solvent concentration meter,
145 application part,
160 control unit,
A1, A2 dry standard value,
M Solvent evaporation.

Claims (15)

溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる電極乾燥方法であって、
時間に対する前記電極層からの溶媒の蒸発量の軌跡で定義される乾燥基準値を予め設定し、前記乾燥炉内の温度、風速および溶媒濃度を含む乾燥因子を検出して当該乾燥因子に基づいて前記溶媒の蒸発量を算出し、当該溶媒の蒸発量が前記乾燥基準値に追従するように、前記乾燥炉内を加熱する加熱部および前記乾燥炉内に送風する送風部を制御しつつ前記電極層を乾燥させる、電極乾燥方法。
An electrode drying method for drying an electrode layer formed by applying an electrode slurry containing a solvent to a current collector in a drying furnace,
A drying reference value defined by a trajectory of the amount of solvent evaporation from the electrode layer with respect to time is set in advance, and a drying factor including temperature, wind speed, and solvent concentration in the drying furnace is detected and based on the drying factor. Calculate the evaporation amount of the solvent, and control the heating unit that heats the inside of the drying furnace and the blowing unit that blows air into the drying furnace so that the evaporation amount of the solvent follows the drying reference value. An electrode drying method for drying a layer.
前記乾燥炉内に前記電極層を保持する乾燥時間を変更する場合に、前記乾燥因子に基づいて算出される前記溶媒の蒸発量が、変更した後の乾燥時間に対応する既定の乾燥基準値に追従するように、前記加熱部および送風部を制御する、請求項1に記載の電極乾燥方法。   When changing the drying time for holding the electrode layer in the drying furnace, the evaporation amount of the solvent calculated based on the drying factor becomes a predetermined drying reference value corresponding to the changed drying time. The electrode drying method according to claim 1, wherein the heating unit and the air blowing unit are controlled so as to follow. 前記乾燥炉内に前記電極層を保持する乾燥時間を変更する場合に、前記加熱部に加えて当該加熱部と異なる追加加熱部を用いて前記電極層を加熱する、請求項1または請求項2に記載の電極乾燥方法。   The said electrode layer is heated using the additional heating part different from the said heating part in addition to the said heating part, when changing the drying time which hold | maintains the said electrode layer in the said drying furnace. The method for drying an electrode according to 1. 前記乾燥炉内に前記電極層を保持する乾燥時間を変更する場合に、前記加熱部による加熱量を増加させつつ前記追加加熱部を作動させた後、前記追加加熱部による加熱量を徐々に減少させる、請求項3に記載の電極乾燥方法。   When changing the drying time for holding the electrode layer in the drying furnace, after the additional heating unit is operated while increasing the heating amount by the heating unit, the heating amount by the additional heating unit is gradually decreased. The electrode drying method according to claim 3. 前記電極層から蒸発した溶媒を排気するための専用の排気経路を設け、当該排気経路に前記溶媒の濃度を検出する溶媒濃度検出部を配置して前記溶媒の濃度を検出する、請求項1〜4のいずれか1項に記載の電極乾燥方法。   A dedicated exhaust path for exhausting the solvent evaporated from the electrode layer is provided, and a solvent concentration detection unit that detects the concentration of the solvent is disposed in the exhaust path to detect the concentration of the solvent. 5. The electrode drying method according to any one of 4 above. 前記乾燥炉内に前記専用の排気経路へ向かう流体の流れを生じさせて前記専用の排気経路へ蒸発した前記溶媒を導く、請求項5に記載の電極乾燥方法。   The electrode drying method according to claim 5, wherein a flow of fluid toward the dedicated exhaust path is generated in the drying furnace to guide the evaporated solvent to the dedicated exhaust path. 前記専用の排気経路へ向かう流体の流れを生じさせる捕集用ノズルを設け、当該捕集用ノズルにより前記専用の排気経路へ蒸発した前記溶媒を導く、請求項6に記載の電極乾燥方法。   The electrode drying method according to claim 6, wherein a collecting nozzle that generates a flow of fluid toward the dedicated exhaust path is provided, and the solvent evaporated to the dedicated exhaust path is guided by the collecting nozzle. 前記乾燥炉内において前記電極層からの距離が異なる複数個所に前記電極層から蒸発した溶媒の濃度を検出する溶媒濃度検出部を配置し、複数の検出結果を平均化することで前記溶媒の濃度を算出する、請求項1〜4のいずれか1項に記載の電極乾燥方法。   In the drying furnace, a solvent concentration detection unit for detecting the concentration of the solvent evaporated from the electrode layer is disposed at a plurality of locations at different distances from the electrode layer, and the concentration of the solvent is obtained by averaging a plurality of detection results. The method for drying an electrode according to any one of claims 1 to 4, wherein 溶媒を含む電極スラリーを集電体に塗布することによって形成された電極層を乾燥炉の中において乾燥させる電極乾燥装置であって、
前記乾燥炉内の温度を検出する温度検出部と、
前記乾燥炉内の風速を検出する風速検出部と、
前記乾燥炉内の雰囲気の溶媒濃度を検出する溶媒濃度検出部と、
前記乾燥炉内を加熱する加熱部と、
前記乾燥炉内に送風する送風部と、
前記温度検出部、風速検出部および溶媒濃度検出部から検出された信号を受信し、検出値に基づいて前記溶媒の蒸発量を算出し、当該溶媒の蒸発量が、時間に対する前記電極層からの溶媒の蒸発量の軌跡で定義される予め設定された乾燥基準値に追従するように、前記加熱部および前記送風部を制御する制御部と、を有する電極乾燥装置。
An electrode drying apparatus for drying an electrode layer formed by applying an electrode slurry containing a solvent to a current collector in a drying furnace,
A temperature detector for detecting the temperature in the drying furnace;
A wind speed detector for detecting the wind speed in the drying furnace;
A solvent concentration detection unit for detecting the solvent concentration of the atmosphere in the drying furnace;
A heating unit for heating the inside of the drying furnace;
An air blower for blowing air into the drying furnace;
Receiving signals detected from the temperature detection unit, the wind speed detection unit, and the solvent concentration detection unit, calculate the evaporation amount of the solvent based on the detection value, the evaporation amount of the solvent from the electrode layer with respect to time An electrode drying apparatus comprising: a control unit that controls the heating unit and the air blowing unit so as to follow a preset drying reference value defined by a trajectory of the evaporation amount of the solvent.
前記制御部は、前記乾燥炉内に前記電極層を保持する乾燥時間を変更する場合に、前記温度検出部、風速検出部および溶媒濃度検出部から受信した検出値に基づいて算出される前記溶媒の蒸発量が、変更した後の乾燥時間に対応する既定の乾燥基準値に追従するように、前記加熱部および送風部を制御する、請求項9に記載の電極乾燥装置。   The control unit calculates the solvent calculated based on the detection values received from the temperature detection unit, the wind speed detection unit, and the solvent concentration detection unit when changing the drying time for holding the electrode layer in the drying furnace. The electrode drying apparatus according to claim 9, wherein the heating unit and the air blowing unit are controlled so that an evaporation amount of the slag follows a predetermined drying reference value corresponding to the drying time after the change. 前記加熱部と異なる追加加熱部を有し、
前記制御部は、前記乾燥炉内に前記電極層を保持する乾燥時間を変更する場合に、前記加熱部に加えて前記追加加熱部を作動させる、請求項9または請求項10に記載の電極乾燥装置。
An additional heating part different from the heating part,
11. The electrode drying according to claim 9, wherein the control unit operates the additional heating unit in addition to the heating unit when changing a drying time for holding the electrode layer in the drying furnace. apparatus.
前記制御部は、前記乾燥炉内に前記電極層を保持する乾燥時間を変更する場合に、前記加熱部による加熱量を増加させつつ前記追加加熱部を作動させた後、前記追加加熱部による加熱量を徐々に減少させる、請求項11に記載の電極乾燥装置。   When changing the drying time for holding the electrode layer in the drying furnace, the control unit operates the additional heating unit while increasing the amount of heating by the heating unit, and then heats by the additional heating unit The electrode drying apparatus according to claim 11, wherein the amount is gradually decreased. 前記溶媒濃度検出部が配置される、前記電極層から蒸発した溶媒を排気するための専用の排気経路を有する、請求項9〜12のいずれか1項に記載の電極乾燥装置。   The electrode drying apparatus according to any one of claims 9 to 12, further comprising a dedicated exhaust path for exhausting the solvent evaporated from the electrode layer, in which the solvent concentration detection unit is disposed. 前記専用の排気経路へ向かう流体の流れを生じさせる捕集用ノズルを有する、請求項13に記載の電極乾燥装置。   The electrode drying apparatus according to claim 13, further comprising a collection nozzle that generates a flow of fluid toward the dedicated exhaust path. 前記溶媒濃度検出部は、乾燥炉内において前記電極層からの距離が異なる複数個所に設けられる、請求項9〜12のいずれか1項に記載の電極乾燥装置。   The electrode drying apparatus according to any one of claims 9 to 12, wherein the solvent concentration detection unit is provided at a plurality of locations in the drying furnace at different distances from the electrode layer.
JP2011289569A 2011-12-28 2011-12-28 Electrode drying method and electrode drying apparatus Active JP5929190B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011289569A JP5929190B2 (en) 2011-12-28 2011-12-28 Electrode drying method and electrode drying apparatus
KR1020120154479A KR101467640B1 (en) 2011-12-28 2012-12-27 Method and apparatus for drying electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289569A JP5929190B2 (en) 2011-12-28 2011-12-28 Electrode drying method and electrode drying apparatus

Publications (2)

Publication Number Publication Date
JP2013139889A true JP2013139889A (en) 2013-07-18
JP5929190B2 JP5929190B2 (en) 2016-06-01

Family

ID=48990237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289569A Active JP5929190B2 (en) 2011-12-28 2011-12-28 Electrode drying method and electrode drying apparatus

Country Status (2)

Country Link
JP (1) JP5929190B2 (en)
KR (1) KR101467640B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144055A (en) * 2014-01-31 2015-08-06 株式会社豊田自動織機 Manufacturing method of electrode and heating apparatus
JP2016061473A (en) * 2014-09-17 2016-04-25 株式会社豊田自動織機 Drier and process of manufacture of electrode
JP5954599B2 (en) * 2012-09-25 2016-07-20 トヨタ自動車株式会社 Secondary battery electrode manufacturing method and hot air drying furnace
CN106766741A (en) * 2016-11-25 2017-05-31 吴保康 One kind is made moist graphite electrode high efficiency drying equipment
JP6280194B1 (en) * 2016-12-12 2018-02-14 中外炉工業株式会社 Paint drying apparatus and paint drying method
WO2023001331A1 (en) * 2021-07-19 2023-01-26 Ulf Reinhardt Drying device and method for drying container units exhibiting solvent
EP4106040A4 (en) * 2020-11-27 2023-11-01 LG Energy Solution, Ltd. Electrode drying system and electrode drying method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052083B2 (en) * 2013-07-12 2016-12-27 トヨタ自動車株式会社 Drying apparatus, drying method, and battery manufacturing method
KR102090043B1 (en) * 2017-09-12 2020-03-17 주식회사 엘지화학 Drying control system of coating layer
CN108800773A (en) * 2018-07-19 2018-11-13 般若涅利(北京)装备技术有限公司 A kind of lithium battery electric core vacuum drying oven
KR102324681B1 (en) * 2019-08-22 2021-11-10 주식회사 스마텍 Resdual moisture drying apparatus for battery electrode
KR102388446B1 (en) * 2020-06-11 2022-04-21 주식회사 나래나노텍 Apparatus and method for drying electrode sheet for battery
KR20220028271A (en) * 2020-08-28 2022-03-08 주식회사 엘지에너지솔루션 Apparatus for evaluating drying quality of electrode and method for evaluating drying quality of electrode
KR20220145029A (en) * 2021-04-21 2022-10-28 주식회사 엘지에너지솔루션 Automated sytstem for drying conditions of electrodes for secondary battery
WO2024049139A1 (en) * 2022-08-29 2024-03-07 주식회사 엘지에너지솔루션 Method for manufacturing electrode for secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071472A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Drying device of coating sheet, and drying method of coating sheet
JP2006107780A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Manufacturing method of electrode plate and electrode plate
JP2007078246A (en) * 2005-09-14 2007-03-29 Oji Paper Co Ltd Sheet drying method and device, and method of manufacturing coated sheet
JP2009117109A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Electrode manufacturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286003B1 (en) * 2006-03-09 2013-07-15 삼성에스디아이 주식회사 Method of drying slurry for electrode of rechargeable battery and Apparatus for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071472A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Drying device of coating sheet, and drying method of coating sheet
JP2006107780A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Manufacturing method of electrode plate and electrode plate
JP2007078246A (en) * 2005-09-14 2007-03-29 Oji Paper Co Ltd Sheet drying method and device, and method of manufacturing coated sheet
JP2009117109A (en) * 2007-11-05 2009-05-28 Toyota Motor Corp Electrode manufacturing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954599B2 (en) * 2012-09-25 2016-07-20 トヨタ自動車株式会社 Secondary battery electrode manufacturing method and hot air drying furnace
JP2015144055A (en) * 2014-01-31 2015-08-06 株式会社豊田自動織機 Manufacturing method of electrode and heating apparatus
JP2016061473A (en) * 2014-09-17 2016-04-25 株式会社豊田自動織機 Drier and process of manufacture of electrode
CN106766741A (en) * 2016-11-25 2017-05-31 吴保康 One kind is made moist graphite electrode high efficiency drying equipment
JP6280194B1 (en) * 2016-12-12 2018-02-14 中外炉工業株式会社 Paint drying apparatus and paint drying method
WO2018110137A1 (en) * 2016-12-12 2018-06-21 中外炉工業株式会社 Paint application and drying device and paint application and drying method
JP2018094499A (en) * 2016-12-12 2018-06-21 中外炉工業株式会社 Coating and drying device and coating and drying method
EP4106040A4 (en) * 2020-11-27 2023-11-01 LG Energy Solution, Ltd. Electrode drying system and electrode drying method
WO2023001331A1 (en) * 2021-07-19 2023-01-26 Ulf Reinhardt Drying device and method for drying container units exhibiting solvent

Also Published As

Publication number Publication date
KR101467640B1 (en) 2014-12-01
KR20130076759A (en) 2013-07-08
JP5929190B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5929190B2 (en) Electrode drying method and electrode drying apparatus
KR101286003B1 (en) Method of drying slurry for electrode of rechargeable battery and Apparatus for the same
CN103165858B (en) The manufacture method of electrode
JP5325332B1 (en) Battery electrode coating film drying method and drying furnace
US20140014037A1 (en) Electrode plate production device
JP5909986B2 (en) Electrode drying method and electrode drying apparatus
JP2012172960A (en) Drying device and thermal processing system
JP2013137139A (en) Drying device and heat treatment system
KR20200068650A (en) Web coating and calendering system and method
CN104662711A (en) Electricity storage device and electricity storage module
JP2008103098A (en) Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment
JP2012202600A (en) Drying device and heat treatment system
JP2013134913A (en) Electrode manufacturing method, electrode manufacturing apparatus, and electrode
JP2014038825A (en) Method for drying electrode coating film for battery and drying furnace
JP6011478B2 (en) Battery electrode plate manufacturing apparatus and battery electrode plate manufacturing method
KR101931018B1 (en) Manufacturing method of electrode and manufacturing apparatus of electrode
JP6211461B2 (en) Electrode material coating system with shutdown function layer
JP6423267B2 (en) Horizontal type double-side coating equipment
JP5887437B2 (en) Drying equipment and heat treatment system
JP2014127438A (en) Method of manufacturing electrode and dryer
JP2013089573A (en) Electrode, electrode manufacturing device, and electrode manufacturing method
KR100659863B1 (en) Method of making electrode for secondary battery
JP2003178752A (en) Dried state evaluation method for sheet-shaped electrode
US20240072236A1 (en) Electrode Manufacturing Apparatus and Method
CN215235620U (en) Drying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250