JP2018080949A - Catalytic-conversion-type sensor - Google Patents

Catalytic-conversion-type sensor Download PDF

Info

Publication number
JP2018080949A
JP2018080949A JP2016221960A JP2016221960A JP2018080949A JP 2018080949 A JP2018080949 A JP 2018080949A JP 2016221960 A JP2016221960 A JP 2016221960A JP 2016221960 A JP2016221960 A JP 2016221960A JP 2018080949 A JP2018080949 A JP 2018080949A
Authority
JP
Japan
Prior art keywords
gas
conversion
detection target
catalyst
target gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016221960A
Other languages
Japanese (ja)
Other versions
JP6858535B2 (en
Inventor
前川 亨
Toru Maekawa
亨 前川
知世 皆越
Tomoyo Minakoshi
知世 皆越
研二 石橋
Kenji Ishibashi
研二 石橋
洋 宮崎
Hiroshi Miyazaki
洋 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to PCT/JP2016/083735 priority Critical patent/WO2017082431A1/en
Priority to US15/775,701 priority patent/US10928339B2/en
Priority to JP2016221960A priority patent/JP6858535B2/en
Publication of JP2018080949A publication Critical patent/JP2018080949A/en
Application granted granted Critical
Publication of JP6858535B2 publication Critical patent/JP6858535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalytic-conversion-type sensor capable of improving conversion rate and achieving miniaturization.SOLUTION: A catalytic-conversion-type sensor X for detecting a conversion gas produced by thermal decomposition and thereby sensing a gas to be sensed is provided with a gas channel 10 through which the gas to be sensed is caused to flow, and a conversion unit 30 connected to the gas channel 10. The conversion unit has a heated catalyst part 30A and a sensor element part 30B. In the heated catalyst part, the gas to be sensed is brought into contact with a heated catalyst 31 to react and generate a conversion gas on a side isolated by diffusion means 20 for allowing the gas to be sensed to diffuse without assistance. The sensor element part makes it possible to detect the conversion gas generated by the thermal decomposition.SELECTED DRAWING: Figure 1

Description

本発明は、熱分解によって生成した転化ガスを検出することで検知対象ガスを検知する触媒転化式センサに関する。   The present invention relates to a catalytic conversion type sensor that detects a detection target gas by detecting a converted gas generated by thermal decomposition.

半導体製造にエッチングガス又はクリーニングガスとして使用される、三フッ化窒素(NF)、C、C、四フッ化炭素等のフッ素系特殊ガスは、通常、周辺環境に対する負荷があると考えられている。そのため、三フッ化窒素等のフッ素系特殊ガスの漏洩を検知することにより、これらフッ素系特殊ガスを周辺環境に放出しないように対策することができる。 Fluorine special gases such as nitrogen trifluoride (NF 3 ), C 4 F 6 , C 4 F 8 , and carbon tetrafluoride, which are used as etching gas or cleaning gas in semiconductor manufacturing, are usually burdens on the surrounding environment There are thought to be. Therefore, by detecting the leakage of a fluorine-based special gas such as nitrogen trifluoride, measures can be taken so that these fluorine-based special gases are not released to the surrounding environment.

このようなフッ素系特殊ガスは、直接電気化学反応による検知ができないためガスセンサによる感度が低く、事前に熱分解により他のガスに転化させることにより検知できることが知られている。   It is known that such a fluorine-based special gas cannot be detected directly by an electrochemical reaction, so the sensitivity of the gas sensor is low, and it can be detected by converting it to another gas by thermal decomposition in advance.

尚、本発明における従来技術となる上述した「熱分解によって生成した転化ガスを検出することで検知対象ガスを検知する」技術は、一般的な技術であるため、特許文献等の従来技術文献は示さない。   In addition, since the above-described “detecting the gas to be detected by detecting the converted gas generated by thermal decomposition” technology as a conventional technology in the present invention is a general technology, the prior art documents such as patent documents are Not shown.

熱分解によって転化ガスを生成するには、高温とする必要があるため、通常、熱源が大きく、断熱機構を備えた熱分解炉を使用するため、装置が大型化する傾向にあった。   In order to generate the conversion gas by pyrolysis, it is necessary to use a high temperature, and therefore, the heat source is usually large, and a pyrolysis furnace equipped with a heat insulation mechanism is used.

従って、本発明の目的は、転化率を向上でき、小型化を達成できる触媒転化式センサを提供することにある。   Accordingly, it is an object of the present invention to provide a catalyst conversion type sensor that can improve the conversion rate and achieve downsizing.

上記目的を達成するための本発明に係る触媒転化式センサの第一特徴構成は、熱分解によって生成した転化ガスを検出することで検知対象ガスを検知するべく、前記検知対象ガスを流下させるガス流路と、前記ガス流路と接続し、前記検知対象ガスを自然拡散させる拡散手段によって隔てられた側に、加熱した触媒と接触させることにより前記検知対象ガスを熱分解して転化ガスを生成する加熱触媒部、および、熱分解によって生成した転化ガスを検出可能なセンサ素子部を有する転化部と、を備えた点にある。   In order to achieve the above object, the first characteristic configuration of the catalytic conversion sensor according to the present invention is a gas that causes the detection target gas to flow down in order to detect the detection target gas by detecting the conversion gas generated by thermal decomposition. A conversion gas is generated by thermally decomposing the detection target gas by contacting with a heated catalyst on the side separated by a diffusion means for spontaneous diffusion of the detection target gas. And a conversion unit having a sensor element unit capable of detecting a conversion gas generated by thermal decomposition.

本構成の触媒転化式センサは、拡散手段によりガス流路を流下する検知対象ガスを転化部の側に自然拡散させることができるため、転化部へ移行する検知対象ガスのガス量がガス流路を流下する流量に依存し難いように構成することができる。そのため、流量センサの劣化によって経時的にガス流路を流下する検知対象ガスの流量が変動した場合であっても、直ちに転化部へ移行する検知対象ガスのガス量に影響し難くなるため、転化部へ移行する検知対象ガスのガス量は変動し難くなる。従って、本発明の触媒転化式センサにおいては、検知対象ガスを転化ガスに転化させる転化率は検知対象ガスの流量の影響を受け難くなるため、経時的に転化率が低下し難くなる。   In the catalyst conversion type sensor of this configuration, the gas to be detected flowing down the gas flow path by the diffusing means can be naturally diffused to the conversion part side, so that the gas amount of the detection target gas transferred to the conversion part is the gas flow path. It is possible to configure so as not to depend on the flow rate flowing down. For this reason, even if the flow rate of the detection target gas flowing down the gas flow passage with time changes due to deterioration of the flow sensor, it is difficult to influence the gas amount of the detection target gas that immediately moves to the conversion unit. The amount of gas to be detected that moves to the section is less likely to fluctuate. Therefore, in the catalyst conversion type sensor of the present invention, the conversion rate at which the detection target gas is converted into the conversion gas is not easily affected by the flow rate of the detection target gas, and therefore the conversion rate is less likely to decrease with time.

また、本構成の拡散手段であれば、転化部の内部に自然拡散して滞留する検知対象ガスを加熱触媒部に効率よく接触させることができるため、転化率を向上させることができる。   Moreover, if it is a diffusion means of this structure, since the detection object gas which naturally diffuses and stays in the inside of a conversion part can be made to contact a heating catalyst part efficiently, a conversion rate can be improved.

また、本発明の触媒転化式センサは、転化部に加熱触媒部およびセンサ素子部を有することにより、大型の熱分解炉を使用する必要が無いため小型化を達成することができる。   Further, the catalyst conversion type sensor of the present invention can achieve downsizing by having a heating catalyst part and a sensor element part in the conversion part, so that it is not necessary to use a large pyrolysis furnace.

本発明に係る触媒転化式センサの第二特徴構成は、前記拡散手段が少なくともガス透過性の多孔質膜を備えた点にある。   The second characteristic configuration of the catalytic conversion sensor according to the present invention is that the diffusion means includes at least a gas permeable porous membrane.

本構成によれば、ガス透過性の多孔質膜は、検知対象ガスが転化部の内部へ自然拡散する程度を所望の程度に規定することができる。   According to this configuration, the gas-permeable porous membrane can regulate the degree of natural diffusion of the detection target gas into the conversion portion to a desired level.

また、拡散手段は、ガス流路を流下する検知対象ガスが転化部の側に自然拡散できるように検知対象ガスを透過させる態様となっているが、一方で、転化部において生成した転化ガスが拡散手段を透過してガス流路の側に移行し難いように構成するのが望ましい。即ち、転化ガスがガス流路の側に移行し難くなれば、センサ素子部によって効率よく転化ガスを検知することができる。そのため、本構成のように少なくとも多孔質膜を備えるように構成すれば、その透気度を種々変更する等して、拡散手段の透気抵抗度が、適用される検知対象ガスが転化部の側に自然拡散でき、かつ、転化ガスが転化部からガス流路の側に移行し難くなるように構成することができる。   Further, the diffusion means is configured to transmit the detection target gas so that the detection target gas flowing down the gas flow path can be naturally diffused to the conversion unit side. On the other hand, the conversion gas generated in the conversion unit is It is desirable to configure so that it does not easily pass through the diffusion means and move to the gas flow path side. That is, if it becomes difficult for the converted gas to move to the gas flow path side, the converted gas can be efficiently detected by the sensor element unit. Therefore, if it is configured to include at least a porous membrane as in the present configuration, the gas permeation resistance of the diffusing means can be changed by changing the gas permeability, etc. It can be configured such that the gas can be naturally diffused to the side, and the converted gas does not easily move from the conversion part to the gas flow path side.

本発明に係る触媒転化式センサの第三特徴構成は、前記検知対象ガスをヘキサフルオロ−1,3−ブタジエン(C)とし、前記転化ガスをフッ化水素とした点にある。 The third characteristic configuration of the catalyst conversion type sensor according to the present invention is that the detection target gas is hexafluoro-1,3-butadiene (C 4 F 6 ) and the conversion gas is hydrogen fluoride.

本構成によれば、ガスセンサによる感度が低く、直接電気化学反応による検知ができないヘキサフルオロ−1,3−ブタジエンをフッ化水素に転化して効率よく検知することができる。   According to this structure, the sensitivity by a gas sensor is low, and hexafluoro-1,3-butadiene which cannot be detected directly by an electrochemical reaction can be converted into hydrogen fluoride and efficiently detected.

本発明に係る触媒転化式センサの第四特徴構成は、前記加熱触媒部における触媒をPdおよびPtを含有する貴金属触媒とし、前記センサ素子部を貴金属担持カーボンを有してフッ化水素を検知できる電気化学式センサ素子とした点にある。   According to a fourth characteristic configuration of the catalyst conversion type sensor according to the present invention, the catalyst in the heating catalyst portion is a noble metal catalyst containing Pd and Pt, and the sensor element portion has noble metal-supporting carbon and can detect hydrogen fluoride. It is an electrochemical sensor element.

本構成によれば、貴金属担持カーボンを有してフッ化水素を検知できる電気化学式センサ素子であれば、フッ化水素に対しても感度が高く、小型化することができる。従って、本構成の触媒転化式センサであれば、触媒転化式センサの一層の小型化を達成することができる。   According to this configuration, an electrochemical sensor element having noble metal-supported carbon and capable of detecting hydrogen fluoride is highly sensitive to hydrogen fluoride and can be downsized. Therefore, if the catalyst conversion type sensor of this configuration is used, further downsizing of the catalyst conversion type sensor can be achieved.

本発明の触媒転化式センサの断面概略図である。It is a section schematic diagram of the catalyst conversion type sensor of the present invention. 拡散手段の概略図である。It is the schematic of a spreading | diffusion means.

以下、本発明の実施形態を図面に基づいて説明する。
図1に示したように、本発明の触媒転化式センサXは、熱分解によって生成した転化ガスを検出することで検知対象ガスを検知するべく、検知対象ガスを流下させるガス流路10と、ガス流路10と接続し、検知対象ガスを自然拡散させる拡散手段20によって隔てられた側に、加熱した触媒31と接触させることにより検知対象ガスを熱分解して転化ガスを生成する加熱触媒部30A、および、熱分解によって生成した転化ガスを検出可能なセンサ素子部30Bを有する転化部30と、を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the catalytic conversion sensor X of the present invention includes a gas flow path 10 for flowing down the detection target gas in order to detect the detection target gas by detecting the conversion gas generated by thermal decomposition, A heated catalyst unit that is connected to the gas flow path 10 and is brought into contact with the heated catalyst 31 on the side separated by the diffusing means 20 that naturally diffuses the detection target gas, thereby generating the conversion gas by pyrolyzing the detection target gas. 30A, and the conversion part 30 which has the sensor element part 30B which can detect the conversion gas produced | generated by thermal decomposition.

本実施形態では、検知対象ガスがヘキサフルオロ−1,3−ブタジエン(C)であり、センサ素子部30Bがフッ化水素(HF)を検知できる電気化学式センサ素子であるフッ化水素センサとした場合について説明するが、これらに限定されるものではない。例えば検知対象ガスをCやCとしたり、当該センサ素子部30Bは、フッ素(F)を検知できるフッ素センサとすることができる。 In the present embodiment, the detection target gas is hexafluoro-1,3-butadiene (C 4 F 6 ), and the sensor element 30B is an electrochemical sensor element that can detect hydrogen fluoride (HF). However, the present invention is not limited to these. For example, the detection target gas may be C 5 F 8 or C 4 F 8 , or the sensor element unit 30B may be a fluorine sensor that can detect fluorine (F 2 ).

拡散手段20は、ガス流路10と転化部30とを仕切るものであり、これらを空間的に区別できるように構成してあればよく、ガス流路10を流下する検知対象ガスが転化部30の側に自然拡散できるように検知対象ガスを透過させる態様となるように構成してある。即ち、ガス流路10を流下する検知対象ガスの一部は、そのままガス流路10の下流側へ流下し、残りの一部が拡散手段20を透過して転化部30の内部へ自然拡散する態様となる。本明細書における「自然拡散」とは、例えば検知対象ガスを加圧するなどして強制的に拡散手段20の孔を通過させて転化部30の内部へ透過させることはせず、ガス流路10を流下する検知対象ガスの少なくとも一部が、当該流圧の影響を受け難い状態で拡散手段20の孔を通過して転化部30の内部へ透過する態様のことをいうものとする。   The diffusing means 20 divides the gas flow path 10 and the conversion unit 30, as long as they are configured to be spatially distinguishable, and the detection target gas flowing down the gas flow path 10 is converted into the conversion unit 30. It is comprised so that it may become the aspect which permeate | transmits detection object gas so that it can diffuse naturally. That is, a part of the detection target gas flowing down the gas flow path 10 flows down to the downstream side of the gas flow path 10 as it is, and the remaining part permeates the diffusion means 20 and diffuses naturally into the conversion unit 30. It becomes an aspect. “Natural diffusion” in this specification means that the gas to be detected is not forced to pass through the holes of the diffusing means 20 by, for example, pressurizing the detection target gas and permeate into the conversion unit 30. It is assumed that at least a part of the detection target gas flowing down the gas passes through the hole of the diffusing means 20 and permeates into the conversion unit 30 in a state where it is difficult to be affected by the flow pressure.

このような拡散手段20は、ガス流路10から膜を透過して一定濃度で平衡に達する検知対象ガスと同じく、転化ガスも転化部30内に駐留せずに、検知対象ガス濃度に対応した濃度で平衡となりガス流路10に排出されるものであればよい。   Such a diffusing means 20 corresponds to the concentration of the detection target gas without allowing the conversion gas to stay in the conversion unit 30 as in the case of the detection target gas that passes through the membrane from the gas flow path 10 and reaches equilibrium at a constant concentration. Any material that is balanced in concentration and discharged to the gas flow path 10 may be used.

拡散手段20は、異なる材料を組み合わせて構成してもよく、単一の材料で構成してもよいが、少なくとも多孔質膜を備えることが好ましい。多孔質膜のみで構成するほうが、ガス流路10から膜を透過して一定濃度で平衡に達する検知対象ガスと同じく、転化ガスも転化部30内に駐留せずに、検知対象ガス濃度に対応した濃度で平衡となりガス流路10に排出され易い。   The diffusing means 20 may be composed of a combination of different materials or a single material, but preferably includes at least a porous film. The configuration composed of only the porous membrane corresponds to the concentration of the gas to be detected without allowing the conversion gas to stay in the conversion unit 30 as in the case of the gas to be detected that permeates the membrane from the gas flow path 10 and reaches equilibrium at a constant concentration. Equilibrium at the concentration thus obtained tends to be discharged into the gas flow path 10.

例えば、拡散手段20を異なる材料を組み合わせて構成する場合は、図2に示したように、所定の孔径を有する孔部21aを備えた樹脂膜21、および、ガス透過性の多孔質膜22を隣接配置して重ねた態様とすることができる。   For example, when the diffusing means 20 is configured by combining different materials, as shown in FIG. 2, the resin film 21 including the hole 21a having a predetermined hole diameter and the gas permeable porous film 22 are provided. It can be set as the aspect arrange | positioned adjacently and piled up.

樹脂膜21は、プラスチック合成樹脂などの高分子成分などを薄い膜状に成型したものとすればよいが、これに限定されるものではない。このような樹脂膜21に所定の孔径を有する孔部21aを1個あるいは複数個形成する。孔部21aの孔径および孔数を設定することにより、拡散手段20を透過して転化部30の内部へ自然拡散する検知対象ガスのガス量を調節することができる。ガス量の調節は、所望のガス量となるように孔部21aの孔径および孔数を設定すればよい。   The resin film 21 may be formed by molding a polymer component such as a plastic synthetic resin into a thin film shape, but is not limited thereto. One or a plurality of hole portions 21 a having a predetermined hole diameter are formed in the resin film 21. By setting the hole diameter and the number of holes of the hole 21a, the amount of the detection target gas that permeates the diffusion means 20 and naturally diffuses into the conversion unit 30 can be adjusted. The gas amount may be adjusted by setting the hole diameter and the number of holes of the hole 21a so as to obtain a desired gas amount.

多孔質膜22は、ガス透過性の多孔質膜等を使用すればよいが、これに限定されるものではない。このような多孔膜は、例えばPTFE(ポリテトラフルオロエチレン)膜等を使用することができる。当該多孔質膜22は、検知対象ガスが転化部30の内部へ自然拡散する程度を所望の程度に規定することができる。また多孔質膜22は、ガス流路10から膜を透過して一定濃度で平衡に達する検知対象ガスと同じく、転化ガスも転化部内に駐留せずに、検知対象ガス濃度に対応した濃度で平衡となり流路に排出される程度を所望の程度に規定することができる。   The porous membrane 22 may be a gas permeable porous membrane or the like, but is not limited to this. As such a porous membrane, for example, a PTFE (polytetrafluoroethylene) membrane or the like can be used. The porous film 22 can define the degree of natural diffusion of the detection target gas into the conversion unit 30 to a desired degree. In addition, the porous membrane 22 does not stay in the conversion unit and is balanced at a concentration corresponding to the concentration of the detection target gas, like the detection target gas that passes through the membrane from the gas flow path 10 and reaches equilibrium at a constant concentration. The degree of discharge into the flow path can be defined to a desired degree.

上述したように、拡散手段20は、ガス流路10を流下する検知対象ガスが転化部30の側に自然拡散できるように検知対象ガスを透過させる態様となっているが、一方で、転化部30において生成した転化ガスが拡散手段20を透過してガス流路10の側に移行し難いように構成するのが望ましい。即ち、転化ガスがガス流路10の側に移行し難くなれば、センサ素子部30Bによって効率よく転化ガスを検知することができる。そのため、上述した拡散手段20であれば、孔部21aの孔径および孔数の他、孔部21aの配設位置を種々設定し、さらに多孔質膜22の透気度を種々変更する等して、拡散手段20の透気抵抗度が、適用される検知対象ガスが転化部30の側に自然拡散でき、かつ、転化ガスが転化部30からガス流路10の側に移行し難くなるように構成することができる。   As described above, the diffusing unit 20 is configured to transmit the detection target gas so that the detection target gas flowing down the gas flow path 10 can naturally diffuse to the conversion unit 30 side. It is desirable that the converted gas generated at 30 is difficult to pass through the diffusing means 20 and move to the gas flow path 10 side. That is, if it becomes difficult for the converted gas to move toward the gas flow path 10, the sensor element 30B can efficiently detect the converted gas. Therefore, in the case of the diffusion means 20 described above, various arrangement positions of the hole 21a in addition to the hole diameter and the number of holes 21a are set, and the air permeability of the porous film 22 is changed variously. The gas permeation resistance of the diffusing means 20 is such that the detection target gas to be applied can naturally diffuse to the conversion unit 30 side, and the conversion gas does not easily move from the conversion unit 30 to the gas flow path 10 side. Can be configured.

拡散手段20を単一の材料で構成する場合は、例えば所定の孔径を有する孔部を形成した樹脂膜、或いは、ガス透過性の多孔質膜等の何れかを使用すればよいが、これに限定されるものではない。   When the diffusing means 20 is composed of a single material, for example, either a resin film having a hole having a predetermined hole diameter or a gas permeable porous film may be used. It is not limited.

樹脂膜は、上述したプラスチック合成樹脂などの高分子成分などを薄い膜状に成型したものとすればよいが、これに限定されるものではない。この場合も当該樹脂膜に所定の孔径を有する孔部を1個あるいは複数個形成する。孔部2の孔径および孔数を設定することにより、拡散手段20を透過して転化部30の内部へ自然拡散する検知対象ガスのガス量を調節することができる。そのため、所望のガス量となるように孔部の孔径および孔数を設定すればよい。   The resin film may be formed by molding a polymer component such as the above-described plastic synthetic resin into a thin film shape, but is not limited thereto. Also in this case, one or a plurality of holes having a predetermined hole diameter are formed in the resin film. By setting the hole diameter and the number of holes of the hole 2, it is possible to adjust the gas amount of the detection target gas that permeates the diffusion means 20 and naturally diffuses into the conversion unit 30. Therefore, what is necessary is just to set the hole diameter and the number of holes of a hole so that it may become a desired gas amount.

多孔質膜は、例えば上述したPTFE膜等を使用することができる。尚、拡散手段20を単一の材料で構成する場合は単一の同じ材料(多孔質PTFE膜)であっても、透気度を異ならせた複数の多孔質PTFE膜を組み合わせることも可能である。   As the porous membrane, for example, the above-mentioned PTFE membrane or the like can be used. When the diffusing means 20 is composed of a single material, it is possible to combine a plurality of porous PTFE membranes having different air permeability even if they are the same material (porous PTFE membrane). is there.

本構成であれば、簡易な構成で、拡散手段20を透過して転化部30の内部へ自然拡散する検知対象ガスのガス量を調節することができる。ガス量の調節は、所望のガス量となるように孔部の孔径および孔数を設定すればよい。   With this configuration, it is possible to adjust the gas amount of the detection target gas that permeates the diffusion means 20 and naturally diffuses into the conversion unit 30 with a simple configuration. The gas amount may be adjusted by setting the hole diameter and the number of holes so that the desired gas amount is obtained.

転化部30は、検知対象ガスを熱分解して生成した転化ガスを検出するように構成するため、加熱触媒部30Aおよびセンサ素子部30Bを有する。本実施形態の転化部30はケーシング1の内部空間の一部として構成してある。即ち、当該ケーシング1は、その内部を拡散手段20によって仕切ってあり、仕切られた空間の一方を転化部30とし、他方をガス流路10の一部としてある。ケーシング1は円柱状や立方体状等、どのような形状であってもよい。本実施形態では、検知対象ガスがガス流路10を流下する方向と、検知対象ガスの一部が拡散手段20を透過して転化部30の内部へ自然拡散する方向とが異なる(略直交する)ように構成してある場合について説明する。この場合、ガス流路10を流下する検知対象ガスの少なくとも一部を、より当該流圧の影響を受け難い状態で拡散手段20の孔を通過して転化部30の内部へ自然拡散させ易くなる。   The conversion unit 30 includes a heating catalyst unit 30A and a sensor element unit 30B in order to detect the conversion gas generated by pyrolyzing the detection target gas. The conversion unit 30 of the present embodiment is configured as a part of the internal space of the casing 1. That is, the inside of the casing 1 is partitioned by the diffusing means 20, and one of the partitioned spaces is the conversion unit 30 and the other is part of the gas flow path 10. The casing 1 may have any shape such as a columnar shape or a cubic shape. In the present embodiment, the direction in which the detection target gas flows down the gas flow path 10 is different from the direction in which a part of the detection target gas permeates the diffusion means 20 and naturally diffuses into the conversion unit 30 (substantially orthogonal). ) Will be described. In this case, at least a part of the detection target gas flowing down the gas flow path 10 easily passes through the holes of the diffusion means 20 and is naturally diffused into the conversion unit 30 in a state that is less susceptible to the flow pressure. .

加熱触媒部30Aは、拡散手段20を透過して転化部30の内部へ自然拡散した検知対象ガスを加熱した触媒31に接触させ、検知対象ガスを熱分解して転化ガスを生成する。本実施形態における当該触媒31は、PdおよびPtを含有する貴金属触媒とした場合について説明するが、これらに限定されずRu、RhおよびIrも使用することができる。この加熱触媒部30Aは、例えば400〜600℃程度、好ましくは450℃程度まで加熱することができるように構成すればよい。検知対象ガスが加熱した触媒31に接触すると、検知対象ガスが熱分解されることによって転化ガスを生成することができる。加熱触媒部は1つであれば消費電力を抑制できるが、設置数は1つに限定されず、複数設けてもよい。加熱触媒部を複数設ける場合は、例えば2つの加熱触媒部を所定間隔で並置してそれらの下流側にセンサ素子部30Bが配設されるように構成してもよいし、2つの加熱触媒部がケーシング1の内部で対面するように配設してもよい。また、加熱触媒部を複数設ける場合は、それぞれの加熱触媒部を加熱する温度を同じ温度に設定してもよく、設置位置に応じた適切な温度に変更してもよい。当該温度は、拡散手段20の性能が適切に発揮できる温度に設定するのがよい。尚、当該温度は、触媒31を備えているため比較的低温で熱分解が可能となる。   30 A of heating catalyst parts permeate | transmit the spreading | diffusion means 20, and make the detection target gas naturally diffused in the inside of the conversion part 30 contact the heated catalyst 31, and pyrolyze a detection target gas, and produce | generate a conversion gas. Although the case where the catalyst 31 in the present embodiment is a noble metal catalyst containing Pd and Pt will be described, the present invention is not limited thereto, and Ru, Rh, and Ir can also be used. The heating catalyst unit 30A may be configured to be heated to, for example, about 400 to 600 ° C., preferably about 450 ° C. When the detection target gas comes into contact with the heated catalyst 31, the detection target gas is pyrolyzed, so that a converted gas can be generated. If there is only one heating catalyst unit, power consumption can be suppressed, but the number of installation is not limited to one, and a plurality may be provided. In the case where a plurality of heating catalyst units are provided, for example, two heating catalyst units may be juxtaposed at a predetermined interval, and the sensor element unit 30B may be disposed on the downstream side thereof. May be arranged so as to face each other inside the casing 1. When a plurality of heating catalyst units are provided, the temperature for heating each heating catalyst unit may be set to the same temperature, or may be changed to an appropriate temperature according to the installation position. The said temperature is good to set to the temperature which can exhibit the performance of the spreading | diffusion means 20 appropriately. In addition, since the said temperature is provided with the catalyst 31, thermal decomposition becomes possible at comparatively low temperature.

本実施形態では、加熱触媒部30Aとして接触燃焼式センサの素子を用いる場合について説明する。この場合、簡便かつ小型の態様で加熱触媒部を構成することができる。   In the present embodiment, a case where an element of a catalytic combustion type sensor is used as the heating catalyst unit 30A will be described. In this case, a heating catalyst part can be comprised in a simple and small aspect.

接触燃焼式センサは、所定のガスと感応する検知素子を備えている。当該検知素子は、接触燃焼式の素子であって、電気抵抗に対する温度係数が高い白金等を含む金属線のコイルの表面が、検出対象ガスに対して活性な貴金属触媒を坦持するアルミナ等の坦体で被覆されて形成されている。貴金属触媒は、上述した白金族である、Pt、Pd、Ru、RhおよびIrの少なくとも1つ以上の微粒子を使用することができる。   The contact combustion type sensor includes a detection element that is sensitive to a predetermined gas. The detection element is a catalytic combustion type element, and the surface of the coil of a metal wire containing platinum or the like having a high temperature coefficient with respect to electrical resistance is made of alumina or the like that carries a noble metal catalyst active against the detection target gas. It is formed by covering with a carrier. As the noble metal catalyst, fine particles of at least one of Pt, Pd, Ru, Rh and Ir, which are the platinum group described above, can be used.

上述したように、本実施形態では、検知対象ガスがCであり、転化ガスがフッ化水素であるが、これは以下の化1の反応式によって転化が進行すると考えられる。 As described above, in this embodiment, the detection target gas is C 4 F 6 and the conversion gas is hydrogen fluoride. It is considered that the conversion proceeds according to the following reaction formula (1).

Figure 2018080949
Figure 2018080949

センサ素子部30Bは、電気化学式センサ、光センサ、半導体式ガスセンサ、接触燃焼式センサ等が適用できる。本実施形態では、貴金属担持カーボンを有して、生成した転化ガスであるフッ化水素を検知できる電気化学式センサ素子である場合について説明する。   As the sensor element unit 30B, an electrochemical sensor, an optical sensor, a semiconductor gas sensor, a contact combustion sensor, or the like can be applied. In the present embodiment, a case will be described in which an electrochemical sensor element having noble metal-supported carbon and capable of detecting hydrogen fluoride, which is a generated conversion gas, is used.

当該電気化学式センサ素子は、ガス拡散電極からなる検知極、当該検知極に一体に接合されている補助相、常温溶融塩である電解液、検知極と同様の構成からなる対極をセンサケースに収容することによって構成することができる。検知極は金触媒を担持させたカーボン粉末(金担持カーボン)とバインダーとしてのポリ4フッ化エチレンとの混合物から形成してある。補助相は多孔性ニッケルシートの孔中に補助相材料である硝酸リチウムを充填して形成してある。このような電気化学式センサ素子は、フッ化水素に対しても感度が高い。   The electrochemical sensor element houses a detection electrode composed of a gas diffusion electrode, an auxiliary phase integrally joined to the detection electrode, an electrolytic solution that is a room temperature molten salt, and a counter electrode having the same configuration as the detection electrode in a sensor case. Can be configured. The detection electrode is formed from a mixture of carbon powder carrying a gold catalyst (gold-carrying carbon) and polytetrafluoroethylene as a binder. The auxiliary phase is formed by filling lithium nitrate, which is an auxiliary phase material, in the pores of the porous nickel sheet. Such an electrochemical sensor element is highly sensitive to hydrogen fluoride.

この金担持カーボンであれば、約10nm程度まで微粒子化することができるため、電気化学式センサ素子を小型化することができる。また、金担持カーボンを微粒子化することで、表面積が増大してフッ化水素に対しても感度を向上することができる。
本発明で使用する検知対象ガスであるCは、ガスセンサによる感度が低く、直接電気化学反応による検知ができないため、事前に熱分解によりフッ化水素に転化させることにより検知できる。
This gold-supported carbon can be made into fine particles up to about 10 nm, so that the electrochemical sensor element can be miniaturized. Further, by making the gold-supporting carbon fine particles, the surface area can be increased and the sensitivity to hydrogen fluoride can be improved.
C 4 F 6, which is a detection target gas used in the present invention, has low sensitivity by a gas sensor and cannot be directly detected by an electrochemical reaction. Therefore, it can be detected by converting it into hydrogen fluoride by thermal decomposition in advance.

本発明の触媒転化式センサXは、検知対象ガスを吸引して流下させるポンプ、流量センサ、センサ素子部30Bが検知した結果に基づいて検知対象ガスの漏洩を判定する演算手段、警報レベル以上の検知対象ガスの濃度を継続して検知した場合に警報を発するように制御する警報手段(何れも図外)等と共に警報器やガス検知器の部材とすることができる。   The catalyst conversion type sensor X of the present invention includes a pump that sucks and flows down the detection target gas, a flow rate sensor, a calculation means that determines leakage of the detection target gas based on a result detected by the sensor element unit 30B, an alarm level or higher It can be used as a member of an alarm device or a gas detector together with alarm means (both not shown) for controlling to issue an alarm when the concentration of the detection target gas is continuously detected.

本発明の触媒転化式センサXは、拡散手段20によりガス流路10を流下する検知対象ガスを転化部30の側に自然拡散させることができるため、転化部30へ移行する検知対象ガスのガス量がガス流路10を流下する流量に依存し難いように構成することができる。そのため、流量センサが劣化して経時的にガス流路10を流下する検知対象ガスの流量が変動した場合であっても、直ちに転化部30へ移行する検知対象ガスのガス量に影響し難くなるため、転化部30へ移行する検知対象ガスのガス量は変動し難くなる。従って、本発明の触媒転化式センサXにおいては、検知対象ガスを転化ガスに転化させる転化率は検知対象ガスの流量の影響を受け難くなるため、経時的に転化率が低下し難くなる。   In the catalyst conversion type sensor X of the present invention, the detection target gas flowing down the gas flow path 10 by the diffusion means 20 can be naturally diffused toward the conversion unit 30, and therefore the gas of the detection target gas that moves to the conversion unit 30. The amount can be configured not to depend on the flow rate flowing down the gas flow path 10. For this reason, even if the flow rate sensor deteriorates and the flow rate of the detection target gas flowing down the gas flow path 10 fluctuates over time, the amount of the detection target gas that immediately moves to the conversion unit 30 is hardly affected. Therefore, the gas amount of the detection target gas that moves to the conversion unit 30 is less likely to fluctuate. Therefore, in the catalyst conversion type sensor X of the present invention, the conversion rate at which the detection target gas is converted into the conversion gas is less affected by the flow rate of the detection target gas, and therefore the conversion rate is less likely to decrease with time.

上述した拡散手段20であれば、転化ガスが転化部30から外部(ガス流路10)に移行し難くなるように構成することができるため、転化部30の内部で滞留する転化ガスを効率よく安定してセンサ素子部30Bによって検知できる。   If it is the diffusion means 20 mentioned above, since it can comprise so that conversion gas may become difficult to transfer outside (gas flow path 10) from the conversion part 30, the conversion gas which retains inside the conversion part 30 is efficiently obtained. It can be stably detected by the sensor element unit 30B.

また、本発明の触媒転化式センサXは、転化部30に加熱触媒部30Aおよびセンサ素子部30Bを有することにより、大型の熱分解炉を使用する必要が無いため小型化を達成することができる。   Further, the catalytic conversion type sensor X of the present invention has the heating catalyst unit 30A and the sensor element unit 30B in the conversion unit 30, so that it is not necessary to use a large pyrolysis furnace, so that the size reduction can be achieved. .

本発明は、熱分解によって生成した転化ガスを検出することで検知対象ガスを検知する触媒転化式センサに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a catalyst conversion type sensor that detects a detection target gas by detecting a conversion gas generated by thermal decomposition.

X 触媒転化式センサ
10 ガス流路
20 拡散手段
30 転化部
30A 加熱触媒部
30B センサ素子部
31 触媒
X catalyst conversion type sensor 10 gas flow path 20 diffusion means 30 conversion part 30A heating catalyst part 30B sensor element part 31 catalyst

Claims (4)

熱分解によって生成した転化ガスを検出することで検知対象ガスを検知するべく、
前記検知対象ガスを流下させるガス流路と、
前記ガス流路と接続し、前記検知対象ガスを自然拡散させる拡散手段によって隔てられた側に、加熱した触媒と接触させることにより前記検知対象ガスを熱分解して転化ガスを生成する加熱触媒部、および、熱分解によって生成した転化ガスを検出可能なセンサ素子部を有する転化部と、を備えた触媒転化式センサ。
In order to detect the detection target gas by detecting the converted gas generated by pyrolysis,
A gas flow path for flowing down the detection target gas;
A heating catalyst unit that is connected to the gas flow path and that is separated by a diffusion means for naturally diffusing the detection target gas, and contacts the heated catalyst to thermally decompose the detection target gas to generate a converted gas. And a conversion unit having a sensor element unit capable of detecting a converted gas generated by thermal decomposition.
前記拡散手段は少なくともガス透過性の多孔質膜を備える請求項1に記載の触媒転化式センサ。   The catalytic conversion sensor according to claim 1, wherein the diffusing means includes at least a gas permeable porous membrane. 前記検知対象ガスがヘキサフルオロ−1,3−ブタジエンであり、前記転化ガスがフッ化水素である請求項1または2に記載の触媒転化式センサ。   The catalytic conversion sensor according to claim 1 or 2, wherein the detection target gas is hexafluoro-1,3-butadiene, and the conversion gas is hydrogen fluoride. 前記加熱触媒部における触媒がPdおよびPtを含有する貴金属触媒であり、前記センサ素子部が貴金属担持カーボンを有してフッ化水素を検知できる電気化学式センサ素子である請求項3に記載の触媒転化式センサ。   The catalyst conversion according to claim 3, wherein the catalyst in the heating catalyst part is a noble metal catalyst containing Pd and Pt, and the sensor element part is an electrochemical sensor element having noble metal-supporting carbon and capable of detecting hydrogen fluoride. Type sensor.
JP2016221960A 2015-11-13 2016-11-14 Catalytic conversion sensor and gas detector Active JP6858535B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/083735 WO2017082431A1 (en) 2015-11-13 2016-11-14 Catalytic-conversion-type sensor
US15/775,701 US10928339B2 (en) 2015-11-13 2016-11-14 Catalytic-conversion-type sensor
JP2016221960A JP6858535B2 (en) 2016-11-14 2016-11-14 Catalytic conversion sensor and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221960A JP6858535B2 (en) 2016-11-14 2016-11-14 Catalytic conversion sensor and gas detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021003288A Division JP7090756B2 (en) 2021-01-13 2021-01-13 Catalytic conversion type sensor

Publications (2)

Publication Number Publication Date
JP2018080949A true JP2018080949A (en) 2018-05-24
JP6858535B2 JP6858535B2 (en) 2021-04-14

Family

ID=62198775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221960A Active JP6858535B2 (en) 2015-11-13 2016-11-14 Catalytic conversion sensor and gas detector

Country Status (1)

Country Link
JP (1) JP6858535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204537A (en) * 2019-06-18 2020-12-24 アイシン精機株式会社 Gas sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755764A (en) * 1993-08-12 1995-03-03 Riken Keiki Co Ltd Constant potential electrolysis type acidic gas sensor
JPH08247995A (en) * 1995-03-09 1996-09-27 Ngk Insulators Ltd Method and apparatus for measuring combustible gas component
JP2002022725A (en) * 2000-07-11 2002-01-23 Central Glass Co Ltd Fluorine-containing compound gas detection method
JP2003075342A (en) * 2001-08-30 2003-03-12 Riken Keiki Co Ltd Octafluorocyclopentene measuring device
JP2009092431A (en) * 2007-10-04 2009-04-30 Denso Corp Nox sensor
JP2009518647A (en) * 2005-12-09 2009-05-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア High temperature high pressure sensor
JP2014199231A (en) * 2013-03-29 2014-10-23 新コスモス電機株式会社 Gas detection device and operation method thereof
JP2015055489A (en) * 2013-09-10 2015-03-23 新コスモス電機株式会社 Gas detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755764A (en) * 1993-08-12 1995-03-03 Riken Keiki Co Ltd Constant potential electrolysis type acidic gas sensor
JPH08247995A (en) * 1995-03-09 1996-09-27 Ngk Insulators Ltd Method and apparatus for measuring combustible gas component
JP2002022725A (en) * 2000-07-11 2002-01-23 Central Glass Co Ltd Fluorine-containing compound gas detection method
JP2003075342A (en) * 2001-08-30 2003-03-12 Riken Keiki Co Ltd Octafluorocyclopentene measuring device
JP2009518647A (en) * 2005-12-09 2009-05-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア High temperature high pressure sensor
JP2009092431A (en) * 2007-10-04 2009-04-30 Denso Corp Nox sensor
JP2014199231A (en) * 2013-03-29 2014-10-23 新コスモス電機株式会社 Gas detection device and operation method thereof
JP2015055489A (en) * 2013-09-10 2015-03-23 新コスモス電機株式会社 Gas detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204537A (en) * 2019-06-18 2020-12-24 アイシン精機株式会社 Gas sensor
JP7263933B2 (en) 2019-06-18 2023-04-25 株式会社アイシン gas sensor

Also Published As

Publication number Publication date
JP6858535B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
EP3384280B1 (en) Nanostructured nickel oxide environmental sensor device and a package for encapsulating the device
JP5858706B2 (en) Hydrogen gas sensor signal processing method and signal processing apparatus
KR20030055341A (en) Gas sensor and detection method and device for gas concentration
WO1989001148A1 (en) Combustible gas sensor
JP4507235B2 (en) Electrochemical gas sensor
WO2000057167A1 (en) Gas components measuring device
JP7097947B2 (en) Catalytic conversion type sensor
JP6482973B2 (en) Gas sensor
JP2009092431A (en) Nox sensor
JP4945478B2 (en) Hydrogen gas sensor
JP2008180529A (en) Gas sensor
JP2018080949A (en) Catalytic-conversion-type sensor
US11442034B2 (en) Dual heater gas sensor module
US10928339B2 (en) Catalytic-conversion-type sensor
JP7090756B2 (en) Catalytic conversion type sensor
WO2017082431A1 (en) Catalytic-conversion-type sensor
JP2003156470A (en) Gas sensor element and detection method of gas concentration
JP3841513B2 (en) Hydrocarbon sensor
JP2011191089A (en) Hydrogen gas sensor
JP6474285B2 (en) Constant potential electrolytic gas sensor
JP2007278876A (en) Hydrogen sensor
KR20160054707A (en) A nitrogen oxide sensor
US20210172899A1 (en) Systems and methods for using a plurality of solid electrolyte sensors for a selective, low resolution formaldehyde detector
JP2018146346A (en) Ammonia sensor element
JP2017198604A (en) Gas sensor and gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210121

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210324

R150 Certificate of patent or registration of utility model

Ref document number: 6858535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250