JP2018090866A - 溶融金属吐出装置 - Google Patents

溶融金属吐出装置 Download PDF

Info

Publication number
JP2018090866A
JP2018090866A JP2016236126A JP2016236126A JP2018090866A JP 2018090866 A JP2018090866 A JP 2018090866A JP 2016236126 A JP2016236126 A JP 2016236126A JP 2016236126 A JP2016236126 A JP 2016236126A JP 2018090866 A JP2018090866 A JP 2018090866A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
plunger
holding container
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016236126A
Other languages
English (en)
Inventor
一樹 酒井
Kazuki Sakai
一樹 酒井
彰男 古澤
Akio Furusawa
彰男 古澤
清裕 日根
Kiyohiro Hine
清裕 日根
田崎 学
Manabu Tazaki
学 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016236126A priority Critical patent/JP2018090866A/ja
Publication of JP2018090866A publication Critical patent/JP2018090866A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】へこみ及び欠けが無く品質の良い金属粒子を高収率で長時間連続して製造できる溶融金属吐出装置を提供する。
【解決手段】プランジャ106の下部の保持容器内に配置されかつ表面改質された側面106aを有し、上部が圧電アクチュエータ107と接続され、圧電アクチュエータで発生したパルス圧力を保持容器内のノズルの近傍に位置する溶融金属に伝達しつつ溶融金属側にプランジャ106が変位して、溶融金属103を保持する保持容器100の下端のノズル104から溶融金属を1個ずつ単分散粒子の液滴117としてノズルから吐出させる。保持容器内のノズルの近傍で、かつプランジャの下部の表面改質された側面の周りに位置した絞り部116により、保持容器内からノズルへの溶融金属の流動量を制御する。ノズルから吐出された溶融金属の単分散粒子は、回収筒112で凝固及び球状化させて回収部材114で回収する。
【選択図】図1

Description

本発明は、圧電アクチュエータを用いてプランジャを駆動させ、ノズルヘッドから溶融金属材料を吐出して金属粒子を形成する溶融金属吐出装置に関する。
形状の揃った均一な粒子は、その材質を問わず、電気製品を始めとする様々な科学技術分野で広く用いられ、その需要は拡大の一途である。例えば、半導体ICパッケージの回路基板への接続のため、その電極部分にはんだ粒子が用いられている。このはんだ粒子は、格子状電極配置の半導体ICパッケージであるBGA(ボールグリッドアレイ)パッケージに使用されている。BGAパッケージの端子が0.3〜1.0mmピッチのものが多く普及しており、それに伴い、粒子径200〜800μmのBGAボールが広く使用されている。
はんだ粒子に、へこみ又は欠けが無いことは非常に重要なことである。例えばはんだ粒子をBGAパッケージに実装する装置では、はんだ粒子を連続的に供給するために、停滞することなく転がることが求められるからである。もし、転がりが悪いと、装置の途中ではんだ粒子の供給が止まるので、この供給部分の調整などが頻繁に必要となり、生産効率を著しく低下させる。また、はんだ粒子をBGAパッケージに高精度で実装する方法として、BGAパッケージに合わせて高精度に配置したノズル部分を真空に引き、この部分にはんだ粒子を吸着させ、所定の位置に配列する方法がある。この際に、はんだ粒子の表面のへこみ又は欠けが多い場合には吸着できず、はんだ粒子が搭載されない端子ができ、BGAパッケージそのものが不良となる。
このへこみ又は欠けの無いはんだ粒子を製造する手段としては、るつぼ内の溶湯に圧力と振動とを付与して、前記るつぼの底部に設けたオリフィスから溶湯を押出し、前記オリフィスから滴下した溶湯を急冷凝固させて、はんだ粒子を製造する単分散粒子製造装置が提案されている(例えば特許文献1参照)。
図6は、特許文献1に記載された従来の単分散粒子製造装置を示す図である。
ここで、図6を用いて、上述の単分散粒子製造装置をより具体的に説明する。この単分散粒子製造装置は、容器2と、オリフィスプレート4と、圧電アクチュエータ5と、パルス圧力伝達部と、回収部とを有する。容器2には、流動性材料である溶融金属1を貯留する。オリフィスプレート4は、この容器2から溶融金属1が供給される複数個のオリフィス3を有する。圧電アクチュエータ5は、所定のパルス圧力を発生する。パルス圧力伝達部、すなわちシリンダロッド6は、該圧電アクチュエータ5で発生したパルス圧力を容器2に貯留された溶融金属1に伝達する。回収部は、オリフィス3から吐出された溶融金属1を回収する。このような装置において、圧電アクチュエータ5にパルス電圧を印加し、所定周波数及び所定振幅の振動を発生させ、シリンダロッド6を上記と同様の周波数のパルスで振動させ、シリンダロッド6に接触している容器2内の溶融金属1にパルス圧力波を発生させる。これにより、圧電アクチュエータ5が下方に所定の変位量以上変位すると、シリンダロッド6が変位して、容器2内の溶湯をオリフィスプレート4上のオリフィス3から液滴状にして吐出し単分散粒子が形成される。
特開2008−156719号公報
しかしながら、前記従来の構成では、オリフィス3にはんだ材料などの吐出材料に対して濡れ性の低い材料、例えばステンレス、アルミナ、カーボン、石英、又はボロンナイトライド等を使用しているため、リフィル性(再流入性)が悪く、安定して吐出すること及び8時間以上連続して吐出することが困難であり、生産性が悪いという課題を有している。
本発明は、前記従来の課題を解決するもので、へこみ及び欠けが無く品質の良い金属粒子を高収率で長時間連続して製造できる溶融金属吐出装置を提供することを目的とする。
上記目的を達成するために、本発明の1つの態様によれば、
溶融金属を保持する保持容器と、
前記保持容器の下端に配置されて前記溶融金属を前記保持容器から吐出するノズルと、
パルス圧力を発生する圧電アクチュエータと、
表面改質された側面を有する下部が前記保持容器内に配置され、上部が前記圧電アクチュエータと接続され、前記圧電アクチュエータで発生した前記パルス圧力を前記保持容器内の前記ノズルの近傍に位置する前記溶融金属に伝達しつつ溶融金属側に変位して、前記ノズルから前記溶融金属を1個ずつ単分散粒子の液滴として前記ノズルから吐出させるプランジャと、
前記保持容器内の前記ノズルの近傍で、かつ前記プランジャの前記下部の前記表面改質された側面の周りに位置して前記保持容器内から前記ノズルへの前記溶融金属の流動量を制御する絞り部と、
前記ノズルの下方に連通されて、前記ノズルから吐出された前記溶融金属の前記単分散粒子を凝固及び球状化させる回収筒と、
前記回収筒に連結されて、前記回収筒内で凝固した前記単分散粒子を回収する回収部材とを備える溶融金属吐出装置を提供する。
以上のように、本発明の前記態様にかかる溶融金属吐出装置によれば、前記プランジャの表面改質された側面により圧力室内の流動性を改善し、リフィル性を安定させることができて、へこみ及び欠けが無く品質の良い金属粒子を高収率で長時間連続(例えば、少なくとも48時間連続)して製造することができる。
本発明の実施の形態における溶融金属吐出装置の断面図 本発明の実施の形態における溶融金属吐出装置の圧力室の拡大図と吐出メカニズムを示す図 本発明の実施の形態における溶融金属に加わる圧力及び流入量と絞り部の濡れ性の関係を示す図 本発明の実施の形態における表面改質箇所を表す図 本発明の実施の形態におけるプランジャに接触角40〜70°のメッキを施した時の最適な絞り幅について示した図 特許文献1に記載された従来の単分散粒子製造装置を示す図
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の実施の形態における金属粒子の製造方法に用いられる溶融金属吐出装置の断面図である。この溶融金属吐出装置は、金属粒子の製造方法に用いられるものであり、溶融した金属を吐出する吐出部120と、吐出部120より下方に位置しかつ吐出した金属粒子を回収する回収部121とを備えている。
まずは、金属粒子を吐出する吐出部120について説明する。
(吐出部120)
吐出部120は、少なくとも、ノズルヘッド100と、ノズル104と、圧電アクチュエータ107と、プランジャ106と、絞り部116とを備えている。より具体的には、吐出部120は、さらに、加熱機構102と、圧力室105と、固定具108とを備えている。
ノズルヘッド100は、保持容器の一例として機能する。このノズルヘッド100には、素材となる金属材料103を蓄える供給室101が設けられる。供給室101の周囲には、ヒータなどの加熱機構102が備えられ、供給室101内の金属材料103をその融点以上に加熱機構102で加熱して溶融させる。
また、ノズルヘッド100の下部でかつ供給室101の下方には、溶融した金属材料103を供給室101から吐出するための圧力を生成する圧力室105が備えられる。
ノズル104は、ノズルヘッド100の下端に配置されて圧力室105の下端に連通し、溶融金属をノズルヘッド100から吐出する。圧力室105と供給室101とは、絞り部116とプランジャ106とによって隔てられている。
圧力室105内の金属材料103との流動性を改善することで、リフィル性(すなわち、供給室101内の金属材料103の圧力室105内への再流入性)を安定させるため、プランジャ106の下部であって、供給室101から圧力室105への入口である絞り部116内に配置される側面106aのみに予め選択的に表面改質を行っている。プランジャ106の表面改質された側面106aは、プランジャ106の下部のうち、絞り部116の幅yに対向する側面である。幅yの詳細については後述する。表面改質の例としては、Ni−Pメッキであり、かつNi−Pメッキ中のP量が4〜10%である場合、又は、Sn−Cuメッキであり、かつCu量が3〜8%である場合が例示できる。
また、圧力室105側のプランジャ先端部111は、尖塔状に加工が施されており、圧力室105内と絞り部116内とに位置している。プランジャ106のプランジャ先端部111は図1では下端に配置されて圧力室105及び絞り部116内に位置し、プランジャ先端部111から上方に延在して、圧力室105と絞り部116とを貫通したのち、供給室101も貫通して供給室101のさらに上方に延びている。
このプランジャ106の上端は、下向きに推力を発生させる圧電アクチュエータ107と接続されており、圧電アクチュエータ107の推力を圧力室105に伝達する作用を担う。圧電アクチュエータ107は、固定具108により、ノズルヘッド100の上部に固定されている。
圧電アクチュエータ107は、ファンクションジェネレータ110を介して外部電源109に電気的に接続され、外部電源109により駆動することができる。ファンクションジェネレータ110において所定周波数の矩形波を発生させ、発生した所定周波数の矩形波を圧電アクチュエータ107に印加し、所定周波数及び所定振幅の振動を発生させる。その結果、圧電アクチュエータ107と実質的に一体構造のプランジャ106を同じ周波数のパルスで振動させ、接触している圧力室105内の溶融した金属材料103にパルス圧力波を発生させる。
これにより、圧電アクチュエータ107が、図1における下方に所定の変位量以上(例えば臨界変位以上)に変位すると、プランジャ106を介して圧力室105内の溶融した金属材料103をノズル104から液滴状の金属粒子117として吐出する。この吐出は、パルス圧力波の1周期に1回ずつ行われる。また、圧電アクチュエータ107の変位の周波数も、特に制限的ではなく、対象とする金属材料103の種類又は必要とする製造速度などに応じて、適宜選択すればよい。
そこで、次に、プランジャ106の側面のうち絞り部116に配置されている部分の側面106aのみに選択的に表面改質を予め施して、圧力室105内の金属材料103の流動性を改善することで、金属材料103のリフィル性を安定させるメカニズムについて説明する。
図2は、本実施形態の溶融金属吐出装置の圧力室105の拡大図と吐出メカニズムとを表している。
図2の(1)に示す初期状態では、ノズルヘッド100に対してプランジャ106は上端位置に位置しており、プランジャ106のプランジャ先端部111は圧力室105内と絞り部116内とに位置している。
この初期状態から、圧電アクチュエータ107により図2の(2)に示すように、プランジャ106を下方へ駆動させることで、溶融金属のメニスカス(液面の屈曲)を下方へ連動する。
次いで、図2の(3)に示すように、圧電アクチュエータ107により更にプランジャ106を下方へ駆動し、プランジャ106が所定の変位量以上変位すると、ノズル104から金属粒子117が液滴状に吐出される。
次いで、図2の(4)に示すように、液滴状の金属粒子117を吐出した後、圧電アクチュエータ107によりプランジャ106を上方に駆動して初期位置に戻す。このとき、吐出した金属粒子117の体積分の金属材料103を、供給室101から絞り部116を介して圧力室105内へ再流入(リフィル)させ、図2の(1)の初期状態となる。
このような一連のサイクルにより、液滴状の金属粒子117をノズル104から吐出する。
図3に、溶融金属に加わる圧力及び流入量と絞り部116の濡れ性との関係を表す。縦軸は圧力と流入量の大きさとを表し、横軸には絞り部116の濡れ性を表している。絞り部116の濡れ性が小さい場合には、溶融金属に加わる圧力は大きくなるが、溶融金属の流動性が悪くて流入量が少ないため、圧力室105に金属材料103が不足して金属材料103の吐出が困難になる。また、絞り部116の濡れ性が大きい場合には、溶融金属の流動性が良くなり流入量が多くなるが、溶融金属に加わる圧力が小さくなり、金属材料103を吐出することができない。このため、絞り部116の濡れ性に対して、溶融金属に加わる圧力と流入量とは、背反条件にある。安定的な溶融金属吐出を行うためには、溶融金属に加わる圧力及び流入量が良すぎず悪すぎない、すなわち、溶融金属に加わる圧力及び流入量が適した状態の絞り部116の濡れ性範囲が存在する。そこで、最適な金属粒子117の吐出を行うために、絞り部116内に配置されるプランジャ106の側面にのみ積極的に表面改質を行い、濡れ性の制御を行った。図4に、本実施形態において表面改質された側面を106aで示す。
(回収部121)
次に、溶融金属吐出装置を構成する回収部121について説明する。
回収部121は、少なくとも回収筒112と、回収部材の一例としての金属粒子回収ボックス114とを備える。より具体的には、回収部121は、さらに、ゲートバルブ113と、高速度カメラ115とを備える。
ノズル104の下部には、吐出される金属粒子を捕捉するための回収部121が設けられている。この回収部121には、上から下向きに不活性ガス流が供給される回収筒112と、回収筒112の下部に配置されたゲートバルブ113と、回収筒112の下端にゲートバルブ113を介して配置され、かつノズル104から吐出された後、回収筒112内で冷却された金属粒子を回収する金属粒子回収ボックス114が接続されている。金属粒子回収ボックス114は、回収筒112内で冷却されて凝固した前記単分散粒子を回収する。
ノズル104から回収筒112内に吐出された、溶融した金属材料103は、その表面張力により球形となり、回収筒112内の気体中にて冷却されて球形成がなされる。このとき、表面の酸化を抑制するために、回収筒112内の窒素等の不活性ガス雰囲気中へ吐出及び冷却を行う。吐出された金属材料103の形状及び吐出状況を、回収筒112の上端に配置された高速度カメラ115を用いて撮影し、安定吐出及び連続生産性の確認を行う。
以下、具体的な実施例を例示する。
(実施例1)
前記各図に示した溶融金属吐出装置において、一例として、圧電アクチュエータ107として積層型圧電アクチュエータを用いた。圧電アクチュエータの最大変位量は14.7μmであり、周波数特性は1.7MHzである。ここでは、上述の圧電アクチュエータの温度が40°C以上にならないように温度制御した。高温になる部材、プランジャ106及びノズル104はステンレス鋼製とし、一定温度に制御を行った。また、プランジャ106の直径約8mm内に1個のノズル104を設けた。ノズル径は、300μm金属粒子を狙うため、約300μm(300±2μm)とした。
金属材料103の組成は、鉛フリーはんだとして使用されているSn−Ag−Bi−In−Cu系合金(融点約210℃)を用い、加熱機構102を用いて250℃に加熱保持し、回収部121内には不活性ガスである窒素ガスを圧力約1kPaで導入した。ノズル104から回収筒112に吐出した溶融した金属材料103は、ノズル104から約1m下方の金属粒子回収ボックス114で回収した。
圧電アクチュエータ107の動作周波数を100Hzとして、圧電アクチュエータ107の温度が一定になっていることを確認してから、金属粒子製造を48時間(約900万個)行った。また、詳細は省略するが、回収部121内に高速度カメラ115の一例としてストロボカメラを設置して、吐出している金属粒子117の形状をリアルタイムで観察し、この観察結果に基づいて製造条件の調整を行った。
また、プランジャ106の絞り部116内に配置される側面106aには、絞り部116での濡れ性を制御するため、表面改質の一例としてNi−Pメッキを行った。Ni−PメッキのP量を0.5、1〜14パーセントまで変更し、それぞれのP量に対してめっき膜厚を変更することで、絞り部の幅を種々変更した結果を表1に示す。Ni−PにおけるP量を増やすことは、吐出するSn−Ag−Bi−In−Cu系合金に対して濡れ性が悪くなることを意味する。また、高速度カメラ115による動画を確認し、以下の基準で評価した。
○: 欠け及びへこみの無い300±10μmの金属粒子を48時間連続吐出ができた。
×: 連続吐出が困難であり、数時間で吐出がバラツキ又は吐出不良が発生した。
表1に吐出評価結果を示す。全サンプルのうちサンプル1−2、1−3、1−4、1−5、1−6は実施例、それ以外は比較例を表す。表1より、プランジャ側面にメッキを施さなかった場合、全条件において数時間で吐出がバラツキ、吐出不良が発生した。また、表面改質のメッキを施しても、絞り幅が25μmの場合は、絞り幅が狭すぎて溶融金属が圧力質105内に流入せず、吐出が不安定になった。絞り幅が175〜225μmの場合は、絞り幅が広く溶融金属は圧力室105の下部に流入するが、プランジャ106が上下振動を行っても圧力室105内の溶融金属に圧力が伝わらず、吐出が不可能であった。結局、絞り幅50〜150μmの場合、P量を4〜10%にすることで全条件において吐出が安定し、48時間の連続吐出が可能であった。
(実施例2)
金属材料103の組成を、鉛フリーはんだとして使用されているBi−In系合金(融点約150℃)に変更し、加熱機構102を用いて200℃に加熱保持し、実施例1と同様の検証を行った。Bi―In系合金に対して濡れ性の制御が可能なSn−Cuメッキを表面改質の例としてステンレス鋼のプランジャの側面に行い、Sn−CuメッキのP量を0.5、1〜14パーセントまで変更し、めっき膜厚を変更することで、絞り部の幅を種々変更した結果を表2に示す。全サンプルのうちサンプル2−2、2−3、2−4、2−5、2−6は実施例、それ以外は比較例を表す。絞り幅50〜150μmの場合、Cu量を3〜8%にすることで、全条件において吐出が安定し、48時間の連続吐出が可能であった。
Figure 2018090866
Figure 2018090866

(実施例3)
実施例1で使用したSn−Ag−Bi−In−Cu系合金の金属材料103に対して、48時間連続吐出が可能であった表面改質としてのNi−PメッキのP量は4〜10%であり、実施例2で使用したBi−In系合金の金属材料103に対して、48時間連続吐出が可能であった表面改質としてのSn−CuメッキのCu量は3〜8%であり、これら2つの場合の接触角を測定した結果、共に接触角40〜70°であった。
図5に実施例1、2と同様に、プランジャに接触角40〜70°のメッキを表面改質として施し、ノズル径を200〜800μmまで変更して金属粒子吐出を行った結果を示す。縦軸に絞り幅[μm]を表し、横軸に吐出した金属粒子径[μm]を表し、また、斜線部はつぶれ及び欠けが無い金属粒子を48時間連続製造できた範囲を表す。図5より、200〜800μmの金属粒子を吐出する場合、ノズル絞り幅が上限y=0.25x+75、下限y=0.25x−25の範囲で、欠け及びへこみの無い金属粒子を48時間安定吐出が可能である。
(実施例4)
実施例1及び2において絞り幅50〜150μm、P量4〜10%において、
(1)プランジャ側面+プランジャ先端部、
(2)プランジャ側面部+ノズル内部、
(3)プランジャ側面+先端部+ノズル内部、
にそれぞれ表面改質としてのメッキを施し同様の実験を行った。その結果、全条件において、溶融金属にプランジャの上下振動の圧力が加わらず、初期吐出が不可能であり、溶融金属吐出が困難であった。そのため、プランジャの側面にのみ表面改質としてのメッキを行うことが最適であるといえる。
以上、実施例1〜4より、粒子径xが200〜800μmの欠け及びへこみの無い金属粒子を少なくとも48時間連続吐出するには、プランジャ106の側面のうちの絞り部116内に配置される側面106aのみに接触角が40〜70°となる表面改質を予め行い、ノズル104の絞り部116の幅yが、上限がy=0.25x+75μmであり、下限がy=0.25x−25μmであればよい。すなわち、絞り部116の幅yは(0.25x+75)μm≦y≦(0.25x−25)μmである関係である。
よって、プランジャ106の表面改質された側面106aは、プランジャ106の下部のうち、絞り部116の幅yに対向する側面、言い換えれば、一例として、幅yにプランジャ106の変位(例えば10μm)を加えた軸方向の寸法の範囲である。すなわち、表面改質された側面106aの寸法の例は、(0.25x+75)μm+10μm≦y+10μm≦(0.25x−25)μm+10μmである。
前記実施形態によれば、プランジャ106の表面改質された側面106aにより圧力室105内の金属粒子の流動性を改善し、リフィル性を安定させることができて、へこみ及び欠けが無く品質の良い金属粒子を高収率で長時間連続(例えば、少なくとも48時間連続)して製造することができる。
なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。
本発明の前記態様における溶融金属吐出装置は、へこみ及び欠けが無く品質の良い金属粒子を高収率で長時間連続して製造できる。すなわち、この溶融金属吐出装置は、材質又は粒径の異なる粒子をある一定の絞り幅で、常に安定した体積を吐出させることができ、つぶれ及び欠けの無い金属粒子を製造することが可能である。特に、実装分野では、粒度分布幅の小さい、精度の高い金属粒子が必要とされるBGAはんだボール製造には有用である。
1 溶融金属
2 容器
3 オリフィス
4 オリフィスプレート
5 圧電アクチュエータ
6 シリンダロッド
7 ガス導入口
100 ノズルヘッド
101 供給室
102 加熱機構
103 金属材料
104 ノズル
105 圧力室
106 プランジャ
106a 表面改質された側面
107 圧電アクチュエータ
108 固定具
109 外部電源
110 ファンクションジェネレータ
111 先端部
112 回収筒
113 ゲートバルブ
114 金属粒子回収ボックス
115 高速度カメラ
116 絞り部
117 金属粒子
120 吐出部
121 回収部

Claims (6)

  1. 溶融金属を保持する保持容器と、
    前記保持容器の下端に配置されて前記溶融金属を前記保持容器から吐出するノズルと、
    パルス圧力を発生する圧電アクチュエータと、
    表面改質された側面を有する下部が前記保持容器内に配置され、上部が前記圧電アクチュエータと接続され、前記圧電アクチュエータで発生した前記パルス圧力を前記保持容器内の前記ノズルの近傍に位置する前記溶融金属に伝達しつつ溶融金属側に変位して、前記ノズルから前記溶融金属を1個ずつ単分散粒子の液滴として前記ノズルから吐出させるプランジャと、
    前記保持容器内の前記ノズルの近傍で、かつ前記プランジャの前記下部の前記表面改質された側面の周りに位置して前記保持容器内から前記ノズルへの前記溶融金属の流動量を制御する絞り部と、
    前記ノズルの下方に連通されて、前記ノズルから吐出された前記溶融金属の前記単分散粒子を凝固及び球状化させる回収筒と、
    前記回収筒に連結されて、前記回収筒内で凝固した前記単分散粒子を回収する回収部材とを備える溶融金属吐出装置。
  2. 前記プランジャの前記表面改質された側面は、前記溶融金属に対する接触角が40〜70°である、請求項1に記載の溶融金属吐出装置。
  3. 前記溶融金属の前記単分散粒子の粒子径xが、200μm≦x≦800μmであり、
    前記絞り部の幅yは、(0.25x+75)μm≦y≦(0.25x−25)μmである関係である、請求項1又は2に記載の溶融金属吐出装置。
  4. 前記プランジャの前記表面改質された側面は、前記プランジャの前記下部のうち、前記絞り部の幅yに対向する側面である、請求項3に記載の溶融金属吐出装置。
  5. 前記プランジャの前記表面改質された側面は、前記表面改質がNi−Pメッキであり、Ni−Pメッキ中のP量が4〜10%である側面である、請求項1〜4のいずれか1つに記載の溶融金属吐出装置。
  6. 前記プランジャの前記表面改質された側面は、前記表面改質がSn−Cuメッキであり、Cu量が3〜8%である側面である、請求項1〜4のいずれか1つに記載の溶融金属吐出装置。
JP2016236126A 2016-12-05 2016-12-05 溶融金属吐出装置 Pending JP2018090866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236126A JP2018090866A (ja) 2016-12-05 2016-12-05 溶融金属吐出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236126A JP2018090866A (ja) 2016-12-05 2016-12-05 溶融金属吐出装置

Publications (1)

Publication Number Publication Date
JP2018090866A true JP2018090866A (ja) 2018-06-14

Family

ID=62565289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236126A Pending JP2018090866A (ja) 2016-12-05 2016-12-05 溶融金属吐出装置

Country Status (1)

Country Link
JP (1) JP2018090866A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200551A1 (de) * 2019-04-01 2020-10-08 Robert Bosch Gmbh Verfahren und vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer schmelze
WO2020200552A1 (de) * 2019-04-01 2020-10-08 Robert Bosch Gmbh Verfahren und vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer schmelze

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200551A1 (de) * 2019-04-01 2020-10-08 Robert Bosch Gmbh Verfahren und vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer schmelze
WO2020200552A1 (de) * 2019-04-01 2020-10-08 Robert Bosch Gmbh Verfahren und vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer schmelze
CN113905840A (zh) * 2019-04-01 2022-01-07 罗伯特·博世有限公司 用于由熔融物增材制造三维工件的方法和装置
CN113905840B (zh) * 2019-04-01 2023-10-13 罗伯特·博世有限公司 用于由熔融物增材制造三维工件的方法

Similar Documents

Publication Publication Date Title
CN101745763B (zh) 一种精密焊球的高效制备方法
Xiong et al. Experimental investigation on the height deviation of bumps printed by solder jet technology
JP2002057177A (ja) はんだボールおよびその製造方法
KR102171007B1 (ko) 금속입자의 제조 방법
JP2018090866A (ja) 溶融金属吐出装置
JP2005103645A (ja) はんだボールおよびその製造方法
JP2002020807A (ja) はんだボールおよびその製造方法
JP2001226706A (ja) 微細金属球製造装置
JP2001267730A (ja) 半田ボール
JP2017190516A (ja) 金属粒子の製造方法、及び、金属粒子の製造装置
JP4161318B2 (ja) はんだボールの製造方法
JP5022022B2 (ja) 単分散粒子製造装置
JPH06184607A (ja) 球形単分散粒子の製造方法および装置
JP2001107113A (ja) 金属ガラス球の製造方法およびこの方法で製造された金属ガラス球、並びにその製造装置
Tsai et al. The micro-droplet behavior of a molten lead-free solder in an inkjet printing process
JP2001353436A (ja) 単分散粒子及びその単分散粒子の製造方法及びその製造方法で製造された単分散粒子、並びにその製造装置
Chao et al. Experimental analysis of a pneumatic drop-on-demand (DOD) injection technology for 3D printing using a gallium-indium alloy
JP2001226705A (ja) 微細金属球の製造方法並びに微細金属球製造装置
JP2017052982A (ja) 金属球形成装置および金属球形成方法
JP2001294907A (ja) 金属ガラス球の製造方法およびこの方法で製造された金属ガラス球、並びにその製造装置
JP6106852B2 (ja) ノズルヘッドとそのノズルヘッドを用いた金属粒子製造装置、および、金属粒子製造方法
JP2000328111A (ja) 微小金属球の製造方法および装置
KR100469019B1 (ko) 가스플레임애터마이징법에 의한 마이크로 금속볼 제조방법및 그 제조장치
KR100469018B1 (ko) 마이크로 금속볼의 제조방법과 그 장치
JP2002317211A (ja) 金属球製造方法