JP2018080760A - Hydraulic transmission for cargo handling device and flow control valve - Google Patents
Hydraulic transmission for cargo handling device and flow control valve Download PDFInfo
- Publication number
- JP2018080760A JP2018080760A JP2016223443A JP2016223443A JP2018080760A JP 2018080760 A JP2018080760 A JP 2018080760A JP 2016223443 A JP2016223443 A JP 2016223443A JP 2016223443 A JP2016223443 A JP 2016223443A JP 2018080760 A JP2018080760 A JP 2018080760A
- Authority
- JP
- Japan
- Prior art keywords
- control valve
- diameter
- hydraulic
- oil passage
- stroke space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
- B66F9/20—Means for actuating or controlling masts, platforms, or forks
- B66F9/22—Hydraulic devices or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/044—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/14—Energy-recuperation means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/02—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
- F16K11/06—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
- F16K11/065—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
- F16K11/07—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/22—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
- F16K3/24—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/36—Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
- F16K31/363—Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor the fluid acting on a piston
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Transportation (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Civil Engineering (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Fluid-Pressure Circuits (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Multiple-Way Valves (AREA)
- Sliding Valves (AREA)
- Fluid-Driven Valves (AREA)
Abstract
Description
本発明は、荷役車両の油圧駆動装置、及び流量制御弁に関するものである。 The present invention relates to a hydraulic drive device for a cargo handling vehicle and a flow control valve.
荷役車両の油圧駆動装置として、例えば特許文献1に記載されているものが知られている。特許文献1に記載の油圧駆動装置は、作動油の給排により昇降物を昇降させる昇降用油圧シリンダと、昇降用油圧シリンダを作動させるための昇降操作部と、昇降用油圧シリンダに対する作動油の給排を行う油圧ポンプと、油圧ポンプを駆動する電動機と、油圧ポンプの吸込口と昇降用油圧シリンダのボトム室との間に配設され、昇降操作部の下降操作の操作量に基づいて作動油の流れを制御する操作弁と、を備えている。また、この油圧駆動装置は、昇降用油圧シリンダの位置エネルギーを再利用するため、油圧ポンプにアキュムレータから加圧された作動油を供給する。
As a hydraulic drive device for a cargo handling vehicle, for example, one described in
ここで、上述のような従来の油圧駆動装置においては、以下の問題点が存在する。すなわち、昇降用油圧シリンダ側の圧力が低いためにアキュムレータに作動油が流れない場合や、アキュムレータ側の圧力が高いことによって当該アキュムレータに作動油が流れない場合がある。これによって、昇降用の油圧シリンダからの作動油の流量が変動し、当該油圧シリンダを所望の下降速度で下降させることができないという問題がある。従って、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることが求められていた。 Here, the conventional hydraulic drive apparatus as described above has the following problems. That is, there is a case where the hydraulic oil does not flow to the accumulator because the pressure on the lifting hydraulic cylinder side is low, or the hydraulic oil does not flow to the accumulator due to a high pressure on the accumulator side. As a result, there is a problem that the flow rate of the hydraulic oil from the lifting hydraulic cylinder fluctuates and the hydraulic cylinder cannot be lowered at a desired lowering speed. Therefore, it is required to efficiently recover the potential energy of the load and to lower the lifting hydraulic cylinder at a desired lowering speed.
本発明の目的は、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることができる荷役車両の油圧駆動装置、及び流量制御弁を提供することである。 An object of the present invention is to provide a hydraulic drive device and a flow rate control valve for a cargo handling vehicle that can efficiently recover the potential energy of a load and that can lower a lifting hydraulic cylinder at a desired lowering speed. It is.
本発明の一側面に係る荷役車両の油圧駆動装置は、作動油の給排により昇降物を昇降させる昇降用の油圧シリンダと、油圧シリンダを作動させるための操作部と、油圧シリンダに対する作動油の給排を行う油圧ポンプと、油圧シリンダに接続され、該油圧シリンダから排出される作動油が流れる下降油路と、下降油路に配設され、操作部の下降操作に基づいて油圧シリンダから排出された作動油の流れを制御する操作弁と、下降油路から分岐点にて分岐し、分岐点と作動油を貯留するタンクとを導通するバイパス油路と、下降油路の分岐点と油圧ポンプの吸込口とを接続する回生油路と、該回生油路上に設けられ、油圧シリンダから排出される作動油を蓄圧するアキュムレータと、操作弁と、アキュムレータ及びタンクとの間に設けられ、作動油の流量を制御する流量制御弁と、を備え、流量制御弁は、タンクへ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁部と、アキュムレータへ蓄圧される作動油の流量を制御する蓄圧流量制御弁部と、を備える。 A hydraulic drive device for a cargo handling vehicle according to an aspect of the present invention includes a hydraulic cylinder for raising and lowering an elevator by supplying and discharging hydraulic oil, an operation unit for operating the hydraulic cylinder, and hydraulic oil for the hydraulic cylinder. A hydraulic pump that supplies and discharges, a downward oil passage that is connected to the hydraulic cylinder and through which hydraulic oil discharged from the hydraulic cylinder flows, and is disposed in the downward oil passage and is discharged from the hydraulic cylinder based on a downward operation of the operation unit An operating valve that controls the flow of the hydraulic fluid, a bypass oil passage that branches from the descending oil passage at the branch point, and connects the branch point and the tank that stores the hydraulic oil, and a branch point and hydraulic pressure of the descending oil passage A regenerative oil passage connecting the suction port of the pump, an accumulator provided on the regenerative oil passage for accumulating hydraulic oil discharged from the hydraulic cylinder, an operation valve, an accumulator and a tank, A flow rate control valve that controls the flow rate of oil, the flow rate control valve controls a bypass flow rate control valve unit that controls a bypass flow rate that is a flow rate of hydraulic oil flowing to the tank, and a flow rate of the hydraulic oil accumulated in the accumulator. And a pressure accumulation flow control valve unit to be controlled.
本発明の一の側面に係る荷役車両の油圧駆動装置は、下降油路の分岐点と油圧ポンプの吸込口とを接続する回生油路上に設けられ、油圧シリンダから排出される作動油を蓄圧するアキュムレータを備えている。このようなアキュムレータに対して、アキュムレータへ蓄圧される作動油の流量を制御する蓄圧流量制御弁部が、操作弁と、アキュムレータとの間に設けられる。また、操作弁とタンクとの間には、タンクへ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁部が設けられている。このように、油圧駆動装置は、蓄圧流量制御弁部及びバイパス流量制御弁部という二つの流量制御弁部を備えている。従って、アキュムレータへの蓄圧が可能な場合には、昇降用の油圧シリンダから吐出される作動油は、蓄圧流量制御弁部を介してアキュムレータへ蓄圧可能である。このように、積荷の位置エネルギーをアキュムレータに蓄圧し、他のタイミングで利用することが可能となる。一方、アキュムレータへの蓄圧が出来ない場合には、昇降用の油圧シリンダから吐出される作動油をバイパス流量制御弁部を介してタンクへ供給できる。従って、昇降用の油圧シリンダから吐出される作動油の流量の変動を抑制し、当該油圧シリンダを所望の下降速度で下降させることができる。以上より、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることができる。また、一つの弁である流量制御弁が二つの流量制御弁部として機能するため、安定した動作にて流量制御を行うことができる。 A hydraulic drive device for a cargo handling vehicle according to one aspect of the present invention is provided on a regenerative oil passage that connects a branch point of a descending oil passage and a suction port of a hydraulic pump, and accumulates hydraulic oil discharged from a hydraulic cylinder. It has an accumulator. For such an accumulator, a pressure accumulation flow control valve unit that controls the flow rate of hydraulic oil accumulated in the accumulator is provided between the operation valve and the accumulator. In addition, a bypass flow rate control valve unit that controls a bypass flow rate that is a flow rate of the hydraulic oil flowing to the tank is provided between the operation valve and the tank. As described above, the hydraulic drive device includes two flow control valve portions, that is, a pressure accumulation flow control valve portion and a bypass flow control valve portion. Therefore, when pressure accumulation in the accumulator is possible, hydraulic fluid discharged from the lifting hydraulic cylinder can be accumulated in the accumulator via the pressure accumulation flow control valve unit. In this manner, the potential energy of the load is accumulated in the accumulator and can be used at other timings. On the other hand, when accumulator pressure cannot be accumulated, hydraulic oil discharged from the lifting hydraulic cylinder can be supplied to the tank via the bypass flow rate control valve. Therefore, fluctuations in the flow rate of the hydraulic oil discharged from the lifting hydraulic cylinder can be suppressed, and the hydraulic cylinder can be lowered at a desired lowering speed. As described above, the potential energy of the load can be efficiently collected and the lifting / lowering hydraulic cylinder can be lowered at a desired lowering speed. Moreover, since the flow control valve which is one valve functions as two flow control valve parts, flow control can be performed with stable operation.
また、本発明の他の側面に係る荷役車両の油圧駆動装置において、流量制御弁は、操作弁を作動油が通過する際に生じる圧力差に応じ、ストローク空間内で移動体を往復移動させることで、開度を調整するパイロット式の流量制御弁であり、移動体は、移動方向における一端側に設けられてストローク空間を塞ぐ第1の拡径部と、移動方向における他端側に設けられてストローク空間を塞ぐ第2の拡径部と、ストローク空間を形成する内壁から離間し、第1の拡径部と第2の拡径部とを接続する接続部と、を備え、バイパス流量制御弁部は、少なくとも、ストローク空間に接続されたバイパス油路と、ストローク空間に接続されて、当該ストローク空間に操作弁からの作動油を供給する供給油路と、移動体の往復移動に伴って、バイパス油路を塞ぐことで開度を調整する第1の拡径部と、によって構成され、蓄圧流量制御弁部は、少なくとも、ストローク空間に接続された回生油路と、ストローク空間に接続されて、当該ストローク空間に操作弁からの作動油を供給する供給油路と、移動体の往復移動に伴って、回生油路を塞ぐことで開度を調整する第1の拡径部と、によって構成されてよい。これにより、一つの移動体を用いたシンプルな構成にて、蓄圧流量制御及びバイパス流量制御を行うことができる。 Further, in the hydraulic drive system for a cargo handling vehicle according to another aspect of the present invention, the flow control valve causes the movable body to reciprocate in the stroke space according to a pressure difference generated when hydraulic oil passes through the operation valve. In the pilot-type flow control valve for adjusting the opening degree, the moving body is provided on one end side in the moving direction to close the stroke space, and on the other end side in the moving direction. A second diameter-expanding portion that closes the stroke space, and a connection portion that is spaced apart from the inner wall forming the stroke space and connects the first diameter-expanded portion and the second diameter-expanded portion, and bypass flow rate control The valve unit includes at least a bypass oil passage connected to the stroke space, a supply oil passage connected to the stroke space and supplying hydraulic oil from the operation valve to the stroke space, and a reciprocating movement of the moving body. , Bypass oil passage A first diameter-expanding portion that adjusts the opening degree by closing, and the pressure accumulation flow control valve portion is connected to at least the regenerative oil passage connected to the stroke space and the stroke space, and the stroke space A supply oil passage that supplies hydraulic oil from the operation valve to the first and a first diameter-expanded portion that adjusts the opening degree by closing the regenerative oil passage as the moving body reciprocates. Thereby, pressure accumulation flow control and bypass flow control can be performed with a simple configuration using one moving body.
本発明の他の側面に係る荷役車両の油圧駆動装置において、ストローク空間に対して、バイパス油路は回生油路よりも移動方向における一端側に配置され、バイパス流量制御弁部は、第1の拡径部でバイパス油路を完全に閉じるストローク区間を有してよい。これにより、バイパス油路を完全に閉じておくことにより、蓄圧流量制御弁部でアキュムレータのみへ作動油を供給することができる。 In the hydraulic drive device for a cargo handling vehicle according to another aspect of the present invention, the bypass oil passage is disposed on one end side in the movement direction with respect to the stroke space, with respect to the stroke space. A stroke section that completely closes the bypass oil passage at the enlarged diameter portion may be provided. Thereby, hydraulic oil can be supplied only to an accumulator by a pressure accumulation flow control valve part by closing a bypass oil way completely.
本発明の他の側面に係る荷役車両の油圧駆動装置において、流量制御弁は、操作弁を作動油が通過する際に生じる圧力差に応じ、ストローク空間内で移動体を往復移動させることで、開度を調整するパイロット式の流量制御弁であり、移動体は、移動方向における一端側に設けられてストローク空間を塞ぐ第1の拡径部と、移動方向における他端側に設けられてストローク空間を塞ぐ第2の拡径部と、ストローク空間を形成する内壁から離間し、第1の拡径部と第2の拡径部とを接続する接続部と、第1の拡径部と第2の拡径部との間であって、第1の拡径部及び第2の拡径部から移動方向において離間する位置に配置される第3の拡径部と、を備え、バイパス流量制御弁部は、少なくとも、第1の拡径部と第3の拡径部との間で、ストローク空間に接続されたバイパス油路と、第1の拡径部と第3の拡径部との間で、ストローク空間に接続され、当該ストローク空間へ操作弁側から作動油を供給するバイパス側供給油路と、移動体の往復移動に伴って、バイパス側供給油路を塞ぐことで開度を調整する第1の拡径部と、によって構成され、蓄圧流量制御弁部は、少なくとも、第2の拡径部と第3の拡径部との間で、ストローク空間に接続された回生油路と、第2の拡径部と第3の拡径部との間で、ストローク空間に接続され、当該ストローク空間へ操作弁側から作動油を供給する蓄圧側供給油路と、移動体の往復移動に伴って、蓄圧側供給油路を塞ぐことで開度を調整する第3の拡径部と、によって構成されてよい。これにより、一つの移動体を用いたシンプルな構成にて、蓄圧流量制御及びバイパス流量制御を行うことができる。 In the hydraulic drive system for a cargo handling vehicle according to another aspect of the present invention, the flow control valve is configured to reciprocate the moving body in the stroke space according to a pressure difference generated when hydraulic oil passes through the operation valve. It is a pilot-type flow control valve that adjusts the opening, and the moving body is provided on one end side in the moving direction to block the stroke space, and the stroke is provided on the other end side in the moving direction. A second enlarged-diameter portion that closes the space, a connection portion that is spaced apart from the inner wall that forms the stroke space, and connects the first enlarged-diameter portion and the second enlarged-diameter portion, the first enlarged-diameter portion, and the first And a third enlarged portion disposed between the first enlarged portion and the second enlarged portion in the moving direction, and a bypass flow rate control. The valve portion is a straw between at least the first enlarged portion and the third enlarged portion. A bypass-side supply that is connected to the stroke space between the bypass oil passage connected to the space, the first diameter-expanded portion, and the third diameter-expanded portion, and supplies hydraulic oil to the stroke space from the operation valve side An oil passage and a first diameter-expanding portion that adjusts the opening degree by closing the bypass-side supply oil passage in accordance with the reciprocating movement of the moving body, and the pressure accumulation flow control valve portion is at least a second The recirculation oil passage connected to the stroke space between the expanded diameter portion and the third expanded diameter portion, and the stroke space between the second expanded diameter portion and the third expanded diameter portion. , A pressure accumulation side supply oil passage that supplies hydraulic oil to the stroke space from the operation valve side, and a third diameter expansion portion that adjusts the opening degree by closing the pressure accumulation side supply oil passage as the moving body reciprocates. And may be configured. Thereby, pressure accumulation flow control and bypass flow control can be performed with a simple configuration using one moving body.
本発明の他の側面に係る荷役車両の油圧駆動装置において、バイパス流量制御弁部は、第1の拡径部でバイパス油路を完全に閉じるストローク区間を有してよい。これにより、バイパス油路を完全に閉じておくことにより、蓄圧流量制御弁部でアキュムレータのみへ作動油を供給することができる。 In the hydraulic drive system for a cargo handling vehicle according to another aspect of the present invention, the bypass flow rate control valve portion may have a stroke section that completely closes the bypass oil passage at the first diameter-expanded portion. Thereby, hydraulic oil can be supplied only to an accumulator by a pressure accumulation flow control valve part by closing a bypass oil way completely.
本発明の一の側面に係る流量制御弁は、他の弁を作動油が通過する際に生じる圧力差に応じ、ストローク空間内で移動体を往復移動させることで、開度を調整して作動油の流量を制御するパイロット式の流量制御弁であって、第1の部分へ流れる作動油の流量を制御する第1の流量制御弁部と、第2の部分へ流れる作動油の流量を制御する第2の流量制御弁部と、を備え、移動体は、移動方向における一端側に設けられてストローク空間を塞ぐ第1の拡径部と、移動方向における他端側に設けられてストローク空間を塞ぐ第2の拡径部と、ストローク空間を形成する内壁から離間し、第1の拡径部と第2の拡径部とを接続する接続部と、を備え、第1の流量制御弁部は、少なくとも、ストローク空間に接続された第1の油路と、ストローク空間に接続されて、当該ストローク空間に他の弁からの作動油を供給する供給油路と、移動体の往復移動に伴って、第1の油路を塞ぐことで開度を調整する第1の拡径部と、によって構成され、第2の流量制御弁部は、少なくとも、ストローク空間に接続された第2の油路と、ストローク空間に接続されて、当該ストローク空間に他の弁からの作動油を供給する供給油路と、移動体の往復移動に伴って、第2の油路を塞ぐことで開度を調整する第1の拡径部と、によって構成される。 The flow control valve according to one aspect of the present invention operates by adjusting the opening degree by reciprocating the moving body in the stroke space according to the pressure difference generated when the hydraulic oil passes through the other valve. A pilot-type flow control valve that controls the flow rate of oil, the first flow control valve unit that controls the flow rate of hydraulic oil that flows to the first part, and the flow rate of hydraulic oil that flows to the second part A second flow rate control valve portion, and the moving body is provided on one end side in the movement direction to block the stroke space, and the stroke body is provided on the other end side in the movement direction. A first diameter control valve, and a first flow control valve that includes a second diameter-expanding portion that closes the inner space and a connecting portion that is spaced apart from the inner wall that forms the stroke space and connects the first diameter-expanded portion and the second diameter-expanded portion. The section includes at least a first oil passage connected to the stroke space and a stroke empty space. And a first oil passage that adjusts the opening degree by closing the first oil passage in accordance with the reciprocating movement of the moving body, and a supply oil passage that supplies hydraulic oil from another valve to the stroke space. And the second flow rate control valve portion is connected to at least the second oil passage connected to the stroke space and connected to the stroke space, and operates from another valve in the stroke space. It is comprised by the supply oil path which supplies oil, and the 1st enlarged diameter part which adjusts an opening degree by plugging a 2nd oil path with the reciprocation of a mobile body.
本発明の一の側面に係る流量制御弁を用いることで、上述の荷役車両の油圧駆動装置と同様の作用・効果を得ることができる。 By using the flow control valve according to one aspect of the present invention, it is possible to obtain the same operations and effects as those of the hydraulic drive device for a cargo handling vehicle described above.
本発明の一の側面に係る流量制御弁は、他の弁を作動油が通過する際に生じる圧力差に応じ、ストローク空間内で移動体を往復移動させることで、開度を調整して作動油の流量を制御するパイロット式の流量制御弁であって、第1の部分へ流れる作動油の流量を制御する第1の流量制御弁部と、第2の部分へ流れる作動油の流量を制御する第2の流量制御弁部と、を備え、移動体は、移動方向における一端側に設けられてストローク空間を塞ぐ第1の拡径部と、移動方向における他端側に設けられてストローク空間を塞ぐ第2の拡径部と、ストローク空間を形成する内壁から離間し、第1の拡径部と第2の拡径部とを接続する接続部と、第1の拡径部と第2の拡径部との間であって、第1の拡径部及び第2の拡径部から移動方向において離間する位置に配置される第3の拡径部と、を備え、第1の流量制御弁部は、少なくとも、第1の拡径部と第3の拡径部との間で、ストローク空間に接続された第1の油路と、第1の拡径部と第3の拡径部との間で、ストローク空間に接続され、当該ストローク空間へ他の弁側から作動油を供給する第1の供給油路と、移動体の往復移動に伴って、第1の供給油路を塞ぐことで開度を調整する第1の拡径部と、によって構成され、第2の流量制御弁部は、少なくとも、第2の拡径部と第3の拡径部との間で、ストローク空間に接続された第2の油路と、第2の拡径部と第3の拡径部との間で、ストローク空間に接続され、当該ストローク空間へ他の弁側から作動油を供給する第2の供給油路と、移動体の往復移動に伴って、第2の供給油路を塞ぐことで開度を調整する第3の拡径部と、によって構成される。 The flow control valve according to one aspect of the present invention operates by adjusting the opening degree by reciprocating the moving body in the stroke space according to the pressure difference generated when the hydraulic oil passes through the other valve. A pilot-type flow control valve that controls the flow rate of oil, the first flow control valve unit that controls the flow rate of hydraulic oil that flows to the first part, and the flow rate of hydraulic oil that flows to the second part A second flow rate control valve portion, and the moving body is provided on one end side in the movement direction to block the stroke space, and the stroke body is provided on the other end side in the movement direction. A second enlarged-diameter portion that closes the inner space, a connection portion that is spaced apart from the inner wall forming the stroke space and connects the first enlarged-diameter portion and the second enlarged-diameter portion, the first enlarged-diameter portion, and the second Between the first and second enlarged diameter portions in the moving direction. And a first flow control valve portion connected to the stroke space at least between the first diameter-expanded portion and the third diameter-expanded portion. The first oil passage, the first enlarged diameter portion, and the third enlarged diameter portion are connected to the stroke space, and the first oil is supplied to the stroke space from the other valve side. The supply oil passage and a first diameter-expanding portion that adjusts the opening degree by closing the first supply oil passage as the moving body reciprocates, and the second flow control valve portion is At least between the second enlarged diameter portion and the third enlarged diameter portion, between the second oil passage connected to the stroke space, and between the second enlarged diameter portion and the third enlarged diameter portion. The second supply oil passage that is connected to the stroke space and supplies hydraulic oil to the stroke space from the other valve side, and the second supply oil passage is closed as the moving body reciprocates. It constituted a third diameter section for adjusting the degree of opening by between.
本発明の一の側面に係る流量制御弁を用いることで、上述の荷役車両の油圧駆動装置と同様の作用・効果を得ることができる。 By using the flow control valve according to one aspect of the present invention, it is possible to obtain the same operations and effects as those of the hydraulic drive device for a cargo handling vehicle described above.
本発明によれば、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることができる。 According to the present invention, it is possible to efficiently recover the potential energy of the load, and it is possible to lower the lifting hydraulic cylinder at a desired lowering speed.
以下、本発明に係る荷役車両の油圧駆動装置の好適な実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a hydraulic drive device for a cargo handling vehicle according to the invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
図1は、本発明の実施形態に係る油圧駆動装置を備えた荷役車両を示す側面図である。同図において、本実施形態に係る荷役車両1は、エンジン式のフォークリフトである。荷役車両1は、車体フレーム2と、この車体フレーム2の前部に配置されたマスト3とを備えている。マスト3は、車体フレーム2に傾動可能に支持された左右1対のアウターマスト3aと、これらのアウターマスト3aの内側に配置され、アウターマスト3aに対して昇降可能なインナーマスト3bとからなっている。
FIG. 1 is a side view showing a cargo handling vehicle including a hydraulic drive device according to an embodiment of the present invention. In the figure, a
マスト3の後側には、昇降用油圧シリンダとしてのリフトシリンダ4が配置されている。リフトシリンダ4のピストンロッド4pの先端部は、インナーマスト3bの上部に連結されている。
On the rear side of the
インナーマスト3bには、リフトブラケット5が昇降可能に支持されている。リフトブラケット5には、荷物を積載するフォーク(昇降物)6が取り付けられている。インナーマスト3bの上部にはチェーンホイール7が設けられ、チェーンホイール7にはチェーン8が掛装されている。チェーン8の一端部はリフトシリンダ4に連結され、チェーン8の他端部はリフトブラケット5に連結されている。リフトシリンダ4を伸縮させると、チェーン8を介してフォーク6がリフトブラケット5と共に昇降する。
A
車体フレーム2の左右両側には、傾動用油圧シリンダとしてのティルトシリンダ9がそれぞれ支持されている。ティルトシリンダ9のピストンロッド9pの先端部は、アウターマスト3aの高さ方向ほぼ中央部に回動可能に連結されている。ティルトシリンダ9を伸縮させると、マスト3が傾動する。
車体フレーム2の上部には、運転室10が設けられている。運転室10の前部には、リフトシリンダ4を作動させてフォーク6を昇降させるためのリフト操作レバー(第1操作部)11と、ティルトシリンダ9を作動させてマスト3を傾動させるためのティルト操作レバー12とが設けられている。
A driver's
また、運転室10の前部には、操舵を行うためのステアリング13が設けられている。ステアリング13は、油圧式のパワーステアリングであり、パワーステアリング(PS)用油圧シリンダとしてのPSシリンダ14(図2参照)により運転者の操舵をアシストすることが可能である。
A
また、荷役車両1は、アタッチメント(図示せず)を動作させるアタッチメント用油圧シリンダとしてのアタッチメントシリンダ15(図2参照)を備えている。アタッチメントとしては、例えばフォーク6を左右移動、傾動、回転させるもの等がある。また、運転室10には、アタッチメントシリンダ15を作動させてアタッチメントを動作させるためのアタッチメント操作レバー(図示せず)が設けられている。
Further, the
さらに、運転室10には、特に図示はしないが、荷役車両1の走行方向(前進/後進/ニュートラル)を切り換えるためのディレクションスイッチが設けられている。
Further, although not particularly illustrated, the
図2は、本発明に係る油圧駆動装置の第1実施形態を示す油圧回路図である。同図において、本実施形態の油圧駆動装置16は、リフトシリンダ4、ティルトシリンダ9、アタッチメントシリンダ15及びPSシリンダ14を駆動する装置である。
FIG. 2 is a hydraulic circuit diagram showing a first embodiment of the hydraulic drive apparatus according to the present invention. In the figure, a
油圧駆動装置16は、単一の油圧ポンプ17と、この油圧ポンプ17を駆動するエンジン18を備えている。油圧ポンプ17は、作動油を吸い込むための吸込口17aと、作動油を吐出するための吐出口17bとを有している。油圧ポンプ17は、一方向に回転可能な構成とされている。
The
油圧ポンプ17の吸込口17aには、作動油を貯留するタンク19が油圧配管20を介して接続されている。油圧配管20には、タンク19から油圧ポンプ17への方向にのみ作動油を流通させる逆止弁21が設けられている。油圧ポンプ17は、リフト操作レバー11による上昇操作時にはリフトシリンダ4に作動油を供給する。
A
油圧ポンプ17の吐出口17bとリフトシリンダ4のボトム室4bとは、油圧配管22を介して接続されている。油圧配管22には、リフト上昇用の電磁比例弁23が配設されている。電磁比例弁23は、油圧ポンプ17からリフトシリンダ4のボトム室4bへの作動油の流通を許容する開位置23aと、油圧ポンプ17からリフトシリンダ4のボトム室4bへの作動油の流通を遮断する閉位置23bとの間で切り換えられる。
The
電磁比例弁23は、通常は閉位置23b(図示)にあり、ソレノイド操作部23cに操作信号(リフト操作レバー11の上昇操作の操作量に応じたリフト上昇用ソレノイド電流指令値)が入力されると、開位置23aに切り換わる。すると、油圧ポンプ17からリフトシリンダ4のボトム室4bに作動油が供給され、リフトシリンダ4が伸長し、これに伴ってフォーク6が上昇する。なお、電磁比例弁23は、開位置23aにあるときは、操作信号に応じた開度で開く。油圧配管22における電磁比例弁23とリフトシリンダ4との間には、電磁比例弁23からリフトシリンダ4への方向にのみ作動油を流通させる逆止弁24が設けられている。
The electromagnetic
油圧配管22における油圧ポンプ17と電磁比例弁23との分岐点には、油圧配管25を介してティルト用の電磁比例弁26が接続されている。油圧配管25には、油圧ポンプ17から電磁比例弁26への方向にのみ作動油を流通させる逆止弁27が設けられている。
An electromagnetic
電磁比例弁26とティルトシリンダ9のロッド室9a及びボトム室9bとは、油圧配管28,29を介してそれぞれ接続されている。電磁比例弁26は、油圧ポンプ17からティルトシリンダ9のロッド室9aへの作動油の流通を許容する開位置26aと、油圧ポンプ17からティルトシリンダ9のボトム室9bへの作動油の流通を許容する開位置26bと、油圧ポンプ17からティルトシリンダ9への作動油の流通を遮断する閉位置26cの間で切り換えられる。
The electromagnetic
電磁比例弁26は、通常は閉位置26c(図示)にあり、開位置26a側のソレノイド操作部26dに操作信号(ティルト操作レバー12の後傾操作の操作量に応じたティルト用ソレノイド電流指令値)が入力されると、開位置26aに切り換わり、開位置26b側のソレノイド操作部26eに操作信号(ティルト操作レバー12の前傾操作の操作量に応じたティルト用ソレノイド電流指令値)が入力されると、開位置26bに切り換わる。電磁比例弁26が開位置26aに切り換わると、油圧ポンプ17からティルトシリンダ9のロッド室9aに作動油が供給され、ティルトシリンダ9が収縮し、これに伴ってマスト3が後傾する。電磁比例弁26が開位置26bに切り換わると、油圧ポンプ17からティルトシリンダ9のボトム室9bに作動油が供給され、ティルトシリンダ9が伸長し、これに伴ってマスト3が前傾する。なお、電磁比例弁26は、開位置26a,26bにあるときは、操作信号に応じた開度で開く。
The electromagnetic
油圧配管25における逆止弁27の上流側には、油圧配管30を介してアタッチメント用の電磁比例弁31が接続されている。油圧配管30には、油圧ポンプ17から電磁比例弁31への方向にのみ作動油を流通させる逆止弁32が設けられている。
An attachment electromagnetic
電磁比例弁31とアタッチメントシリンダ15のロッド室15a及びボトム室15bとは、油圧配管33,34を介してそれぞれ接続されている。電磁比例弁31は、油圧ポンプ17からアタッチメントシリンダ15のロッド室15aへの作動油の流通を許容する開位置31aと、油圧ポンプ17からアタッチメントシリンダ15のボトム室15bへの作動油の流通を許容する開位置31bと、油圧ポンプ17からアタッチメントシリンダ15への作動油の流通を遮断する閉位置31cの間で切り換えられる。
The electromagnetic
電磁比例弁31は、通常は閉位置31c(図示)にあり、開位置31a側のソレノイド操作部31dに操作信号(アタッチメント操作レバーの一方側操作の操作量に応じたアタッチメント用ソレノイド電流指令値)が入力されると、開位置31aに切り換わり、開位置31b側のソレノイド操作部31eに操作信号(アタッチメント操作レバーの他方側操作の操作量に応じたアタッチメント用ソレノイド電流指令値)が入力されると、開位置31bに切り換わる。なお、アタッチメントシリンダ15の動作については省略する。また、電磁比例弁31は、開位置31a,31bにあるときは、操作信号に応じた開度で開く。
The electromagnetic
油圧配管30における逆止弁32の上流側には、油圧配管35を介してPS用の電磁比例弁36が接続されている。油圧配管35には、油圧ポンプ17から電磁比例弁36への方向にのみ作動油を流通させる逆止弁37が設けられている。
A PS electromagnetic
電磁比例弁36とPSシリンダ14の第1ロッド室14a及び第2ロッド室14bとは、油圧配管38,39を介してそれぞれ接続されている。電磁比例弁36は、油圧ポンプ17からPSシリンダ14の第1ロッド室14aへの作動油の流通を許容する開位置36aと、油圧ポンプ17からPSシリンダ14の第2ロッド室14bへの作動油の流通を許容する開位置36bと、油圧ポンプ17からPSシリンダ14への作動油の流通を遮断する閉位置36cの間で切り換えられる。
The electromagnetic
電磁比例弁36は、通常は閉位置36c(図示)にあり、開位置36a側のソレノイド操作部36dに操作信号(ステアリング13の左右一方側操作の操作速度に応じたPS用ソレノイド電流指令値)が入力されると、開位置36aに切り換わり、開位置36b側のソレノイド操作部36eに操作信号(ステアリング13の左右他方側操作の操作速度に応じたPS用ソレノイド電流指令値)が入力されると、開位置36bに切り換わる。なお、PSシリンダ14の動作については省略する。また、電磁比例弁36は、開位置36a,36bにあるときは、操作信号に応じた開度で開く。
The electromagnetic
油圧配管22における油圧ポンプ17と電磁比例弁23との分岐点は、油圧配管40を介してタンク19と接続されている。油圧配管40には、アンロード弁41及びフィルタ42が設けられている。また、油圧配管40と電磁比例弁26,31,36とは、油圧配管43〜45を介して接続されている。さらに、電磁比例弁23,26,31,36は、油圧配管46を介して油圧配管40と接続されている。
A branch point between the
油圧ポンプ17の吸込口17aとリフトシリンダ4のボトム室4bとは、油圧配管(下降油路)47を介して接続されている。油圧配管47には、リフト下降用の操作弁48が配設されている。操作弁48は、リフトシリンダ4のボトム室4bからの作動油の流通を許容する開位置48aと、リフトシリンダ4のボトム室4bからの作動油の流通を遮断する閉位置48bとの間で切り換えられる。
The
操作弁48は、通常は閉位置48b(図示)にあり、ソレノイド操作部48cに操作信号(リフト操作レバー11の下降操作の操作量に応じたリフト下降用ソレノイド電流指令値)が入力されると、開位置48aに切り換わる。すると、フォーク6の自重によりフォーク6が下降し、これに伴ってリフトシリンダ4が収縮し、リフトシリンダ4のボトム室4bから作動油が流れ出る。なお、操作弁48は、開位置48aにあるときは、操作信号に応じた開度で開く。
The
油圧配管47における油圧ポンプ17と操作弁48との分岐点は、バイパス油路49を介してタンク19と接続されている。バイパス油路49には、バイパス流量制御弁部を含んだ流量制御弁50が配設されている。流量制御弁50は、圧力補償機能付きの流量制御弁である。流量制御弁50の詳細な構成については後述する。なお、バイパス油路49には、フィルタ54が設けられている。
A branch point between the
油圧配管47のうち、分岐点よりも油圧ポンプ17側の油路である回生油路47a上には、アキュムレータ80、放圧制御弁82、及び逆止弁83が設けられている。これらの構成要素に関する詳細な説明については図4を参照して後述する。
An
上述で説明したシリンダのうち、作動油の給排によりリフトシリンダ(第1油圧シリンダ)4と異なる動作を行うティルトシリンダ9、アタッチメントシリンダ15、及びPSシリンダ14を総称して「第2油圧シリンダ70」と称することがある。また、第2油圧シリンダ70を操作するためのレバーである、ティルト操作レバー12、ステアリング13、アタッチメント操作レバーを総称して「第2操作部73」と称することがある。
Among the cylinders described above, the
図3は、油圧駆動装置16の制御系を示す構成図である。同図において、油圧駆動装置16は、リフト操作レバー11の操作量を検出するリフト操作レバー操作量センサ(操作量検出部)55と、ティルト操作レバー12の操作量を検出するティルト操作レバー操作量センサ56と、アタッチメント操作レバー(図示せず)の操作量を検出するアタッチメント操作レバー操作量センサ57と、ステアリング13の操作速度を検出するステアリング操作速度センサ58と、コントローラ60と、を備えている。
FIG. 3 is a configuration diagram showing a control system of the
図4に、荷役車両1の油圧駆動装置16の回生油路47a付近の構成について詳細に記載した構成図を示す。上述のように、油圧配管47のうち、分岐点よりもリフトシリンダ4側には操作弁48が設けられる。分岐点とタンク19を連通するバイパス油路49及び回生油路47aには、流量制御弁50が設けられる。回生油路47a上には、アキュムレータ80が設けられ、アキュムレータ80よりも油圧ポンプ17側には放圧制御弁82が設けられ、アキュムレータ80と分岐点との間には逆止弁83が設けられる。
FIG. 4 is a configuration diagram illustrating in detail the configuration in the vicinity of the
本実施形態において、操作弁48前後の圧力が、流量制御弁50のパイロット圧力として用いられる。操作弁48は、前述のように操作者によるリフト操作レバー11の操作量に応じた開度となる。よって、作動油の流量あたりに操作弁48で発生する差圧は、リフト操作レバー11の操作量に応じた値となり、レバー操作量が大きいほど小さくなる。流量制御弁50は、タンク19へ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁部50Aと、アキュムレータ80へ蓄圧される作動油の流量を制御する蓄圧流量制御弁部50Bと、を備える。このように、流量制御弁50は、一つの弁でありながら、バイパス流量制御弁としての機能と、蓄圧流量制御弁としての機能を同時に備えている。流量制御弁50は、操作弁48を作動油が通過する際に生じる圧力差に応じて開度を調整するパイロット式の流量制御弁である。
In the present embodiment, the pressure before and after the
バイパス流量制御弁部50Aは、前述のように、操作弁48を作動油が通過する際に生じる差圧に応じて開度を調整するパイロット式の流量制御弁として機能する。すなわち、バイパス流量制御弁部50Aは、操作弁48前後の圧力をパイロット圧力として入力しており、操作弁48前後で発生する差圧が一定となるようにバイパス回路の流量を調節する。このような差圧を「制御差圧」と称する。操作弁48の開度が小さいときは、少ない流量で制御差圧に達するため、それ以上流量が増えないように、バイパス流量制御弁部50Aは、バイパス流量を制御する。操作弁48の開度が大きいときは、十分大きな流量の作動油が流れなければ制御差圧には達しない。従って、バイパス流量制御弁部50Aには十分に大きな流量の作動油が流れる。すなわち、レバー操作量に応じて、バイパス流量制御弁部50Aが流し得る流量が大きくなる。このように、流量制御弁が流し得る作動油の流量を「制御流量」と称する。バイパス流量制御弁部50Aの主たる機能は、積荷が軽い場合やアキュムレータ80が満杯になった場合など、アキュムレータ80に作動油が流れない場合にタンク19側へバイパスさせることである。これによって、所望のリフトシリンダ4の下降速度を得ることができる。
The bypass flow
蓄圧流量制御弁部50Bは、バイパス流量制御弁部50Aと同様、操作弁48を作動油が通過する際に生じる差圧に応じて開度を調整するパイロット式の流量制御弁として機能する。すなわち、蓄圧流量制御弁部50Bは、操作弁48前後の圧力をパイロット圧力として入力しており、操作弁48前後で発生する差圧が一定となるように回生油路47aの流量を調節する。蓄圧流量制御弁部50Bの制御流量は、レバー操作量に応じて大きくなる。ここで、流量制御弁50は、バイパス流量制御弁部50Aが完全に閉じた状態で、蓄圧流量制御弁部50Bのみが開となるストローク区間を有している(詳細は後述)。従って、アキュムレータ80が満杯となるまで、リフトシリンダ4からの作動油の全てをアキュムレータ80へ蓄圧することができる。従って、高効率にエネルギーをアキュムレータ80に貯蔵できる。蓄圧流量制御弁部50Bの主たる機能は、積荷が重くアキュムレータ80に過剰な流量が流れる場合に、その開度を絞り、所望のリフトシリンダ4の下降速度を得ることである。
The pressure accumulation flow
流量制御弁50は、回生油路47a及びバイパス油路49への作動油の流通を許容する開位置50aと、回生油路47a及びバイパス油路49への作動油の流通を遮断する閉位置50bと、バイパス油路49への作動油の流通量を調整する絞り位置50cと、回生油路47aへの作動油の流通量を調整する絞り位置50gとの間で切り換えられる。流量制御弁50の閉位置50b側のパイロット操作部と操作弁48の上流側(前側)とは、パイロット流路51を介して接続されている。流量制御弁50の開位置50a側のパイロット操作部と操作弁48の下流側(後側)とは、バイパス流路52を介して接続されている。流量制御弁50は、操作弁48の前後の圧力差に応じた開度で開く。具体的には、流量制御弁50は、通常は開位置(図示)にある。そして、操作弁48の前後の圧力差が大きくなるほど、バイパス流量制御弁部50A又は蓄圧流量制御弁部50Bの開度が小さくなる。
The
アキュムレータ80は、作動油を蓄圧する機器である。また、アキュムレータ80は、リフトシリンダ4側から流れてくる作動油を蓄圧し、油圧ポンプ17側へ放圧する。アキュムレータ80には内部にガスが充填されており、作動油が貯蔵されるに従ってガスが圧縮され、内部圧力が高まる。ここで、積荷が軽い状態でも回生を行う場合には、低い圧力の作動油を受け入れ可能であるように、低いガス圧に設定しておく必要がある。しかし、そのような設定を行った場合、積荷が十分に重い場合に、過剰な流量の作動油がアキュムレータ80に流れる事となる。従って、リフトシリンダ4の下降速度が過剰となることを抑制するために、蓄圧流量制御弁部50Bの開度が絞られることとなり、圧力損失が大きくなり、効率が低下してしまう。従って、作業者の扱う積荷重量に合わせて、最も効率が良くなるように充填するガス圧を調整することが好ましい。なお、アキュムレータ80の容積はリフトシリンダ4から吐出される作動油の全てを受け入れられるように、十分に大きくすることが好適である。しかし、体格の制約上、アキュムレータ80を大きくすることが出来ない場合であっても、受け入れられなくなった作動油は、バイパス流量制御弁部50Aを介してタンク19へ排出可能であるため、動作上の問題は生じない。
The
逆止弁83は、アキュムレータ80側からの作動油の流れを遮断し、分岐点側からの作動油の流れを許容する機器である。従って、リフトシリンダ4からアキュムレータ80へ向かう作動油の流れは許容される。一方、アキュムレータ80からリフトシリンダ4へ向かう作動油の流れは遮断される。
The
放圧制御弁82は、アキュムレータ80に蓄圧された作動油を油圧ポンプ17側へ放圧する。放圧制御弁82は、リフトシリンダ4の下降時にはその回路を遮断しておく。一方、放圧制御弁82は、リフトシリンダ4の上昇、あるいは第2油圧シリンダ70の動作が行われた場合にその回路を導通させ、アキュムレータ80の加圧流体を油圧ポンプ17へと誘導する。油圧ポンプ17は、当該加圧流体により回転することができるため、エンジン等の動力源のトルクを軽減することができ、燃料消費率を低減することができる。また、アキュムレータ80に蓄積されたエネルギーを利用するタイミングは第2油圧シリンダ70の動作時のみならず、走行中に利用することも考えられるため、放圧制御弁82の切換タイミングは特に限定されるものではない。
The pressure
具体的に、放圧制御弁82は、アキュムレータ80から油圧ポンプ17の吸込口17aへの作動油の流通を許容する開位置82aと、当該流通を遮断する閉位置82bとの間で切り換えられる。放圧制御弁82は、通常は閉位置82b(図示)にあり、ソレノイド操作部82cに操作信号(例えば、第2操作部73の操作量に応じたソレノイド電流指令値など)が入力されると、開位置82aに切り換わる。すると、アキュムレータ80から作動油が流れ出る。なお、放圧制御弁82は、開位置48aにあるときは、操作信号に応じた開度で開く。
Specifically, the pressure
次に、図5〜図8を参照して、流量制御弁50の詳細な構成について説明する。図5〜図8は、流量制御弁50の詳細な構成を示す断面図である。図5〜図7は、リフトシリンダ4での積荷重量が重い場合の流量制御弁50の動作の順序を示している。図8は、リフトシリンダ4での積荷重量が軽い場合の流量制御弁50の動作の順序を示している。
Next, a detailed configuration of the
図5に示すように、流量制御弁50は、ストローク空間50f内に配置されて当該空間内で往復移動するスプール(移動体)90と、当該スプール90を押圧するスプリング93と、を備えている。スプール90は、一端側に設けられてストローク空間50fを塞ぐ形状及び大きさを有する拡径部91と、他端側に設けられてストローク空間50fを塞ぐ形状及び大きさを有する拡径部92と、拡径部91,92同士を接続し当該拡径部91,92より径が小さい接続部96と、を備える。接続部96は、ストローク空間50fを形成する内壁から離間しており、当該内壁との間で隙間を形成している。ストローク空間50fのうち、拡径部91の端部より外側の位置には、パイロット流路51と接続されるパイロット空間50eが形成される。なお、拡径部91のパイロット空間50eに配置される端部は受圧面91aを構成する。ストローク空間50fのうち、拡径部92の端部より外側の位置には、バイパス流路52と接続され、且つスプリング93が配置されるスプリング室50dが形成される。なお、拡径部92のスプリング室50dに配置される端部は受圧面92aを構成する。
As shown in FIG. 5, the
ストローク空間50fに対して、油圧配管47のうち操作弁48側の油路47bが接続される。当該油路47bは、操作弁48からの作動油をストローク空間50fのうち、拡径部91,92間に供給する供給油路として機能する。当該油路47bとは反対側には、ストローク空間50fに対して、タンク19へ向かうバイパス油路49が接続され、アキュムレータ80へ向かう回生油路47aが接続される。バイパス油路49は、回生油路47aよりも、スプール90の移動方向における一端側(拡径部91側)に配置される。なお、操作弁48からの作動油が流量制御弁50にて分岐するため、流量制御弁50は油圧配管47とバイパス油路49との分岐点として機能する。
An
なお、このような流量制御弁50の構成要素のうち、バイパス流量制御弁部50Aは、拡径部91,92及び接続部96を備えるスプール90と、スプリング93と、ストローク空間50fに接続される油路47bと、ストローク空間50fに接続されるバイパス油路49と、スプリング室50dに接続されるバイパス流路52と、パイロット空間50eに接続されるパイロット流路51と、によって構成される。また、流量制御弁50の構成要素のうち、蓄圧流量制御弁部50Bは、拡径部91,92及び接続部96を備えるスプール90と、スプリング93と、ストローク空間50fに接続される油路47bと、ストローク空間50fに接続される回生油路47aと、スプリング室50dに接続されるバイパス流路52と、パイロット空間50eに接続されるパイロット流路51と、によって構成される。以上のように、バイパス流量制御弁部50Aと蓄圧流量制御弁部50Bとは、バイパス油路49及び回生油路47a以外の構成を共通の構成要素として有している。
Of the components of the
油路47bは、接続部96と対応する位置に配置され、スプール90の往復動作に関わらず拡径部91,92にさしかからない位置に配置されている。バイパス油路49は、スプール90の往復動作(変位)によって、拡径部91で塞がれる量が調整可能な位置に配置されている。すなわち、拡径部91は、スプール90の往復移動に伴って、バイパス油路49を塞ぐことで開度を調整する。特に、バイパス油路49は、スプール90の往復動作の過程において、拡径部91で完全に塞がれ得る位置に配置されている。このように、バイパス流量制御弁部50Aは、拡径部91でバイパス油路49を完全に閉じるストローク区間を有する。なお、拡径部91でバイパス油路49を完全に閉じるストローク区間とは、スプール90が移動する移動区間のうち、拡径部91でバイパス油路49を完全に閉じている状態となる区間のことである。以降の説明において、所定の状態の「ストローク区間」とは、スプール90が移動する移動区間のうち当該所定の状態が維持される区間のことであるものとする。なお、バイパス流量制御弁部50Aは、拡径部91でバイパス油路49を部分的に閉じるストローク区間と、バイパス油路49が完全に開放されるストローク区間を有する。
The
回生油路47aは、スプール90の往復動作(変位)によって、拡径部91で塞がれる量が調整可能な位置に配置されている。すなわち、拡径部91は、スプール90の往復移動に伴って、回生油路47aを塞ぐことで開度を調整する。特に、回生油路47aは、スプール90の往復動作の過程において、バイパス油路49が拡径部91で完全に塞がれている状態で、完全に開放され得る位置、及び部分的に拡径部91で塞がれ得る位置に配置されている。このように、蓄圧流量制御弁部50Bは、拡径部91で回生油路47aを部分的に閉じるストローク区間と、回生油路47aが完全に開放されるストローク区間を有する。
The
次に、図5〜図7を参照して、リフトシリンダ4での積荷重量が重い場合の流量制御弁50の動作について説明する。まず、リフトシリンダ4の下降開始直後は、図5(a)に示すように、スプール90が最もパイロット流路51側に配置され、パイロット空間50eが消滅した状態にある。当該状態ではバイパス油路49及び回生油路47aは、ストローク空間50fに完全に開放されている。作動油の入り口である油路47bは高圧状態にあり、バイパス油路49及び回生油路47aは低圧状態にある。従って、蓄圧流量及びバイパス流量は両方とも過多となる。従って、パイロット圧力を一定とするために、スプール90がスプリング室50d側へ移動する。スプール90が移動することで、図5(b)に示すように、バイパス油路49が拡径部91で部分的に閉じられる。これにより、バイパス流量は減少するが、蓄圧流量は過多のままであるため、更にスプール90が移動する。従って、図6(a)に示すように、拡径部91がバイパス油路49を完全に塞ぐ。当該状態でも蓄圧流量が過多であるため、更にスプール90がスプリング室50dへ移動する。これにより、図6(b)に示すように、回生油路47aが絞られて蓄圧流量が減少することで、蓄圧流量が適切な流量となる。
Next, the operation of the
次に、アキュムレータ80に十分な量の作動油が蓄圧されると、アキュムレータ80の圧力が上昇することで、図7(a)に示す状態から蓄圧流量が減少してゆく。これにより、図7(b)に示すように、スプール90がスプリング93で押されてパイロット空間50e側へ移動する。これによって、回生油路47aが徐々に拡径部91から開放され、蓄圧流量が増加する。アキュムレータ80への蓄圧が完了すると、蓄圧流量がゼロとなるため、図7(c)に示すように、スプール90がパイロット空間50e側へ移動することで、バイパス油路49を開放し、バイパス流量を適切な流量に制御できる。
Next, when a sufficient amount of hydraulic oil is accumulated in the
次に、図8を参照して、リフトシリンダ4での積荷重量が軽い場合の流量制御弁50の動作について説明する。まず、積荷重量が軽いため作動油の入り口である油路47bの圧力は低い状態にとどまる。従って、図8(a)に示すように、蓄圧流量は0となる。一方、シリンダ流量は過多となるため、スプール90はスプリング室50d側へ移動する。これにより、図8(b)に示すように、バイパス油路49が拡径部91で絞られることで、バイパス流量を適切に制御できる。
Next, the operation of the
次に、図10〜図12を参照して、油圧駆動装置16の各パラメータの波形の例を示す。図10(a)に示すように、アキュムレータ(Acc)の入口圧力は作動油が蓄圧されるに従って上昇し、満杯になって以降は一定となる。一方、リフトシリンダ4のボトム室4bの圧力(シリンダボトム圧)、及び油圧配管47の分岐点は作動開始と共に急激に上昇し、所定の圧力にて一定となる。アキュムレータの入口圧力と分岐点の圧力の差分は、流量調整のために蓄圧流量制御弁部50Bで絞られて熱に変換した分の圧力である。分岐点の圧力とアキュムレータ80の入口圧力が等しくなると蓄圧側へ作動油が流れなくなるので、所望の下降速度に対応するシリンダ流路に対して不足する分を補うため、バイパス流量制御弁部50Aが開き、タンク19側へ作動油が流れる。図10(b)に示すように、当該切替のタイミング(4秒付近)においても、シリンダ流量の変動は小さく、略一定に保たれている。この点より、リフトシリンダ4の安定した動作が確認できる。
Next, an example of the waveform of each parameter of the
なお、図11(a)に示すように、シリンダ流量の積算値は単調に増加する一方、アキュムレータ80への流量の積算値は、満杯になるまで単調に増加し、満杯になった後は増加が停止する。図11(b)に示すように、アキュムレータ80への蓄圧効率は(初期段階で急激に立ち上がる部分以外では)、蓄圧量が増えるに従って増加し、満杯になった以降は略0となる。図12(a)に示すように、流量に圧力を掛け合わせることで算出される電力は、シリンダボトム側では略一定となり、アキュムレータ80の入口側では、蓄圧量が増えるに従って増加し、満杯になった後は略0となる。シリンダボトム側の電力量は単調に増加し、アキュムレータ80の入口側では、単調に増加して満杯になった後は増加が停止する。
As shown in FIG. 11 (a), the integrated value of the cylinder flow rate increases monotonically, while the integrated value of the flow rate to the
次に、本実施形態に係る荷役車両1の油圧駆動装置16の作用・効果について説明する。
Next, operations and effects of the
本実施形態に係る荷役車両1の油圧駆動装置16は、油圧配管47の分岐点と油圧ポンプ17の吸込口17aとを接続する回生油路47a上に設けられ、リフトシリンダ4から排出される作動油を蓄圧するアキュムレータ80を備えている。このようなアキュムレータ80に対して、アキュムレータ80へ蓄圧される作動油の流量を制御する蓄圧流量制御弁部50Bがアキュムレータ80と操作弁48との間に設けられる。また、タンク19と操作弁48との間には、タンク19へ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁部50Aが設けられている。このように、油圧駆動装置16は、蓄圧流量制御弁部50B及びバイパス流量制御弁部50Aという二つの流量制御弁部を備えている。従って、アキュムレータ80への蓄圧が可能な場合には、昇降用のリフトシリンダ4から吐出される作動油は、蓄圧流量制御弁部50Bを介してアキュムレータ80へ蓄圧可能である。このように、積荷の位置エネルギーをアキュムレータ80に蓄圧し、他のタイミングで利用することが可能となる。一方、アキュムレータ80への蓄圧が出来ない場合には、昇降用のリフトシリンダ4から吐出される作動油をバイパス流量制御弁部50Aを介してタンク19へ供給できる。従って、昇降用のリフトシリンダ4から吐出される作動油の流量の変動を抑制し、当該リフトシリンダ4を所望の下降速度で下降させることができる。以上より、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用のリフトシリンダ4を所望の下降速度で下降させることができる。また、一つの弁である流量制御弁が二つの流量制御弁部として機能するため、例えば、共振などによる異常な流量脈動、振動の発生を抑制し、安定した動作にて流量制御を行うことができる。
The
また、荷役車両1の油圧駆動装置16において、バイパス流量制御弁部50A及び蓄圧流量制御弁部50Bを備える流量制御弁50は、操作弁48を作動油が通過する際に生じる圧力差に応じて開度を調整するパイロット式の流量制御弁である。また、流量制御弁50を図5や図9に示すような構成とすることで、リフトシリンダ4からの作動油を蓄圧流量制御弁部50Bを介してアキュムレータ80に蓄圧することができる。また、アキュムレータ80が満杯になった後は、作動油をバイパス流量制御弁部50Aを介してタンク19へ向かわせることができる。このように、アキュムレータ80への蓄圧が可能なタイミングで、自動的に積荷エネルギーの回収を行うことができる。また、2つの流量制御弁部が、荷重、油温、レバー操作量に応じて自動的に作動油の流量を調整するため、あらゆる条件下であっても、リフトシリンダ4を所望の下降速度にて下降させることができる。また、油圧駆動装置16は、荷重センサ、油温センサ、回生専用の油圧モータ・ポンプ等を設けることなく、簡素な構成で、低いコストにて、上述の効果を得ることができる。
Further, in the
また、荷役車両1の油圧駆動装置16において、流量制御弁50は、操作弁48を作動油が通過する際に生じる圧力差に応じ、ストローク空間50f内でスプール90を往復移動させることで、開度を調整するパイロット式の流量制御弁である。スプール90は、移動方向における一端側に設けられてストローク空間50fを塞ぐ拡径部91と、移動方向における他端側に設けられてストローク空間50fを塞ぐ拡径部92と、ストローク空間50fを形成する内壁から離間し、拡径部91と拡径部92とを接続する接続部96と、を備える。バイパス流量制御弁部50Aは、少なくとも、ストローク空間50fに接続されたバイパス油路49と、ストローク空間50fに接続されて、当該ストローク空間50fに操作弁48からの作動油を供給する供給油路である油路47bと、スプール90の往復移動に伴って、バイパス油路49を塞ぐことで開度を調整する拡径部91と、によって構成される。蓄圧流量制御弁部50Bは、少なくとも、ストローク空間50fに接続された回生油路47aと、ストローク空間50fに接続されて、当該ストローク空間50fに操作弁48からの作動油を供給する供給油路である油路47bと、スプール90の往復移動に伴って、回生油路47aを塞ぐことで開度を調整する拡径部91と、によって構成される。これにより、一つのスプール90を用いたシンプルな構成にて、蓄圧流量制御及びバイパス流量制御を行うことができる。
Further, in the
荷役車両1の油圧駆動装置16において、ストローク空間50fに対して、バイパス油路49は回生油路47aよりも移動方向における一端側に配置され、バイパス流量制御弁部50Aは、拡径部91でバイパス油路49を完全に閉じるストローク区間を有してよい。これにより、バイパス油路49を完全に閉じておくことにより、蓄圧流量制御弁部50Bでアキュムレータ80のみへ作動油を供給することができる。
In the
本実施形態に係る流量制御弁50は、操作弁(他の弁)48を作動油が通過する際に生じる圧力差に応じ、ストローク空間50f内でスプール90を往復移動させることで、開度を調整して作動油の流量を制御するパイロット式の流量制御弁である。流量制御弁50は、タンク(第1の部分)へ流れる作動油の流量を制御するバイパス流量制御弁部(第1の流量制御弁部)50Aと、アキュムレータ(第2の部分)80へ流れる作動油の流量を制御する蓄圧流量制御弁部(第2の流量制御弁部)50Bと、を備える。スプール90は、移動方向における一端側に設けられてストローク空間50fを塞ぐ拡径部91と、移動方向における他端側に設けられてストローク空間50fを塞ぐ拡径部92と、ストローク空間50fを形成する内壁から離間し、拡径部91と拡径部92とを接続する接続部96と、を備える。バイパス流量制御弁部50Aは、少なくとも、ストローク空間50fに接続されたバイパス油路(第1の油路)49と、ストローク空間50fに接続されて、当該ストローク空間50fに操作弁48からの作動油を供給する供給油路である油路47bと、スプール90の往復移動に伴って、バイパス油路49を塞ぐことで開度を調整する拡径部91と、によって構成される。蓄圧流量制御弁部50Bは、少なくとも、ストローク空間50fに接続された回生油路(第2の油路)47aと、ストローク空間50fに接続されて、当該ストローク空間50fに操作弁48からの作動油を供給する供給油路である油路47bと、スプール90の往復移動に伴って、回生油路47aを塞ぐことで開度を調整する拡径部91と、によって構成される。
The flow
このような流量制御弁50を用いることで、上述の荷役車両1の油圧駆動装置16と同様の作用・効果を得ることができる。
By using such a
以上、本発明に係る荷役車両の油圧駆動装置の好適な実施形態について幾つか説明してきたが、本発明は、上記実施形態に限定されるものではない。 Although several preferred embodiments of the hydraulic drive device for a cargo handling vehicle according to the present invention have been described above, the present invention is not limited to the above embodiment.
例えば、流量制御弁の構成は上述の実施形態の構成に限定されず、本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば、流量制御弁として、図9のような構成を採用してよい。図9に示す流量制御弁150のスプール90は、拡径部91と拡径部92との間であって、拡径部91及び拡径部92から移動方向において離間する位置に配置される拡径部97を備える。また、バイパス油路49は、拡径部91と拡径部97との間で、ストローク空間50fに接続される。バイパス油路49は、接続部96と対応する位置に配置され、スプール90の往復動作に関わらず拡径部91,97にさしかからない位置に配置されている。回生油路47aは、拡径部92と拡径部97との間で、ストローク空間50fに接続される。回生油路47aは、接続部96と対応する位置に配置され、スプール90の往復動作に関わらず拡径部92,97にさしかからない位置に配置されている。
For example, the configuration of the flow control valve is not limited to the configuration of the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, a configuration as shown in FIG. 9 may be employed as the flow control valve. The
また、図9では、油路47bは分岐点にて蓄圧側供給油路471と、バイパス側供給油路47b2とに分岐されている。バイパス側供給油路47b2は、拡径部91と拡径部97との間で、ストローク空間50fに接続され、ストローク空間50fへ操作弁48側から作動油を供給する。バイパス側供給油路47b2は、スプール90の往復動作(変位)によって、拡径部91で塞がれる量が調整可能な位置に配置されている。すなわち、拡径部91は、スプール90の往復移動に伴って、バイパス側供給油路47b2を塞ぐことで開度を調整する。蓄圧側供給油路471は、拡径部92と拡径部97との間で、ストローク空間50fに接続され、当該ストローク空間50fへ操作弁48側から作動油を供給する。蓄圧側供給油路471は、スプール90の往復動作(変位)によって、拡径部97で塞がれる量が調整可能な位置に配置されている。すなわち、拡径部97は、スプール90の往復移動に伴って、蓄圧側供給油路471を塞ぐことで開度を調整する。
Further, in FIG. 9, the
図9に示す流量制御弁150では、バイパス流量制御弁部150Aは、バイパス油路49と、バイパス側供給油路47b2と、バイパス側供給油路47b2を塞ぐことで開度を調整する拡径部91と、によって構成される。また、蓄圧流量制御弁部150Bは、回生油路47aと、蓄圧側供給油路47b1と、蓄圧側供給油路47b1を塞ぐことで開度を調整する拡径部97と、によって構成される。なお、バイパス流量制御弁部150A及び蓄圧流量制御弁部150Bは、スプール90と、スプリング93と、スプリング室50dに接続されるバイパス流路52と、パイロット空間50eに接続されるパイロット流路51と、を共通の構成要素として備えている。
The
このような流量制御弁150は、リフトシリンダ4での積荷重量が重い場合、まず、拡径部91がバイパス側供給油路47b2を完全に塞いで、蓄圧側供給油路471を拡径部97で絞りながら、蓄圧流量を適切に制御する。そして、流量制御弁150は、アキュムレータ80が満杯になるに従って、バイパス側供給油路47b2を拡径部91で絞りながら、バイパス流量を適切に制御する。また、リフトシリンダ4での積荷重量が軽い場合、流量制御弁150は、蓄圧流量が0となっている一方で、バイパス油路49を拡径部91で絞りながら、バイパス流量を適切に制御する。
Such
このような変形例に係る荷役車両1の油圧駆動装置16において、流量制御弁150は、操作弁48を作動油が通過する際に生じる圧力差に応じ、ストローク空間50f内でスプール90を往復移動させることで、開度を調整するパイロット式の流量制御弁である。移動体は、移動方向における一端側に設けられてストローク空間50fを塞ぐ拡径部91と、移動方向における他端側に設けられてストローク空間50fを塞ぐ拡径部92と、ストローク空間50fを形成する内壁から離間し、拡径部91と拡径部92とを接続する接続部96と、拡径部91と拡径部92との間であって、拡径部91及び拡径部92から移動方向において離間する位置に配置される拡径部97と、を備える。バイパス流量制御弁部150Aは、少なくとも、拡径部91と拡径部97との間で、ストローク空間50fに接続されたバイパス油路49と、拡径部91と拡径部97との間で、ストローク空間50fに接続され、当該ストローク空間50fへ操作弁48側から作動油を供給するバイパス側供給油路47b2と、スプール90の往復移動に伴って、バイパス側供給油路47b2を塞ぐことで開度を調整する拡径部91と、によって構成される。蓄圧流量制御弁部150Bは、少なくとも、拡径部92と拡径部97との間で、ストローク空間50fに接続された回生油路47aと、拡径部92と拡径部97との間で、ストローク空間50fに接続され、当該ストローク空間50fへ操作弁48側から作動油を供給する蓄圧側供給油路42b1と、スプール90の往復移動に伴って、蓄圧側供給油路42b1を塞ぐことで開度を調整する拡径部97と、によって構成される。これにより、一つのスプール90を用いたシンプルな構成にて、蓄圧流量制御及びバイパス流量制御を行うことができる。
In the
荷役車両1の油圧駆動装置16において、バイパス流量制御弁部150Aは、拡径部91でバイパス油路49を完全に閉じるストローク区間を有してよい。これにより、バイパス油路49を完全に閉じておくことにより、蓄圧流量制御弁部150Bでアキュムレータ80のみへ作動油を供給することができる。
In the
本実施形態に係る流量制御弁150は、操作弁(他の弁)48を作動油が通過する際に生じる圧力差に応じ、ストローク空間50f内でスプール90を往復移動させることで、開度を調整して作動油の流量を制御するパイロット式の流量制御弁である。流量制御弁150は、タンク(第1の部分)へ流れる作動油の流量を制御するバイパス流量制御弁部(第1の流量制御弁部)150Aと、アキュムレータ(第2の部分)80へ流れる作動油の流量を制御する蓄圧流量制御弁部(第2の流量制御弁部)150Bと、を備える。スプール90は、移動方向における一端側に設けられてストローク空間50fを塞ぐ拡径部91と、移動方向における他端側に設けられてストローク空間50fを塞ぐ拡径部92と、ストローク空間50fを形成する内壁から離間し、拡径部91と拡径部92とを接続する接続部96と、拡径部91と拡径部92との間であって、拡径部91及び拡径部92から移動方向において離間する位置に配置される拡径部97と、を備える。バイパス流量制御弁部150Aは、少なくとも、拡径部91と拡径部97との間で、ストローク空間50fに接続されたバイパス油路(第1の油路)49と、拡径部91と拡径部97との間で、ストローク空間50fに接続され、当該ストローク空間50fへ操作弁48側から作動油を供給するバイパス側供給油路(第1の供給油路)47b2と、スプール90の往復移動に伴って、バイパス側供給油路47b2を塞ぐことで開度を調整する拡径部91と、によって構成される。蓄圧流量制御弁部150Bは、少なくとも、拡径部92と拡径部97との間で、ストローク空間50fに接続された回生油路(第2の油路)47aと、拡径部92と拡径部97との間で、ストローク空間50fに接続され、当該ストローク空間50fへ操作弁48側から作動油を供給する蓄圧側供給油路(第2の供給油路)42b1と、スプール90の往復移動に伴って、蓄圧側供給油路42b1を塞ぐことで開度を調整する拡径部97と、によって構成される。
The flow
このような流量制御弁150を用いることで、上述の荷役車両1の油圧駆動装置16と同様の作用・効果を得ることができる。
By using such a
また、上述の実施形態では、第2油圧シリンダとして、ティルトシリンダ、PSシリンダ、及びアタッチメントシリンダが設けられている。しかし、第2油圧シリンダは少なくとも一本あればよく、一部は省略されてよい。例えば、上記実施形態では、アタッチメント及びパワーステアリングが搭載されているが、本発明の油圧駆動装置は、アタッチメント及びパワーステアリングが搭載されていないフォークリフトにも適用可能である。また、本発明の油圧駆動装置は、バッテリ式のフォークリフトはもとより、フォークリフト以外のエンジン式、バッテリ式の荷役車両にも適用可能である。 In the above-described embodiment, a tilt cylinder, a PS cylinder, and an attachment cylinder are provided as the second hydraulic cylinder. However, at least one second hydraulic cylinder may be provided, and a part thereof may be omitted. For example, in the above-described embodiment, the attachment and the power steering are mounted, but the hydraulic drive device of the present invention can be applied to a forklift that is not mounted with the attachment and the power steering. The hydraulic drive device of the present invention is applicable not only to battery-type forklifts but also to engine-type and battery-type cargo handling vehicles other than forklifts.
リフト操作レバーの下降操作に基づいて作動油の流れを制御する制御弁、及び第2操作部の操作に基づいて作動油の流れを制御する制御弁として、電磁式の比例弁を例示したが、油圧式、機械式のいずれでもよい。 The electromagnetic proportional valve is exemplified as the control valve that controls the flow of hydraulic oil based on the lowering operation of the lift operation lever and the control valve that controls the flow of hydraulic oil based on the operation of the second operation unit. Either hydraulic or mechanical may be used.
1…荷役車両、4…リフトシリンダ(油圧シリンダ)、4b…ボトム室、6…フォーク(昇降物)、11…リフト操作レバー(操作部)、16…油圧駆動装置、17…油圧ポンプ(油圧ポンプ)、17a…吸込口、17b…吐出口、47…油圧配管(下降油路)、47a…回生油路、48…操作弁、49…バイパス油路、50,150…流量制御弁、50A,150A…バイパス流量制御弁部、50B,150B…蓄圧流量制御弁部、80…アキュムレータ、90…スプール(移動体)、91…拡径部(第1の拡径部)、92…拡径部(第2の拡径部)、96…接続部、97…拡径部(第3の拡径部)。
DESCRIPTION OF
Claims (7)
前記油圧シリンダを作動させるための操作部と、
前記油圧シリンダに対する前記作動油の給排を行う油圧ポンプと、
前記油圧シリンダに接続され、該油圧シリンダから排出される作動油が流れる下降油路と、
前記下降油路に配設され、前記操作部の下降操作に基づいて前記油圧シリンダから排出された作動油の流れを制御する操作弁と、
前記下降油路から分岐点にて分岐し、前記分岐点と前記作動油を貯留するタンクとを導通するバイパス油路と、
前記下降油路の前記分岐点と前記油圧ポンプの吸込口とを接続する回生油路と、
該回生油路上に設けられ、前記油圧シリンダから排出される作動油を蓄圧するアキュムレータと、
前記操作弁と、前記アキュムレータ及び前記タンクとの間に設けられ、前記作動油の流量を制御する流量制御弁と、を備え、
前記流量制御弁は、
前記タンクへ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁部と、
前記アキュムレータへ蓄圧される前記作動油の流量を制御する蓄圧流量制御弁部と、を備える、荷役車両の油圧駆動装置。 A lifting hydraulic cylinder that lifts and lowers the lifting object by supplying and discharging hydraulic oil;
An operation unit for operating the hydraulic cylinder;
A hydraulic pump for supplying and discharging the hydraulic oil to and from the hydraulic cylinder;
A descending oil passage connected to the hydraulic cylinder and through which hydraulic oil discharged from the hydraulic cylinder flows;
An operation valve that is disposed in the descending oil passage and controls a flow of hydraulic oil discharged from the hydraulic cylinder based on a descending operation of the operation unit;
A bypass oil passage that branches off from the descending oil passage at a branch point, and that connects the branch point and a tank that stores the hydraulic oil;
A regenerative oil passage connecting the branch point of the descending oil passage and the suction port of the hydraulic pump;
An accumulator which is provided on the regenerative oil passage and accumulates hydraulic oil discharged from the hydraulic cylinder;
A flow rate control valve that is provided between the operation valve and the accumulator and the tank and controls the flow rate of the hydraulic oil;
The flow control valve is
A bypass flow rate control valve unit that controls a bypass flow rate that is a flow rate of hydraulic oil flowing to the tank;
A hydraulic drive device for a cargo handling vehicle, comprising: a pressure accumulation flow control valve portion that controls a flow rate of the hydraulic oil accumulated in the accumulator.
前記移動体は、
移動方向における一端側に設けられて前記ストローク空間を塞ぐ第1の拡径部と、
前記移動方向における他端側に設けられて前記ストローク空間を塞ぐ第2の拡径部と、
前記ストローク空間を形成する内壁から離間し、前記第1の拡径部と前記第2の拡径部とを接続する接続部と、を備え、
前記バイパス流量制御弁部は、少なくとも、
前記ストローク空間に接続された前記バイパス油路と、
前記ストローク空間に接続されて、当該ストローク空間に前記操作弁からの作動油を供給する供給油路と、
前記移動体の往復移動に伴って、前記バイパス油路を塞ぐことで開度を調整する前記第1の拡径部と、によって構成され、
前記蓄圧流量制御弁部は、少なくとも、
前記ストローク空間に接続された前記回生油路と、
前記ストローク空間に接続されて、当該ストローク空間に前記操作弁からの作動油を供給する前記供給油路と、
前記移動体の往復移動に伴って、前記回生油路を塞ぐことで開度を調整する前記第1の拡径部と、によって構成される、請求項1に記載の荷役車両の油圧駆動装置。 The flow control valve is a pilot-type flow control valve that adjusts the opening degree by reciprocating a moving body in a stroke space according to a pressure difference generated when the hydraulic oil passes through the operation valve. ,
The moving body is
A first diameter-expanded portion provided on one end side in the moving direction and closing the stroke space;
A second diameter-expanded portion provided on the other end side in the moving direction and closing the stroke space;
A connecting portion that is spaced apart from an inner wall that forms the stroke space and connects the first diameter-expanded portion and the second diameter-expanded portion;
The bypass flow rate control valve unit is at least:
The bypass oil passage connected to the stroke space;
A supply oil path connected to the stroke space and supplying hydraulic oil from the operation valve to the stroke space;
With the reciprocating movement of the moving body, the first diameter-expanding portion that adjusts the opening by closing the bypass oil passage, and
The pressure accumulation flow control valve unit is at least:
The regenerative oil passage connected to the stroke space;
The supply oil passage connected to the stroke space and supplying hydraulic oil from the operation valve to the stroke space;
The hydraulic drive device for a cargo handling vehicle according to claim 1, comprising: the first diameter-expanded portion that adjusts an opening degree by closing the regenerative oil passage as the movable body reciprocates.
前記バイパス流量制御弁部は、前記第1の拡径部で前記バイパス油路を完全に閉じるストローク区間を有する、請求項2に記載の荷役車両の油圧駆動装置。 With respect to the stroke space, the bypass oil passage is disposed on the one end side in the moving direction with respect to the regenerative oil passage,
The hydraulic drive device for a cargo handling vehicle according to claim 2, wherein the bypass flow rate control valve portion has a stroke section that completely closes the bypass oil passage at the first diameter-expanded portion.
前記移動体は、
移動方向における一端側に設けられて前記ストローク空間を塞ぐ第1の拡径部と、
前記移動方向における他端側に設けられて前記ストローク空間を塞ぐ第2の拡径部と、
前記ストローク空間を形成する内壁から離間し、前記第1の拡径部と前記第2の拡径部とを接続する接続部と、
前記第1の拡径部と前記第2の拡径部との間であって、前記第1の拡径部及び前記第2の拡径部から前記移動方向において離間する位置に配置される第3の拡径部と、を備え、
前記バイパス流量制御弁部は、少なくとも、
前記第1の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続された前記バイパス油路と、
前記第1の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続され、当該ストローク空間へ前記操作弁側から前記作動油を供給するバイパス側供給油路と、
前記移動体の往復移動に伴って、前記バイパス側供給油路を塞ぐことで開度を調整する前記第1の拡径部と、によって構成され、
前記蓄圧流量制御弁部は、少なくとも、
前記第2の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続された前記回生油路と、
前記第2の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続され、当該ストローク空間へ前記操作弁側から前記作動油を供給する蓄圧側供給油路と、
前記移動体の往復移動に伴って、前記蓄圧側供給油路を塞ぐことで開度を調整する前記第3の拡径部と、によって構成される、請求項1に記載の荷役車両の油圧駆動装置。 The flow control valve is a pilot-type flow control valve that adjusts the opening degree by reciprocating a moving body in a stroke space according to a pressure difference generated when the hydraulic oil passes through the operation valve. ,
The moving body is
A first diameter-expanded portion provided on one end side in the moving direction and closing the stroke space;
A second diameter-expanded portion provided on the other end side in the moving direction and closing the stroke space;
A connecting portion that is spaced apart from an inner wall that forms the stroke space and connects the first enlarged diameter portion and the second enlarged diameter portion;
A first portion disposed between the first diameter-expanded portion and the second diameter-expanded portion and spaced from the first diameter-expanded portion and the second diameter-expanded portion in the moving direction. 3 expanded diameter portions,
The bypass flow rate control valve unit is at least:
Between the first enlarged diameter portion and the third enlarged diameter portion, the bypass oil passage connected to the stroke space;
A bypass-side supply oil passage that is connected to the stroke space between the first diameter-expanded portion and the third diameter-expanded portion and supplies the hydraulic oil from the operation valve side to the stroke space;
With the reciprocating movement of the moving body, the first diameter expanding portion that adjusts the opening degree by closing the bypass side supply oil passage,
The pressure accumulation flow control valve unit is at least:
The regenerative oil passage connected to the stroke space between the second enlarged diameter portion and the third enlarged diameter portion,
An accumulator-side supply oil passage that is connected to the stroke space between the second diameter-expanded portion and the third diameter-expanded portion and supplies the hydraulic oil from the operation valve side to the stroke space;
The hydraulic drive of a cargo handling vehicle according to claim 1, comprising: a third diameter-expanding portion that adjusts an opening degree by closing the pressure-accumulation-side supply oil passage as the moving body reciprocates. apparatus.
第1の部分へ流れる前記作動油の流量を制御する第1の流量制御弁部と、
第2の部分へ流れる前記作動油の流量を制御する第2の流量制御弁部と、を備え、
前記移動体は、
移動方向における一端側に設けられて前記ストローク空間を塞ぐ第1の拡径部と、
前記移動方向における他端側に設けられて前記ストローク空間を塞ぐ第2の拡径部と、
前記ストローク空間を形成する内壁から離間し、前記第1の拡径部と前記第2の拡径部とを接続する接続部と、を備え、
前記第1の流量制御弁部は、少なくとも、
前記ストローク空間に接続された第1の油路と、
前記ストローク空間に接続されて、当該ストローク空間に前記他の弁からの前記作動油を供給する供給油路と、
前記移動体の往復移動に伴って、前記第1の油路を塞ぐことで開度を調整する前記第1の拡径部と、によって構成され、
前記第2の流量制御弁部は、少なくとも、
前記ストローク空間に接続された第2の油路と、
前記ストローク空間に接続されて、当該ストローク空間に前記他の弁からの前記作動油を供給する前記供給油路と、
前記移動体の往復移動に伴って、前記第2の油路を塞ぐことで開度を調整する前記第1の拡径部と、によって構成される、流量制御弁。 A pilot-type flow control valve that controls the flow rate of the hydraulic oil by adjusting the opening degree by reciprocating the moving body in the stroke space according to the pressure difference generated when the hydraulic oil passes through another valve Because
A first flow control valve portion for controlling the flow rate of the hydraulic oil flowing to the first portion;
A second flow rate control valve part for controlling the flow rate of the hydraulic oil flowing to the second part,
The moving body is
A first diameter-expanded portion provided on one end side in the moving direction and closing the stroke space;
A second diameter-expanded portion provided on the other end side in the moving direction and closing the stroke space;
A connecting portion that is spaced apart from an inner wall that forms the stroke space and connects the first diameter-expanded portion and the second diameter-expanded portion;
The first flow control valve unit is at least
A first oil passage connected to the stroke space;
A supply oil path connected to the stroke space and supplying the hydraulic oil from the other valve to the stroke space;
With the reciprocating movement of the movable body, the first oil diameter increasing portion that adjusts the opening degree by closing the first oil passage, and
The second flow control valve unit is at least
A second oil passage connected to the stroke space;
The supply oil passage connected to the stroke space and supplying the hydraulic oil from the other valve to the stroke space;
A flow control valve comprising: the first diameter-expanding portion that adjusts an opening degree by closing the second oil passage as the moving body reciprocates.
第1の部分へ流れる前記作動油の流量を制御する第1の流量制御弁部と、
第2の部分へ流れる前記作動油の流量を制御する第2の流量制御弁部と、を備え、
前記移動体は、
移動方向における一端側に設けられて前記ストローク空間を塞ぐ第1の拡径部と、
前記移動方向における他端側に設けられて前記ストローク空間を塞ぐ第2の拡径部と、
前記ストローク空間を形成する内壁から離間し、前記第1の拡径部と前記第2の拡径部とを接続する接続部と、
前記第1の拡径部と前記第2の拡径部との間であって、前記第1の拡径部及び前記第2の拡径部から前記移動方向において離間する位置に配置される第3の拡径部と、を備え、
前記第1の流量制御弁部は、少なくとも、
前記第1の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続された第1の油路と、
前記第1の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続され、当該ストローク空間へ前記他の弁側から前記作動油を供給する第1の供給油路と、
前記移動体の往復移動に伴って、前記第1の供給油路を塞ぐことで開度を調整する前記第1の拡径部と、によって構成され、
前記第2の流量制御弁部は、少なくとも、
前記第2の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続された第2の油路と、
前記第2の拡径部と前記第3の拡径部との間で、前記ストローク空間に接続され、当該ストローク空間へ前記他の弁側から前記作動油を供給する第2の供給油路と、
前記移動体の往復移動に伴って、前記第2の供給油路を塞ぐことで開度を調整する前記第3の拡径部と、によって構成される、流量制御弁。 A pilot-type flow control valve that controls the flow rate of the hydraulic oil by adjusting the opening degree by reciprocating the moving body in the stroke space according to the pressure difference generated when the hydraulic oil passes through another valve Because
A first flow control valve portion for controlling the flow rate of the hydraulic oil flowing to the first portion;
A second flow rate control valve part for controlling the flow rate of the hydraulic oil flowing to the second part,
The moving body is
A first diameter-expanded portion provided on one end side in the moving direction and closing the stroke space;
A second diameter-expanded portion provided on the other end side in the moving direction and closing the stroke space;
A connecting portion that is spaced apart from an inner wall that forms the stroke space and connects the first enlarged diameter portion and the second enlarged diameter portion;
A first portion disposed between the first diameter-expanded portion and the second diameter-expanded portion and spaced from the first diameter-expanded portion and the second diameter-expanded portion in the moving direction. 3 expanded diameter portions,
The first flow control valve unit is at least
A first oil passage connected to the stroke space between the first enlarged diameter portion and the third enlarged diameter portion;
A first supply oil passage that is connected to the stroke space between the first diameter-expanded portion and the third diameter-expanded portion and supplies the hydraulic oil to the stroke space from the other valve side; ,
With the reciprocating movement of the moving body, the first diameter-expanding portion that adjusts the opening by closing the first supply oil passage, and
The second flow control valve unit is at least
A second oil passage connected to the stroke space between the second enlarged diameter portion and the third enlarged diameter portion;
A second supply oil passage that is connected to the stroke space between the second diameter-expanded portion and the third diameter-expanded portion and supplies the hydraulic oil to the stroke space from the other valve side; ,
A flow rate control valve configured by the third diameter-expanding portion that adjusts an opening degree by closing the second supply oil passage as the moving body reciprocates.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016223443A JP6424880B2 (en) | 2016-11-16 | 2016-11-16 | Hydraulic drive system for cargo handling vehicle and flow control valve |
PCT/JP2017/037985 WO2018092510A1 (en) | 2016-11-16 | 2017-10-20 | Hydraulic drive device for cargo vehicle, and flow control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016223443A JP6424880B2 (en) | 2016-11-16 | 2016-11-16 | Hydraulic drive system for cargo handling vehicle and flow control valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018080760A true JP2018080760A (en) | 2018-05-24 |
JP6424880B2 JP6424880B2 (en) | 2018-11-21 |
Family
ID=62146442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016223443A Active JP6424880B2 (en) | 2016-11-16 | 2016-11-16 | Hydraulic drive system for cargo handling vehicle and flow control valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6424880B2 (en) |
WO (1) | WO2018092510A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020084920A (en) * | 2018-11-29 | 2020-06-04 | アイシン精機株式会社 | Pressure regulating valve |
JP2020084950A (en) * | 2018-11-30 | 2020-06-04 | アイシン精機株式会社 | Hydraulic fluid supply device |
JP2021115633A (en) * | 2020-01-22 | 2021-08-10 | 三菱ロジスネクスト株式会社 | Lever operation robot and industrial vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5497930A (en) * | 1977-10-17 | 1979-08-02 | Cam Gears Ltd | Valve assembly and auxiliary power steering system |
JP2010101365A (en) * | 2008-10-22 | 2010-05-06 | Caterpillar Japan Ltd | Hydraulic control system for working machine |
JP2013133196A (en) * | 2011-12-26 | 2013-07-08 | Toyota Industries Corp | Forklift hydraulic control device |
-
2016
- 2016-11-16 JP JP2016223443A patent/JP6424880B2/en active Active
-
2017
- 2017-10-20 WO PCT/JP2017/037985 patent/WO2018092510A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5497930A (en) * | 1977-10-17 | 1979-08-02 | Cam Gears Ltd | Valve assembly and auxiliary power steering system |
JP2010101365A (en) * | 2008-10-22 | 2010-05-06 | Caterpillar Japan Ltd | Hydraulic control system for working machine |
JP2013133196A (en) * | 2011-12-26 | 2013-07-08 | Toyota Industries Corp | Forklift hydraulic control device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020084920A (en) * | 2018-11-29 | 2020-06-04 | アイシン精機株式会社 | Pressure regulating valve |
JP7196568B2 (en) | 2018-11-29 | 2022-12-27 | 株式会社アイシン | Pressure regulating valve |
JP2020084950A (en) * | 2018-11-30 | 2020-06-04 | アイシン精機株式会社 | Hydraulic fluid supply device |
JP7180325B2 (en) | 2018-11-30 | 2022-11-30 | 株式会社アイシン | Hydraulic oil supply device |
JP2021115633A (en) * | 2020-01-22 | 2021-08-10 | 三菱ロジスネクスト株式会社 | Lever operation robot and industrial vehicle |
JP7136818B2 (en) | 2020-01-22 | 2022-09-13 | 三菱ロジスネクスト株式会社 | Lever-operated robots and industrial vehicles |
Also Published As
Publication number | Publication date |
---|---|
JP6424880B2 (en) | 2018-11-21 |
WO2018092510A1 (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5388787B2 (en) | Hydraulic system of work machine | |
JP6269170B2 (en) | Hydraulic drive device for cargo handling vehicle | |
WO2018092510A1 (en) | Hydraulic drive device for cargo vehicle, and flow control valve | |
KR101669452B1 (en) | Hydraulic control device for forklift | |
EP3543544B1 (en) | Hydraulic drive device for cargo vehicle | |
WO2018092505A1 (en) | Hydraulic drive device for cargo vehicle | |
JP6455405B2 (en) | Hydraulic drive device for cargo handling vehicle | |
JP2007046719A (en) | Reciprocation control device for hydraulic cylinder and loading device of garbage collector using the same | |
JP2017015130A (en) | Fluid circuit | |
EP3078624B1 (en) | Hydraulic control device of forklift truck | |
WO2018092509A1 (en) | Hydraulic drive device for cargo vehicle | |
WO2018037924A1 (en) | Energy regeneration device and work machine comprising energy regeneration device | |
JP6318891B2 (en) | Hydraulic drive device for cargo handling vehicle | |
JP2018132126A (en) | Hydraulic drive device | |
JP6879250B2 (en) | Hydraulic drive | |
JP6488990B2 (en) | Hydraulic drive device for cargo handling vehicle | |
WO2018037925A1 (en) | Energy regeneration device and work machine provided with energy regeneration device | |
JP2020093863A (en) | Hydraulic driving device of forklift | |
JP6959528B2 (en) | Hydraulic drive for industrial vehicles | |
JP2013028926A (en) | Working machine | |
JP6135398B2 (en) | Valve device | |
JP2021088463A (en) | Impact suppressing device of industrial vehicle | |
JP2001010793A (en) | Loading control device for fork lift |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181008 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6424880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |