JP2018093639A - モータ装置 - Google Patents

モータ装置 Download PDF

Info

Publication number
JP2018093639A
JP2018093639A JP2016235806A JP2016235806A JP2018093639A JP 2018093639 A JP2018093639 A JP 2018093639A JP 2016235806 A JP2016235806 A JP 2016235806A JP 2016235806 A JP2016235806 A JP 2016235806A JP 2018093639 A JP2018093639 A JP 2018093639A
Authority
JP
Japan
Prior art keywords
coil
tooth portion
slit
stator core
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016235806A
Other languages
English (en)
Inventor
政道 名和
Masamichi Nawa
政道 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016235806A priority Critical patent/JP2018093639A/ja
Publication of JP2018093639A publication Critical patent/JP2018093639A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

【課題】トルクを大きくすることができるモータ装置を提供する。
【解決手段】ステータコア51は、第1ティース部55と第2ティース部56とスリット54とブリッジ部57とを有し、スリット54は、ステータコア51の中心Oからスリット54の外径側の端部までの距離r2がコイルスロット52の外径側の端部までの距離r1以上となるように形成されている。駆動制御部のコントローラは、突極41が第1ティース部55を通過する際に第1ティース部55から突極41に磁束が流れるようにコイル21,22,23に電流を流し、突極41がスリット54を通過する際にコイル21,22,23に流れる電流の向きが反転し、突極41が第2ティース部56を通過する際に突極41から第2ティース部56に磁束が流れるようにコイル21,22,23に電流を流す。
【選択図】図1

Description

本発明は、永久磁石を用いない磁石レス型リラクタンスモータと駆動制御部とを備えたモータ装置に関するものである。
ロータとステータに永久磁石が存在しない磁石レスモータであるリラクタンスモータにおいてはロータに突極を備え、ステータにはコイルを備えている。駆動回路は、非対称のブリッジ構成となり、モータは電気的に3相であるが、モータの各相に直流を流すために駆動回路からモータへの線を6本有すると駆動回路が複雑になるとともに、永久磁石モータなどの同期機と比較すると直流で一相のみ駆動させるため効率も悪い。これに対し、SRモータを全節巻き(分布巻き)として3相で駆動する技術が知られている(例えば特許文献1)。
特開2000−152577号公報
しかしながら、ロータの回転位置によるトルクの変化についてトルクが全部の期間働かず休止している区間があり(特許文献1の図6(c)参照)、これはモータのインダクタンスと電流の周期が倍半分で違うためである(特許文献1の図6(a),(b)参照)。なお、モータトルクは、コイルに流れる電流の二乗とロータ回転位置に対するコイルインダクタンスの変化に比例する。
本発明の目的は、トルクを大きくすることができるモータ装置を提供することにある。
請求項1に記載の発明では、突極を有するロータ及び筒状のステータコアの内径側に開口するコイルスロットにコイルが挿入されるとともに、前記ロータの外周側に配置されるステータを有する磁石レス型リラクタンスモータと、前記コイルへの通電制御を行う駆動制御部と、を備えたモータ装置であって、前記ステータコアは、周方向に隣り合う前記コイルスロットの間に形成された第1ティース部と第2ティース部と、前記第1ティース部と前記第2ティース部との間に形成されるとともに、前記ステータコアの内径側に開口するスリットと、前記スリットの外径側に形成されるとともに前記第1ティース部と前記第2ティース部とを繋ぐブリッジ部とを有し、前記スリットと前記コイルスロットとは、前記ステータコアの周方向に交互に配置され、前記スリットは、前記ステータコアの内径側から外径側に延在するとともに、前記ステータコアの中心から前記スリットの外径側の端部までの距離が、前記ステータコアの中心から前記コイルスロットの外径側の端部までの距離以上となるように形成され、前記駆動制御部は、前記突極が前記第1ティース部を通過する際に前記第1ティース部から前記突極に磁束が流れるようにコイルに電流を流し、前記突極がスリットを通過する際にコイルに流れる電流の向きが反転し、前記突極が第2ティース部を通過する際に前記突極から前記第2ティース部に磁束が流れるようにコイルに電流を流すことを要旨とする。
請求項1に記載の発明によれば、ステータコアにおいて周方向に隣り合うコイルスロットの間に形成された第1ティース部と第2ティース部との間においてステータコアの内径側に開口するスリットが形成されている。スリットの外径側に形成されたブリッジ部により第1ティース部と第2ティース部とが繋がっている。スリットとコイルスロットとが、ステータコアの周方向に交互に配置され、スリットは、ステータコアの内径側から外径側に延在し、ステータコアの中心からスリットの外径側の端部までの距離が、ステータコアの中心からコイルスロットの外径側の端部までの距離以上となるように形成されている。そして、駆動制御部により、突極が第1ティース部を通過する際に第1ティース部から突極に磁束が流れるようにコイルに電流を流し、突極がスリットを通過する際にコイルに流れる電流の向きが反転し、突極が第2ティース部を通過する際に突極から第2ティース部に磁束が流れるようにコイルに電流が流される。よって、トルクが発生しない区間をなくして、トルクを大きくすることができる。
請求項2に記載のように、請求項1に記載のモータ装置において、前記駆動制御部は、前記コイルに3相で通電して前記ロータを回転させる3相駆動回路を有するとよい。
請求項3に記載のように、請求項1または2に記載のモータ装置において、前記スリットは、前記ステータコアの周方向に隣り合う前記コイルスロットの間における周方向の中央に形成されているとよい。
本発明によれば、トルクを大きくすることができる。
実施形態における磁石レス型リラクタンスモータの概略断面図。 モータ装置の電気的構成を示す回路図。 磁束の変化を示すタイムチャート。 (a)〜(d)はロータの突極の位置と磁束の流れを説明するための磁石レス型リラクタンスモータの展開図。 磁石レス型リラクタンスモータの一部を拡大した概略断面図。 トルクの変化を示すタイムチャート。
以下、本発明を具体化した一実施形態を図面に従って説明する。
図2に示すように、モータ装置10は、磁石レス型リラクタンスモータ20と、駆動制御部30と、を備えている。磁石レス型リラクタンスモータ20は、3相モータであって、U相コイル21、V相コイル22、W相コイル23を有する。駆動制御部30は、3相駆動回路(3相インバータ回路)31と、コントローラ32とを有する。駆動制御部30は、コイル21,22,23への通電制御を行うものであり、コイル21,22,23に通電してロータを回転させるためのものである。
図1に示すように、磁石レス型リラクタンスモータ20は、ロータ40とステータ50を備えている。ロータ40は、5つの突極41を有する。5つの突極41は周方向において等角度に形成されている。
ロータ40の外周側には円筒状のステータコア51が配置されている。ステータコア51には6つのコイルスロット52が形成されている。6つのコイルスロット52は周方向において等角度に形成されている。コイルスロット52はステータコア51の内径側に開口している。コイルスロット52にはコイル21,22,23が挿入されており、周方向に隣り合うコイルスロット52の間のティース53にU相コイル21、V相コイル22、W相コイル23がそれぞれ2組集中巻され、ステータ50の極数は6である。
このように、磁石レス型リラクタンスモータ20は、突極41を有するロータ40及び筒状のステータコア51の内径側に開口するコイルスロット52にコイル21,22,23が挿入されるとともに、ロータ40の外周側に配置されるステータ50を有する。
ステータコア51には、周方向に隣り合うコイルスロット52の間のティース53においてステータコア51の内径側に開口するスリット(空隙)54が、コイルスロット52と周方向に交互になるように形成されている。スリット54は長方形をなしている。より詳しくは、ステータコア51の中心Oに対しコイルスロット52が放射状に形成されているとともにステータコア51の中心Oに対しスリット54が放射状に形成されている。スリット54は、ティース53における周方向での中央に形成されている。即ち、図1において周方向に隣り合うコイルスロット52のなす角度θ1に対し、コイルスロット52とスリット54でなす角度がθ1/2となっており、スリット54は、ステータコア51の周方向において隣り合うコイルスロット52の間における周方向に等角度となる中間位置に配置されている。このように、スリット54は、ステータコア51の周方向に隣り合うコイルスロット52の間における周方向の中央に形成されている。
ステータコア51は、第1ティース部55、第2ティース部56、ブリッジ部57を有する。第1ティース部55は、スリット54の周方向両側のうちの一方に形成されている。第2ティース部56は、スリット54の周方向両側のうちの他方に形成されている。ブリッジ部57は、スリット54の外径側に形成されている。ブリッジ部57は、第1ティース部55と第2ティース部56とを繋いでいる。
また、スリット54は、ティース53の内径から外径に向かってコイルスロット52以上に外径側に延在している。詳しくは、ステータコア51の中心Oからコイルスロット52の外径側端部までの距離がr1であり、ステータコア51の中心Oからスリット54の外径側端部までの距離がr2であり、r1≦r2となっている。特に、本実施形態ではr1<r2となっており、スリット54は、コイルスロット52よりも外径側に延在している。よって、スリット54の外径側のブリッジ部57での径方向の長さは、コイルスロット52の外径側のブリッジ部58での径方向の長さよりも短くなっている。
このように、ステータコア51は、第1ティース部55と第2ティース部56とスリット54とブリッジ部57とを有し、第1ティース部55と第2ティース部56とは、周方向に隣り合うコイルスロット52の間に形成されている。スリット54は、第1ティース部55と第2ティース部56との間に形成されるとともに、ステータコア51の内径側に開口する。ブリッジ部57は、スリット54の外径側に形成されるとともに第1ティース部55と第2ティース部56とを繋いでいる。また、スリット54とコイルスロット52とは、ステータコア51の周方向に交互に配置されている。ここで、スリット54は、ステータコア51の内径側から外径側に延在するとともに、ステータコア51の中心Oからスリット54の外径側の端部までの距離r2が、ステータコア51の中心Oからコイルスロット52の外径側の端部までの距離r1以上となるように形成されている。
図2に示すように、3相駆動回路31は、U相上アーム用スイッチング素子Q1とU相下アーム用スイッチング素子Q2とV相上アーム用スイッチング素子Q3とV相下アーム用スイッチング素子Q4とW相上アーム用スイッチング素子Q5とW相下アーム用スイッチング素子Q6を有する。正極母線Lpと負極母線Lnとの間に、U相上アーム用スイッチング素子Q1とU相下アーム用スイッチング素子Q2が直列に接続されている。正極母線Lpと負極母線Lnとの間に、V相上アーム用スイッチング素子Q3とV相下アーム用スイッチング素子Q4が直列に接続されている。正極母線Lpと負極母線Lnとの間に、W相上アーム用スイッチング素子Q5とW相下アーム用スイッチング素子Q6が直列に接続されている。
各スイッチング素子Q1,Q2,Q3,Q4,Q5,Q6には、それぞれダイオードDが逆並列接続されている。
U相上アーム用スイッチング素子Q1とU相下アーム用スイッチング素子Q2との間には、U相コイル21の一端が接続されている。V相上アーム用スイッチング素子Q3とV相下アーム用スイッチング素子Q4との間には、V相コイル22の一端が接続されている。W相上アーム用スイッチング素子Q5とW相下アーム用スイッチング素子Q6との間には、W相コイル23の一端が接続されている。U相コイル21の他端、V相コイル22の他端、及び、W相コイル23の他端は中性点Pnに接続されている。このようにU相コイル21、V相コイル22及びW相コイル23はスター結線されている。
コントローラ32は回転位置センサ33から信号を入力してロータ40の回転位置(突極41の位置)を検知している。また、コントローラ32は電流センサ34,35から信号を入力してU相、V相のコイルに流れる電流を検知している。
コントローラ32は、回転位置センサ33により検出したロータ40の回転位置、及び、電流センサ34,35により検出したU相、V相のコイルに流れる電流に基づいて、ロータ40の回転位置に応じて、スイッチング素子Q1〜Q6をデューティ制御してコイル21,22,23に流す電流を制御する。なお、センサ類は、少なくとも電流センサがあればよいが、更に回転位置センサ33を用いることにより高精度にロータ40の回転位置を検出することができる。
次に、作用について説明する。
3相駆動回路31を用いてステータ50のコイル21,22,23に正弦波状の電流が流される。これにより、図3に示すように、ロータ40の突極41の位置により、磁束が正弦波状に発生する。詳しくは、図3は横軸にロータの回転位置をとり、縦軸に磁束の向きと強さをとっている。磁束の向きは+−で表しており、ロータの1回転中において磁束の向きが変わる。
図3の横軸において符号P1で示すロータの回転位置として基準となる0°でのロータとステータの対向状態を図4(a)で示す。つまり、図3でのロータの回転位置が0°のときが図5に示す拡大図であり、図5の展開図が図4(a)である。
図5及び図4(a)に示すロータの回転位置である突極41の位置が基準となる0°では、ロータの突極41とステータの第1ティース部55とが対向している(最接近している)。
同様にして、図3の横軸においてロータの回転位置が基準となる0°に対し符号P2で示す90°に対応するロータとステータの対向状態を図4(b)で示す。図4(b)に示すロータの回転位置が90°では、ロータの突極41とステータのスリット54とが対向している(最接近している)。
図3の横軸においてロータの回転位置が基準となる0°に対し符号P3で示す180°に対応するロータとステータの対向状態を図4(c)で示す。図4(c)に示すロータの回転位置が180°では、ロータの突極41とステータの第2ティース部56とが対向している(最接近している)。
図3の横軸においてロータの回転位置が基準となる0°に対し符号P4で示す270°に対応するロータとステータの対向状態を図4(d)で示す。図4(d)に示すロータの回転位置が270°では、ロータの突極41とステータのコイルスロット52とが対向している(最接近している)。
図4(a)に示すロータの回転位置が基準となる0°ではステータの第1ティース部55からロータの突極41に磁束φ1が流れる。詳しくは、図5に示すように、磁束φ1は、第1ティース部55→突極41→ロータ40→突極41→第1ティース部55→コイルスロット52の外径側のブリッジ部58→スリット54の外径側のブリッジ部57→第1ティース部55の経路で流れる。このとき、磁束φ1は、コイルスロット52の外径側のブリッジ部58よりも狭いスリット54の外径側のブリッジ部57を通ることになる。
図4(c)に示すロータの回転位置が180°ではロータの突極41からステータの第2ティース部56に磁束φ2が流れる。図4(b)に示すロータの回転位置が90°では磁束を発生させない。また、図4(d)に示すロータの回転位置が270°では磁束を発生させない。
このように、ステータコア51におけるティース53にスリット54を設けて、駆動制御部30の通電制御により、図4(a)に示すロータの回転位置から図4(c)に示すロータの回転位置に移動する際に極性を変えるとともに図4(c)に示すロータの回転位置から図4(a)に示すロータの回転位置に移動する際に極性を変える。そして、図4(a)に示すロータの回転位置が基準となる0°においては、コントローラ32は、突極41が第1ティース部55を通過する際に、第1ティース部55から突極41に磁束φ1が流れるようにコイル21,22,23に電流を流す。図4(b)に示すロータの回転位置が90°においては、コントローラ32は、突極41がスリット54を通過する際に、コイル21,22,23に流れる電流の向きが反転するようにコイル21,22,23を通電制御する。図4(c)に示すロータの回転位置が180°においては、コントローラ32は、突極41が第2ティース部56を通過する際に、突極41から第2ティース部56に磁束φ2が流れるようにコイル21,22,23に電流を流す。
図6は、横軸にロータの回転位置をとり、縦軸にトルクの大きさをとっている。図6はU相、V相、W相で発生するトルクを表している。図6に示すように、回転角が0°〜360°の間で2つの山を有する正弦波状のトルクが発生しており、トルクは全部の期間において発生している。つまり、特許文献1のモータではトルクが働かず休止している区間があったが、本実施形態のモータではトルクが全部の期間で働いている。
このように、ステータ50の構造を工夫して3相駆動が可能になり、特許文献1のモータよりもトルクが出る構造となっている。
以下、詳しく説明する。
磁石レス型リラクタンスモータ20は、永久磁石を含まない突極型ロータ40と、永久磁石を含まないステータ50とを備え、ステータ50はコイル21,22,23と、ステータコア51に設けたスリット54とを有し、ステータ50における各相間にスリット54を設けることにより、正弦波状の磁束がロータ40に流れる(正弦波状のトルクが発生する)。具体的には、図3に示すようにロータ40の突極41の位置により、磁束が正弦波状になるように正弦波状電流を流して、図4(b)に示す位置と図4(d)に示す位置では磁束を発生させずに、図4(a)に示す位置→図4(b)に示す位置→図4(c)に示す位置で極性を変える。
また、図1に示すように、ステータコア51の中心Oからコイルスロット52の外径側端部までの距離r1に比べステータコア51の中心Oからスリット54の外径側端部までの距離r2が、r1≦r2となっている。特に、本実施形態ではr1<r2となっている。これにより、図5に示すようにロータ40の突極41とステータ50の第1ティース部55間(または第2ティース部56間)との間に流れる磁束φ1の流れに対し、スリット54が磁束の流れを規制して図5において2点鎖線で示す他の相への漏れ磁束φ10を流れにくくすることができる。つまり、スリット54がコイルスロット52よりも外径側に延在していない場合(例えば図5においてスリットの深さL2がコイルスロット52の深さL1の半分程度のとき)には、漏れ磁束φ10は、コイルスロット52の外径側のブリッジ部58よりも広いスリット54の外径側のブリッジ部57を通りやすくなる。これに対し、スリット54がコイルスロット52よりも外径側に延在してことにより他の相への漏れ磁束φ10を流れにくくできる。
また、コイル21,22,23を集中巻きとすることにより、特許文献1のモータよりも体格的に有利となり、電流を多く流せるため、トルクと出力密度が大きくなる。つまり、トルクが大きくなることにより出力が大きくなり、しかも分布巻きではなく集中巻きにすることによりコイルエンドが小さくなりモータの軸方向の長さを短くでき、体積が小さくなり(モータの体格を小さくでき)、その結果、出力密度を大きくすることができる。また、同じモータ体格ならばトルクを大きくすることができる。
このようにして、磁石レスで堅牢なロータ構造を持ち高回転が可能であり、永久磁石を使わないステータ50によりコストの低減を図ることができる。また、一般的な3相駆動回路(3相インバータ回路)31を用いることができ、駆動回路も一般的な構成であり、安価なシステムが可能である。
上記実施形態によれば、以下のような効果を得ることができる。
(1)モータ装置10の構成として、ステータコア51は、周方向に隣り合うコイルスロット52の間に形成された第1ティース部55と第2ティース部56と、第1ティース部55と第2ティース部56との間に形成されるとともに、ステータコア51の内径側に開口するスリット54と、スリット54の外径側に形成されるとともに第1ティース部55と第2ティース部56とを繋ぐブリッジ部57とを有する。スリット54とコイルスロット52とは、ステータコア51の周方向に交互に配置されている。スリット54は、ステータコア51の内径側から外径側に延在するとともに、ステータコア51の中心Oからスリット54の外径側の端部までの距離r2が、ステータコア51の中心Oからコイルスロット52の外径側の端部までの距離r1以上となるように形成されている。駆動制御部30は、コイル21,22,23に流す電流を制御するコントローラ32を有する。コントローラ32は、突極41が第1ティース部55を通過する際に第1ティース部55から突極41に磁束が流れるようにコイル21,22,23に電流を流す。駆動制御部30のコントローラ32は、突極41がスリット54を通過する際にコイル21,22,23に流れる電流の向きが反転し、突極41が第2ティース部56を通過する際に突極41から第2ティース部56に磁束が流れるようにコイル21,22,23に電流を流す。よって、トルクが発生しない区間をなくして、トルクを大きくすることができる。
(2)駆動制御部30は、3相駆動回路31を有するので、実用的である。
(3)スリット54は、ステータコア51の周方向に隣り合うコイルスロット52の間における周方向の中央に形成されている。よって、ロータ40の回転に伴って容易に磁束を均等に流すことができる。
(4)スリット54は、コイルスロット52よりも外径側に延在している。よって、スリット54により磁束の流れを規制して漏れ磁束φ10を流れにくくすることができる。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ スリット54の外径側端部がコイルスロット52の外径側端部と同径となるようにスリット54を外径側に延在させてもよい。要は、スリット54は、ティース53の内径から外径に向かってコイルスロット52以上に外径側に延在していればよい。
○ スリット54は、ステータコア51の周方向に隣り合うコイルスロット52の間における周方向の中央に形成されていなくてもよく、多少ずれていてもよい。
○ モータの相数は3相に限ることなく、6相や9相や12相といった他の相数でも可能である。
○ ロータの突極41の数とステータの極数は5対6であったが、これに限らない。例えばロータの突極の数とステータの極数は6対8といったように他の組合せでも構わない。
10…モータ装置、20…磁石レス型リラクタンスモータ、21,22,23…コイル、30…駆動制御部、31…3相駆動回路、32…コントローラ、40…ロータ、41…突極、50…ステータ、51…ステータコア、52…コイルスロット、54…スリット、55…第1ティース部、56…第2ティース部、57…ブリッジ部。

Claims (3)

  1. 突極を有するロータ及び筒状のステータコアの内径側に開口するコイルスロットにコイルが挿入されるとともに、前記ロータの外周側に配置されるステータを有する磁石レス型リラクタンスモータと、
    前記コイルへの通電制御を行う駆動制御部と、
    を備えたモータ装置であって、
    前記ステータコアは、
    周方向に隣り合う前記コイルスロットの間に形成された第1ティース部と第2ティース部と、
    前記第1ティース部と前記第2ティース部との間に形成されるとともに、前記ステータコアの内径側に開口するスリットと、
    前記スリットの外径側に形成されるとともに前記第1ティース部と前記第2ティース部とを繋ぐブリッジ部とを有し、
    前記スリットと前記コイルスロットとは、前記ステータコアの周方向に交互に配置され、
    前記スリットは、前記ステータコアの内径側から外径側に延在するとともに、前記ステータコアの中心から前記スリットの外径側の端部までの距離が、前記ステータコアの中心から前記コイルスロットの外径側の端部までの距離以上となるように形成され、
    前記駆動制御部は、前記突極が前記第1ティース部を通過する際に前記第1ティース部から前記突極に磁束が流れるようにコイルに電流を流し、前記突極がスリットを通過する際にコイルに流れる電流の向きが反転し、前記突極が第2ティース部を通過する際に前記突極から前記第2ティース部に磁束が流れるようにコイルに電流を流すことを特徴とするモータ装置。
  2. 前記駆動制御部は、3相駆動回路を有することを特徴とする請求項1に記載のモータ装置。
  3. 前記スリットは、前記ステータコアの周方向に隣り合う前記コイルスロットの間における周方向の中央に形成されていることを特徴とする請求項1または2に記載のモータ装置。
JP2016235806A 2016-12-05 2016-12-05 モータ装置 Pending JP2018093639A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235806A JP2018093639A (ja) 2016-12-05 2016-12-05 モータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235806A JP2018093639A (ja) 2016-12-05 2016-12-05 モータ装置

Publications (1)

Publication Number Publication Date
JP2018093639A true JP2018093639A (ja) 2018-06-14

Family

ID=62565738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235806A Pending JP2018093639A (ja) 2016-12-05 2016-12-05 モータ装置

Country Status (1)

Country Link
JP (1) JP2018093639A (ja)

Similar Documents

Publication Publication Date Title
JP5948061B2 (ja) 回転電機、およびその回転電機を備えた車両
JP5304427B2 (ja) 回転電機の駆動システム
JP5789145B2 (ja) 同期電動機
EP3355446B1 (en) Rotary electric machine
JP6269818B2 (ja) ダブルステータ型スイッチトリラクタンス回転機
US9906107B2 (en) Magnet-free rotating electric machine
JP2003009486A (ja) 可変速電動機
JP6227712B2 (ja) 回転電機、およびその回転電機を備えた車両
JP6241444B2 (ja) 磁石レス回転電機
JP5388678B2 (ja) 回転装置
JP2008301652A (ja) 永久磁石式回転電機およびそれを用いた電動パワーステアリング装置
WO2016004823A1 (zh) 一种定子及无刷直流电机、三相开关磁阻和罩极电机
JP2010136523A (ja) 回転電機の駆動制御装置
JP6083307B2 (ja) 回転機
JP2013115843A (ja) モータ装置
US20190296672A1 (en) Field winding type rotating electric machine
JP2018093639A (ja) モータ装置
JP2015231242A (ja) Dcモータおよびdcモータの制御方法
JP2016197941A (ja) 回転電機
JP6613721B2 (ja) トロイダルコイル電動機
WO2017109968A1 (ja) 永久磁石モータ
JP6763312B2 (ja) 回転電機
WO2019155961A1 (ja) リラクタンスモータおよび当該リラクタンスモータを備えるモータシステム
JP6149663B2 (ja) 機電一体型モータ
JP2005348590A (ja) 永久磁石同期モータの駆動制御装置および永久磁石同期モータの駆動制御方法