JP2018087829A - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP2018087829A
JP2018087829A JP2018036452A JP2018036452A JP2018087829A JP 2018087829 A JP2018087829 A JP 2018087829A JP 2018036452 A JP2018036452 A JP 2018036452A JP 2018036452 A JP2018036452 A JP 2018036452A JP 2018087829 A JP2018087829 A JP 2018087829A
Authority
JP
Japan
Prior art keywords
output
capacitance
acceleration sensor
mems
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018036452A
Other languages
English (en)
Other versions
JP6446579B2 (ja
Inventor
俊 大島
Takashi Oshima
俊 大島
優希 古林
Yuki Furubayashi
優希 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018036452A priority Critical patent/JP6446579B2/ja
Publication of JP2018087829A publication Critical patent/JP2018087829A/ja
Application granted granted Critical
Publication of JP6446579B2 publication Critical patent/JP6446579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】時分割処理方式に代わる信号検出とサーボ制御との同時動作方式を、製造バラツキの大きいMEMSプロセスでも実現できる加速度センサを提供する。【解決手段】MEMS静電容量型の加速度センサであり、前記加速度センサは、信号検出用の容量素子と、それらと異なるサーボ制御用の容量素子とを有する。サーボ制御用の容量素子には、信号検出用の容量素子による加速度の検出信号とは逆向きの力を発生させる電圧が印加される。さらに、ASIC側に、前記サーボ制御用の容量素子の容量値のミスマッチを補償する可変容量部を備え、ASIC内で前記容量値ミスマッチに起因するリーク信号を検出し、その検出した結果に基づいて、前記可変容量部の容量値を制御することで、前記容量値ミスマッチの影響を補償し、正常な信号検出/サーボ制御同時動作を行わせる。【選択図】図5

Description

本発明は、加速度センサに関し、特に、MEMS(Micro Electro Mechanical Systems)静電容量型の加速度センサに関する。
石油・天然ガスなどを探査する反射法地震探査用センサは、資源が埋蔵されていると予測される地層の地表面上に、多数のセンサが所定の2次元配置となるようにばら撒かれて設置された後、人工地震を起こしてその地震波が地層により反射してくる反射波を加速度として捉える。2次元的に配置されたセンサ群で一斉に受けた加速度データを解析して、地層の状態を調べて石油・天然ガスなどの資源の有無を判定する用途などに使用される。反射法地震探査用センサ用の加速度センサは、他の分野のセンサと比べて桁違いに雑音を少なく小さな加速度信号を検出できるようにする低雑音性と、多数のセンサを同時に制御するために必要な低消費電力との両立が要求される。
MEMS技術を用いて作成される加速度センサは、従来の加速度センサと比べて劇的な小型化が可能となり、上記の要求を実現する解決策として期待されるものである。
特許文献1、及び特許文献2には、MEMS静電容量型の加速度センサが開示されており、信号検出用と、検出信号とは逆向きの力を発生させるサーボ力印加用に、MEMS容量素子を共用して、面積を低減する構造のものである。これらの構造では、MEMS容量素子を共用しているために、時分割処理で、信号検出とサーボ制御とを交互に行う方式が用いられている。また、時分割処理では、信号検出とサーボ制御との間にリセットを挟む方式も用いられている。
米国特許第5852242号明細書 米国特許第6497149号明細書
前述した特許文献1や特許文献2に記載されているような時分割処理方式では、以下のような課題がある。
(1)時分割処理を行う場合、信号処理帯域を維持しようとすると、内部動作速度が2倍(信号検出とサーボ制御とを交互に行う方式)、または、4倍(信号検出とサーボ制御との間にリセットを挟む方式)となる。そのため、アンプ、フィルタ、A/D変換器などのアナログ回路と論理回路とサーボ制御部(D/A変換器)の消費電力が2倍、または、4倍となってしまう。
(2)時分割切換えを行う場合、切換え用のスイッチング動作により、サンプリング雑音(kT/C雑音、kはボルツマン定数)が生じ、雑音密度が増加する。これは、原理的な現象で避けられない。これにより、センサの雑音が増大することにつながる。
(3)時分割処理を行う場合、実効的なサーボ力を確保するために、サーボ電圧を高めるか、サーボ用のMEMS容量値を増加させる必要がある。前者は、高電圧低雑音回路の設計が困難、または、半導体プロセスのMOSトランジスタの耐圧的にそもそも不可能である。後者は、そもそも時分割処理により検出とサーボ用のMEMS容量を共有化して小面積化したメリットが失われてしまう。
本発明の目的は、前述したような時分割処理方式による課題を解決し、この時分割処理方式に代わる、信号検出とサーボ制御との同時動作方式を実現する加速度センサを提供することで、今までにない低消費電力、低雑音の加速度センサを実現することである。特に、製造バラツキが大きいMEMSプロセスでも実現できるように、MEMS容量素子間の容量値のミスマッチを補償することに重点を置いている。これにより、(1)安価な製造装置を用いた低コストのMEMSプロセスを適用可能になる、(2)MEMSセンサの歩留まりが改善する、などの効果が期待でき、量産性を高められると考えられる。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
上記課題を解決するために本発明では、MEMS静電容量型の加速度センサを、信号検出用の第1MEMS容量対と、前記第1容量対とそれぞれ一方の電極同士が接続されて、前記第1MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第2MEMS容量対と、前記第1MEMS容量対、及び前記第2MEMS容量対の互いに接続されて1つの錘を成す電極と接続して、前記錘上の電荷変化を電圧変化に変換するチャージアンプと、前記チャージアンプ出力の電圧変化信号をデジタル化するA/D変換器と、前記A/D変換器の出力から作成された前記加速度による前記錘の変位と逆向きの力を発生させるサーボ値を1ビットに量子化する1ビット量子化器と、前記1ビット量子化器の出力をアナログのサーボ電圧に変換して前記第2MEMS容量対へ印加する1ビットD/A変換器と、前記A/D変換器の出力と、前記1ビット量子化器の出力との相関をとって、前記第2MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力する相関検波部と、前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記チャージアンプの入力ノード上で相殺する容量制御値を出力する制御部と、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記チャージアンプの入力ノードの間に挿入され、前記制御部の出力の容量制御値に従って容量を制御する可変容量部とを備えて構成した。
また、上記課題を解決するために本発明では、MEMS静電容量型の加速度センサを、信号検出用の第1MEMS容量対と、前記第1容量対とそれぞれ一方の電極同士が接続されて正側の錘(可動電極部)が構成され、前記第1MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第2MEMS容量対と、信号検出用の第3MEMS容量対と、前記第3容量対とそれぞれ一方の電極同士が接続されて負側の錘(可動電極部)が構成され、前記第3MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第4MEMS容量対と、前記正側の錘と接続して、前記正側の錘上の電荷変化を電圧変化に変換する第1チャージアンプと、前記負側の錘と接続して、前記負側の錘上の電荷変化を電圧変化に変換する第2チャージアンプと、前記第1、及び第2チャージアンプの差動出力の電圧変化信号をデジタル化するA/D変換器と、前記A/D変換器の出力から作成された前記加速度による前記錘の変位と逆向きの力を発生させるサーボ値を1ビットに量子化する1ビット量子化器と、前記1ビット量子化器の出力をアナログのサーボ電圧に変換して前記第2MEMS容量対、及び前記第4MEMS容量対へ印加する1ビットD/A変換器と、前記A/D変換器の出力と、前記1ビット量子化器の出力との相関をとって、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力する相関検波部と、前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記第1、及び第2チャージアンプの入力ノード上で相殺する差動容量制御値を出力する制御部と、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記第1チャージアンプの入力ノードの間に挿入され、前記制御部の出力の差動容量制御値に従って容量を制御する第1可変容量部と、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記第2チャージアンプの入力ノードの間に挿入され、前記制御部の出力の差動容量制御値に従って容量を制御する第2可変容量部とを備えて構成した。
本願において開示される発明の代表的な効果は、時分割処理方式に代わる、信号検出とサーボ制御との同時動作方式を実現する加速度センサを、製造バラツキが大きいMEMSプロセスでも提供することができる。
本発明の実施の形態1における加速度センサの構成の一例を示す図である。 本発明の実施の形態2における加速度センサの構成の一例を示す図である。 本発明の実施の形態3における加速度センサの構成の一例を示す図である。 本発明の実施の形態4における加速度センサの構成の一例を示す図である。 本発明の実施の形態5における加速度センサの構成の一例を示す図である。 本発明の実施の形態6における加速度センサの構成の一例を示す図である。 本発明の実施の形態7における加速度センサの構成の一例を示す図である。 本発明の実施の形態8における加速度センサの構成の一例を示す図である。 本発明の実施の形態9における加速度センサの構成の一例を示す図である。 本発明の加速度センサの相関検波部、制御部、可変容量部の構成を詳細に説明する図その1である。 本発明の加速度センサの相関検波部、制御部、可変容量部の構成を詳細に説明する図その2である。 本発明の加速度センサの相関検波部、制御部、可変容量部の構成を詳細に説明する図その3である。 本発明の加速度センサの相関検波部、制御部、可変抵抗部の構成を詳細に説明する図その4である。 本発明の加速度センサの相関検波部、制御部、可変容量部の構成を詳細に説明する図その5である。 本発明の加速度センサの相関検波部、制御部、可変抵抗部の構成を詳細に説明する図その6である。 本発明の加速度センサの相関検波部、制御部、可変容量部の構成を詳細に説明する図その7である。 図16におけるデジタル制御分圧器の構成例を示す図面である。 図16におけるデジタル制御分圧器の別の構成例を示す図面である。 本発明の加速度センサの遅延部の構成例を示す図面である。 本発明の加速度センサの遅延部の別の構成例を示す図面である。 本発明の加速度センサの相関検波部におけるアナログ乗算器の構成例を示す図面である。 本発明の加速度センサの相関検波部におけるアナログ乗算器の別の構成例を示す図面である。
以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
以下、上述した実施の形態の概要に基づいた各実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号または関連する符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
本実施の形態1における加速度センサについて、図1を用いて説明する。図1は、加速度センサの構成の一例を示す図である。
加速度センサは、機械部分がMEMS(Micro Electro Mechanical Systems)で構成され、回路部分がASIC(Application Specific Integrated Circuit)で構成されている。この加速度センサは、これに限定されるものではないが、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとして、重力よりも極めて微小な振動加速度を検知するMEMS静電容量型の加速度センサに用いられる。
まず、構成を説明する。MEMSは、信号検出用容量対101a、101b、サーボ制御用容量対102a、102bからなる。これらの4つの容量のそれぞれ一方の電極は機械的にも電気的にも互いに接続されており、一つの錘(可動電極部)100をなす。錘はチャージアンプ103を構成するオペアンプ103aの反転入力端子に接続される。チャージアンプ103はオペアンプ103aとその帰還容量103bと帰還抵抗103cで構成される。オペアンプ103aの非反転入力端子にはバイアス電圧VBが接続される。VBはグランド電位であってもなくてもよい。チャージアンプ103の出力(すなわち、オペアンプ103aの出力)はアンプ104に入力され、アンプ104の出力はアナログフィルタ105に入力され、アナログフィルタ105の出力はA/D変換器106に入力される。A/D変換器106の出力は復調器107に入力される。復調器107には変調クロックも入力される。復調器107の出力はサーボ制御部108に入力され、サーボ制御部108の出力は1ビット量子化器109に入力され、1ビット量子化器109の出力は1ビットD/A変換器110に入力される。1ビットD/A変換器110の差動出力は、前記サーボ制御用容量対102a、102bの電極(錘でない側の電極)にそれぞれ接続される。また、前記変調クロックとその反転クロックは、それぞれ、信号検出用容量対用ドライバ112a、112bに入力され、それらの出力は、それぞれ、信号検出用容量対101a、101bの電極(錘でない側の電極)に接続される。さらに、前記A/D変換器106の出力は相関検波部113にも入力され、相関検波部113には、1ビット量子化器109の出力も入力される。相関検波部113の出力は制御部114に入力され、制御部114の出力は制御信号として可変容量部115の容量値を制御する。1ビット量子化器109の出力は可変容量用ドライバ116にも入力され、可変容量用ドライバ116の出力は、前記可変容量部115の一方の端子に接続される。可変容量部115の他方の端子は錘(可動電極部)100(すなわち、オペアンプ103aの反転入力端子)に接続されている。さらに、1ビット量子化器109の出力はデジタルローパスフィルタ111に入力され、デジタルローパスフィルタ111の出力が加速度センサとしての出力になる。ASICは、前記チャージアンプ103から1ビットD/A変換器110までである。可変容量部115もASIC内に実装される。
次に動作を説明する。本加速度センサに外部から加速度が印加されると、可動となっている錘100に慣性力が生じ、その結果、錘100の位置が変位する。錘100は信号検出用容量対101a、101bの電極でもあるため、前記変位により、これらの容量値が変化する。例えば、図1において加速度が右方向に印加され、錘100が右方向に変位すると、信号検出用容量101bの可動電極(すなわち、錘100)と固定電極との距離が狭くなって+ΔCDの容量変化値となり、信号検出用容量101aの可動電極(すなわち、錘100)と固定電極との距離が広くなって−ΔCDの容量変化値となる。このような信号検出用容量対101a、101bにおける容量変化値(+ΔCD、−ΔCD)に基づいて、加速度の印加の方向と量を検出することができる。なお、検出用容量対101a、101bの対構造は、容量値の同相成分をキャンセルするためなど、詳細は説明しないが公知の種々の目的のための構造である。また、上記の説明や図1などのMEMSの構成は説明の便宜上、平行平板容量となっているが、他の種類の容量であっても同様な仕組みが成り立つ。したがって、本発明は平行平板容量型のMEMSに限定されるものではない。
前記検出用容量対101a、101bには、信号検出用容量対用ドライバ112a、112b経由で変調クロック電圧とその反転クロック電圧がそれぞれ印加されている。これにより、前記ΔCDの容量変化は電荷変化に変換される。この電荷変化はASIC内の初段のチャージアンプ103により電圧変化に変換される。チャージアンプ103は、容量型のいわゆるオペアンプ反転増幅器の構成であり、入力容量はMEMS側の信号検出用容量対101a、101b、帰還容量はASIC側の帰還容量103bである。ただし、高抵抗値の帰還抵抗103cを帰還経路に並列に挿入している。その理由は、オペアンプ103aの入力リーク電流を補償する直流電流フィード経路を確保するためである。これに対して、帰還抵抗103cの部分にリセットスイッチを用いる対策が従来知られているが、その場合、リセットスイッチによるサンプリング雑音の雑音密度が高い問題がある。なお、本方法で用いる高抵抗値の帰還抵抗103cによる熱雑音は、帰還抵抗103cと帰還容量103bによるローパスフィルタ特性により、所望周波数(すなわち、変調クロックの周波数)近傍では十分に抑圧されるため問題ない。
チャージアンプ103で電圧に変換された信号は、アンプ104で増幅され、アナログフィルタ105で雑音や不要信号成分が抑圧され、A/D変換器106によりデジタル値に変換される。復調器107は2入力のデジタル乗算器であり、A/D変換器106の出力と変調クロックを乗算することで、変調クロックに対する同期検波を行う。その結果、錘100の変位に比例した値が復調器107の出力に得られる。この一連の変復調処理は、いわゆる「チョッパ方式」と等価であり、これにより、チャージアンプ103、アンプ104、アナログフィルタ105、A/D変換器106で生じる大きな1/f雑音による影響を回避できる。サーボ制御部108は、復調器107で復調された錘100の変位値を入力として、この値に基づいて検出信号とは逆向きの力を発生させるサーボ値を決定して、1ビット量子化器109に出力する回路である。特に、例えば、サーボ制御部108での信号処理にデジタル積分演算を含むことで、錘100の変位がゼロになるような制御を行ってもよい。
これにより、信号検出用容量対101a、101bの容量値変化が極小となるため、加速度センサとしての線形性を高めることができる。(すなわち、錘の変位をほぼ打ち消すようにサーボ力を働かせることで、錘の変位が極めて微小の範囲に留まるため、加速度と変位の関係が線形性を示す領域で検出ができる。)
また、サーボ制御部108での信号処理に微分(または、差分)演算を含むことで位相補償を行い、サーボ制御ループを安定化させてもよい。その際には一般的なPID制御の理論を適用できる。
1ビット量子化器109は、サーボ制御部108が決定し出力するサーボ値を1ビットに量子化する。例えば、1ビット量子化器109の入力が0以上であれば+1を、入力が負であれば−1を出力する。1ビットD/A変換器110は、1ビット量子化器109で量子化された1ビットのデジタル値(±1)を入力とし、このデジタル値をアナログ電圧(例えば、±5V、あるいは、10V/0V)に変換し、このアナログ電圧をサーボ制御用容量対102a、102bの固定電極に印加する。これにより、検出された加速度信号と逆方向の静電気力を錘100に対して印加することができる。定常状態では、錘100にはたらく正味の力および錘100の変位はほぼゼロになる。このように1ビット量子化器109を挿入することで、後続するD/A変換器を1ビットD/A変換器110とすることができる。1ビットD/A変換器は回路的に実装が容易であるため、低消費電力化に有利である。さらに、サーボ制御用容量部も簡素化できる。なお、1ビット量子化器109の出力は、デジタルローパスフィルタ111により、高周波成分(すなわち、サーボループのシグマデルタ制御により高周波側にノイズシェーピング(拡散)された量子化誤差)が抑圧されるため、最終的な加速度センサの出力は低雑音にできる。以上の構成により、本加速度センサでは、信号検出とサーボ制御を同時に行っている。
本発明ではさらに、相関検波部113により、A/D変換器106の出力信号と1ビット量子化器109の出力信号の相関をとる。これは、サーボ制御用容量対102aと102bの間の容量値のミスマッチΔCを検出するためである。このΔCが存在するとΔCに比例したサーボリーク信号がチャージアンプ103の出力に生成され、以降、アンプ104により増幅され、アナログフィルタ105により多少高周波成分が抑圧され、A/D変換器106によりデジタル値に変換される。サーボ制御用容量対102a、102bには、1ビットD/A変換器110経由で、1ビット量子化器109の出力信号と同じ波形、およびその反転波形が差動で印加されているため、前記サーボリーク信号は1ビット量子化器109の出力信号とほぼ同一の波形である。すなわち、サーボリーク信号は、前記ΔCに比例し、かつ、1ビット量子化器109の出力信号と同一波形である。この事実に着目し、例えば、A/D変換器106の出力に含まれるサーボリーク信号を検出することができる。そのために、前記の通り、A/D変換器106の出力信号を、1ビット量子化器109の出力信号と、相関検波部113において相関をとっている。これにより、相関検波部113の出力には、前記ΔCに比例した直流または低周波の信号を含むことができる。そこで、後続する制御部114は、相関検波部113の出力信号に対して、デジタル積分演算や必要に応じて位相補償演算を行い、容量制御値を決定し、出力する。この容量制御値はデジタル値であり、これにより、可変容量部115の容量値が制御される。可変容量部115は、前記ΔCによる影響をチャージアンプ103の入力ノード(すなわち、オペアンプ103aの反転入力端子ノード)上で相殺する目的である。そのためには、サーボ制御用容量対102a、102bのミスマッチΔCと同一の容量値の容量を前記ノードと1ビットD/A変換器110の出力の片方の間に挿入することも考えられる。しかし、この方法には2つの問題がある。
第一に、1ビットD/A変換器110の出力は10V程度の高電圧振幅であるため、仮に、この電圧振幅レベルをASIC内に実装されている可変容量部115にそのまま入力しようとする場合、そのためのASICの入力端子に接続した静電破壊保護素子(ESD素子)により波形がクリッピングされてしまい、結局、可変容量部115に所望の電圧が伝達されない。本加速度センサでは、低消費電力化のために低電圧の半導体プロセスをASICに適用するので、前記のクリッピングが起こらない入力電圧範囲は、1ビットD/A変換器110の出力振幅より小さい。そのため、前記の波形クリッピングが生じる。
第二に、この方法の場合、極めて細かい精度で前記同一の容量値に調整する必要が生じてしまう。例えば、ΔCが1%程度のミスマッチとして、これを0.01%の精度で相殺したい場合、サーボ制御用容量対102a、102bの容量値が5pFであるとすると、5pF×0.01/100=0.5fF刻みで制御できる可変容量部が必要となる。この容量値刻み精度は半導体プロセスの加工寸法精度や寄生容量値から見て非現実的である。
そこで、本発明では、可変容量部115の下端は、1ビットD/A変換器110の出力ではなく、可変容量用ドライバ116の出力に接続されている。1ビットD/A変換器110の出力は、十分な静電気力を生成するために高電圧振幅(例えば、±5V、または、10V/0V)であるが、前記可変容量用ドライバ116を挿入することで、可変容量用ドライバ116の出力信号を、1ビットD/A変換器110の出力信号と同一波形(すなわち、どちらも1ビット量子化器109の出力信号と同一波形)でありながら、出力振幅を小さくする自由度が生まれる。例えば、1ビットD/A変換器110の出力電圧振幅を±V、可変容量用ドライバ116の出力振幅をV/α(α>1)とすると、ΔCで生じる誤差電荷をキャンセルするために必要な容量値はαΔCであり、α倍にできる。つまり、容量値刻み精度もα倍にできる。例えばα=20とすることで、先の事例で必要な容量値刻み精度を0.5fFから10fFに増加させられる。この程度の容量値刻み精度の可変容量部115であれば、現実的な半導体プロセスで十分実現できると考えられる。
なお、前記サーボリーク信号はわずかであっても、サーボループを著しく乱し、雑音増加や不正発振を引き起こす。そのため、前記の通り、サーボ制御用容量対102a、102bのミスマッチΔCの影響を高精度に相殺することは不可欠である。制御部114に積分演算を含むことで、ΔCおよびサーボリーク信号がゼロとなるように負帰還制御できる。この負帰還制御ループを「MEMS容量補償ループ」と以降呼ぶ。
また、本実施例の1ビット量子化器109に替えて、1.5ビット(3値) 量子化器、又は2ビット以上の量子化器を使用して、対応させて1ビットD/A変換器110に替えて、1.5ビット(3値) D/A変換器、又は2ビット以上のD/A変換器を使用して加速度センサを構成してもよい。
《実施例1の効果》
以上のように、本実施の形態1における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。サーボリーク信号は実装が容易なデジタル演算主体で相殺でき、専用のA/D変換器も不要である。
図2に、本発明の実施の形態2を示す。本実施の形態は、実施の形態1と基本部分は同じであるため、実施の形態1からの差分を説明する。本実施の形態では、相関検波部113は、実施の形態1のようにA/D変換器106の出力にではなく、チャージアンプ103の出力に接続されている。そのため、相関検波部113は、チャージアンプ103の出力に含まれるサーボリーク信号を、1ビット量子化器109の出力信号と相関をとることで検出する。本発明の実施の形態1と異なり、アンプ104、アナログフィルタ105、A/D変換器106を経由せず、チャージアンプ103の出力のサーボリーク信号を直接検出する。したがって、上記の各アナログ回路ブロックによるサーボリーク信号の遅延がないため、MEMS容量補償ループを安定化させ易く、制御部114のパラメータ設計が容易になる。その代わり、相関検波部113をアナログ回路で実現する必要がある点や制御部114にA/D変換器が別途必要となる点は、実施の形態1と比較したデメリットとなる。
《実施例2の効果》
以上のように、本実施の形態2における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。チャージアンプ出力のサーボリーク信号を直接検出するため、安定化設計が容易である。
図3に、本発明の実施の形態3を示す。本実施の形態は、実施の形態1と基本部分は同じであるため、実施の形態1からの差分を説明する。本実施の形態では、相関検波部113は、実施の形態1のようにA/D変換器106の出力にではなく、アンプ104の出力に接続されている。そのため、相関検波部113は、アンプ104の出力に含まれるサーボリーク信号を、1ビット量子化器109の出力信号と相関をとることで検出する。したがって、実施の形態1よりサーボリーク信号の遅延量が少なく、制御部114のパラメータ設計が容易になる。また、サーボリーク信号がアンプ104の利得分だけ増幅されるため、相関検波部113や制御部114に要求される雑音仕様を実施の形態2の場合より緩和できる。
《実施例3の効果》
以上のように、本実施の形態3における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。
図4に、本発明の実施の形態4を示す。本実施の形態は、実施の形態1と基本部分は同じであるため、実施の形態1からの差分を説明する。本実施の形態では、可変容量用ドライバ116と可変容量部115の間に遅延部417が挿入される。この遅延部417は、1ビットD/A変換器110の駆動能力の限界からくる応答遅延を模擬することを目的としている。1ビットD/A変換器110の応答遅延は、その出力抵抗とサーボ制御用容量102a、102bの容量値の積である時定数で決まり、1次ローパスフィルタ特性となる。そこで、前記遅延部417を、同程度の時定数を持つ1次ローパスフィルタとすることで、1ビットD/A変換器110の出力波形を模擬できる。これにより、実施の形態1に開示したサーボリーク信号の相殺をより完全に行うことができる。
《実施例4の効果》
以上のように、本実施の形態4における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。遅延部により1ビットD/A変換器の遅延補償を行うため、サーボリーク信号のより高精度な相殺が可能である。
本実施の形態5における加速度センサについて、図5を用いて説明する。図5は、加速度センサの構成の一例を示す図である。本発明の実施の形態1を「差動MEMS」構成にした場合に相当する。
加速度センサは、機械部分がMEMS(Micro Electro Mechanical Systems)で構成され、回路部分がASIC(Application Specific Integrated Circuit)で構成されている。この加速度センサは、これに限定されるものではないが、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとして、重力よりも極めて微小な振動加速度を検知するMEMS静電容量型の加速度センサに用いられる。
まず、構成を説明する。MEMSは、正側信号検出用容量対501a、501b、負側信号検出用容量対501c、501d、正側サーボ制御用容量対502a、502b、負側サーボ制御用容量対502c、502dからなる。これらの4つの容量501a、501b、502a、502bの一方の電極は機械的にも電気的にも互いに接続されており、正側の錘(可動電極部)500aをなす。また、4つの容量501c、501d、502c、502dの一方の電極は機械的にも電気的にも互いに接続されており、負側の錘(可動電極部)500bをなす。正側の錘500aは差動チャージアンプ503を構成するオペアンプ503aの反転入力端子に接続される。差動チャージアンプ503の正側は、オペアンプ503aとその帰還容量503bと帰還抵抗503cで構成される。オペアンプ503aの非反転入力端子にはバイアス電圧VBが接続される。VBはグランド電位であってもなくてもよい。同様に、差動チャージアンプ503の負側は、オペアンプ503dとその帰還容量503eと帰還抵抗503fで構成される。
差動チャージアンプ503の差動出力(すなわち、オペアンプ503aの出力とオペアンプ503dの出力)は差動アンプ504に入力され、差動アンプ504の出力は差動アナログフィルタ505に入力され、差動アナログフィルタ505の出力は差動A/D変換器506に入力される。差動A/D変換器506の出力は復調器507に入力される。復調器507には変調クロックも入力される。復調器507の出力はサーボ制御部508に入力され、サーボ制御部508の出力は1ビット量子化器509に入力され、1ビット量子化器509の出力は1ビットD/A変換器510に入力される。1ビットD/A変換器510の差動出力の正側は、前記正側サーボ制御用容量502aと前記負側サーボ制御用容量502cの電極(錘でない側の電極)に接続される。他方、1ビットD/A変換器510の差動出力の負側は、前記正側サーボ制御用容量502bと前記負側サーボ制御用容量502dの電極(錘でない側の電極)に接続される。また、前記変調クロックとその反転クロックは、それぞれ、信号検出用容量対用ドライバ512a、512bに入力され、信号検出用容量対用ドライバ512aの出力は、正側信号検出用容量501aと負側信号検出用容量501dの電極(錘でない側の電極)に、信号検出用容量対用ドライバ512bの出力は、正側信号検出用容量501bと負側信号検出用容量501cの電極(錘でない側の電極)に、接続される。
さらに、前記差動A/D変換器506の出力は相関検波部513にも入力され、相関検波部513には、1ビット量子化器509の出力も入力される。相関検波部513の出力は制御部514に入力され、制御部514の差動出力は制御信号として可変容量部515aと515bの容量値を制御する。1ビット量子化器509の出力は可変容量用ドライバ516にも入力され、可変容量用ドライバ516の出力は、前記可変容量部515aの一方の端子と前記可変容量部515bの一方の端子に接続される。可変容量部515aの他方の端子は正側の錘(可動電極部)500a(すなわち、オペアンプ503aの反転入力端子)に接続されており、可変容量部515bの他方の端子は負側の錘(可動電極部)500b(すなわち、オペアンプ503dの反転入力端子)に接続されている。さらに、1ビット量子化器509の出力はデジタルローパスフィルタ511に入力され、デジタルローパスフィルタ511の出力が加速度センサとしての出力になる。ASICは、前記差動チャージアンプ503から1ビットD/A変換器510までである。可変容量部515a、515bもASIC内に実装される。
次に動作を説明する。本加速度センサに外部から加速度が印加されると、可動となっている錘500aと錘500bに、同じ向きで同じ大きさの慣性力が生じ、その結果、錘500aと錘500bの位置が同じ向きに同じだけ変位する。錘500aは正側信号検出用容量対501a、501bの電極でもあるため、前記変位により、これらの容量値が変化する。例えば、図5において加速度が右方向に印加され、錘500aが右方向に変位すると、正側信号検出用容量501bの可動電極(すなわち、錘500a)と固定電極との距離が狭くなって+ΔCDの容量変化値となり、正側信号検出用容量501aの可動電極(すなわち、錘500a)と固定電極との距離が広くなって−ΔCDの容量変化値となる。このような正側信号検出用容量対501a、501bにおける容量変化値(+ΔCD、−ΔCD)に基づいて、加速度の印加の方向と量を検出することができる。
同様に、錘500bも右方向に同じだけ変位するため、負側信号検出用容量501dの可動電極(すなわち、錘500b)と固定電極との距離が狭くなって+ΔCDの容量変化値となり、負側信号検出用容量501cの可動電極(すなわち、錘500b)と固定電極との距離が広くなって−ΔCDの容量変化値となる。このような負側信号検出用容量対501c、501dにおける容量変化値(+ΔCD、−ΔCD)に基づいても、加速度の印加の方向と量を検出することができる。なお、正側検出用容量対501a、501bの対構造や負側検出用容量対501c、501dの対構造は、容量値の同相成分をキャンセルするためなど、詳細は説明しないが公知の種々の目的のための構造である。また、上記の説明や図5などのMEMSの構成は説明の便宜上、平行平板容量となっているが、他の種類の容量であっても同様な仕組みが成り立つ。したがって、本発明は平行平板容量型のMEMSに限定されるものではない。
前記正側検出用容量対501a、501bには、信号検出用容量対用ドライバ512a、512b経由で変調クロック電圧とその反転クロック電圧がそれぞれ印加されている。これにより、正側検出用容量対501a、501bのΔCDの容量変化は電荷変化に変換される。一方、前記負側検出用容量対501c、501dには、信号検出用容量対用ドライバ512b、512a経由で前記反転クロック電圧と前記変調クロック電圧がそれぞれ印加されている。つまり、正側検出用容量対と負側検出用容量対でクロックの印加の仕方を互いに反転させている。これにより、負側検出用容量対501c、501dのΔCDの容量変化は前記正側の電荷変化と逆符号(大きさは同じ)の電荷変化に変換される。換言すると、外部からの加速度印加により「差動MEMS」構造に対して同相でΔCDが生じるが、印加するクロックを「差動的」にしているため、正側MEMSと負側MEMSで生じる電荷変化は差動信号となる。この差動電荷信号はASIC内の初段の差動チャージアンプ503により差動電圧信号に変換される。差動チャージアンプ503は、容量型のいわゆるオペアンプ反転増幅器を2並列した構成である。正側は、入力容量はMEMS側の正側信号検出用容量対501a、501b、帰還容量はASIC側の帰還容量503bである。ただし、高抵抗値の帰還抵抗503cを帰還経路に並列に挿入している。その理由は、オペアンプ503aの入力リーク電流を補償する直流電流フィード経路を確保するためである。これに対して、帰還抵抗503cの部分にリセットスイッチを用いる対策が従来知られているが、その場合、リセットスイッチによるサンプリング雑音の雑音密度が高い問題がある。なお、本方法で用いる高抵抗値の帰還抵抗503cによる熱雑音は、帰還抵抗503cと帰還容量503bによるローパスフィルタ特性により、所望周波数(すなわち、変調クロックの周波数)近傍では十分に抑圧されるため問題ない。同様に、負側は、入力容量はMEMS側の負側信号検出用容量対501c、501d、帰還容量はASIC側の帰還容量503eである。ただし、高抵抗値の帰還抵抗503fを帰還経路に並列に挿入している。その理由は前記の通りである。
差動チャージアンプ503で差動電圧に変換された信号は、差動アンプ504で増幅され、差動アナログフィルタ505で雑音や不要信号成分が抑圧され、差動A/D変換器506によりデジタル値に変換される。復調器507は2入力のデジタル乗算器であり、A/D変換器506の出力と変調クロックを乗算することで、変調クロックに対する同期検波を行う。その結果、錘500aと錘500bの変位に比例した値が復調器507の出力に得られる。この一連の変復調処理は、いわゆる「チョッパ方式」と等価であり、これにより、差動チャージアンプ503、差動アンプ504、差動アナログフィルタ505、差動A/D変換器506で生じる大きな1/f雑音による影響を回避できる。
サーボ制御部508は、復調器507で復調された錘500a、錘500bの変位値を入力として、この値に基づいて検出信号とは逆向きの力を発生させるサーボ値を決定して、1ビット量子化器509に出力する回路である。特に、例えば、サーボ制御部508での信号処理にデジタル積分演算を含むことで、錘500a、錘500bの変位がゼロになるような制御を行ってもよい。これにより、正側信号検出用容量対501a、501bと負側信号検出用容量対501c、501dの容量値変化が極小となるため、加速度センサとしての線形性を高めることができる。また、サーボ制御部508での信号処理に微分(または、差分)演算を含むことで位相補償を行い、サーボ制御ループを安定化させてもよい。その際には一般的なPID制御の理論を適用できる。
1ビット量子化器509は、サーボ制御部508が決定し出力するサーボ値を1ビットに量子化する。例えば、1ビット量子化器509の入力が0以上であれば+1を、入力が負であれば−1を出力する。1ビットD/A変換器510は、1ビット量子化器509で量子化された1ビットのデジタル値(±1)を入力とし、このデジタル値をアナログ電圧(例えば、±5V、あるいは、10V/0V)に変換する。1ビットD/A変換器510の正側出力電圧は、正側サーボ制御用容量対502aと負側サーボ制御用容量対502cの固定電極に印加され、他方、1ビットD/A変換器510の負側出力電圧は、正側サーボ制御用容量対502bと負側サーボ制御用容量対502dの固定電極に印加される。これにより、検出された加速度信号と逆方向の静電気力を錘500aと錘500bに対して印加することができる。信号検出用容量の場合と異なり、サーボ制御用容量には、「差動MEMS」構造に対して「同相的」に1ビットD/A変換器510の出力を印加している。これにより、「差動MEMS」構造に対して同相で生じる加速度信号を同相的にキャンセルするのである。定常状態では、錘500a、錘500bに働く正味の力、および、錘500a、錘500bの変位はほぼゼロになる。このように1ビット量子化器509を挿入することで、後続するD/A変換器を1ビットD/A変換器510とすることができる。1ビットD/A変換器は回路的に実装が容易であるため、低消費電力化に有利である。さらに、サーボ制御用容量部も簡素化できる。なお、1ビット量子化器509の出力は、デジタルローパスフィルタ511により、高周波成分(すなわち、サーボループのシグマデルタ制御により高周波側にノイズシェーピング(拡散)された量子化誤差)が抑圧されるため、最終的な加速度センサの出力は低雑音にできる。以上の構成により、本加速度センサでは、差動MEMS構造において、信号検出とサーボ制御を同時に行っている。
本発明ではさらに、相関検波部513により、A/D変換器506の出力信号と1ビット量子化器509の出力信号の相関をとる。これは、正側サーボ制御用容量対502a、502b、負側サーボ制御用容量対502c、502dの間の容量値のミスマッチΔC(ΔC=正側サーボ制御用容量502aの容量値+負側サーボ制御用容量502dの容量値−正側サーボ制御用容量502bの容量値−負側サーボ制御用容量502cの容量値)を検出するためである。このΔCが存在するとΔCに比例したサーボリーク信号が差動チャージアンプ503の出力に生成され、以降、差動アンプ504により増幅され、差動アナログフィルタ505により多少高周波成分が抑圧され、差動A/D変換器506によりデジタル値に変換される。正側サーボ制御用容量対502a、502b、負側サーボ制御用容量対502c、502dには、1ビットD/A変換器510経由で、1ビット量子化器509の出力信号と同じ波形、およびその反転波形が差動で印加されているため、前記サーボリーク信号は1ビット量子化器509の出力信号とほぼ同一の波形である。すなわち、サーボリーク信号は、前記ΔCに比例し、かつ、1ビット量子化器509の出力信号と同一波形である。この事実に着目し、例えば、差動A/D変換器506の出力に含まれるサーボリーク信号を検出することができる。そのために、前記の通り、差動A/D変換器506の出力信号を、1ビット量子化器509の出力信号と、相関検波部513において相関をとっている。これにより、相関検波部513の出力には、前記ΔCに比例した直流または低周波の信号を含むことができる。
そこで、後続する制御部514は、相関検波部513の出力信号に対して、デジタル積分演算や必要に応じて位相補償演算を行い、差動容量制御値を決定し、出力する。この差動容量制御値はデジタル値であり、これにより、可変容量部515a、515bの容量値が制御される。差動容量制御値は、例えば、互いに相補的(すなわち、符号が逆で同じ大きさ)にしてもよい。可変容量部515a、515bは、前記ΔCによる影響を差動チャージアンプ503の差動入力ノード(すなわち、オペアンプ503aの反転入力端子ノードとオペアンプ503dの反転入力端子ノード)上で相殺する目的である。そのためには、正側サーボ制御用容量対502a、502b、負側サーボ制御用容量対502c、502dの前記ミスマッチΔCと同一の容量値の容量を前記ノードと1ビットD/A変換器510の出力の片方の間に挿入することも考えられる。しかし、この方法には2つの問題がある。
第一に、1ビットD/A変換器510の出力は10V程度の高電圧振幅であるため、仮に、この電圧振幅レベルをASIC内に実装されている可変容量部515aや515bにそのまま入力しようとする場合、そのためのASICの入力端子に接続した静電破壊保護素子(ESD素子)により波形がクリッピングされてしまい、結局、可変容量部515aや515bに所望の電圧が伝達されない。本加速度センサでは、低消費電力化のために低電圧の半導体プロセスをASICに適用するので、前記のクリッピングが起こらない入力電圧範囲は、1ビットD/A変換器510の出力振幅より小さい。そのため、前記の波形クリッピングが生じる。
第二に、この方法の場合、極めて細かい精度で前記同一の容量値に調整する必要が生じてしまう。例えば、ΔCが1%程度のミスマッチとして、これを0.01%の精度で相殺したい場合、正側サーボ制御用容量対502a、502b、負側サーボ制御用容量対502c、502dの容量値が5pFであるとすると、5pF×0.01/100=0.5fF刻みで制御できる可変容量部が必要となる。この容量値刻み精度は半導体プロセスの加工寸法精度や寄生容量値から見て非現実的である。
そこで、本発明では、可変容量部515a、515bの下端は、1ビットD/A変換器510の出力ではなく、可変容量用ドライバ516の出力に接続されている。1ビットD/A変換器510の出力は、十分な静電気力を生成するために高電圧振幅(例えば、±5V、または、10V/0V)であるが、前記容量用ドライバ516を挿入することで、容量用ドライバ516の出力信号を、1ビットD/A変換器510の出力信号と同一波形(すなわち、どちらも1ビット量子化器509の出力信号と同一波形)でありながら、出力振幅を小さくする自由度が生まれる。例えば、1ビットD/A変換器510の出力電圧振幅を±V、容量用ドライバ516の出力振幅をV/α(α>1)とすると、ΔCで生じる誤差電荷をキャンセルするために必要な容量値はαΔCであり、α倍にできる。つまり、容量値刻み精度もα倍にできる。例えばα=20とすることで、先の事例で必要な容量値刻み精度を0.5fFから10fFに増加させられる。この程度の容量値刻み精度の可変容量部515a、515bであれば、現実的な半導体プロセスで十分実現できると考えられる。
なお、前記サーボリーク信号はわずかであっても、サーボループを著しく乱し、雑音増加や不正発振を引き起こす。そのため、前記の通り、正側サーボ制御用容量対502a、502b、負側サーボ制御用容量対502c、502dのミスマッチΔCの影響を高精度に相殺することは不可欠である。制御部514に積分演算を含むことで、ΔCおよびサーボリーク信号がゼロとなるように負帰還制御できる。この負帰還制御ループを「MEMS容量補償ループ」と以降呼ぶ。
本実施の形態で開示した「差動MEMS」構造は、3つの大きな利点がある。第一に、同じ加速度信号に対して信号量が2倍となるため、回路雑音を2倍許容できる、すなわち、回路の消費電力を理論的に1/4に低減できる。第二に、回路の同相雑音(差動チャージアンプなどの電源雑音など)の影響を受けないため、低雑音化できる。第三に、錘の変位により各サーボ制御用容量値が変化しても、前記ΔC(=正側サーボ制御用容量502aの容量値+負側サーボ制御用容量502dの容量値−正側サーボ制御用容量502bの容量値−負側サーボ制御用容量502cの容量値)においては、それらの変化がキャンセルし合って影響を受けない。つまり、差動MEMS構造の場合、ΔCは、初期のMEMS製造バラツキで決まる静的なものとみなせるため、MEMS容量補償ループの帯域を狭くすることができ、制御部514の設計が容易になり、その結果、より低雑音化できる。
《実施例5の効果》
以上のように、本実施の形態5における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。実施の形態1と比較して、MEMSが差動構造となるため実装面積が増大するが、より低雑音にできる。
図6に、本発明の実施の形態6を示す。本実施の形態は、実施の形態5と基本部分は同じであるため、実施の形態5からの差分を説明する。本実施の形態では、相関検波部513は、実施の形態5のように差動A/D変換器506の出力にではなく、差動チャージアンプ503の出力に接続されている。そのため、相関検波部513は、差動チャージアンプ503の出力に含まれるサーボリーク信号を、1ビット量子化器509の出力信号と相関をとることで検出する。本発明の実施の形態5と異なり、差動アンプ504、差動アナログフィルタ505、差動A/D変換器506を経由せず、差動チャージアンプ503の出力のサーボリーク信号を直接検出する。したがって、上記の各アナログ回路ブロックによるサーボリーク信号の遅延がないため、MEMS容量補償ループを安定化させ易く、制御部514のパラメータ設計が容易になる。その代わり、相関検波部513をアナログ回路で実現する必要がある点や制御部514にA/D変換器が別途必要となる点は、実施の形態5と比較したデメリットとなる。
《実施例6の効果》
以上のように、本実施の形態6における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。差動チャージアンプ出力のサーボリーク信号を直接検出するため、安定化設計が容易である。
図7に、本発明の実施の形態7を示す。本実施の形態は、実施の形態5と基本部分は同じであるため、実施の形態5からの差分を説明する。本実施の形態では、可変容量用ドライバ516と可変容量部515a、515bの間に遅延部717が挿入される。この遅延部717は、1ビットD/A変換器510の駆動能力の限界からくる応答遅延を模擬することを目的としている。1ビットD/A変換器510の応答遅延は、その出力抵抗と正側サーボ制御用容量502a、502b、負側サーボ制御用容量502c、502dの容量値の積である時定数で決まり、1次ローパスフィルタ特性となる。そこで、前記遅延部717を、同程度の時定数を持つ1次ローパスフィルタとすることで、1ビットD/A変換器510の出力波形を模擬できる。これにより、実施の形態5に開示したサーボリーク信号の相殺をより完全に行うことができる。
《実施例7の効果》
以上のように、本実施の形態7における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。遅延部により1ビットD/A変換器の遅延補償を行うため、サーボリーク信号のより高精度な相殺が可能である。
図8に、本発明の実施の形態8を示す。本実施の形態は、実施の形態5と基本部分は同じであるため、実施の形態5からの差分を説明する。本実施の形態では、可変容量用ドライバ516と可変容量部515bの間にインバータ818が挿入される。これにより、可変容量部515aの下端にかかる電圧と可変容量部515bの下端にかかる電圧が互いに論理反転した状態となるため、制御部514からの制御信号を、可変容量部515a用と可変容量部515b用で共用できる。
《実施例8の効果》
以上のように、本実施の形態8における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。
本実施の形態9における加速度センサについて、図9を用いて説明する。図9は、加速度センサの構成の一例を示す図である。実施の形態1と異なり、可変抵抗部を用い、かつ、初段のチャージアンプではなく、次段のアンプにおいて、MEMS容量を補償する。
加速度センサは、機械部分がMEMS(Micro Electro Mechanical Systems)で構成され、回路部分がASIC(Application Specific Integrated Circuit)で構成されている。この加速度センサは、これに限定されるものではないが、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとして、重力よりも極めて微小な振動加速度を検知するMEMS静電容量型の加速度センサに用いられる。
まず、構成を説明する。MEMSは、信号検出用容量対101a、101b、サーボ制御用容量対102a、102bからなる。これらの4つの容量の一方の電極は機械的にも電気的にも互いに接続されており、一つの錘(可動電極部)100をなす。錘はチャージアンプ103を構成するオペアンプ103aの反転入力端子に接続される。チャージアンプ103はオペアンプ103aとその帰還容量103bと帰還抵抗103cで構成される。オペアンプ103aの非反転入力端子にはバイアス電圧VBが接続される。VBはグランド電位であってもなくてもよい。チャージアンプ103の出力(すなわち、オペアンプ103aの出力)はアンプ904に入力される。アンプ904は抵抗帰還型のオペアンプ反転増幅回路であり、オペアンプ904a、入力抵抗904b、帰還抵抗904cからなる。オペアンプ904aの非反転入力端子にはバイアス電圧VBが接続される。VBはグランド電位であってもなくてもよい。アンプ904の出力(すなわち、オペアンプ904aの出力)はアナログフィルタ105に入力され、アナログフィルタ105の出力はA/D変換器106に入力される。A/D変換器106の出力は復調器107に入力される。復調器107には変調クロックも入力される。復調器107の出力はサーボ制御部108に入力され、サーボ制御部108の出力は1ビット量子化器109に入力され、1ビット量子化器109の出力は1ビットD/A変換器110に入力される。1ビットD/A変換器110の差動出力は、前記サーボ制御用容量対102a、102bの電極(錘でない側の電極)にそれぞれ接続される。また、前記変調クロックとその反転クロックは、それぞれ、信号検出用容量対用ドライバ112a、112bに入力され、それらの出力は、それぞれ、信号検出用容量対101a、101bの電極(錘でない側の電極)に接続される。さらに、前記A/D変換器106の出力は相関検波部113にも入力され、相関検波部113には、1ビット量子化器109の出力も入力される。相関検波部113の出力は制御部114に入力され、制御部114の出力は制御信号として可変抵抗部915の抵抗値を制御する。1ビット量子化器109の出力はドライバ916にも入力され、ドライバ916の出力は遅延部917に入力され、遅延部917の出力は、前記可変抵抗部915の一方の端子に接続される。可変抵抗部915の他方の端子は、オペアンプ904aの反転入力端子ノードに接続されている。さらに、1ビット量子化器109の出力はデジタルローパスフィルタ111に入力され、デジタルローパスフィルタ111の出力が加速度センサとしての出力になる。ASICは、前記チャージアンプ103から1ビットD/A変換器110までである。
次に動作を説明する。本加速度センサに外部から加速度が印加されると、可動となっている錘100に慣性力が生じ、その結果、錘100の位置が変位する。錘100は信号検出用容量対101a、101bの電極でもあるため、前記変位により、これらの容量値が変化する。例えば、図9において加速度が右方向に印加され、錘100が右方向に変位すると、信号検出用容量101bの可動電極(すなわち、錘100)と固定電極との距離が狭くなって+ΔCDの容量変化値となり、信号検出用容量101aの可動電極(すなわち、錘100)と固定電極との距離が広くなって−ΔCDの容量変化値となる。このような信号検出用容量対101a、101bにおける容量変化値(+ΔCD、−ΔCD)に基づいて、加速度の印加の方向と量を検出することができる。なお、検出用容量対101a、101bの対構造は、容量値の同相成分をキャンセルするためなど、詳細は説明しないが公知の種々の目的のための構造である。また、上記の説明や図9などのMEMSの構成は説明の便宜上、平行平板容量となっているが、他の種類の容量であっても同様な仕組みが成り立つ。したがって、本発明は平行平板容量型のMEMSに限定されるものではない。
前記検出用容量対101a、101bには、信号検出用容量対用ドライバ112a、112b経由で変調クロック電圧とその反転クロック電圧がそれぞれ印加されている。これにより、前記ΔCDの容量変化は電荷変化に変換される。この電荷変化はASIC内の初段のチャージアンプ103により電圧変化に変換される。チャージアンプ103は、容量型のいわゆるオペアンプ反転増幅器の構成であり、入力容量はMEMS側の信号検出用容量対101a、101b、帰還容量はASIC側の帰還容量103bである。ただし、高抵抗値の帰還抵抗103cを帰還経路に並列に挿入している。その理由は、オペアンプ103aの入力リーク電流を補償する直流電流フィード経路を確保するためである。これに対して、帰還抵抗103cの部分にリセットスイッチを用いる対策が従来知られているが、その場合、リセットスイッチによるサンプリング雑音の雑音密度が高い問題がある。なお、本方法で用いる高抵抗値の帰還抵抗103cによる熱雑音は、帰還抵抗103cと帰還容量103bによるローパスフィルタ特性により、所望周波数(すなわち、変調クロックの周波数)近傍では十分に抑圧されるため問題ない。
チャージアンプ103で電圧に変換された信号は、アンプ904で増幅され、アナログフィルタ105で雑音や不要信号成分が抑圧され、A/D変換器106によりデジタル値に変換される。復調器107は2入力のデジタル乗算器であり、A/D変換器106の出力と変調クロックを乗算することで、変調クロックに対する同期検波を行う。その結果、錘100の変位に比例した値が復調器107の出力に得られる。この一連の変復調処理は、いわゆる「チョッパ方式」と等価であり、これにより、チャージアンプ103、アンプ904、アナログフィルタ105、A/D変換器106で生じる大きな1/f雑音による影響を回避できる。サーボ制御部108は、復調器107で復調された錘100の変位値を入力として、この値に基づいて検出信号とは逆向きの力を発生させるサーボ値を決定して、1ビット量子化器109に出力する回路である。特に、例えば、サーボ制御部108での信号処理にデジタル積分演算を含むことで、錘100の変位がゼロになるような制御を行ってもよい。これにより、信号検出用容量対101a、101bの容量値変化が極小となるため、加速度センサとしての線形性を高めることができる。また、サーボ制御部108での信号処理に微分(または、差分)演算を含むことで位相補償を行い、サーボ制御ループを安定化させてもよい。その際には一般的なPID制御の理論を適用できる。
1ビット量子化器109は、サーボ制御部108が決定し出力するサーボ値を1ビットに量子化する。例えば、1ビット量子化器109の入力が0以上であれば+1を、入力が負であれば−1を出力する。1ビットD/A変換器110は、1ビット量子化器109で量子化された1ビットのデジタル値(±1)を入力とし、このデジタル値をアナログ電圧(例えば、±5V、あるいは、10V/0V)に変換し、このアナログ電圧をサーボ制御用容量対102a、102bの固定電極に印加する。これにより、検出された加速度信号と逆方向の静電気力を錘100に対して印加することができる。定常状態では、錘100にはたらく正味の力および錘100の変位はほぼゼロになる。このように1ビット量子化器109を挿入することで、後続するD/A変換器を1ビットD/A変換器110とすることができる。1ビットD/A変換器は回路的に実装が容易であるため、低消費電力化に有利である。さらに、サーボ制御用容量部も簡素化できる。なお、1ビット量子化器109の出力は、デジタルローパスフィルタ111により、高周波成分(すなわち、サーボループのシグマデルタ制御により高周波側にノイズシェーピング(拡散)された量子化誤差)が抑圧されるため、最終的な加速度センサの出力は低雑音にできる。以上の構成により、本加速度センサでは、信号検出とサーボ制御を同時に行っている。
本発明ではさらに、相関検波部113により、A/D変換器106の出力信号と1ビット量子化器109の出力信号の相関をとる。これは、サーボ制御用容量対102aと102bの間の容量値のミスマッチΔCを検出するためである。このΔCが存在するとΔCに比例したサーボリーク信号がチャージアンプ103の出力に生成され、以降、アンプ904により増幅され、アナログフィルタ105により多少高周波成分が抑圧され、A/D変換器106によりデジタル値に変換される。サーボ制御用容量対102a、102bには、1ビットD/A変換器110経由で、1ビット量子化器109の出力信号と同じ波形、およびその反転波形が差動で印加されているため、前記サーボリーク信号は1ビット量子化器109の出力信号とほぼ同一の波形である。すなわち、サーボリーク信号は、前記ΔCに比例し、かつ、1ビット量子化器109の出力信号と同一波形である。この事実に着目し、例えば、A/D変換器106の出力に含まれるサーボリーク信号を検出することができる。そのために、前記の通り、A/D変換器106の出力信号を、1ビット量子化器109の出力信号と、相関検波部113において相関をとっている。これにより、相関検波部113の出力には、前記ΔCに比例した直流または低周波の信号を含むことができる。
そこで、後続する制御部114は、相関検波部113の出力信号に対して、デジタル積分演算や必要に応じて位相補償演算を行い、抵抗制御値を決定し、出力する。この抵抗制御値はデジタル値であり、これにより、可変抵抗部915の抵抗値が制御される。可変抵抗部915は、前記ΔCによる影響をアンプ904の中のオペアンプ904aの反転入力端子ノード上で、いわゆる「オペアンプ減算器」の方法で相殺する目的である。ただし、本発明の他の各実施の形態とは異なり、チャージアンプ103を経由した後でΔCの影響を相殺するため、チャージアンプ103の帰還容量103bと帰還抵抗103cによる1次ハイパスフィルタ特性とオペアンプ103aの有限帯域によるローパスフィルタ特性を補償した電圧波形を、可変抵抗部915の下端に印加する必要がある。そのために、遅延部917を挿入する必要がある。他の実施の形態と同様に、制御部114に積分演算を含むことで、ΔCおよびサーボリーク信号がゼロとなるように負帰還制御できる。
《実施例9の効果》
以上のように、本実施の形態9における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。
以上に説明した実施例1〜実施例9の加速度センサにおいて、1ビット量子化器109,509に替えて、1.5ビット(3値) 量子化器、又は2ビット以上の量子化器を使用して、対応させて1ビットD/A変換器110,510に替えて1.5ビット(3値) D/A変換器、又は2ビット以上のD/A変換器を使用して加速度センサを構成してもよい。
各実施例の加速度センサは、機械部分のMEMS、および回路部分のASICがそれぞれ個別の半導体基板上に形成されて、個別の半導体チップとして構成されることが先ず考えられるが、将来は、同一の半導体チップ上にMEMS、およびASICが形成されることが考えられる。
各実施例の加速度センサは、一次元の加速度センサを構成するものであり、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとしての用途の場合には、一次元の加速度センサの構成が使用される。例えば、三次元の加速度センサとしての用途の場合には、一次元の加速度センサのモジュールを各次元用に3つ構成するか、または共通のASICに対して3つのMEMSを接続する構成が考えられる。
各実施例に示したMEMS静電容量型の加速度センサは、将来、車載の用途も考えられる。
《相関検波部、制御部、可変容量部、可変抵抗部の構成》
図10に、実施の形態1(実施の形態5)において適用される相関検波部113(513)、制御部114(514)、可変容量部115(515a、515b)の一例を示す。相関検波部113は、デジタル乗算器1001とその出力に接続されたデジタルローパスフィルタ1002で実現できる。また、制御部114は、デジタル積分器1003とその出力に接続された位相補償部1004で実現できる。位相補償部1004は微分(または差分)演算を含み、これにより位相を進めるゼロ点を生成してサーボ制御を安定化させられる。位相補償部1004の出力のデジタル値により、可変容量部115が制御される。可変容量部115は、例えば4ビット制御であれば、並列接続されたバイナリ容量素子1005a、1005b、1005c、1005dと、各容量素子に接続されたスイッチ1006からなる。前記4ビット制御値に応じて、前記各バイナリ容量素子に接続されたスイッチ1006のいくつかがオンになり、これにより並列容量値が可変される。
図11に、実施の形態2(実施の形態6)において適用される相関検波部113(513)、制御部114(514)、可変容量部115(515a、515b)の一例を示す。相関検波部113は、アナログ乗算器1101とその出力に接続されたアナログローパスフィルタ1102で実現できる。また、制御部114は、アナログ積分器1103とその出力に接続されたA/D変換器1104で実現できる。A/D変換器1104の後に、図10の位相補償部1004を挿入してサーボ制御の安定性を高めてもよい。A/D変換器1104の出力や位相補償部1004の出力のデジタル値により、可変容量部115が制御される。可変容量部115は図10と同様である。
図12に、実施の形態2(実施の形態6)において適用される相関検波部113(513)、制御部114(514)、可変容量部115(515a、515b)の他の一例を示す。相関検波部113は、図11と同様、アナログ乗算器1101とその出力に接続されたアナログローパスフィルタ1102で実現できる。また、制御部114は、比較器1203とその出力に接続されたアップダウンカウンタ1204で実現している。ここで比較器1203は1ビットA/D変換器の役割を、アップダウンカウンタ1204はデジタル積分器の役割を果たす。ただし、比較器1203で1ビットに量子化されるため、MEMS容量補償ループの応答性と安定性は、図10、図11の構成に劣る。その代わり、比較器もアップダウンカウンタも簡単な回路であるため、回路設計が容易である。アップダウンカウンタの出力のデジタル値(カウント値)により、可変容量部115が制御される。可変容量部115は図10と同様である。
図13に、実施の形態9において適用される相関検波部113、制御部114、可変抵抗部915の一例を示す。相関検波部113は、デジタル乗算器1001とその出力に接続されたデジタルローパスフィルタ1002で実現できる。また、制御部114は、デジタル積分器1003とその出力に接続された位相補償部1004で実現できる。位相補償部1004は微分(または差分)演算を含み、これにより位相を進めるゼロ点を生成してサーボ制御を安定化させられる。位相補償部1004の出力のデジタル値により、可変抵抗部915が制御される。可変抵抗部915は、例えば4ビット制御であれば、並列接続されたバイナリ抵抗素子1305a、1305b、1305c、1305dと、各抵抗素子に接続されたスイッチ1306からなる。前記4ビット制御値に応じて、前記各バイナリ抵抗素子に接続されたスイッチ1306のいくつかがオンになり、これにより並列抵抗値が可変される。
図17は、図16におけるデジタル制御分圧器の構成例を示す図面である。
図18は、図16におけるデジタル制御分圧器の別の構成例を示す図面である。
図19は、本発明の加速度センサの遅延部の構成例を示す図面である。
図20は、本発明の加速度センサの遅延部の別の構成例を示す図面である。
図21は、本発明の加速度センサの相関検波部におけるアナログ乗算器の構成例を示す図面である。
図22は、本発明の加速度センサの相関検波部におけるアナログ乗算器の別の構成例を示す図面である。
100 錘(可動電極部)
101a,101b 信号検出用容量対
102a,102b サーボ制御用容量対
103 チャージアンプ
103a オペアンプ
103b 帰還容量
103c 帰還抵抗
104 アンプ
105 アナログフィルタ
106 A/D変換器
107 復調器
108 サーボ制御部
109 1ビット量子化器
110 1ビットD/A変換器
111 デジタルローパスフィルタ
112a,112b 信号検出用容量対用ドライバ
113 相関検波部
114 制御部
115 可変容量部
116 可変容量用ドライバ
417 遅延部
500a,500b 錘(可動電極部)
501a,501b 正側信号検出用容量対
501c,501d 負側信号検出用容量対
502a,502b 正側サーボ制御用容量対
502c,502d 負側サーボ制御用容量対
503 差動チャージアンプ
503a,503d オペアンプ
503b,503e 帰還容量
503c,503f 帰還抵抗
504 差動アンプ
505 差動アナログフィルタ
506 差動A/D変換器
507 復調器
508 サーボ制御部
509 1ビット量子化器
510 1ビットD/A変換器
511 デジタルローパスフィルタ
512a,512b 信号検出用容量対用ドライバ
513 相関検波部
514 制御部
515a,515b 可変容量部
516 可変容量用ドライバ
717 遅延部
818 インバータ
904 アンプ
904a オペアンプ
904b 入力抵抗
904c 帰還抵抗
915 可変抵抗部
916 ドライバ
917 遅延部
1001 デジタル乗算器
1002 デジタルローパスフィルタ
1003 デジタル積分器
1004 位相補償部
1005a,1005b,1005c,1005d バイナリ容量素子
1006 スイッチ
1101 アナログ乗算器
1102 アナログローパスフィルタ
1103 アナログ積分器
1104 A/D変換器
1203 比較器
1204 アップダウンカウンタ
1305a,1305b,1305c,1305d バイナリ抵抗素子
1306 スイッチ

Claims (12)

  1. MEMS静電容量型の加速度センサであって、
    信号検出用の第1MEMS容量対と、
    前記第1MEMS容量対とそれぞれ一方の電極同士が接続されて正側の錘(可動電極部)が構成され、前記第1MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第2MEMS容量対と、
    信号検出用の第3MEMS容量対と、
    前記第3MEMS容量対とそれぞれ一方の電極同士が接続されて負側の錘(可動電極部)が構成され、前記第3MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第4MEMS容量対と、
    前記正側の錘と接続して、前記正側の錘上の電荷変化を電圧変化に変換する第1チャージアンプと、
    前記負側の錘と接続して、前記負側の錘上の電荷変化を電圧変化に変換する第2チャージアンプと、
    前記第1、及び第2チャージアンプの差動出力の電圧変化信号をデジタル化するA/D変換器と、
    前記A/D変換器の出力から作成された前記加速度による前記錘の変位と逆向きの力を発生させるサーボ値を1ビットに量子化する1ビット量子化器と、
    前記1ビット量子化器の出力をアナログのサーボ電圧に変換して前記第2MEMS容量対、及び前記第4MEMS容量対へ印加する1ビットD/A変換器と、
    前記A/D変換器の出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力する相関検波部と、
    前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記第1、及び第2チャージアンプの入力ノード上で相殺する差動容量制御値を出力する制御部と、
    前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記第1チャージアンプの入力ノードの間に挿入され、前記制御部の出力の差動容量制御値に従って容量を制御する第1可変容量部と、
    前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記第2チャージアンプの入力ノードの間に挿入され、前記制御部の出力の差動容量制御値に従って容量を制御する第2可変容量部と、
    を備えたことを特徴とする加速度センサ。
  2. 請求項1に記載の加速度センサにおいて、
    前記相関検波部は、前記A/D変換器の出力に替えて前記第1、または第2チャージアンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。
  3. 請求項1に記載の加速度センサにおいて、
    前記第1可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けて接続された遅延部の前記1ビットD/A変換器の応答遅延を模擬する遅延の出力ノードと、前記第1チャージアンプの入力ノードの間に挿入されて、前記制御部の出力の差動容量制御値に従って容量が制御され、
    前記第2可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けて接続された遅延部の前記1ビットD/A変換器の応答遅延を模擬する遅延の出力ノードと、前記第2チャージアンプの入力ノードの間に挿入されて、前記制御部の出力の差動容量制御値に従って容量が制御されることを特徴とする加速度センサ。
  4. 請求項1に記載の加速度センサにおいて、
    前記制御部は、前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記第1、及び第2チャージアンプの入力ノード上で相殺する共通の容量制御値を出力し、
    前記第2可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けてインバータが接続された出力ノードと、前記第2チャージアンプの入力ノードの間に挿入され、前記制御部の出力の容量制御値に従って容量が制御されることを特徴とする加速度センサ。
  5. 請求項1に記載の加速度センサにおいて、
    前記制御部は、前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記第1、及び第2チャージアンプの入力ノード上で相殺する共通の容量制御値を出力し、
    前記第2可変容量部は、前記1ビット量子化器の出力を論理反転し、かつ、前記サーボ
    電圧の振幅よりも抑えた電圧振幅を持つ信号と、前記第2チャージアンプの入力ノードの間に挿入され、前記制御部の出力の容量制御値に従って容量が制御されることを特徴とする加速度センサ。
  6. 請求項1に記載の加速度センサにおいて、
    前記相関検波部は、前記A/D変換器の出力に替えて前記第1、または第2チャージア
    ンプの出力信号を増幅するアンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。
  7. 請求項5に記載の加速度センサにおいて、
    前記相関検波部は、前記A/D変換器の出力に替えて前記第1、または第2チャージア
    ンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。
  8. 請求項5に記載の加速度センサにおいて、
    前記相関検波部は、前記A/D変換器の出力に替えて前記第1、または第2チャージア
    ンプの出力信号を増幅するアンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。
  9. 請求項1乃至8のいずれかの請求項に記載の加速度センサにおいて、
    前記1ビット量子化器に替えて、1.5ビット(3値) 量子化器、又は2ビット以上の量子化器を使用して、
    前記1ビットD/A変換器に替えて、1.5ビット(3値) D/A変換器、又は2ビット以上のD/A変換器を使用していることを特徴とする加速度センサ。
  10. 請求項1に記載の加速度センサにおいて、
    前記相関検波部は、入力部よりデジタル乗算器とデジタルローパスフィルタにより構成され、
    前記制御部は、少なくとも一つの積分器を含んでおり、
    前記可変容量部は、並列接続されたバイナリ容量素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。
  11. 請求項2に記載の加速度センサにおいて、
    前記相関検波部は、入力部よりアナログ乗算器とアナログローパスフィルタにより構成され、
    前記制御部は、前記相関検波部の出力を入力部より受けて、アナログ積分器と、及びA/D変換器により構成され、
    前記可変容量部は、並列接続されたバイナリ容量素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。
  12. 請求項2に記載の加速度センサにおいて、
    前記相関検波部は、入力部よりアナログ乗算器とアナログローパスフィルタにより構成され、
    前記制御部は、前記相関検波部の出力を入力部より受けて、1ビットA/D変換器の役割を果たす比較器と、及びデジタル積分器の役割を果たすアップダウンカウンタにより構成され、
    前記可変容量部は、並列接続されたバイナリ容量素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。
JP2018036452A 2018-03-01 2018-03-01 加速度センサ Active JP6446579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018036452A JP6446579B2 (ja) 2018-03-01 2018-03-01 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036452A JP6446579B2 (ja) 2018-03-01 2018-03-01 加速度センサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017500164A Division JP6397115B2 (ja) 2015-02-17 2015-02-17 加速度センサ

Publications (2)

Publication Number Publication Date
JP2018087829A true JP2018087829A (ja) 2018-06-07
JP6446579B2 JP6446579B2 (ja) 2018-12-26

Family

ID=62493004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036452A Active JP6446579B2 (ja) 2018-03-01 2018-03-01 加速度センサ

Country Status (1)

Country Link
JP (1) JP6446579B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003584A (zh) * 2020-08-28 2020-11-27 上海应用技术大学 一种基于时滞反馈的微谐振器控制系统
CN112769407A (zh) * 2020-12-24 2021-05-07 江苏集萃微纳自动化系统与装备技术研究所有限公司 应用于mems加速度传感器的c/v转换系统及其控制方法
CN114509579A (zh) * 2021-03-31 2022-05-17 西安电子科技大学 采用电压控制比例读出技术的mems电容型加速度计接口电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895397B2 (ja) * 2018-01-09 2021-06-30 株式会社日立製作所 加速度センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066323A (ja) * 1999-07-29 2001-03-16 Litton Syst Inc デジタル的に再度平衡状態に設定される加速度計において、出力ノイズを低減するための方法および装置
JP2011027445A (ja) * 2009-07-22 2011-02-10 Mitsutoyo Corp 過減衰型加速度計及び地震計
JP2014235169A (ja) * 2013-05-31 2014-12-15 ハネウェル・インターナショナル・インコーポレーテッド 拡張レンジ閉ループ加速度計
WO2016132447A1 (ja) * 2015-02-17 2016-08-25 株式会社日立製作所 加速度センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066323A (ja) * 1999-07-29 2001-03-16 Litton Syst Inc デジタル的に再度平衡状態に設定される加速度計において、出力ノイズを低減するための方法および装置
JP2011027445A (ja) * 2009-07-22 2011-02-10 Mitsutoyo Corp 過減衰型加速度計及び地震計
JP2014235169A (ja) * 2013-05-31 2014-12-15 ハネウェル・インターナショナル・インコーポレーテッド 拡張レンジ閉ループ加速度計
WO2016132447A1 (ja) * 2015-02-17 2016-08-25 株式会社日立製作所 加速度センサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003584A (zh) * 2020-08-28 2020-11-27 上海应用技术大学 一种基于时滞反馈的微谐振器控制系统
CN112003584B (zh) * 2020-08-28 2024-01-26 上海应用技术大学 一种基于时滞反馈的微谐振器控制系统
CN112769407A (zh) * 2020-12-24 2021-05-07 江苏集萃微纳自动化系统与装备技术研究所有限公司 应用于mems加速度传感器的c/v转换系统及其控制方法
CN112769407B (zh) * 2020-12-24 2023-07-11 江苏集萃微纳自动化系统与装备技术研究所有限公司 应用于mems加速度传感器的c/v转换系统及其控制方法
CN114509579A (zh) * 2021-03-31 2022-05-17 西安电子科技大学 采用电压控制比例读出技术的mems电容型加速度计接口电路
CN114509579B (zh) * 2021-03-31 2023-03-14 西安电子科技大学 采用电压控制比例读出技术的mems电容型加速度计接口电路

Also Published As

Publication number Publication date
JP6446579B2 (ja) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6397115B2 (ja) 加速度センサ
JP6446579B2 (ja) 加速度センサ
TWI585368B (zh) 用以於物理參數之測量期間減少非線性的方法及用以實施此方法之電子電路
US6386032B1 (en) Micro-machined accelerometer with improved transfer characteristics
JP4966777B2 (ja) A/d変換器
JP6373786B2 (ja) 容量検出型センサの信号検出方法、容量検出型センサ、およびシステム
US7423568B2 (en) Sigma delta modulator
JPH06265417A (ja) 力測定装置
JP6895397B2 (ja) 加速度センサ
JP6358913B2 (ja) 加速度センサ
Kulah et al. A multi-step electromechanical/spl Sigma//spl Delta/converter for micro-g capacitive accelerometers
EP2966456A1 (en) Electronic measurement circuit for a capacitive sensor
US11169174B2 (en) MEMS electrostatic capacitor type acceleration sensor
Northemann et al. Drive and sense interface for gyroscopes based on bandpass sigma-delta modulators
Almutairi et al. Multi stage noise shaping sigma–delta modulator (MASH) for capacitive MEMS accelerometers
US9383860B2 (en) Capacitance processing circuit and a MEMS device
US7956783B2 (en) Analog-to-digital converter using digital output as dither
Lanniel et al. Evaluation of frontend readout circuits for high performance automotive MEMS accelerometers
Xu et al. A high-order closed-loop ΣΔ interface for micro-machined accelerometer sensor
Saxena et al. Modeling and simulation of high performance sixth order sigma-delta MEMS accelerometer
WO2020195606A1 (ja) 加速度センサ、出力信号制御方法
Almutairi et al. MASH2-0 electromechanical sigma-delta modulator for capacitive MEMS sensors using dual quantization method
Ismail et al. ∑-Δ based force-feedback capacitive micro-machined sensors: Extending the input signal range
Lv et al. A high-performance closed-loop fourth-order sigma-delta micro-machined accelerometer
JP2019087876A (ja) Δς変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150