JP2018090695A - Arc resistant bmc - Google Patents

Arc resistant bmc Download PDF

Info

Publication number
JP2018090695A
JP2018090695A JP2016234929A JP2016234929A JP2018090695A JP 2018090695 A JP2018090695 A JP 2018090695A JP 2016234929 A JP2016234929 A JP 2016234929A JP 2016234929 A JP2016234929 A JP 2016234929A JP 2018090695 A JP2018090695 A JP 2018090695A
Authority
JP
Japan
Prior art keywords
mass
bmc
unsaturated polyester
parts
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016234929A
Other languages
Japanese (ja)
Other versions
JP6901257B2 (en
Inventor
高橋 信行
Nobuyuki Takahashi
信行 高橋
隆仁 石内
Takahito Ishiuchi
隆仁 石内
正太郎 板見
Shotaro Itami
正太郎 板見
涼平 伊藤
Ryohei Ito
涼平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016234929A priority Critical patent/JP6901257B2/en
Publication of JP2018090695A publication Critical patent/JP2018090695A/en
Application granted granted Critical
Publication of JP6901257B2 publication Critical patent/JP6901257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arc resistance bulk molding compound (BMC) and an electric/electronic component obtained by curing the compound.SOLUTION: A bulk molding compound (BMC) is a thermosetting resin composition containing (a) unsaturated polyester, (b) a monomer having one or more polymerizable carbon-carbon double bonds, (c) aluminum hydroxide, (d) a chopped strand glass fiber, (e) a low constrictive agent and (f) a curing agent, wherein a content of (c) the aluminum hydroxide is 300-590 pts.mass with respect to 100 pts.mass of the total amount of (a) the unsaturated polyester and (b) the monomer, and a content of (d) the chopped strand glass fiber is 10-200 pts.mass with respect to 100 pts.mass of the total amount of (a) the unsaturated polyester and (b) the monomer. It is preferable that the BMC further contains 0.2-30 pts.mass of (g) a compound containing a phosphate group with respect to 100 pts.mass of the total amount of (a) the unsaturated polyester and (b) the monomer.SELECTED DRAWING: None

Description

本発明は、本発明は、耐アーク性を著しく改善した不飽和ポリエステル樹脂組成物、特にバルクモールディングコンパウンド(BMC)とそれらを硬化させて得られる電気電子部品に関する。   The present invention relates to an unsaturated polyester resin composition, particularly a bulk molding compound (BMC), and an electric / electronic component obtained by curing them, having significantly improved arc resistance.

ガラス繊維を分散強化材としてバインダー樹脂に分散させた繊維強化プラスチックは、安価で耐熱性や耐燃性や耐トラッキング性などに優れているため、従来から各種の構造材料や絶縁性材料に採用されている。特に、不飽和ポリエステルを用いたバルクモールディングコンパウンド(BMC)は、成形性、電気絶緑性、及び耐アーク性に優れているため、各種電気絶縁性製品部材に採用されている。このような電気絶縁性の成形体は、電気開閉器などの電極開閉時に発生するアークのエネルギーを吸収でき、アークから電気機器を保護する機能を奏する。   Fiber reinforced plastic with glass fiber dispersed in binder resin as a dispersion reinforcing material is inexpensive and has excellent heat resistance, flame resistance, tracking resistance, etc., so it has been used for various structural materials and insulating materials. Yes. In particular, bulk molding compounds (BMC) using unsaturated polyester are used in various electrical insulating product members because they are excellent in moldability, electric greenness and arc resistance. Such an electrically insulating molded body can absorb the energy of an arc generated when an electrode such as an electric switch is opened and closed, and has a function of protecting an electrical device from the arc.

近年、電気機器の小型化や軽量化に伴って電気開閉器の小型化や高容量化への要求が高まっている。電気絶縁性成形体も、耐アーク性に関し高性能化が要望され、種々の解決法が提案されている。例えば、水酸化アルミニウムなどの高温で水などを放出する難燃性のフィラーを多量に含有すると耐アーク性が向上することが知られている。文献1では無機質シート及び無機質結合剤組成物からなるシート状物を硬化させて耐アーク性成形品を得ることが提案されている。文献2では酸化アルミニウムを含むエポキシ樹脂組成物を用いたプリプレグを硬化させて耐アーク性電気絶縁性成形体を得ることが提案されている。文献3ではバインダー樹脂と充填材を含有するプリプレグを硬化させて耐アーク性電気絶縁性成形体を得ることが提案されている。   In recent years, with the miniaturization and weight reduction of electric devices, there has been an increasing demand for miniaturization and high capacity of electric switches. The electrical insulating molded body is also required to have high performance in terms of arc resistance, and various solutions have been proposed. For example, it is known that arc resistance is improved when a large amount of a flame retardant filler that releases water at a high temperature such as aluminum hydroxide is contained. Document 1 proposes that an arc-resistant molded article is obtained by curing a sheet-like material comprising an inorganic sheet and an inorganic binder composition. Document 2 proposes that an prepreg using an epoxy resin composition containing aluminum oxide is cured to obtain an arc-resistant electrically insulating molded body. Document 3 proposes that an arc-resistant electric insulation molded body is obtained by curing a prepreg containing a binder resin and a filler.

特開平8−36938号公報JP-A-8-36938 特開平9−207270号公報JP-A-9-207270 特開2005−89648号公報JP 2005-89648 A

しかしながら、これらの先行文献では強化繊維と充填材の量が多いため、粘度など取り扱い性の面から樹脂組成物を繊維に含浸させるプリプレグの形態にとどまってきた。厚い成形品を得るためには強化繊維と樹脂組成物を複数層積層する必要があり、生産性が低下する。また、得られる成形品は強化繊維の方向に依存して機械的強度の異方性が生ずるという問題もある。さらに、多量のフィラーを含有するプリプレグは一般的に製造過程で水やケトン類などの希釈溶媒を必要とし、後工程で溶媒を除去する必要がある。一方で従来のBMCは一般的に強化繊維の量がプリプレグよりも少なく、全体に占める樹脂量が多くなるため、プリプレグと同程度の耐アーク性が得られないという問題があった。したがって、強度の異方性が無く、成形作業が簡便で均一な成形品が得られ、溶媒を含まない混練体であるBMCを用いた耐アーク性に優れる電気電子部品の発明が望まれてきた。
本発明は、作業性及び成形性に優れ、生産性が良好で、強度に異方性が無く、且つ耐アーク性に優れる成形品を与えるBMCを提供することを目的とする。
However, in these prior documents, the amount of reinforcing fibers and fillers is large, so that the prepreg is impregnated with the resin composition impregnated into the fibers from the viewpoint of handleability such as viscosity. In order to obtain a thick molded product, it is necessary to laminate a plurality of layers of reinforcing fibers and a resin composition, and productivity is lowered. In addition, the obtained molded article has a problem that anisotropy of mechanical strength occurs depending on the direction of the reinforcing fiber. Furthermore, a prepreg containing a large amount of filler generally requires a diluting solvent such as water and ketones in the production process, and it is necessary to remove the solvent in a subsequent process. On the other hand, the conventional BMC generally has a smaller amount of reinforcing fibers than the prepreg, and the resin occupies the whole, so that there is a problem that arc resistance comparable to that of the prepreg cannot be obtained. Therefore, there has been a demand for an invention for an electrical / electronic component that has no strength anisotropy, can be easily molded with a uniform molding operation, and has excellent arc resistance using BMC, which is a kneaded body containing no solvent. .
An object of the present invention is to provide a BMC that provides a molded article having excellent workability and moldability, good productivity, no anisotropy in strength, and excellent arc resistance.

本発明者等は、上記の問題を解決すべく鋭意研究した結果、水酸化アルミニウム及びガラス繊維を一定の割合で配合することにより、高い耐アーク性を有し、かつ希釈溶媒を含まないBMCが得られることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have blended aluminum hydroxide and glass fiber at a certain ratio, so that BMC having high arc resistance and containing no diluent solvent can be obtained. As a result, the present invention was completed.

すなわち、本発明は、以下の[1]〜[7]である。
[1](a)不飽和ポリエステル、(b)重合性炭素−炭素二重結合を1個以上有するモノマー、(c)水酸化アルミニウム、(d)チョップドストランドガラス繊維、(e)低収縮剤、(f)硬化剤を含有する熱硬化性樹脂組成物であって、前記(c)水酸化アルミニウムの含有量が前記(a)不飽和ポリエステルと前記(b)モノマーの合計量100質量部に対し300〜590質量部であり、前記(d)チョップドストランドガラス繊維の含有量が前記(a)不飽和ポリエステルと前記(b)モノマーの合計量100質量部に対し10〜200質量部であることを特徴とするバルクモールディングコンパウンド(BMC)。
[2]前記BMCが(g)リン酸エステル基を有する化合物を含有する、[1]に記載のBMC。
[3]前記(g)リン酸エステル基を有する化合物の含有量が、前記(a)不飽和ポリエステルと前記(b)モノマーの合計量100質量部に対して0.2〜30質量部である、[1]または[2]に記載のBMC。
[4]前記(c)水酸化アルミニウムの平均粒子径が15μm以下である、[1]〜[3]のいずれかに記載のBMC。
[5]前記(d)チョップドストランドガラス繊維の繊維長が1mm〜20mmである、[1]〜[4]のいずれかに記載のBMC。
[6]前記(a)不飽和ポリエステルの質量平均分子量が2,000〜50,000である、[1]〜[5]のいずれかに記載のBMC。
[7]前記(b)モノマーの含有量が、前記(a)不飽和ポリエステルと前記(b)モノマーの合計100質量%に対して25〜70質量%である、[1]〜[6]のいずれかに記載のBMC。
[8][1]〜[7]のいずれか一項に記載のBMCを硬化して得られることを特徴とする硬化物。
That is, the present invention includes the following [1] to [7].
[1] (a) unsaturated polyester, (b) monomer having one or more polymerizable carbon-carbon double bonds, (c) aluminum hydroxide, (d) chopped strand glass fiber, (e) low shrinkage agent, (F) A thermosetting resin composition containing a curing agent, wherein the content of (c) aluminum hydroxide is 100 parts by mass of the total amount of (a) unsaturated polyester and (b) monomer. 300 to 590 parts by mass, and the content of the (d) chopped strand glass fiber is 10 to 200 parts by mass with respect to 100 parts by mass of the total amount of the (a) unsaturated polyester and the (b) monomer. Characteristic bulk molding compound (BMC).
[2] The BMC according to [1], wherein the BMC contains (g) a compound having a phosphate group.
[3] The content of the compound (g) having a phosphate ester group is 0.2 to 30 parts by mass with respect to 100 parts by mass of the total amount of the (a) unsaturated polyester and the (b) monomer. BMC of [1] or [2].
[4] The BMC according to any one of [1] to [3], wherein the average particle diameter of the (c) aluminum hydroxide is 15 μm or less.
[5] The BMC according to any one of [1] to [4], wherein the fiber length of the (d) chopped strand glass fiber is 1 mm to 20 mm.
[6] The BMC according to any one of [1] to [5], wherein the (a) unsaturated polyester has a mass average molecular weight of 2,000 to 50,000.
[7] The content of the (b) monomer is 25 to 70% by mass with respect to a total of 100% by mass of the (a) unsaturated polyester and the (b) monomer, according to [1] to [6] BMC in any one.
[8] A cured product obtained by curing the BMC according to any one of [1] to [7].

本発明によれば、作業性及び成形性に優れ、生産性良く製造することができ、強度に異方性が無く、且つ耐アーク性に優れる成形品を与えるBMCを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in workability | operativity and a moldability, can be manufactured with sufficient productivity, can provide the BMC which gives the molded article which is excellent in arc resistance in strength without anisotropy.

本発明のBMCは、(a)不飽和ポリエステル、(b)重合性炭素−炭素二重結合を1個以上有するモノマー、(c)水酸化アルミニウム、(d)チョップドストランドガラス繊維、(e)低収縮剤、及び(f)硬化剤を含有する熱硬化性樹脂組成物である。以下、各成分について説明する。   The BMC of the present invention comprises (a) an unsaturated polyester, (b) a monomer having one or more polymerizable carbon-carbon double bonds, (c) aluminum hydroxide, (d) chopped strand glass fiber, (e) low A thermosetting resin composition containing a shrinking agent and (f) a curing agent. Hereinafter, each component will be described.

[(a)不飽和ポリエステル]
本発明に用いられる(a)不飽和ポリエステルとしては、特に限定されることはなく、当該技術分野において成形材料に使用されている公知のものを用いることができる。(a)不飽和ポリエステルは、一般的に、多価アルコールを不飽和多塩基酸や飽和多塩基酸と重縮合(エステル化)させて得られた化合物である。なお、本発明の効果を阻害しない範囲において、(a)不飽和ポリエステルの一部にビニルエステルを用いてもよい。
[(A) Unsaturated polyester]
(A) Unsaturated polyester used for this invention is not specifically limited, The well-known thing used for the molding material in the said technical field can be used. (A) The unsaturated polyester is generally a compound obtained by polycondensation (esterification) of a polyhydric alcohol with an unsaturated polybasic acid or a saturated polybasic acid. In addition, in the range which does not inhibit the effect of this invention, you may use a vinyl ester for a part of (a) unsaturated polyester.

不飽和ポリエステルの質量平均分子量(MW)は、特に限定されないが、好ましくは2,000〜50,000、より好ましくは3,000〜30,000、さらに好ましくは5,000〜20,000である。質量平均分子量が2,000以上であれば硬化後の強度が良好であり、50,000以下であれば組成物の粘度がBMCとして好ましいものとなる。なお、本明細書において「質量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(昭和電工株式会社製Shodex GPC−101)を用いて下記条件にて常温で測定し、標準ポリスチレン検量線を用いて求めた値のことを意味する。
カラム:昭和電工製LF−804
カラム温度:40℃
試料:(a)不飽和ポリエステルの0.2質量部テトラヒドロフラン溶液
流量:1mL/分
溶離液:テトラヒドロフラン
検出器:RI−71S
The mass average molecular weight (MW) of the unsaturated polyester is not particularly limited, but is preferably 2,000 to 50,000, more preferably 3,000 to 30,000, and further preferably 5,000 to 20,000. . If the mass average molecular weight is 2,000 or more, the strength after curing is good, and if it is 50,000 or less, the viscosity of the composition is preferable as BMC. In this specification, “mass average molecular weight” is measured at normal temperature using gel permeation chromatography (Shodex GPC-101, Showa Denko KK) at the following conditions, and obtained using a standard polystyrene calibration curve. Means the value.
Column: Showa Denko LF-804
Column temperature: 40 ° C
Sample: (a) 0.2 parts by mass of unsaturated polyester in tetrahydrofuran flow rate: 1 mL / min Eluent: tetrahydrofuran Detector: RI-71S

不飽和ポリエステルの合成に用いられる多価アルコールとしては、特に限定されることはなく、公知のものを用いることができる。多価アルコールの例としては、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、ビスフェノールA、及びグリセリン等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。   The polyhydric alcohol used for the synthesis of the unsaturated polyester is not particularly limited, and known ones can be used. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, hydrogenated bisphenol A, bisphenol A, and glycerin. It is done. These can be used alone or in combination.

不飽和ポリエステルの合成に用いられる不飽和多塩基酸としては、特に限定されることはなく、公知のものを用いることができる。不飽和多塩基酸の例としては、無水マレイン酸、フマル酸、シトラコン酸、及びイタコン酸等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。   The unsaturated polybasic acid used for the synthesis of the unsaturated polyester is not particularly limited, and known ones can be used. Examples of unsaturated polybasic acids include maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like. These can be used alone or in combination.

不飽和ポリエステルの合成に用いられる飽和多塩基酸としては、特に限定されることはなく、公知のものを用いることができる。飽和多塩基酸の例としては、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、及びエンドメチレンテトラヒドロ無水フタル酸等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。   The saturated polybasic acid used for the synthesis of the unsaturated polyester is not particularly limited, and known ones can be used. Examples of saturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, het acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, and endomethylenetetrahydrophthalic anhydride. Is mentioned. These can be used alone or in combination.

不飽和ポリエステルは、上記のような原料を用いて公知の方法で合成することができる。この合成における各種条件は、使用する原料やその量に応じて適宜設定する必要があるが、一般的に、窒素等の不活性ガス気流中、140〜230℃の温度にて加圧又は減圧下でエステル化させればよい。このエステル化反応では、必要に応じてエステル化触媒を使用することができる。触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、及び酢酸コバルト等の公知の触媒が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。   Unsaturated polyester is compoundable by a well-known method using the above raw materials. Various conditions in this synthesis need to be set as appropriate according to the raw material used and the amount thereof, but in general, in an inert gas stream such as nitrogen, at a temperature of 140 to 230 ° C. under pressure or reduced pressure. Can be esterified. In this esterification reaction, an esterification catalyst can be used as needed. Examples of the catalyst include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. These can be used alone or in combination.

[(b)重合性炭素−炭素二重結合を1個以上有するモノマー]
本発明に用いられる(b)重合性炭素−炭素二重結合を1個以上有するモノマーは、(a)不飽和ポリエステルの架橋剤として作用する成分である。(b)重合性炭素−炭素二重結合を1個以上有するモノマーとしては、不飽和ポリエステルと重合可能な重合性炭素−炭素二重結合を1個以上有しているものであれば特に限定されることはない。
[(B) Monomer having one or more polymerizable carbon-carbon double bonds]
The monomer (b) having at least one polymerizable carbon-carbon double bond used in the present invention is a component that acts as a crosslinking agent for (a) an unsaturated polyester. (B) The monomer having at least one polymerizable carbon-carbon double bond is not particularly limited as long as it has at least one polymerizable carbon-carbon double bond polymerizable with the unsaturated polyester. Never happen.

(b)重合性炭素−炭素二重結合を1個以上有するモノマーの例としては、単官能モノマーではスチレン、ビニルトルエン、メチルスチレン、及びメタクリル酸メチル等が挙げられ、多官能モノマーではエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール#200(#400、#600)ジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2−ヒドロキシ−3−アクリロイロキシプロピル(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、及び1,10−デカンジオールジ(メタ)アクリレート等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。BMCの成形性の観点から好ましくは、スチレン、ビニルトルエン、エチレングリコールジ(メタ)アクリレートが挙げられ、特に好ましくはスチレンである。
なお、本明細書において「(メタ)アクリレート」とは、メタクリレート又はアクリレートを意味する。
(B) Examples of monomers having one or more polymerizable carbon-carbon double bonds include styrene, vinyltoluene, methylstyrene, and methyl methacrylate as monofunctional monomers, and ethylene glycol dimers as polyfunctional monomers. (Meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol # 200 (# 400, # 600) di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) ) Acrylate, 1,9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, triethylene glycol di (Meta) a Relate, polyethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,10-decanediol di (meth) acrylate. These can be used alone or in combination. From the viewpoint of moldability of BMC, preferably, styrene, vinyl toluene, and ethylene glycol di (meth) acrylate are exemplified, and styrene is particularly preferable.
In the present specification, “(meth) acrylate” means methacrylate or acrylate.

本発明のBMCにおける(b)成分の配合量は、(a)成分と(b)成分の合計量100質量%に対して、好ましくは25〜70質量%、より好ましくは30〜65質量%、さらに好ましくは35〜65質量%である。架橋剤の配合量が25質量%以上であれば樹脂粘度が適切で十分な作業性が得られる。一方、(b)成分の配合量が70質量%以下であれば、BMCとして十分な強度を得られる。   The blending amount of the component (b) in the BMC of the present invention is preferably 25 to 70% by mass, more preferably 30 to 65% by mass, with respect to 100% by mass of the total amount of the components (a) and (b). More preferably, it is 35-65 mass%. If the amount of the crosslinking agent is 25% by mass or more, the resin viscosity is appropriate and sufficient workability can be obtained. On the other hand, if the amount of component (b) is 70% by mass or less, sufficient strength as BMC can be obtained.

[(c)水酸化アルミニウム]
水酸化アルミニウムは、無機充填材として用いる。水酸化アルミニウムの含有量は耐アーク性の観点から、(a)成分と(b)成分の合計量100質量部に対し300〜590質量部であることが好ましく、320〜580質量部であることがさらに好ましく、350〜550質量部であることが特に好ましい。300質量部以上であれば耐アーク性が良好であり、590質量部以下であれば混練性が良好であるため好ましい。
[(C) Aluminum hydroxide]
Aluminum hydroxide is used as an inorganic filler. The content of aluminum hydroxide is preferably 300 to 590 parts by mass, and 320 to 580 parts by mass with respect to 100 parts by mass of the total amount of component (a) and component (b) from the viewpoint of arc resistance. Is more preferable, and 350 to 550 parts by mass is particularly preferable. If it is 300 parts by mass or more, the arc resistance is good, and if it is 590 parts by mass or less, the kneadability is good, which is preferable.

前記(c)水酸化アルミニウムは、少なくとも0.5μm以上の平均粒子径を有するものである。平均粒子径はレーザー回折・散乱式 粒子径分布測定装置(マイクロトラック・ベル製、FRA)で測定したメジアン径である。0.5μm以上であれば粘度が適切であり、成形可能な樹脂を得ることができる。成形性の観点から、水酸化アルミニウムの平均粒子径は0.7μm以上がより好ましく、1.8μm以上であることがさらに好ましい。一方、この平均粒子径は、成形物の表面平滑性、機械的特性から、好ましくは15μm以下、より好ましくは12μm以下、さらに好ましくは10μm以下である。15μm以下であれば成形物の表面平滑性、機械的強度が良好であり、材料の流動性も適切で成形性に優れる。   The (c) aluminum hydroxide has an average particle size of at least 0.5 μm. The average particle diameter is a median diameter measured with a laser diffraction / scattering particle size distribution measuring apparatus (Microtrack Bell, FRA). If it is 0.5 μm or more, the viscosity is appropriate, and a moldable resin can be obtained. From the viewpoint of moldability, the average particle diameter of aluminum hydroxide is more preferably 0.7 μm or more, and further preferably 1.8 μm or more. On the other hand, the average particle diameter is preferably 15 μm or less, more preferably 12 μm or less, and further preferably 10 μm or less, from the surface smoothness and mechanical properties of the molded product. If it is 15 μm or less, the surface smoothness and mechanical strength of the molded article are good, the fluidity of the material is appropriate, and the moldability is excellent.

[(d)チョップドストランドガラス繊維]
本発明に用いられる(d)チョップドストランドガラス繊維としては、特に限定されることはなく、当該技術分野において成形材料に使用されている公知のものを用いることができる。チョップドストランドガラス繊維はガラス繊維を収束剤でまとめ、それを切断して得ることができる。(d)チョップドストランドガラス繊維の繊維長は、好ましくは1mm〜20mm、より好ましくは1.5mm〜15mm、特に好ましくは1.5mm〜13mmである。繊維長が20mm以下であればBMCの型内流動性が適切であり、1mm以上であれば粘度が取り扱い性に優れるため好ましい。繊維長は、ノギス又は光学顕微鏡のミクロメータでランダムに採取した繊維100本を測定した数平均値である。
[(D) Chopped strand glass fiber]
(D) Chopped strand glass fiber used for this invention is not specifically limited, The well-known thing used for the molding material in the said technical field can be used. Chopped strand glass fibers can be obtained by combining glass fibers with a sizing agent and cutting them. (D) The fiber length of the chopped strand glass fiber is preferably 1 mm to 20 mm, more preferably 1.5 mm to 15 mm, and particularly preferably 1.5 mm to 13 mm. If the fiber length is 20 mm or less, the in-mold fluidity of the BMC is appropriate, and if it is 1 mm or more, the viscosity is excellent in handleability. The fiber length is a number average value obtained by measuring 100 fibers randomly collected with a caliper or a micrometer of an optical microscope.

本発明のBMCにおける(d)成分の配合量は、特に限定されないが、(a)成分と(b)成分の合計100質量部に対して、好ましくは10〜200質量部、より好ましくは20〜180質量部、特に好ましくは25〜160質量部である。(d)成分の配合量が10質量部以上であれば硬化物の機械的強度が良好であり、(d)成分の配合量が200質量部以下であれば、BMCを製造する際に各成分の混合が容易である。   Although the compounding quantity of (d) component in BMC of this invention is not specifically limited, Preferably it is 10-200 mass parts with respect to a total of 100 mass parts of (a) component and (b) component, More preferably, 20- 180 parts by mass, particularly preferably 25 to 160 parts by mass. If the compounding amount of the component (d) is 10 parts by mass or more, the mechanical strength of the cured product is good, and if the compounding amount of the component (d) is 200 parts by mass or less, each component is produced when manufacturing BMC. Is easy to mix.

[(e)低収縮剤]
本発明に用いられる(e)低収縮剤としては、特に限定されることはなく、当該技術分野において公知のものを用いることができる。(e)低収縮剤の例としては、ポリスチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、及びスチレン−ブタジエン系ゴム等の低収縮剤として一般に用いられている熱可塑性ポリマーが挙げられる。これらは、単独又は複数を組み合わせて用いることができる。また、(e)低収縮剤は、低収縮化の観点から、ポリスチレンを用いることが好ましい。
[(E) Low shrinkage agent]
The (e) low shrinkage agent used in the present invention is not particularly limited, and those known in the technical field can be used. (E) Examples of the low shrinkage agent include thermoplastic polymers generally used as low shrinkage agents such as polystyrene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, and styrene-butadiene rubber. These can be used alone or in combination. In addition, it is preferable to use polystyrene as the low shrinkage agent from the viewpoint of low shrinkage.

本発明のBMCにおける(e)低収縮剤の配合量は、特に限定されないが、(a)成分及び(b)成分の合計100質量部に対して、好ましくは3〜70質量部、より好ましくは10〜60質量部、特に好ましくは15〜50質量部である。低収縮剤の配合量が3質量部以上であれば、硬化物の成形収縮が抑制できる。低収縮剤の配合量が70質量部以下であれば、BMCの型内流動性が適切で、未充填やインサート部品への損傷などの不具合を抑制できる。   The amount of the (e) low-shrink agent in the BMC of the present invention is not particularly limited, but is preferably 3 to 70 parts by mass, more preferably 100 parts by mass with respect to the total of (a) component and (b) component. It is 10-60 mass parts, Most preferably, it is 15-50 mass parts. If the blending amount of the low shrinkage agent is 3 parts by mass or more, molding shrinkage of the cured product can be suppressed. If the blending amount of the low shrinkage agent is 70 parts by mass or less, the in-mold fluidity of BMC is appropriate, and problems such as unfilling and damage to insert parts can be suppressed.

[(f)硬化剤]
本発明に用いられる(f)硬化剤としては、特に限定されることはなく、当該技術分野において公知のラジカル重合開始剤を選択することができる。ラジカル重合開始剤としては、有機過酸化物、アゾ系開始剤、レドックス開始剤などを用いることができる。中でも反応効率の観点から、として有機過酸化物を用いることが好ましい。有機過酸化物の例としては、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート、ベンゾイルパーオキサイド、1,1−ジ−t−ブチルパーオキシシクロヘキサン、1,1−ジ−t−ヘキシルパーオキシシクロヘキサン、1,1−ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−ヘキシルパーオキシイソプロピルカーボネート、t−ブチルパーオキシベンゾエート、t−ヘキシルパーオキシベンゾエート、1,6−ビス(t−ブチルパーオキシカルボニロキシ)ヘキサン、ジクミルパーオキサイド、及びジ−t−ブチルパーオキサイド等の有機過酸化物が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。
[(F) Curing agent]
The (f) curing agent used in the present invention is not particularly limited, and a radical polymerization initiator known in the art can be selected. As the radical polymerization initiator, an organic peroxide, an azo initiator, a redox initiator, or the like can be used. Among these, from the viewpoint of reaction efficiency, it is preferable to use an organic peroxide. Examples of organic peroxides include t-butylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy-2 -Ethyl hexanate, benzoyl peroxide, 1,1-di-t-butylperoxycyclohexane, 1,1-di-t-hexylperoxycyclohexane, 1,1-di-t-butylperoxy-3,3 , 5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, t-hexylperoxyisopropyl carbonate, t-butylperoxybenzoate, t-hexylperoxybenzoate, 1,6-bis (t-butylperoxycarbonyloxy ) Hexane, dicumyl peroxide, and di-t-butyl peroxide Organic peroxides such as de like. These can be used alone or in combination.

本発明のBMCにおける(f)成分の配合量は、(a)成分及び(b)成分の合計100質量部に対して、好ましくは0.1〜15質量部、より好ましくは1〜10質量部、特に好ましくは2〜6質量部である。(f)成分の配合量が0.1質量部以上であれば、硬化不良が抑制できる。(f)成分の配合量が15質量部以下であれば貯蔵安定性が良好である。   The blending amount of the component (f) in the BMC of the present invention is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the components (a) and (b). Particularly preferably, it is 2 to 6 parts by mass. (F) If the compounding quantity of a component is 0.1 mass part or more, poor curing can be suppressed. (F) If the compounding quantity of a component is 15 mass parts or less, storage stability is favorable.

本発明の熱硬化性樹脂組成物は、上記(a)〜(f)成分を必須成分として含有するが、所望の物性を高める観点から、他の成分を配合することができる。他の成分としては、特に限定されることはなく、熱硬化性樹脂組成物に一般的に使用されている成分を配合することができる。例えば、他の成分として、(g)リン酸エステル基を有する化合物、(h)離型剤、(i)重合禁止剤、(j)増粘剤、(k)着色剤、(l)水酸化アルミニウム以外の無機充填材等が挙げられる。

[(g)リン酸エステル基を有する化合物]
本発明では、リン酸エステル基を有する化合物を加えることが好ましい。リン酸エステル基を有する化合物は、(c)水酸化アルミニウムの表面に吸着して水酸化アルミニウム粒子表面の濡れ性及び粒子同士の分散安定性を改善することができ、充填性を高めることができる。リン酸エステル基を有する化合物としては、特に限定されることはなく、例えば、リン酸エステル結合を有する飽和ポリエステルのコポリマー等が挙げられ、BYK−W985、W995、W996、W9010という商品名(BYK Chemie社製)で販売されている市販品を用いることもできる。
The thermosetting resin composition of the present invention contains the above components (a) to (f) as essential components, but other components can be blended from the viewpoint of enhancing desired physical properties. Other components are not particularly limited, and components generally used in thermosetting resin compositions can be blended. For example, (g) a compound having a phosphate ester group, (h) a mold release agent, (i) a polymerization inhibitor, (j) a thickener, (k) a colorant, (l) hydroxylation Examples include inorganic fillers other than aluminum.

[(G) Compound having phosphate group]
In the present invention, it is preferable to add a compound having a phosphate group. The compound having a phosphate ester group can be adsorbed on the surface of (c) aluminum hydroxide to improve the wettability of the aluminum hydroxide particle surface and the dispersion stability between the particles, and can increase the filling property. . The compound having a phosphate ester group is not particularly limited, and examples thereof include a copolymer of a saturated polyester having a phosphate ester bond, and trade names of BYK-W985, W995, W996, and W9010 (BYK Chemie). (Commercially available) can also be used.

(g)リン酸エステル基を有する化合物の含有量は、(a)成分と(b)成分の合計量100質量部に対して、0.2〜30質量部であり、より好ましくは0.5〜20質量部であり、特に好ましくは1〜15質量部である。   (G) Content of the compound which has a phosphate ester group is 0.2-30 mass parts with respect to 100 mass parts of total amounts of (a) component and (b) component, More preferably, it is 0.5. It is -20 mass parts, Most preferably, it is 1-15 mass parts.

(g)成分の含有量が(a)成分と(b)成分の合計量100質量部に対して0.5質量部以上であれば、(c)水酸化アルミニウムの充填性を向上する(熱硬化性樹脂組成物における(c)水酸化アルミニウムの含有量を多くする)ことが可能である。一方、(g)成分の含有量が30質量部以下であれば、本発明の硬化物の耐アーク性が十分に保持される。   When the content of the component (g) is 0.5 parts by mass or more with respect to 100 parts by mass of the total amount of the components (a) and (b), (c) the aluminum hydroxide filling property is improved (heat (C) Increasing the content of aluminum hydroxide in the curable resin composition). On the other hand, when the content of the component (g) is 30 parts by mass or less, the arc resistance of the cured product of the present invention is sufficiently maintained.

(h)離型剤、(i)重合禁止剤、(j)増粘剤、(k)着色剤及び(l)水酸化アルミニウム以外の無機充填材の種類は、特に限定されることはなく、当該技術分野において公知のものを用いることができる。   The type of inorganic filler other than (h) mold release agent, (i) polymerization inhibitor, (j) thickener, (k) colorant, and (l) aluminum hydroxide is not particularly limited, A well-known thing can be used in the said technical field.

(h)離型剤の例としては、ステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、及びカルナバワックス等が挙げられる。(h)離型剤の配合量は、(a)成分と(b)成分の合計量100質量部に対して、0.2〜50質量部であり、より好ましくは1〜40質量部であり、特に好ましくは3〜30質量部である。(h)成分の配合量が0.2以上であれば十分な離型性を得ることできる。(h)成分の配合量が50質量部以上であると成形性が劣ることがある。   (H) Examples of the mold release agent include stearic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, carnauba wax and the like. (H) The compounding quantity of a mold release agent is 0.2-50 mass parts with respect to 100 mass parts of total amounts of (a) component and (b) component, More preferably, it is 1-40 mass parts. Especially preferably, it is 3-30 mass parts. If the amount of component (h) is 0.2 or more, sufficient release properties can be obtained. If the amount of component (h) is 50 parts by mass or more, the moldability may be inferior.

本発明に用いられる(i)重合禁止剤としては、特に限定されることはなく、当該技術分野において公知のものを用いることができる。例えば、パラベンゾキノン、トルキノン、ナフトキノン、フェナンスラキノン、及び2,5ジフェニルパラベンゾキノン等のキノン類;トルハイドロキノン、ハイドロキノン、ターシャリブチルカテコール、モノターシャリブチルハイドロキノン、及び2,5ジターシャリブチルハイドロキノン等のハイドロキノン類;並びにハイドロキノンモノメチルエーテル、及び2,6−ジ−t−ブチル−p−クレゾール等のモノフェノール類等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。また、これらの中でも、ゲル化抑制の観点からキノン類を用いることが好ましい。   The (i) polymerization inhibitor used in the present invention is not particularly limited, and those known in the technical field can be used. For example, quinones such as parabenzoquinone, tolquinone, naphthoquinone, phenanthraquinone, and 2,5 diphenylparabenzoquinone; tolhydroquinone, hydroquinone, tertiary butylcatechol, monotertiarybutyl hydroquinone, and 2,5 ditertiarybutyl hydroquinone Hydroquinones such as hydroquinone; and monophenols such as hydroquinone monomethyl ether and 2,6-di-t-butyl-p-cresol. These can be used alone or in combination. Of these, quinones are preferably used from the viewpoint of suppressing gelation.

(i)重合禁止剤の配合量は、(a)成分、及び(b)成分の合計100質量部に対して、好ましくは0.005〜0.2質量部、より好ましくは0.01〜0.1質量部である。(i)成分の配合量が(a)成分、及び(b)成分の合計100質量部に対して0.005質量部以上であれば、所望の型内流動性を有するBMCが得られる。一方、(i)成分の配合量が0.2質量部以下であれば硬化時間や一定時間後の硬化が十分である。   (I) The compounding quantity of a polymerization inhibitor becomes like this. Preferably it is 0.005-0.2 mass part with respect to a total of 100 mass parts of (a) component and (b) component, More preferably, it is 0.01-0. .1 part by mass. (I) If the compounding quantity of a component is 0.005 mass part or more with respect to a total of 100 mass parts of (a) component and (b) component, BMC which has desired in-mold fluidity | liquidity will be obtained. On the other hand, if the blending amount of component (i) is 0.2 parts by mass or less, curing time and curing after a certain time are sufficient.

(j)増粘剤の例としては、酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、及び酸化カルシウム等の金属酸化物、並びにイソシアネート化合物が挙げられる。これらの成分は、単独又は複数を組み合わせて用いることができる。   (J) Examples of the thickener include metal oxides such as magnesium oxide, magnesium hydroxide, calcium hydroxide, and calcium oxide, and isocyanate compounds. These components can be used alone or in combination.

(k)着色剤は、成形品を着色する必要のある場合に用いるものであり、バルクモールディングコンパウンドにおいて通常使用されている各種の無機顔料や有機顔料を使用することができる。着色剤は、成形品の着色度合いによって適宜その使用量を調整すればよい。   (K) The colorant is used when it is necessary to color a molded article, and various inorganic pigments and organic pigments that are usually used in bulk molding compounds can be used. What is necessary is just to adjust the usage-amount of a coloring agent suitably according to the coloring degree of a molded article.

(l)水酸化アルミニウム以外の無機充填材としては、アルミナ、ワラストナイト、クレー、タルク、マイカ、無水ケイ酸等の粉末状物を必要に応じて用いることができる。中でも、樹脂組成物の表面平滑性、耐熱性の観点から炭酸カルシウムであることが好ましい。
(l)水酸化アルミニウム以外の無機充填材の配合量は、(a)成分と(b)成分の合計量100質量部に対し、1〜500質量部であることが好ましく、1〜300質量部であることがさらに好ましく、1〜200質量部であることが特に好ましい。配合量が500質量部以下であれば混練性が良好である。
(L) As inorganic fillers other than aluminum hydroxide, powdery substances such as alumina, wollastonite, clay, talc, mica, and silicic anhydride can be used as necessary. Among these, calcium carbonate is preferable from the viewpoint of surface smoothness and heat resistance of the resin composition.
(L) It is preferable that the compounding quantity of inorganic fillers other than aluminum hydroxide is 1-500 mass parts with respect to 100 mass parts of total amounts of (a) component and (b) component, and 1-300 mass parts It is more preferable that it is 1 to 200 parts by mass. If the amount is 500 parts by mass or less, the kneadability is good.

なお、上記の任意成分(h)成分、(i)成分、(j)成分及び(k)成分の配合量は、本発明の効果を阻害しない範囲であれば特に限定されない。   In addition, if the compounding quantity of said arbitrary component (h) component, (i) component, (j) component, and (k) component is a range which does not inhibit the effect of this invention, it will not specifically limit.

本発明のBMCは、上記のような所定量の各成分を、公知の方法により配合・混練することにより製造することができる。例えば、所定量の各成分をニーダ等に投入して混合することによりBMCを得ることができる。   The BMC of the present invention can be produced by blending and kneading the aforementioned predetermined amounts of each component by a known method. For example, a BMC can be obtained by putting a predetermined amount of each component into a kneader and mixing them.

このようにして得られる本発明のBMCは、貯蔵安定性を損なうことなく硬化性を改善することができるため、所望形状の硬化物を製造する際の作業性及び生産性を向上させることが可能となる。   Since the BMC of the present invention thus obtained can improve the curability without impairing the storage stability, it is possible to improve the workability and productivity when producing a cured product having a desired shape. It becomes.

本発明のBMCは、耐アーク性及び機械的強度の高い硬化物を与えるため、信頼性の高い電気・電子部品の材料として用いることが可能である。なお、電気電子部品にBMCを用いる場合、JIS−K6911(1995)に準拠した耐アーク性は185秒以上が好ましく、188秒以上がより好ましく、190秒以上が特に好ましい。また、電気電子部品にBMCを用いる場合の機械的強度として、JIS―K7113(1995)に準拠した引張り強さが30MPa以上が好ましく、35MPa以上がより好ましく、37MPa以上が特に好ましい。
Since the BMC of the present invention provides a cured product having high arc resistance and mechanical strength, it can be used as a highly reliable material for electric and electronic parts. In addition, when using BMC for an electrical / electronic component, the arc resistance according to JIS-K6911 (1995) is preferably 185 seconds or more, more preferably 188 seconds or more, and particularly preferably 190 seconds or more. Further, the mechanical strength in the case of using BMC for electrical and electronic parts is preferably 30 MPa or more, more preferably 35 MPa or more, and particularly preferably 37 MPa or more, based on JIS-K7113 (1995).

電気・電子部品の成形方法としては、特に限定されることはなく、本発明のBMCを圧縮成形、トランスファー成形、及び射出成形等の成形手段で成形した後、硬化させることによって電気・電子部品が得られる。具体的には、金型内に本発明のBMCを各種の手段で入れた後、所定の温度に加熱及び加圧することによって硬化させればよい。
硬化条件は、本発明のBMCに用いる原料に応じて適宜設定すればよいが、一般的に、硬化温度が120〜160℃、硬化時間が1分〜30分である。
There are no particular limitations on the method for molding the electric / electronic component, and the BMC of the present invention is molded by molding means such as compression molding, transfer molding, and injection molding, and then cured to obtain the electric / electronic component. can get. Specifically, after the BMC of the present invention is put into a mold by various means, it may be cured by heating and pressurizing to a predetermined temperature.
The curing conditions may be appropriately set according to the raw material used for the BMC of the present invention, but generally the curing temperature is 120 to 160 ° C. and the curing time is 1 to 30 minutes.

本発明のBMCは、特に、耐アーク性が高い硬化物を与えるため、高度な耐アーク性が要求される電気・電子部品の材料として用いるのに最適である。すなわち、本発明のBMCを成形してなる電気・電子部品は、耐アーク性に優れていると共に、作業性及び生産性良く製造することができる。   The BMC of the present invention is particularly suitable for use as a material for electrical and electronic parts that require a high degree of arc resistance because it gives a cured product having high arc resistance. That is, the electric / electronic component formed by molding the BMC of the present invention is excellent in arc resistance and can be manufactured with good workability and productivity.

以下、実施例及び比較例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by these.

(実施例1〜6、比較例1〜6)
(不飽和ポリエステル樹脂の合成)
攪拌機、還流冷却器、窒素ガス導入管及び温度計を備えた反応容器中に、プロピレングリコール100モル、無水フタル酸30モル、無水マレイン酸70モルを仕込み、定法に従い210℃で酸価が20mgKOH/gになるまで反応させた。次に、反応物100質量部に対してハイドロキノンを0.015質量部添加して160℃に冷却した後、スチレンモノマーをさらに添加して不飽和ポリエステル樹脂を得た。ここで、スチレンモノマーは、不飽和ポリエステル樹脂中で30質量部となるように添加した。また、不飽和ポリエステルの重量平均分子量(MW)を上記の条件にて測定したところ、15,000であった。
(Examples 1-6, Comparative Examples 1-6)
(Synthesis of unsaturated polyester resin)
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen gas inlet tube and a thermometer, 100 mol of propylene glycol, 30 mol of phthalic anhydride, and 70 mol of maleic anhydride are charged, and an acid value of 20 mgKOH / The reaction was continued until g. Next, 0.015 parts by mass of hydroquinone was added to 100 parts by mass of the reaction product and cooled to 160 ° C., and then a styrene monomer was further added to obtain an unsaturated polyester resin. Here, the styrene monomer was added so as to be 30 parts by mass in the unsaturated polyester resin. Moreover, it was 15,000 when the weight average molecular weight (MW) of unsaturated polyester was measured on said conditions.

上記で得られた不飽和ポリエステル樹脂と表1に示す各成分とを、表2及び3に示す割合で、双碗型ニーダを用いて25℃で30分混練しBMCを得た。なお、表2及び3においてスチレンモノマーは不飽和ポリエステル樹脂の製造時に添加した量と混練時に追加した量との合計量である。(a)不飽和ポリエステルにはスチレンモノマーは含まない。
比較例1及び比較例2の配合では混練時に組成物がまとまらず、一様な混練物が得られなかった。表2及び3において、各成分の配合量の単位は質量部である。

Figure 2018090695
The unsaturated polyester resin obtained above and each component shown in Table 1 were kneaded at 25 ° C. for 30 minutes at the ratio shown in Tables 2 and 3 at 25 ° C. to obtain BMC. In Tables 2 and 3, the styrene monomer is the total amount of the amount added during the production of the unsaturated polyester resin and the amount added during the kneading. (A) The unsaturated polyester does not contain a styrene monomer.
In the blends of Comparative Example 1 and Comparative Example 2, the composition was not collected during kneading, and a uniform kneaded product was not obtained. In Tables 2 and 3, the unit of the amount of each component is part by mass.
Figure 2018090695

次に、得られたBMC及びその硬化物について、成形性、耐アーク性、引張り強さを次のように評価した。その結果を表2及び3に示す。   Next, the moldability, arc resistance, and tensile strength of the obtained BMC and its cured product were evaluated as follows. The results are shown in Tables 2 and 3.

(成形性の評価)
得られた実施例1〜6及び比較例3〜6のBMCを成形温度150℃、成形圧力100MPa、成形時間3分で射出成形により100mm×100mm×厚さ3mmの平板を成形した。成形不良の有無を外観の目視により確認した。クラックが入った場合を不良として確認を行った。
(Evaluation of formability)
The obtained BMCs of Examples 1 to 6 and Comparative Examples 3 to 6 were molded into a flat plate of 100 mm × 100 mm × thickness 3 mm by injection molding at a molding temperature of 150 ° C., a molding pressure of 100 MPa, and a molding time of 3 minutes. The presence or absence of molding defects was confirmed by visual inspection. The case where a crack entered was confirmed as defective.

(耐アーク性の評価)
得られた実施例1〜6及び比較例3〜6のBMCを成形温度150℃、成形圧力100MPa、成形時間3分で射出成形により100mm×100mm×厚さ3mmの平板を成形した。直径100mmの円形に切断し、JIS−K6911(1995)規格の耐アーク性試験を行った。
(Evaluation of arc resistance)
The obtained BMCs of Examples 1 to 6 and Comparative Examples 3 to 6 were molded into a flat plate of 100 mm × 100 mm × thickness 3 mm by injection molding at a molding temperature of 150 ° C., a molding pressure of 100 MPa, and a molding time of 3 minutes. The sample was cut into a circle having a diameter of 100 mm, and an arc resistance test in accordance with JIS-K6911 (1995) standard was performed.

(引張り強さの評価)
得られた実施例1〜6及び比較例3〜6のBMCを成形温度150℃、成形圧力100MPa、成形時間3分で射出成形によりJIS−K7113(1995)のダンベル型試験片を作製し、JIS―K7113(1995)規格の引張り強さ試験を行った。
(Evaluation of tensile strength)
Dumbbell-shaped test pieces of JIS-K7113 (1995) were produced by injection molding of the obtained BMCs of Examples 1 to 6 and Comparative Examples 3 to 6 at a molding temperature of 150 ° C., a molding pressure of 100 MPa, and a molding time of 3 minutes. -Tensile strength test of K7113 (1995) standard was performed.

Figure 2018090695
Figure 2018090695
Figure 2018090695
Figure 2018090695

表2及び3に示されているように、実施例1〜6のBMCは成形性が良好であり、金型の形状を転写した成形品を容易に得られた。また、実施例1〜6のBMCは、耐アーク性が190秒以上であり、耐アーク性に優れた。また、実施例1〜6のBMCは、引張り強さが38MPa以上であり、電気電子部品に用いるのに好適な強度を有した。一方で、比較例1及び比較例2の組成物は粉体もしくはチョップドストランドガラス繊維が多すぎるため、混練時に材料がまとまらず、均一な組成のBMCを得ることができなかった。比較例3〜5のBMCは耐アーク性が175秒以下であり、耐アーク性が劣った。比較例6のBMCは引張り強さが25MPaであり、強度が劣った。   As shown in Tables 2 and 3, the BMCs of Examples 1 to 6 had good moldability, and a molded product in which the shape of the mold was transferred was easily obtained. Further, the BMCs of Examples 1 to 6 had an arc resistance of 190 seconds or more, and were excellent in arc resistance. In addition, the BMCs of Examples 1 to 6 had a tensile strength of 38 MPa or more, and had a strength suitable for use in electric and electronic parts. On the other hand, since the compositions of Comparative Examples 1 and 2 contained too many powders or chopped strand glass fibers, the materials were not collected during kneading, and a BMC having a uniform composition could not be obtained. The BMCs of Comparative Examples 3 to 5 had an arc resistance of 175 seconds or less, and the arc resistance was inferior. The BMC of Comparative Example 6 had a tensile strength of 25 MPa and was inferior in strength.

以上の結果からわかるように、本発明によれば、良好かつ汎用な成形性を有するBMCを作業性及び生産性良く製造することができ、且つ耐アーク性優れた硬化物を得ることができ、該硬化物を用いることで耐アーク性に優れた電気電子部品を提供することができる。   As can be seen from the above results, according to the present invention, it is possible to produce a BMC having good and general formability with good workability and productivity, and to obtain a cured product with excellent arc resistance, By using the cured product, an electric / electronic component having excellent arc resistance can be provided.

Claims (8)

(a)不飽和ポリエステル、(b)重合性炭素−炭素二重結合を1個以上有するモノマー、(c)水酸化アルミニウム、(d)チョップドストランドガラス繊維、(e)低収縮剤、(f)硬化剤を含有する熱硬化性樹脂組成物であって、前記(c)水酸化アルミニウムの含有量が前記(a)不飽和ポリエステルと前記(b)モノマーの合計量100質量部に対し300〜590質量部であり、前記(d)チョップドストランドガラス繊維の含有量が前記(a)不飽和ポリエステルと前記(b)モノマーの合計量100質量部に対し10〜200質量部であることを特徴とするバルクモールディングコンパウンド(BMC)。 (A) unsaturated polyester, (b) monomer having one or more polymerizable carbon-carbon double bonds, (c) aluminum hydroxide, (d) chopped strand glass fiber, (e) low shrinkage agent, (f) A thermosetting resin composition containing a curing agent, wherein the content of the (c) aluminum hydroxide is 300 to 590 with respect to 100 parts by mass of the total amount of the (a) unsaturated polyester and the (b) monomer. The content of the (d) chopped strand glass fiber is 10 to 200 parts by mass with respect to 100 parts by mass of the total amount of the (a) unsaturated polyester and the (b) monomer. Bulk molding compound (BMC). 前記BMCが(g)リン酸エステル基を有する化合物を含有する、請求項1に記載のBMC。 The BMC according to claim 1, wherein the BMC contains (g) a compound having a phosphate group. 前記(g)リン酸エステル基を有する化合物の含有量が、前記(a)不飽和ポリエステルと前記(b)モノマーの合計量100質量部に対して0.2〜30質量部である、請求項1または2に記載のBMC。 Content of the compound which has the said (g) phosphate ester group is 0.2-30 mass parts with respect to 100 mass parts of total amounts of the said (a) unsaturated polyester and the said (b) monomer, Claims The BMC according to 1 or 2. 前記(c)水酸化アルミニウムの平均粒子径が15μm以下である、請求項1〜3のいずれかに記載のBMC。 BMC in any one of Claims 1-3 whose average particle diameter of said (c) aluminum hydroxide is 15 micrometers or less. 前記(d)チョップドストランドガラス繊維の繊維長が1mm〜20mmである、請求項1〜4のいずれかに記載のBMC。 BMC in any one of Claims 1-4 whose fiber length of said (d) chopped strand glass fiber is 1 mm-20 mm. 前記(a)不飽和ポリエステルの質量平均分子量が2,000〜50,000である、請求項1〜5のいずれかに記載のBMC。 The BMC according to any one of claims 1 to 5, wherein the (a) unsaturated polyester has a mass average molecular weight of 2,000 to 50,000. 前記(b)モノマーの含有量が、前記(a)不飽和ポリエステルと前記(b)モノマーの合計100質量%に対して25〜70質量%である、請求項1〜6のいずれかに記載のBMC。 The content of the (b) monomer is 25 to 70% by mass with respect to a total of 100% by mass of the (a) unsaturated polyester and the (b) monomer, according to any one of claims 1 to 6. BMC. 請求項1〜7のいずれか一項に記載のBMCを硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the BMC according to any one of claims 1 to 7.
JP2016234929A 2016-12-02 2016-12-02 Arc resistance BMC Active JP6901257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234929A JP6901257B2 (en) 2016-12-02 2016-12-02 Arc resistance BMC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234929A JP6901257B2 (en) 2016-12-02 2016-12-02 Arc resistance BMC

Publications (2)

Publication Number Publication Date
JP2018090695A true JP2018090695A (en) 2018-06-14
JP6901257B2 JP6901257B2 (en) 2021-07-14

Family

ID=62564368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234929A Active JP6901257B2 (en) 2016-12-02 2016-12-02 Arc resistance BMC

Country Status (1)

Country Link
JP (1) JP6901257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065217A1 (en) * 2019-10-02 2021-04-08 昭和電工株式会社 Thermally curable resin composition, molded object, and lamp reflector
WO2022137686A1 (en) * 2020-12-21 2022-06-30 昭和電工株式会社 Unsaturated polyester resin composition and molded object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241496A (en) * 1996-03-12 1997-09-16 Nippon Shokubai Co Ltd Unsaturated polyester resin composition and sheet-like molding material
JP2001114998A (en) * 1999-10-18 2001-04-24 Takeda Chem Ind Ltd Unsaturated polyester resin and composition for molding material
JP2001261954A (en) * 2000-03-14 2001-09-26 Showa Highpolymer Co Ltd Flame-retardant low-specific gravity unsaturated polyester resin composition
JP2003082110A (en) * 2001-09-14 2003-03-19 Asahi Glass Matex Co Ltd Bulk molding compound, method for manufacturing the same, and powdered filler
WO2013089196A1 (en) * 2011-12-14 2013-06-20 昭和電工株式会社 Unsaturated polyester resin composition and encapsulated motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241496A (en) * 1996-03-12 1997-09-16 Nippon Shokubai Co Ltd Unsaturated polyester resin composition and sheet-like molding material
JP2001114998A (en) * 1999-10-18 2001-04-24 Takeda Chem Ind Ltd Unsaturated polyester resin and composition for molding material
JP2001261954A (en) * 2000-03-14 2001-09-26 Showa Highpolymer Co Ltd Flame-retardant low-specific gravity unsaturated polyester resin composition
JP2003082110A (en) * 2001-09-14 2003-03-19 Asahi Glass Matex Co Ltd Bulk molding compound, method for manufacturing the same, and powdered filler
WO2013089196A1 (en) * 2011-12-14 2013-06-20 昭和電工株式会社 Unsaturated polyester resin composition and encapsulated motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065217A1 (en) * 2019-10-02 2021-04-08 昭和電工株式会社 Thermally curable resin composition, molded object, and lamp reflector
CN114466876A (en) * 2019-10-02 2022-05-10 昭和电工株式会社 Thermosetting resin composition, molded body, and lamp reflector
WO2022137686A1 (en) * 2020-12-21 2022-06-30 昭和電工株式会社 Unsaturated polyester resin composition and molded object

Also Published As

Publication number Publication date
JP6901257B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP5727628B2 (en) Unsaturated polyester resin composition and encapsulated motor
JP6630695B2 (en) Crystalline radical polymerizable composition for sealing electric and electronic parts, sealed body for electric and electronic parts using the composition, and method for producing the sealed body
TWI826369B (en) A crystalline radical polymerizable composition for electric and electronic parts, a molded article of electric and electronic parts using the composition and a method of manufacturing the molded article of electric and electronic parts
JP6653305B2 (en) Crystalline radical polymerizable composition for electric / electronic parts, molded article of electric / electronic part using the composition, and method for producing molded article of electric / electronic part
JP6901257B2 (en) Arc resistance BMC
JP6725079B2 (en) Unsaturated polyester resin composition
JP6361907B2 (en) Unsaturated polyester resin composition
JP6737595B2 (en) Thermosetting resin composition and cured product thereof
JP4727441B2 (en) Black vinyl ester resin molding material
JP7106510B2 (en) CRYSTALLINE RADICALLY POLYMERIZABLE COMPOSITION FOR ELECTRICAL AND ELECTRONIC PARTS, MOLDED PRODUCT FOR ELECTRICAL AND ELECTRONIC PARTS USING SAME COMPOSITION, AND METHOD FOR MANUFACTURING SAME MOLDED PRODUCT
JP6782741B2 (en) A crystalline radically polymerizable composition for encapsulating an in-vehicle ignition coil, an in-vehicle ignition coil encapsulant using the composition, and a method for producing the encapsulant.
JP7152271B2 (en) Thermosetting resin composition, motor provided with member made of cured product thereof, and method for manufacturing motor
WO2021220934A1 (en) Sheet molding material and molded article
JP6782739B2 (en) A thermosetting resin composition for encapsulating an in-vehicle electronic control unit substrate, an in-vehicle electronic control unit substrate encapsulant using the composition, and a method for manufacturing the encapsulant.
JP6672757B2 (en) Thermosetting resin composition, integrally molded article and method for producing the same
JP5636169B2 (en) Thermosetting resin composition and electric / electronic component
JP2020015777A (en) Crystalline radical polymerizable composition for encapsulating onboard harness terminal, onboard harness terminal encapsulated body using the composition, and manufacturing method of the encapsulated body
CN114746456B (en) Thermosetting resin composition
JP2023045895A (en) Crystalline radical polymerizable composition for on-vehicle reactor coil, on-vehicle reactor coil encapsulation body employing composition, and manufacturing method of encapsulation body
JP2020017607A (en) Crystal radical polymerizable composition for sealing power semiconductor element for on-vehicle use, power semiconductor element-sealed body for on-vehicle use arranged by use thereof, and production method of the sealed body
JP2021046496A (en) Crystalline radically polymerizable composition for fixing electrical electronic components, electrical electronic device for fixing electrical electronic component using the composition and method for manufacturing electrical electronic component fixing body
JP2014205803A (en) Unsaturated polyester resin composition and slicing base using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6901257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350