JP2018084637A - Optical element, exposure equipment, and manufacturing method of article - Google Patents

Optical element, exposure equipment, and manufacturing method of article Download PDF

Info

Publication number
JP2018084637A
JP2018084637A JP2016226733A JP2016226733A JP2018084637A JP 2018084637 A JP2018084637 A JP 2018084637A JP 2016226733 A JP2016226733 A JP 2016226733A JP 2016226733 A JP2016226733 A JP 2016226733A JP 2018084637 A JP2018084637 A JP 2018084637A
Authority
JP
Japan
Prior art keywords
film
optical element
optical
correction
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016226733A
Other languages
Japanese (ja)
Other versions
JP2018084637A5 (en
JP6862154B2 (en
Inventor
浩平 井本
Kohei Imoto
浩平 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016226733A priority Critical patent/JP6862154B2/en
Priority to TW106136870A priority patent/TWI647545B/en
Priority to KR1020170151266A priority patent/KR102230464B1/en
Priority to CN201711141071.3A priority patent/CN108089407B/en
Publication of JP2018084637A publication Critical patent/JP2018084637A/en
Publication of JP2018084637A5 publication Critical patent/JP2018084637A5/ja
Application granted granted Critical
Publication of JP6862154B2 publication Critical patent/JP6862154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical element advantageous for correcting such a complex deformation as having a plurality of inflection points.SOLUTION: An optical element 2 includes: a mirror 21 having an optical surface 21a equipped with a reflection coating and a non-optical surface 21b on an opposite side with regard to the optical surface 21a; and a plurality of correction films 23 disposed on the non-optical surface 21b side and configured to correct a form of the mirror 21. The plurality of correction films 23 are disposed separated into a plurality of areas different from one another at the non-optical surface 21b side.SELECTED DRAWING: Figure 1

Description

本発明は、光学素子、露光装置、および物品の製造方法に関する。   The present invention relates to an optical element, an exposure apparatus, and an article manufacturing method.

半導体の製造に用いられる投影露光装置においては、露光時の温度変化による収差の劣化に対応するために、光学系に使用されているミラーの反射面の形状を可変とし、収差を補正する技術がある。形状が可変である光学素子は、変形しやすいように厚みを薄く(例えば、5mm程度)形成されるが、その薄さによりさまざまな要因によって素子が変形する懸念がある。   In a projection exposure apparatus used for manufacturing semiconductors, in order to cope with aberration deterioration due to temperature changes during exposure, there is a technique for correcting the aberration by changing the shape of the reflecting surface of the mirror used in the optical system. is there. An optical element having a variable shape is formed thin (for example, about 5 mm) so as to be easily deformed, but there is a concern that the element may be deformed due to various factors due to the thinness.

一般に、ミラーの変形を補正する方法として、ミラーの反射面(即ち、光学面)に対して反対側の非光学面に薄膜を形成し、光学面側の内部応力を非光学面の内部応力によって相殺することでミラーの変形を補正する方法がある。例えば、特許文献1記載の方法では、膜厚分布を制御するための制御板を用いて非光学面の薄膜を部位によって任意の厚みに成膜して光学素子の変形を補正する。   In general, as a method for correcting the deformation of the mirror, a thin film is formed on the non-optical surface opposite to the reflecting surface (that is, the optical surface) of the mirror, and the internal stress on the optical surface side is determined by the internal stress of the non-optical surface. There is a method of correcting the deformation of the mirror by canceling. For example, in the method described in Patent Literature 1, a thin film having a non-optical surface is formed to have an arbitrary thickness by using a control plate for controlling the film thickness distribution, and the deformation of the optical element is corrected.

特開2005−19485号公報Japanese Patent Laid-Open No. 2005-19485

しかしながら、特許文献1の膜厚分布制御板を用いる方法では、光学素子の変形が球面変形のような低次の変形であれば補正可能であるが、複数の変曲点を持つような複雑な変形を補正する場合は不利である。   However, in the method using the film thickness distribution control plate of Patent Document 1, correction is possible if the deformation of the optical element is a low-order deformation such as a spherical deformation, but it is complicated such as having a plurality of inflection points. It is disadvantageous when correcting the deformation.

本発明は、例えば、複数の変曲点を持つような複雑な変形を補正するのに有利な光学素子を提供することを目的とする。   An object of the present invention is to provide an optical element that is advantageous for correcting a complex deformation having, for example, a plurality of inflection points.

上記課題を解決するために、本発明は、反射膜が設けられた光学面、及び、前記光学面に対して反対側の非光学面を有する光学素子本体と、前記非光学面側に設けられ、前記光学素子本体の形状を補正するための複数の補正膜と、を備えた光学素子であって、前記複数の補正膜は、前記非光学面側において互いに異なる複数の領域に分かれて設けられていることを特徴とする。   In order to solve the above problems, the present invention is provided on an optical surface provided with a reflective film, an optical element body having a non-optical surface opposite to the optical surface, and the non-optical surface side. A plurality of correction films for correcting the shape of the optical element body, wherein the plurality of correction films are provided in a plurality of different regions on the non-optical surface side. It is characterized by.

本発明によれば、例えば、複数の変曲点を持つような複雑な変形を補正する点で有利な光学素子を提供することができる。   According to the present invention, it is possible to provide an optical element that is advantageous in that, for example, a complicated deformation having a plurality of inflection points is corrected.

第1実施形態に係る光学素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the optical element which concerns on 1st Embodiment. 可変形状光学素子ユニットの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a variable shape optical element unit. 円板ガラスでの薄膜による変形状態を示す模式図である。It is a schematic diagram which shows the deformation | transformation state by the thin film in disc glass. 曲面であり、厚みに分布のある可変形状光学素子での薄膜による変形を示す模式図である。It is a schematic diagram showing deformation by a thin film in a deformable optical element having a curved surface and distribution in thickness. 補正膜の領域生成のためのマスキングの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the masking for the area | region production | generation of a correction | amendment film | membrane. 非光学面の補正膜の厚みを全面均一とした場合の、膜の内部応力によるミラーの変形状態を示す概略断面図である。It is a schematic sectional drawing which shows the deformation | transformation state of the mirror by the internal stress of a film | membrane when the thickness of the correction | amendment film | membrane of a non-optical surface is made the whole surface uniform. 膜応力によるミラーの変形からマスキングの配置を求めるための図である。It is a figure for calculating | requiring arrangement | positioning of masking from the deformation | transformation of the mirror by a film | membrane stress. マスキングの配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of a masking. 光学素子の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of an optical element. 第2実施形態に係る光学素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the optical element which concerns on 2nd Embodiment. 第3実施形態に係る光学素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the optical element which concerns on 3rd Embodiment. 第3実施形態の変形例に係る光学素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the optical element which concerns on the modification of 3rd Embodiment. 第4実施形態に係る露光装置の構成を示す概略図である。It is the schematic which shows the structure of the exposure apparatus which concerns on 4th Embodiment.

以下、図面を参照して本発明を実施するための形態について詳細に説明する。以下の実施形態では光学素子の一例としてミラーを例として説明するが、ミラーを他の光学素子(プリズム、レンズ)等に置き換えてもその効果は同様である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following embodiments, a mirror will be described as an example of an optical element, but the effect is the same even if the mirror is replaced with another optical element (prism, lens) or the like.

[第1実施形態]
図1は、本発明の第1実施形態に係る光学素子2の構成を示す概略断面図である。光学素子2は、光を反射する光学面21a、及び、光学面21aに対して反対側の非光学面21bを有するミラー(即ち、光学素子本体)21と、非光学面21bに設けられ、ミラー21の形状の変形を補正するための第1の膜としての補正膜23と、を備える。補正膜23は、後述するように、複数の膜領域23−nで構成される。また、光学素子2は、光学面21aに、光学機能を改善する第2の膜としての反射膜22を備える。ミラー21は、例えば、光学面の形状を可変とする可変形状光学素子が用いられる。
[First Embodiment]
FIG. 1 is a schematic cross-sectional view showing the configuration of the optical element 2 according to the first embodiment of the present invention. The optical element 2 is provided on a mirror (that is, an optical element body) 21 having an optical surface 21a that reflects light and a non-optical surface 21b opposite to the optical surface 21a, and the non-optical surface 21b. And a correction film 23 as a first film for correcting the deformation of the shape 21. As will be described later, the correction film 23 includes a plurality of film regions 23-n. Further, the optical element 2 includes a reflection film 22 as a second film for improving the optical function on the optical surface 21a. As the mirror 21, for example, a variable shape optical element that makes the shape of the optical surface variable is used.

図2は、光学素子2を変形させる可変形状光学素子ユニット1の構成を示す概略断面図である。光学素子2は、ミラー21の表面である光学面に反射膜22が成膜され、ミラー21の裏面である非光学面に補正膜23が成膜される。光学素子2は、ベース3に保持部材31を介して取付けられている。また、光学素子2の非光学面側である裏面に、ミラー21を変形駆動させるアクチュエータ4が複数配置される。ミラー21はアクチュエータ4を駆動することで所望の形状に変形される。   FIG. 2 is a schematic cross-sectional view showing the configuration of the deformable optical element unit 1 that deforms the optical element 2. In the optical element 2, a reflective film 22 is formed on the optical surface that is the surface of the mirror 21, and a correction film 23 is formed on the non-optical surface that is the back surface of the mirror 21. The optical element 2 is attached to the base 3 via a holding member 31. A plurality of actuators 4 for deforming and driving the mirror 21 are arranged on the back surface, which is the non-optical surface side of the optical element 2. The mirror 21 is deformed into a desired shape by driving the actuator 4.

半導体製造におけるレチクル(マスク)上のパターンをウエハに転写するフォトリソグラフィ工程では、非常に微細なパターンをウエハ上に結像させるため光学系の収差などの影響が問題になる。フォトリソグラフィ工程を行う半導体露光装置では、光学系のレンズやミラーを変形させる可変形状光学素子を用いることで結像特性を改善できる。   In a photolithography process in which a pattern on a reticle (mask) in semiconductor manufacturing is transferred to a wafer, an extremely fine pattern is imaged on the wafer, so that the influence of aberration of the optical system becomes a problem. In a semiconductor exposure apparatus that performs a photolithography process, imaging characteristics can be improved by using a deformable optical element that deforms a lens or mirror of an optical system.

一般的に、高精度な形状精度が求められる光学素子においては、重力による変形や鏡筒から受ける変形などに対応するため、できるだけ光学素子の厚みを厚くし剛性が高くなるように設計する。   In general, in an optical element that requires high-precision shape accuracy, the optical element is designed to be as thick and rigid as possible in order to cope with deformation caused by gravity or deformation received from a lens barrel.

これに対して、可変形状光学素子の場合は、図2に示すように、一般に薄く変形しやすい光学素子2に複数のアクチュエータ4を配置し、光学素子2を変形させ光学素子2の形状を制御している。このように、可変形状光学素子では、光学素子2自体をアクチュエータ4によって変形させるため、光学素子2の厚みを薄くし剛性を低くするよう設計する。光学素子2は、剛性を低くすることでアクチュエータ4の推力を低減し、アクチュエータ4の無駄な発熱や、アクチュエータ4の推力による他の構造体の変形といった悪影響を低減する。   On the other hand, in the case of a deformable optical element, as shown in FIG. 2, a plurality of actuators 4 are generally arranged on the optical element 2 that is thin and easily deformed, and the optical element 2 is deformed to control the shape of the optical element 2. doing. As described above, in the deformable optical element, the optical element 2 itself is deformed by the actuator 4, so that the optical element 2 is designed to have a small thickness and a low rigidity. The optical element 2 reduces the thrust of the actuator 4 by reducing the rigidity, and reduces adverse effects such as unnecessary heat generation of the actuator 4 and deformation of other structures due to the thrust of the actuator 4.

図1に示すように、可変形状光学素子を用いたミラー21には、光学特性を改善すべく、光学面21aに、反射防止膜や反射膜22といった光学薄膜が設けられる。光学薄膜は一般に複数の材料層からなる多層膜であり、ミラー21とは熱膨張率が異なる。このため、温度変化によってミラー21と光学薄膜とがバイメタルのような変形を示す。   As shown in FIG. 1, the mirror 21 using the deformable optical element is provided with an optical thin film such as an antireflection film or a reflection film 22 on the optical surface 21a in order to improve optical characteristics. The optical thin film is generally a multilayer film composed of a plurality of material layers, and has a thermal expansion coefficient different from that of the mirror 21. For this reason, the mirror 21 and the optical thin film are deformed like a bimetal due to a temperature change.

また、光学薄膜を蒸着やスパッタなどの成膜手段を用いてミラー21に成膜することで、ミラー21と光学薄膜との間に内部応力が生じ、光学素子2を変形させる。   Moreover, an optical thin film is formed on the mirror 21 by using a film forming means such as vapor deposition or sputtering, whereby an internal stress is generated between the mirror 21 and the optical thin film, and the optical element 2 is deformed.

半導体露光装置で用いられる可変形状光学素子は非常に高度な形状精度が求められる。このため、上記光学薄膜の成膜による変形や、光学薄膜とミラー21の温度変化による変形は光学性能に影響を及ぼす。   A deformable optical element used in a semiconductor exposure apparatus is required to have a very high shape accuracy. For this reason, the deformation due to the film formation of the optical thin film and the deformation due to the temperature change of the optical thin film and the mirror 21 affect the optical performance.

成膜による変形においては、光学薄膜の成膜により内部応力を低減する方法がある。しかし、内部応力を低減するには、光学的に理想的な多層の光学薄膜の構成を内部応力の低減のために変更する必要があり、理想的な光学薄膜よりも光学性能が劣ることになる。   In deformation by film formation, there is a method of reducing internal stress by forming an optical thin film. However, in order to reduce the internal stress, it is necessary to change the configuration of the optically ideal multilayer optical thin film to reduce the internal stress, and the optical performance is inferior to the ideal optical thin film. .

ミラー21と光学薄膜との熱膨張率差による変形では、温度を高度に管理する方法があるが、露光装置では高強度の露光光がミラー21に入射するため温度の管理は難しい。   In the deformation due to the difference in thermal expansion coefficient between the mirror 21 and the optical thin film, there is a method of highly managing the temperature. However, since exposure light with high intensity is incident on the mirror 21 in the exposure apparatus, it is difficult to manage the temperature.

その他の手段としては、図2に示すように、アクチュエータ4を駆動して、ミラー21の変形を補正する方法がある。しかし、光学薄膜の内部応力による変形の補正は、オフセット補正となるため、アクチュエータ4の限られたストロークや推力を変形の補正に割く必要がある。   As other means, there is a method of correcting the deformation of the mirror 21 by driving the actuator 4 as shown in FIG. However, since the correction of the deformation due to the internal stress of the optical thin film is an offset correction, it is necessary to devote the limited stroke and thrust of the actuator 4 to the correction of the deformation.

光学薄膜の内部応力は温度や湿度などに敏感であり、時間と共に変化する。このため、可変形状光学素子へ光学薄膜を成膜したときの変形をアクチュエータ4にて補正することはできても、その後の装置運用時などの更なる変形に対しては、可変形状光学素子の形状を計測する必要がある。可変形状光学素子の形状計測はコストなど様々な制約があるため、形状計測を行わずにアクチュエータ4をオープンで駆動することが望ましい。しかしながらアクチュエータ4のオープン駆動では、光学薄膜の内部応力の変動や、熱膨張による変形を補正することは困難である。   The internal stress of the optical thin film is sensitive to temperature, humidity, etc., and changes with time. For this reason, even when the deformation when the optical thin film is formed on the deformable optical element can be corrected by the actuator 4, the deformation of the deformable optical element can be prevented against further deformation during the subsequent operation of the apparatus. It is necessary to measure the shape. Since the shape measurement of the deformable optical element has various restrictions such as cost, it is desirable to drive the actuator 4 open without performing shape measurement. However, when the actuator 4 is open-driven, it is difficult to correct variations in internal stress of the optical thin film and deformation due to thermal expansion.

例えば、図3に示すような単純な円板ガラス6に薄膜25を成膜した光学素子の場合の内部応力による変形は、円板を球状に曲げる単純な曲率変化になる。このため、膜応力変形は光学素子の配置調整によって補正したり、図2に示すアクチュエータ4による駆動補正したりすることが可能である。   For example, in the case of an optical element in which a thin film 25 is formed on a simple disk glass 6 as shown in FIG. 3, the deformation due to internal stress results in a simple curvature change that bends the disk into a spherical shape. For this reason, the film stress deformation can be corrected by adjusting the arrangement of the optical elements, or the drive can be corrected by the actuator 4 shown in FIG.

これに対して、図4に示すように、有効面が曲率を有し且つ厚みが一定でない可変形状光学素子24において、均一な厚みの薄膜25を形成すると、薄膜25の内部応力・熱膨張による変形は、2次以上の補正しにくい高次の変形を示す。このため光学素子の配置の調整では修正できず、また、可変形状光学素子24を変形させるアクチュエータ4の駆動では分解能が足りなくなってしまう。   On the other hand, as shown in FIG. 4, when the thin film 25 having a uniform thickness is formed in the deformable optical element 24 whose effective surface has a curvature and the thickness is not constant, due to internal stress and thermal expansion of the thin film 25. The deformation indicates a high-order deformation that is difficult to correct from the second order or higher. For this reason, it cannot be corrected by adjusting the arrangement of the optical elements, and the resolution becomes insufficient when the actuator 4 that deforms the deformable optical element 24 is driven.

本実施形態では、光学素子の非光学面に形成する補正膜の分布状態を制御することによって上記問題を解決する。具体的には、例えば図1に示す通り、可変形状のミラー21の非光学面21bに、ミラー21の中心から同心円状に複数の領域に分割した補正膜23を設ける。即ち、補正膜23は、非光学面21bにおいて複数の膜領域23−1,23−2,23−3,・・・・・23−n,・・・・・に分かれて設けられる。ここで、任意の膜領域23−jとそれに隣接する膜領域23−kとの間隔d(j−k)は、膜の内部応力分布等を考慮して任意の幅に設定することができる。また、本実施形態では、膜領域23−j及び23−kよりも外側に形成された膜領域23−xとそれに隣接する膜領域23−yとの間隔d(x−y)は、上記間隔d(j−k)と比較して大きく形成されており、両者の間隔は異なるものとされている。   In the present embodiment, the above problem is solved by controlling the distribution state of the correction film formed on the non-optical surface of the optical element. Specifically, for example, as illustrated in FIG. 1, a correction film 23 that is concentrically divided into a plurality of regions from the center of the mirror 21 is provided on the non-optical surface 21 b of the deformable mirror 21. That is, the correction film 23 is provided separately on the non-optical surface 21b in a plurality of film regions 23-1, 23-2, 23-3, ... 23-n, .... Here, the distance d (j−k) between the arbitrary film region 23-j and the adjacent film region 23-k can be set to an arbitrary width in consideration of the internal stress distribution of the film. In this embodiment, the distance d (xy) between the film region 23-x formed outside the film regions 23-j and 23-k and the film region 23-y adjacent to the film region 23-x is the above-described distance. It is formed larger than d (j−k), and the distance between them is different.

本実施形態では、成膜の有無を調整することによって内部応力に分布を与える。補正膜23において、任意の膜領域23−jとそれに隣接する膜領域23−kとの間は膜が存在しない非膜領域28となる。補正膜23の成膜でこの非膜領域28を形成するためには、図5(A)に示すマスキング26を設ける。マスキング26によって補正膜23を成膜すると図5(B)に示すような非膜領域28を形成できる。マスキング26は一般的なマスキングテープや膜付着を防止する材料でもよい。ただしマスキング26による成膜真空槽の高度真空環境を化学汚染する懸念があるため、化学汚染の少ない物質であることが望ましい。   In this embodiment, the internal stress is distributed by adjusting the presence or absence of film formation. In the correction film 23, a non-film area 28 in which no film exists is formed between an arbitrary film area 23-j and a film area 23-k adjacent thereto. In order to form the non-film region 28 by forming the correction film 23, a masking 26 shown in FIG. When the correction film 23 is formed by the masking 26, a non-film region 28 as shown in FIG. 5B can be formed. The masking 26 may be a general masking tape or a material that prevents film adhesion. However, since there is a concern of chemical contamination of the high-vacuum environment of the film-forming vacuum chamber by the masking 26, it is desirable that the substance has little chemical contamination.

図6は非光学面の補正膜23の厚みを全面均一とした場合の、膜の内部応力によるミラー21の変形状態を示す概略断面図である。ミラー21の厚みが外周に従って薄くなっていることから、ミラー21と膜の内部応力によるバイメタル効果がミラー21の厚みによって変化する。また、ミラー21が曲面であることで半径方向の位置によって内部応力によるバイメタル効果が変化する。このため、ミラー21の光学面及び非光学面の両面全体に均一な膜を成膜しても、図6に示すような非線形な変形が残留する。
そこで、図6の変形に寄与する補正膜23において、変形を補正するように内部応力に分布を付けることでミラーの変形を抑制することが可能になる。
FIG. 6 is a schematic cross-sectional view showing a deformed state of the mirror 21 due to internal stress of the film when the thickness of the correction film 23 on the non-optical surface is made uniform. Since the thickness of the mirror 21 is reduced according to the outer periphery, the bimetal effect due to the internal stress of the mirror 21 and the film varies depending on the thickness of the mirror 21. Further, since the mirror 21 is a curved surface, the bimetal effect due to internal stress changes depending on the position in the radial direction. For this reason, even if a uniform film is formed on both the optical surface and the non-optical surface of the mirror 21, nonlinear deformation as shown in FIG. 6 remains.
Therefore, in the correction film 23 that contributes to the deformation in FIG. 6, it is possible to suppress the deformation of the mirror by providing a distribution of the internal stress so as to correct the deformation.

図7は、膜応力によるミラー21の変形からマスキングの配置を求めるための図である。図7(A)は補正膜23の厚みが均一な場合のミラー21の変形状態、(B)は(A)の変形量、(C)は(B)の変形を補正するための内部応力分布を与えるためのマスキング26の配置図である。   FIG. 7 is a diagram for obtaining the masking arrangement from the deformation of the mirror 21 due to the film stress. FIG. 7A shows the deformation state of the mirror 21 when the thickness of the correction film 23 is uniform, FIG. 7B shows the deformation amount of FIG. 7A, and FIG. 7C shows the internal stress distribution for correcting the deformation of FIG. FIG. 6 is a layout view of a masking 26 for providing

補正膜23に生じる内部応力は半径によらず一定であるが、ミラー21が曲面であって厚みが不均一であることからミラー21は図7(B)に示すような不均一な変形を示す。図7(B)におけるKの範囲では、補正膜23よりも反射膜22の影響が大きいため、ミラー21は反射膜側に凸の変形を示す。一方で図7(B)におけるLの範囲では、反射膜22よりも補正膜23の影響が大きいため、ミラー21は補正膜側に凸の変形を示す。つまり、Kの範囲では補正膜23の内部応力を増加し、Lの範囲では補正膜23の内部応力を低減できれば、図7(B)に示すミラー21の変形を補正することが可能になる。   The internal stress generated in the correction film 23 is constant regardless of the radius, but since the mirror 21 is a curved surface and the thickness is not uniform, the mirror 21 exhibits a non-uniform deformation as shown in FIG. . In the range of K in FIG. 7B, the effect of the reflective film 22 is greater than that of the correction film 23, and therefore the mirror 21 exhibits a convex deformation on the reflective film side. On the other hand, in the range L in FIG. 7B, the influence of the correction film 23 is larger than that of the reflection film 22, and therefore the mirror 21 shows a convex deformation on the correction film side. That is, if the internal stress of the correction film 23 can be increased in the range K and the internal stress of the correction film 23 can be reduced in the range L, the deformation of the mirror 21 shown in FIG. 7B can be corrected.

KとLのそれぞれの領域に対し、補正膜23の内部応力の制御を図7(C)に示すマスキング26によって行う。補正膜23の内部応力を下げたいところはマスキング26の半径方向の幅を広く、補正膜23の内部応力を強めたいところはマスキング26の幅を狭くする。ここで、複数の領域に分断せず補正膜23の厚みが均一な図7(A)での補正膜23の半径方向のDuty比が100%であるのに対し、図7(C)のマスキング26によって形成される補正膜23のDuty比は50%程度になる。このため、マスキング26によるDuty比低下に起因した非光学面側の内部応力の合力の低下を補うため、補正膜23の厚みを増すことが望ましい。補正膜23のDuty比を50%とする場合は、補正膜23の膜厚を200%とすることで補正膜23の内部応力の合力の低下を補償できる。   The internal stress of the correction film 23 is controlled by masking 26 shown in FIG. 7C for each of the K and L regions. Where the internal stress of the correction film 23 is to be reduced, the width in the radial direction of the masking 26 is widened, and where the internal stress of the correction film 23 is to be increased, the width of the masking 26 is narrowed. Here, the duty ratio in the radial direction of the correction film 23 in FIG. 7A in which the thickness of the correction film 23 is uniform without being divided into a plurality of regions is 100%, whereas the masking in FIG. 7C is performed. The duty ratio of the correction film 23 formed by H.26 is about 50%. For this reason, it is desirable to increase the thickness of the correction film 23 in order to compensate for a decrease in the resultant force of the internal stress on the non-optical surface side caused by a decrease in the duty ratio due to the masking 26. When the duty ratio of the correction film 23 is 50%, a decrease in the resultant force of the internal stress of the correction film 23 can be compensated by setting the film thickness of the correction film 23 to 200%.

次に、マスキング26の幅の設定について説明する。図8は、マスキング26の配置を説明するための図である。図8(A)は設定されたマスキング26の幅の一例、図8(B)はマスキング26を除いた後の補正膜23の状態、図8(C)は補正膜23の内部応力分布を示す。
図8(C)に示す破線のsin曲線となるような内部応力分布を与えたい場合には、図8(A)に示すマスキング26幅とそれに隣り合うマスキングの無い所の幅の比を考慮して設定する。任意のマスキング26と隣り合うマスキングの無い部位の寸法和である明暗幅Dおよびこれらの寸法割合は、所望の内部応力分布の空間周波数(すなわち、空間的な周期をもつ構造における単位長に含まれる構造の繰り返しの多さ)に応じて設定する。即ち、図8(C)のsin曲線で横軸よりも上側の領域では、ミラー21の変形において補正膜23よりも反射膜22の影響が大きいため反射膜22側に凸の変形を示す。このため、補正膜23の内部応力を増加させるべく、図8(A)の明暗幅Dにおいてマスキング26の無い部位の幅を大きくする。これによって、図8(B)に示す通り、補正膜23同士の間隔が狭くなり補正膜23が密に形成された領域となる。これに対して、図8(C)のsin曲線で横軸よりも下側の領域では、ミラー21の変形において補正膜23よりも反射膜22の影響が小さいため補正膜23側に凸の変形を示す。このため、補正膜23の内部応力を減少させるべく、図8(A)の明暗幅D’においてマスキング26の無い部位の幅を小さくする。これによって、図8(B)に示す通り、補正膜23同士の間隔が広くなり補正膜23が疎に形成された領域となる。
Next, the setting of the width of the masking 26 will be described. FIG. 8 is a diagram for explaining the arrangement of the masking 26. 8A shows an example of the width of the set masking 26, FIG. 8B shows the state of the correction film 23 after removing the masking 26, and FIG. 8C shows the internal stress distribution of the correction film 23. FIG. .
When it is desired to give an internal stress distribution that becomes a dashed sine curve shown in FIG. 8C, the ratio of the width of the masking 26 shown in FIG. To set. The light-dark width D, which is the sum of dimensions of the unmasked portion adjacent to the arbitrary masking 26, and the size ratio thereof are included in the spatial frequency of the desired internal stress distribution (ie, the unit length in the structure having a spatial period). Set according to the number of repetitions of the structure. That is, in the area above the horizontal axis in the sin curve of FIG. 8C, the influence of the reflection film 22 is greater than that of the correction film 23 in the deformation of the mirror 21, so that a convex deformation is shown on the reflection film 22 side. For this reason, in order to increase the internal stress of the correction film 23, the width of the portion without the masking 26 is increased in the light / dark width D of FIG. As a result, as shown in FIG. 8B, the distance between the correction films 23 is narrowed, resulting in a region where the correction films 23 are densely formed. On the other hand, in the region below the horizontal axis in the sine curve of FIG. 8C, the deformation of the mirror 21 is less affected by the reflection film 22 than the correction film 23, and the convex deformation on the correction film 23 side. Indicates. For this reason, in order to reduce the internal stress of the correction film 23, the width of the portion without the masking 26 in the light / dark width D ′ of FIG. As a result, as shown in FIG. 8B, the distance between the correction films 23 is widened, resulting in a region where the correction films 23 are formed sparsely.

ただし、高い空間周波数を満足するためにはマスキング26の配置誤差を鑑みて設定することが望ましい。マスキング26の配置誤差が0.5mmとすると、その配置誤差の十倍の5mmを明暗幅とすることができる。マスキング26の配置誤差を低減することで明暗幅を狭くし、空間周波数を高くすることができる。   However, in order to satisfy a high spatial frequency, it is desirable to set in consideration of an arrangement error of the masking 26. If the arrangement error of the masking 26 is 0.5 mm, 5 mm, which is ten times the arrangement error, can be set as the light / dark width. By reducing the placement error of the masking 26, the light / dark width can be narrowed and the spatial frequency can be increased.

次に、本実施形態に係る光学素子2の製造方法について簡単に説明する。図9は、光学素子2の製造方法を説明するフローチャートである。まず、図1に示す光学面21aの成膜後の形状を特定する(S11)。次に、非光学面21bの補正膜23の分布について補正膜23の厚みを考慮しつつ決定する(S12)。さらに、マスキング26を用いて非光学面21bに補正膜23を成膜する(S13)。最後に、光学面21aの形状を検査する(S14)。   Next, a method for manufacturing the optical element 2 according to this embodiment will be briefly described. FIG. 9 is a flowchart illustrating a method for manufacturing the optical element 2. First, the shape of the optical surface 21a shown in FIG. 1 after film formation is specified (S11). Next, the distribution of the correction film 23 on the non-optical surface 21b is determined in consideration of the thickness of the correction film 23 (S12). Further, the correction film 23 is formed on the non-optical surface 21b using the masking 26 (S13). Finally, the shape of the optical surface 21a is inspected (S14).

光学素子2の非光学面21bに、補正膜23が複数の領域に分かれて設けられていることで内部応力を効果的に制御できる。例えば、有効面が曲率を有し、且つ、径方向において厚みが一定でない可変形状光学素子等では高次の複数の変曲点を持つような複雑な変形が生じ得るが、補正膜23の複数の領域を同心円状領域に分けることで、このような複雑な変形を補正できる。よって、光学素子2の変形を高い空間周波数にて補正できる。また、同心円状領域の隣り合う膜領域23−nと非膜領域28の寸法割合を光学素子2の半径方向において変化させることで、光学素子2の変形をより高い空間周波数にて補正できる。   Since the correction film 23 is provided in a plurality of regions on the non-optical surface 21b of the optical element 2, the internal stress can be effectively controlled. For example, in a deformable optical element having an effective surface with a curvature and a thickness that is not constant in the radial direction, a complicated deformation that has a plurality of higher-order inflection points may occur. Such complicated deformation can be corrected by dividing the region into concentric regions. Therefore, the deformation of the optical element 2 can be corrected at a high spatial frequency. Moreover, the deformation of the optical element 2 can be corrected at a higher spatial frequency by changing the dimensional ratio of the adjacent film region 23-n and non-film region 28 in the concentric region in the radial direction of the optical element 2.

さらに、膜厚分布制御板等を用いて補正膜を蒸着やスパッタリングにより成膜する方法では、成膜時における温度、投入エネルギーなどのさまざまな条件を考慮して膜原料物質の光学素子への堆積厚み等の状態を詳細に予測検討しなければならない。よって、綿密な条件調整作業が必要になってしまう。これに対して、本実施形態による方法では、成膜条件を制御するのではなく、マスキング26を用いて膜領域23−nと非膜領域28を形成することによって補正膜23の膜幅の分布を制御する。このため、複雑な条件調整が不要であり製造が容易である。   Furthermore, in the method of depositing a correction film by vapor deposition or sputtering using a film thickness distribution control plate or the like, deposition of film raw material material on an optical element is performed in consideration of various conditions such as temperature and input energy at the time of film formation. Thickness and other conditions must be predicted and studied in detail. Therefore, detailed condition adjustment work is required. On the other hand, in the method according to the present embodiment, the film width distribution of the correction film 23 is not formed by forming the film region 23-n and the non-film region 28 using the masking 26 instead of controlling the film formation conditions. To control. For this reason, complicated condition adjustment is unnecessary and manufacture is easy.

また、半導体製造におけるレチクル(マスク)上のパターンをウエハに転写するフォトリソグラフィ工程を行う露光装置に本実施形態に係る光学素子2を適用することで、露光時の温度変化や湿度変化に起因する収差の劣化を抑制して結像特性を改善できる。   Further, by applying the optical element 2 according to the present embodiment to an exposure apparatus that performs a photolithography process for transferring a pattern on a reticle (mask) to a wafer in semiconductor manufacturing, it is caused by temperature change or humidity change during exposure. The imaging characteristics can be improved by suppressing the deterioration of aberration.

[第2実施形態]
図10は、第2実施形態に係る光学素子2’の構成を示す概略断面図である。本実施形態において、第1実施形態に係る光学素子2と同一構成要素は同一符号を付して説明を省略する。
本実施形態に係る光学素子2’は、ミラー21の非光学面21bに、補正膜23が領域毎に所望の厚みで設けられる。厚みを変化させるためには、例えば、多層膜を用いる。図10に示すように、A領域では、補正膜23は、補正膜23a,23b,23cの3層膜で形成され、B領域では補正膜23a,23bの2層膜で形成され、C領域では補正膜23aの単層膜で形成される。このように補正膜23を領域毎に異なる膜厚として、面内方向だけでなく厚み方向にもより細かい内部応力分布をミラー21に与えることが可能である。
[Second Embodiment]
FIG. 10 is a schematic cross-sectional view showing the configuration of the optical element 2 ′ according to the second embodiment. In this embodiment, the same components as those of the optical element 2 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the optical element 2 ′ according to the present embodiment, the correction film 23 is provided with a desired thickness for each region on the non-optical surface 21 b of the mirror 21. In order to change the thickness, for example, a multilayer film is used. As shown in FIG. 10, in the A region, the correction film 23 is formed of a three-layer film of correction films 23a, 23b, and 23c, in the B region, it is formed of a two-layer film of correction films 23a and 23b, and in the C region. The correction film 23a is a single layer film. As described above, the correction film 23 can have a different thickness for each region, so that a finer internal stress distribution can be given to the mirror 21 not only in the in-plane direction but also in the thickness direction.

図10に示すような領域によって厚みの異なる補正膜23は、ミラー21の非光学面21bに所定のパターンのマスキング26を施して先ず第1層目としての補正膜23aを成膜する。次に、第1層目とは異なるパターンのマスキング26を施して第2層目の補正膜23bを成膜し、さらに、第1層目及び第2層目とは異なるパターンのマスキング26を施して第3層目の補正膜23cを成膜する。   In the correction film 23 having a different thickness depending on the region as shown in FIG. 10, a mask 26 having a predetermined pattern is applied to the non-optical surface 21 b of the mirror 21 to first form a correction film 23 a as the first layer. Next, a mask 26 having a pattern different from that of the first layer is applied to form a correction film 23b of the second layer, and further, masking 26 having a pattern different from that of the first layer and the second layer is applied. Then, a third-layer correction film 23c is formed.

補正膜23a,23b,23cは、それぞれ異なる材料で成膜することができる。ただし、補正膜23のうちで一番成膜面積の大きい層である補正膜23aと反射膜22とを同一材料とすることが熱膨張率による影響を相殺できるため、好ましい。   The correction films 23a, 23b, and 23c can be formed from different materials. However, it is preferable to use the same material for the correction film 23a and the reflective film 22 which are the layers having the largest film formation area among the correction films 23, because the influence of the coefficient of thermal expansion can be offset.

以上説明したように、本実施形態に係る光学素子2’では、補正膜23を多層膜とし、領域によって多層の補正膜の積算厚みを変更することで、より細かい内部応力分布をミラー21に与えることが可能である。   As described above, in the optical element 2 ′ according to the present embodiment, the correction film 23 is a multilayer film, and the integrated thickness of the multilayer correction film is changed depending on the region, thereby giving a finer internal stress distribution to the mirror 21. It is possible.

[第3実施形態]
図11は、第3実施形態に係る光学素子2’’の構成を示す概略断面図である。本実施形態において、第1実施形態に係る光学素子2と同一構成要素は同一符号を付して説明を省略する。
本実施形態に係る光学素子2’’では、ミラー21の非光学面21bと補正膜23との間に、非光学面21bと補正膜23との密着性を改善するための密着性向上膜33が設けられている。
[Third Embodiment]
FIG. 11 is a schematic cross-sectional view showing the configuration of the optical element 2 ″ according to the third embodiment. In this embodiment, the same components as those of the optical element 2 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the optical element 2 '' according to the present embodiment, the adhesion improving film 33 for improving the adhesion between the non-optical surface 21b and the correction film 23 between the non-optical surface 21b of the mirror 21 and the correction film 23. Is provided.

密着性向上膜33は、図11に示すように、複数の領域に分割せずに連続的とし、かつ厚みの均一な膜とすることが望ましい。なお、密着性向上膜33はあくまでも密着性を改善する作用を有するものであって、補正膜23のように内部応力分布を変える目的で成膜されるものではない。   As shown in FIG. 11, it is desirable that the adhesion improving film 33 be a continuous film having a uniform thickness without being divided into a plurality of regions. The adhesion improving film 33 has an effect of improving the adhesion to the last, and is not formed for the purpose of changing the internal stress distribution unlike the correction film 23.

図12は、第3実施形態の変形例に係る光学素子2’’’の構成を示す概略断面図である。本実施形態に係る光学素子2’’’では、補正膜23の全面を覆うように保護膜35が設けられている。保護膜35は、補正膜23及びミラー21を保護する観点から、膜を複数の領域に分割せずに、補正膜23及びミラー21の表面全体に設けることが望ましい。なお、保護膜35はあくまでも補正膜23及びミラー21を保護する目的で成膜されるものであって、補正膜23のように内部応力分布を変える目的で成膜されるものではない。   FIG. 12 is a schematic cross-sectional view showing a configuration of an optical element 2 ″ ″ according to a modification of the third embodiment. In the optical element 2 ″ ″ according to the present embodiment, a protective film 35 is provided so as to cover the entire surface of the correction film 23. From the viewpoint of protecting the correction film 23 and the mirror 21, the protective film 35 is desirably provided on the entire surface of the correction film 23 and the mirror 21 without dividing the film into a plurality of regions. Note that the protective film 35 is formed only for the purpose of protecting the correction film 23 and the mirror 21, and is not formed for the purpose of changing the internal stress distribution unlike the correction film 23.

密着性向上膜33や保護膜35を設ける場合のマスキング26の設計においては、先ずミラー21、反射膜22、密着性向上膜33、保護膜35、そしてマスキング26のない均一な補正膜23という構成でのミラー21の変形を求める。次に、この変形を補正するようにマスキング26の分布を設計する。   In designing the masking 26 in the case of providing the adhesion improving film 33 and the protective film 35, first, the configuration of the mirror 21, the reflection film 22, the adhesion improving film 33, the protective film 35, and the uniform correction film 23 without the masking 26. The deformation of the mirror 21 at is determined. Next, the distribution of the masking 26 is designed so as to correct this deformation.

[第4実施形態]
図13は、第4実施形態に係る露光装置100の構成を示す概略図である。
露光装置100は、保持装置110と、照明光学系120と、投影光学系130と、マスクを保持して移動可能なマスクステージ140と、基板を保持して移動可能な基板ステージ150と、を含む。基板の露光処理は不図示の制御部が各部を制御することで実行される。なお、図13では、鉛直方向であるZ軸に垂直な平面内で露光時のレチクルおよび基板の走査方向にY軸を取り、Y軸に直交する非走査方向にX軸を取っている。また、基板は、例えば硝材製で、表面に感光剤(レジスト)が塗布されている被処理基板である。さらに、レチクルは、例えば硝材製で、基板に転写されるべきパターン(微細な凹凸パターン)が形成されている原版である。
[Fourth Embodiment]
FIG. 13 is a schematic view showing the arrangement of the exposure apparatus 100 according to the fourth embodiment.
The exposure apparatus 100 includes a holding device 110, an illumination optical system 120, a projection optical system 130, a mask stage 140 that can move while holding a mask, and a substrate stage 150 that can move while holding a substrate. . The substrate exposure process is executed by a control unit (not shown) controlling each unit. In FIG. 13, the Y axis is taken in the scanning direction of the reticle and the substrate during exposure in the plane perpendicular to the Z axis, which is the vertical direction, and the X axis is taken in the non-scanning direction orthogonal to the Y axis. The substrate is a substrate to be processed made of, for example, a glass material and having a surface coated with a photosensitive agent (resist). Further, the reticle is an original plate made of, for example, a glass material and having a pattern (a fine uneven pattern) to be transferred to the substrate.

保持装置110は、図2に示す可変形状光学素子ユニット1と同様に構成されているので、同一構成要素は同一符号を付して説明を省略する。保持装置110は、ベース3と、光学素子2を支持する保持部材31と、複数のアクチュエータ4と、検出部114と、を含む。複数のアクチュエータ4は、不図示の制御部により制御される。光学素子2の中心を含む一部(以下、中心部)が保持部材31を介してベース3に固定されている。   Since the holding device 110 is configured in the same manner as the deformable optical element unit 1 shown in FIG. 2, the same components are denoted by the same reference numerals and description thereof is omitted. The holding device 110 includes a base 3, a holding member 31 that supports the optical element 2, a plurality of actuators 4, and a detection unit 114. The plurality of actuators 4 are controlled by a control unit (not shown). A part including the center of the optical element 2 (hereinafter referred to as a central portion) is fixed to the base 3 via a holding member 31.

複数のアクチュエータ4は、光学素子2とベース3との間に配置され、光学素子2の裏面の複数箇所にそれぞれ力を加える。
複数のアクチュエータ4の各々は、例えば、互いに接触しない可動子4aと固定子4bとを含み、光学素子2の裏面の各箇所に力を加えることができる。アクチュエータ4としては、例えば、ボイスコイルモータやリニアモータなどが用いられうる。アクチュエータ4としてボイスコイルモータを用いる場合では、固定子4bとしてのコイルがベース3に固定され、可動子4aとしての磁石が光学素子2の裏面に固定されうる。そして、各アクチュエータ4は、コイルに電流が供給されることによってコイルと磁石との間にローレンツ力を発生させ、光学素子2の各箇所に力を加えることができる。本実施形態では、可動子4aと固定子4bとの間は、0.1mm程度の間隙があり、両者は接触していない。
The plurality of actuators 4 are disposed between the optical element 2 and the base 3, and apply force to a plurality of locations on the back surface of the optical element 2.
Each of the plurality of actuators 4 includes, for example, a mover 4a and a stator 4b that are not in contact with each other, and can apply a force to each position on the back surface of the optical element 2. As the actuator 4, for example, a voice coil motor or a linear motor can be used. When a voice coil motor is used as the actuator 4, a coil as the stator 4 b can be fixed to the base 3, and a magnet as the mover 4 a can be fixed to the back surface of the optical element 2. Each actuator 4 can generate a Lorentz force between the coil and the magnet by supplying a current to the coil, and can apply a force to each part of the optical element 2. In this embodiment, there is a gap of about 0.1 mm between the mover 4a and the stator 4b, and they are not in contact with each other.

検出部114は、光学素子2とベース3との間の距離を検出する。検出部114は、光学素子2とベース3との間の距離をそれぞれ検出する複数のセンサ(例えば、静電容量センサ)を含みうる。このように検出部114を設けることにより、検出部114による検出結果に基づいて複数のアクチュエータ4のフィードバック制御を行うことができ、光学素子2の反射面を目標形状に精度よく変形させることができる。   The detection unit 114 detects the distance between the optical element 2 and the base 3. The detection unit 114 can include a plurality of sensors (for example, electrostatic capacitance sensors) that respectively detect the distance between the optical element 2 and the base 3. By providing the detection unit 114 in this way, feedback control of the plurality of actuators 4 can be performed based on the detection result by the detection unit 114, and the reflection surface of the optical element 2 can be accurately deformed to the target shape. .

照明光学系120に含まれる光源(不図示)から射出された光は、照明光学系120に含まれるスリット(不図示)によって、例えば、X方向に長い円弧状の照明領域をマスク上に形成することができる。マスクおよび基板は、マスクステージ140および基板ステージ150によってそれぞれ保持されており、投影光学系130を介して光学的にほぼ共役な位置(投影光学系130の物体面および像面の位置)に配置される。投影光学系130は、所定の投影倍率を有し、マスクに形成されたパターンを基板に投影する。そして、マスクステージ140および基板ステージ150を、投影光学系130の物体面と平行な方向(例えばY方向)に、投影光学系130の投影倍率に応じた速度比で相対的に移動させる。これにより、スリット光を基板上で走査する走査露光を行い、マスクに形成されたパターンを基板に転写することができる。   Light emitted from a light source (not shown) included in the illumination optical system 120 forms, for example, an arc-shaped illumination area long in the X direction on the mask by a slit (not shown) included in the illumination optical system 120. be able to. The mask and the substrate are respectively held by the mask stage 140 and the substrate stage 150, and are arranged at optically conjugate positions (object plane and image plane positions of the projection optical system 130) via the projection optical system 130. The The projection optical system 130 has a predetermined projection magnification, and projects the pattern formed on the mask onto the substrate. Then, the mask stage 140 and the substrate stage 150 are relatively moved in a direction (for example, the Y direction) parallel to the object plane of the projection optical system 130 at a speed ratio corresponding to the projection magnification of the projection optical system 130. Thereby, the scanning exposure which scans a slit light on a board | substrate can be performed, and the pattern formed in the mask can be transcribe | transferred to a board | substrate.

投影光学系130は、平面ミラー131および133と、凸面ミラー132と、光学素子2と、を保持する鏡筒により構成される。照明光学系120から射出し、マスクを透過した露光光は、平面ミラー131により光路を折り曲げられ、光学素子2の反射面の上部に入射する。光学素子2の上部で反射した露光光は、凸面ミラー132で反射し、光学素子2の反射面の下部に入射する。光学素子2の下部で反射した露光光は、平面ミラー133により光路を折り曲げられ、基板上に結像する。このように構成された投影光学系130では、凸面ミラー132の表面が光学的な瞳となる。   The projection optical system 130 includes a lens barrel that holds the plane mirrors 131 and 133, the convex mirror 132, and the optical element 2. The exposure light emitted from the illumination optical system 120 and transmitted through the mask is bent in the optical path by the plane mirror 131 and enters the upper part of the reflection surface of the optical element 2. The exposure light reflected by the upper part of the optical element 2 is reflected by the convex mirror 132 and enters the lower part of the reflecting surface of the optical element 2. The exposure light reflected by the lower part of the optical element 2 is bent on the optical path by the plane mirror 133 and forms an image on the substrate. In the projection optical system 130 configured in this way, the surface of the convex mirror 132 becomes an optical pupil.

(物品の製造方法に係る実施形態)
本実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。さらに、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
(Embodiment related to article manufacturing method)
The method for manufacturing an article according to the present embodiment is suitable for manufacturing an article such as a microdevice such as a semiconductor device or an element having a fine structure, for example. In the method for manufacturing an article according to the present embodiment, a latent image pattern is formed on the photosensitive agent applied to the substrate using the above-described exposure apparatus (a step of exposing the substrate), and the latent image pattern is formed in this step. Developing the substrate. Further, the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like). The method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

例えば、上記の各実施形態では、光学膜の成膜による内部応力に起因する光学素子変形の補正について説明したが、この補正を、光学素子と光学膜との間の熱膨張率差に起因する光学素子変形に対応することも可能である。光学素子と光学膜との間の熱膨張率差に起因する光学素子変形の場合は、上記の各実施形態における変形をある温度差での変形と置き換えることで対応できる。   For example, in each of the embodiments described above, correction of optical element deformation caused by internal stress due to film formation of the optical film has been described. However, this correction is caused by a difference in thermal expansion coefficient between the optical element and the optical film. It is also possible to cope with optical element deformation. In the case of deformation of the optical element due to the difference in thermal expansion coefficient between the optical element and the optical film, it can be dealt with by replacing the deformation in each of the above embodiments with the deformation at a certain temperature difference.

1 可変形状光学素子ユニット
2 光学素子
3 ベース
4 アクチュエータ
6 円板ガラス
21 ミラー
21a 光学面
21b 非光学面
22 反射膜
23 補正膜
23−n 膜領域
24 可変形状光学素子
25 薄膜
26 マスキング
28 非膜領域
31 保持部材
33 密着性向上膜
35 保護膜
DESCRIPTION OF SYMBOLS 1 Variable shape optical element unit 2 Optical element 3 Base 4 Actuator 6 Disc glass 21 Mirror 21a Optical surface 21b Non-optical surface 22 Reflective film 23 Correction film | membrane 23-n Film area | region 24 Variable shape optical element 25 Thin film 26 Masking 28 Non-film area | region 31 Holding member 33 Adhesion improving film 35 Protective film

Claims (8)

反射膜が設けられた光学面、及び、前記光学面に対して反対側の非光学面を有する光学素子本体と、
前記非光学面側に設けられ、前記光学素子本体の形状を補正するための複数の補正膜と、を備えた光学素子であって、
前記複数の補正膜は、前記非光学面側において互いに異なる複数の領域に分かれて設けられていることを特徴とする光学素子。
An optical element body having an optical surface provided with a reflective film, and a non-optical surface opposite to the optical surface;
A plurality of correction films provided on the non-optical surface side for correcting the shape of the optical element body,
The optical element, wherein the plurality of correction films are provided in a plurality of different regions on the non-optical surface side.
前記光学素子本体は、曲率を有し且つ径方向の厚みが一定ではない円板の形状を有しており、前記複数の補正膜は、前記光学素子本体の中心から同心円状に複数の領域に分かれて設けられていることを特徴とする請求項1に記載の光学素子。   The optical element body has a disk shape with a curvature and a radial thickness that is not constant, and the plurality of correction films are concentrically formed in a plurality of regions from the center of the optical element body. The optical element according to claim 1, wherein the optical element is provided separately. 前記補正膜が設けられている領域と、前記補正膜に隣接し、前記補正膜が形成されていない領域と、の寸法割合が径方向において変化していること特徴とする請求項2に記載の光学素子。   The dimensional ratio between a region where the correction film is provided and a region adjacent to the correction film and where the correction film is not formed varies in a radial direction. Optical element. 前記補正膜は、多層膜であることを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the correction film is a multilayer film. 前記多層膜の少なくとも1つの膜と前記反射膜とが同一材料であることを特徴とする請求項4に記載の光学素子。   The optical element according to claim 4, wherein at least one film of the multilayer film and the reflective film are made of the same material. 前記光学素子本体の前記非光学面と前記補正膜との間に、前記非光学面と前記補正膜とを密着させる膜が設けられていることを特徴とする請求項1に記載の光学素子。   2. The optical element according to claim 1, wherein a film is provided between the non-optical surface of the optical element body and the correction film so that the non-optical surface and the correction film are in close contact with each other. 基板を露光する露光装置であって、
請求項1乃至6のうちいずれか1項に記載の光学素子と、
前記光学素子を保持する保持装置と、
を含む投影光学系を含み、
前記投影光学系を介して前記基板を露光する、
ことを特徴とする露光装置。
An exposure apparatus for exposing a substrate,
The optical element according to any one of claims 1 to 6,
A holding device for holding the optical element;
Including a projection optical system,
Exposing the substrate through the projection optical system;
An exposure apparatus characterized by that.
請求項7に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された前記基板を現像する工程と、
を有することを特徴とする物品の製造方法。
A step of exposing the substrate using the exposure apparatus according to claim 7;
Developing the substrate exposed in the step;
A method for producing an article comprising:
JP2016226733A 2016-11-22 2016-11-22 Manufacturing methods for optics, exposure equipment, and articles Active JP6862154B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016226733A JP6862154B2 (en) 2016-11-22 2016-11-22 Manufacturing methods for optics, exposure equipment, and articles
TW106136870A TWI647545B (en) 2016-11-22 2017-10-26 Manufacturing method of optical element, exposure device and article
KR1020170151266A KR102230464B1 (en) 2016-11-22 2017-11-14 Optical element, exposure apparatus, and article manufacturing method
CN201711141071.3A CN108089407B (en) 2016-11-22 2017-11-17 Optical element, exposure apparatus, and method for manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016226733A JP6862154B2 (en) 2016-11-22 2016-11-22 Manufacturing methods for optics, exposure equipment, and articles

Publications (3)

Publication Number Publication Date
JP2018084637A true JP2018084637A (en) 2018-05-31
JP2018084637A5 JP2018084637A5 (en) 2020-01-09
JP6862154B2 JP6862154B2 (en) 2021-04-21

Family

ID=62172713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016226733A Active JP6862154B2 (en) 2016-11-22 2016-11-22 Manufacturing methods for optics, exposure equipment, and articles

Country Status (4)

Country Link
JP (1) JP6862154B2 (en)
KR (1) KR102230464B1 (en)
CN (1) CN108089407B (en)
TW (1) TWI647545B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218032A (en) * 1996-02-14 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> Method for calculating positional distortion of pattern
JP2002299228A (en) * 2001-04-03 2002-10-11 Nikon Corp Reticle, aligner using the same and exposure method
JP2002333512A (en) * 2001-05-09 2002-11-22 Olympus Optical Co Ltd Curved reflection mirror and method for manufacturing the same
JP2004127977A (en) * 2002-09-30 2004-04-22 Sony Corp Semiconductor device and package thereof
JP2005019485A (en) * 2003-06-24 2005-01-20 Nikon Corp Method of correcting shape of optical element, optical element, and aligner
JP2008242044A (en) * 2007-03-27 2008-10-09 Toshiba Corp Variable geometry mirror
JP2009141178A (en) * 2007-12-07 2009-06-25 Canon Inc Mirror for euv and euv aligner having the same
WO2013161271A1 (en) * 2012-04-23 2013-10-31 キヤノン電子株式会社 Optical scanning device and image reading device
JP2015065246A (en) * 2013-09-24 2015-04-09 キヤノン株式会社 Optical device, optical system, exposure device, and manufacturing method for article
JP2015519736A (en) * 2012-04-27 2015-07-09 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical element including magnetostrictive material
US20150261081A1 (en) * 2014-03-14 2015-09-17 Kabushiki Kaisha Toshiba Photomask manufacturing method and photomask
US20150316763A1 (en) * 2013-04-17 2015-11-05 California Institute Of Technology Optimized actuators for ultra-thin mirrors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056125A (en) * 2002-06-20 2004-02-19 Nikon Corp Reflective projection optical system with discrete actuator
CN2549479Y (en) * 2002-06-25 2003-05-07 宋永刚 Rear projection mirror
US20060018045A1 (en) * 2003-10-23 2006-01-26 Carl Zeiss Smt Ag Mirror arrangement and method of manufacturing thereof, optical system and lithographic method of manufacturing a miniaturized device
JP2006012286A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Aberration compensation element, electronic equipment, and optical device
JP2007059743A (en) * 2005-08-26 2007-03-08 Nikon Corp Multilayer film reflector and aligner
DE102005044716A1 (en) * 2005-09-19 2007-04-05 Carl Zeiss Smt Ag Active optical element
JP2007335444A (en) * 2006-06-12 2007-12-27 Toshiba Corp Optical element and optical device
KR100941305B1 (en) * 2006-12-18 2010-02-11 주식회사 실트론 Nitride Semiconductor Substrate and Manufacturing Method Thereof
JP4269189B2 (en) * 2007-03-16 2009-05-27 フジノン株式会社 Optical element, optical film planarization method, and optical element manufacturing method
CN103376662B (en) * 2012-04-22 2015-05-13 上海微电子装备有限公司 Asymmetric aberration compensation device
CN104392901B (en) * 2014-10-28 2017-08-25 京东方科技集团股份有限公司 A kind of flexible substrate substrate and preparation method thereof
CN204765868U (en) * 2015-03-09 2015-11-18 天津正天医疗器械有限公司 Stress dissipation type locking pressurizing coaptation board

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218032A (en) * 1996-02-14 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> Method for calculating positional distortion of pattern
JP2002299228A (en) * 2001-04-03 2002-10-11 Nikon Corp Reticle, aligner using the same and exposure method
JP2002333512A (en) * 2001-05-09 2002-11-22 Olympus Optical Co Ltd Curved reflection mirror and method for manufacturing the same
JP2004127977A (en) * 2002-09-30 2004-04-22 Sony Corp Semiconductor device and package thereof
JP2005019485A (en) * 2003-06-24 2005-01-20 Nikon Corp Method of correcting shape of optical element, optical element, and aligner
JP2008242044A (en) * 2007-03-27 2008-10-09 Toshiba Corp Variable geometry mirror
JP2009141178A (en) * 2007-12-07 2009-06-25 Canon Inc Mirror for euv and euv aligner having the same
WO2013161271A1 (en) * 2012-04-23 2013-10-31 キヤノン電子株式会社 Optical scanning device and image reading device
JP2015519736A (en) * 2012-04-27 2015-07-09 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical element including magnetostrictive material
US20150316763A1 (en) * 2013-04-17 2015-11-05 California Institute Of Technology Optimized actuators for ultra-thin mirrors
JP2015065246A (en) * 2013-09-24 2015-04-09 キヤノン株式会社 Optical device, optical system, exposure device, and manufacturing method for article
US20150261081A1 (en) * 2014-03-14 2015-09-17 Kabushiki Kaisha Toshiba Photomask manufacturing method and photomask

Also Published As

Publication number Publication date
CN108089407B (en) 2021-01-08
CN108089407A (en) 2018-05-29
KR102230464B1 (en) 2021-03-23
KR20180057525A (en) 2018-05-30
TW201820054A (en) 2018-06-01
JP6862154B2 (en) 2021-04-21
TWI647545B (en) 2019-01-11

Similar Documents

Publication Publication Date Title
US20210223696A1 (en) Substrate, a substrate holder, a substrate coating apparatus, a method for coating the substrate and a method for removing the coating
JP7378453B2 (en) Substrate table for lithography equipment and method for loading substrates
TWI397788B (en) Actuator system, lithographic apparatus, and device manufacturing method
US7543948B2 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
Yao et al. Progress of coating stress compensation of silicon mirrors for Lynx x-ray telescope mission concept using thermal oxide patterning method
KR20110125591A (en) A substrate table, a lithographic apparatus, a method of flattening an edge of a substrate and a device manufacturing method
JP2008112756A (en) Optical element driving device and control method thereof, exposure apparatus, and manufacturing method of device
CN109416515B (en) Holding device, projection optical system, exposure device, and article manufacturing method
TWI631430B (en) Optical device, projection optical system, exposure device, and article manufacturing method
JP6760975B2 (en) Control system, positioning system, lithography equipment and device manufacturing method
JP5489849B2 (en) Position measuring apparatus and method, exposure apparatus and device manufacturing method
JP6862154B2 (en) Manufacturing methods for optics, exposure equipment, and articles
JP3861329B2 (en) Vacuum thin film forming apparatus and reflector manufacturing method
JP5989233B2 (en) Lithographic apparatus and device manufacturing method
KR20230158096A (en) Clamp electrode changes for improved overlay
JP6929024B2 (en) Manufacturing method of optical equipment, exposure equipment and articles
US20050264790A1 (en) Lithographic apparatus and device manufacturing method
TW201910858A (en) Optical device, projection optical system, exposure apparatus using the same, and method for manufacturing article
KR102319819B1 (en) Optical device, projection optical system, exposure apparatus, and manufacturing method of article
JP2011103411A (en) Retaining device of optical element, optical system, and exposure apparatus
KR20210148328A (en) Lithographic apparatus, substrate table, and non-uniform coating method
JP2005228922A (en) Aligner
WO2016134862A1 (en) Lithographic apparatus, manipulator system and method of controlling curvature of a focal plane
JP2013064893A (en) Exposure device, exposure method and device manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R151 Written notification of patent or utility model registration

Ref document number: 6862154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151