JP2018073049A - 画像認識装置、画像認識システム、及び画像認識方法 - Google Patents

画像認識装置、画像認識システム、及び画像認識方法 Download PDF

Info

Publication number
JP2018073049A
JP2018073049A JP2016210690A JP2016210690A JP2018073049A JP 2018073049 A JP2018073049 A JP 2018073049A JP 2016210690 A JP2016210690 A JP 2016210690A JP 2016210690 A JP2016210690 A JP 2016210690A JP 2018073049 A JP2018073049 A JP 2018073049A
Authority
JP
Japan
Prior art keywords
image recognition
image
coordinates
visual field
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016210690A
Other languages
English (en)
Inventor
友章 矢野
Tomoaki Yano
友章 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016210690A priority Critical patent/JP2018073049A/ja
Publication of JP2018073049A publication Critical patent/JP2018073049A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】フレーム画像における有効視野範囲の位置のバラツキの影響を低減できる画像認識装置を提供することを目的とする。【解決手段】本発明は、車両に搭載された撮像手段で撮像されたフレーム画像における第1の探索領域から直線を検出する検出手段と、前記検出手段で検出された直線のうち路面に対応した直線の端点座標を求める演算手段と、前記演算手段で求められた端点座標に基づいて、前記フレーム画像における有効視野範囲と非有効視野範囲との境界に対応した基準座標を設定する設定手段と、前記設定手段で設定された基準座標を基準として前記有効視野範囲から抽出された第2の探索領域に対して画像認識を行う認識手段とを備えたことを特徴とする。【選択図】図3

Description

本発明は、画像認識装置、画像認識システム、及び画像認識方法に関する。
車載カメラにより撮像された車外の画像から信号機、交通標識、路面表示、歩行者、車両などを自動で画像認識することで、ドライバーの安全運転の支援や危険運転の検知などのアプリケーションが可能となる。この画像認識の機能は、ナビゲーション装置やドライブレコーダなどの機器に搭載されることがある。
特許文献1には、ドライブレコーダにおいて、前部に撮影レンズを有し撮影レンズの全面下部にフレネルレンズが取り付けられた前方監視カメラで車外を撮像することが記載されている。これにより、特許文献1によれば、高解像度カメラで撮像した画像を画像処理で拡大する構成をとる必要がなく、低解像度の撮像素子を用いながら撮像領域の下部を拡大して撮像できるので、低コストで前方の車両のナンバープレートを拡大して監視できるとされている。
車載カメラやドライブレコーダは、その記録画像(動画像)を人間が見て確認する目的で使われることを前提に取り付けられていることが多い。そのため、大体、車両の前方方向に向いていれば良しとされ、その画像の有効視野範囲の位置は厳密に規定されないことが多い。特許文献1に記載のドライブレコーダでは、ボンネットやダッシュボードが映し出される下部領域が、予め、撮影領域の3分の1と決められている。
しかし、取り付け時のカメラ角度や位置の違いにより、画像における有効視野範囲の位置には大きなバラツキが存在しやすい。画像(フレーム画像)における有効視野範囲の位置にバラツキが存在すると、画像認識を行うべき探索領域を有効視野範囲内に収めることが困難になり、画像認識の精度が低下する可能性がある。
本発明は、上記に鑑みてなされたものであって、フレーム画像における有効視野範囲の位置のバラツキの影響を低減できる画像認識装置、画像認識システム、及び画像認識方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、車両に搭載された撮像手段で撮像されたフレーム画像における第1の探索領域から直線を検出する検出手段と、前記検出手段で検出された直線のうち路面に対応した直線の端点座標を求める演算手段と、前記演算手段で求められた端点座標に基づいて、前記フレーム画像における有効視野範囲と非有効視野範囲との境界に対応した基準座標を設定する設定手段と、前記設定手段で設定された基準座標を基準として前記有効視野範囲から抽出された第2の探索領域に対して画像認識を行う認識手段とを備えたことを特徴とする。
本発明によれば、フレーム画像における有効視野範囲の位置のバラツキの影響を低減できるという効果を奏する。
実施形態における車載カメラの搭載場所を示す図。 実施形態における画像認識システムのハードウェア構成を示す図。 実施形態における画像認識システムの機能構成を示す図。 実施形態における画像認識システムの動作を示すフローチャート。 実施形態における車載カメラで撮像されたフレーム画像及び探索領域を示す図。 実施形態におけるフレーム画像から抽出された探索領域を示す図。 実施形態における探索領域での抽出条件を示す図。 実施形態における基準座標を設定又は更新する処理を示す図。 実施形態におけるフレーム画像から抽出された探索領域を示す図。 実施形態におけるフレーム画像の位置を補正する処理を示す図。 実施形態における画像認識処理を示す図。
以下に添付図面を参照して、実施形態にかかる画像認識システムを詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
(実施形態)
実施形態にかかる画像認識システム1について説明する。画像認識システム1は、図1に示すように、車両CAに搭載された車載カメラ(撮像手段)2を有し、車載カメラ2により撮像された車外の画像から信号機、交通標識、路面表示、歩行者、車両などを自動で画像認識する機能を有することで、様々なアプリケーションを実現可能である。図1は、車載カメラ2の搭載場所を示す図である。画像認識システム1は、ナビゲーション装置やドライブレコーダなどの機器に搭載された場合、画像認識の機能を用いてドライバーの安全運転の支援や危険運転の検知を行うことができる。
車両CAの各部を監視及び制御するECU(図示せず)は、走行速度、現在のエンジン回転数、エンジン負荷率、スロットル開度及び冷却水温度等の車両情報を取得可能であることに加えて、車外における物体(例えば、歩行者、自転車、オートバイ、他の車両、ガードレール、信号機、交通標識、路面上の白線、及び/又は建築物など)の認識結果を画像認識システム1から取得可能である。これにより、ECUは、車外における物体が衝突する可能性のある対象として認識された際に、車両CAがその物体に衝突する前に自動的にブレーキをかけるなど、衝突を未然に防ぐ制御を行うことができる。
例えば、車載カメラ2−1は、車両CAの前方を向くように、車両CA内のルーフ部RFの下面の近傍に設置され得る。この車載カメラ2−1は、破線で示すように、車両CAの内部からフロントガラスFG(車両CAのウィンドウの一例)を介して、車外の様子を動画像として撮像する。車載カメラ2−1は、時間的に連続した複数のフレーム期間に、複数のフレーム画像を撮像する。複数のフレーム画像は、複数のフレーム期間に対応している。車載カメラ2−1により撮像された各フレーム画像は画像認識装置100(図2参照)に記録され得る。
あるいは、例えば、車載カメラ2−2は、車両CAの前方を向くように、車両CA内のダッシュボードDB上に設置され得る。この車載カメラ2−2は、一点鎖線で示すように、車両CAの内部からフロントガラスFG(車両CAのウィンドウの一例)を介して、車外の様子を動画像として撮像する。車載カメラ2−2は、時間的に連続した複数のフレーム期間に、複数のフレーム画像を撮像する。複数のフレーム画像は、複数のフレーム期間に対応している。車載カメラ2−2により撮像されたフレーム画像は画像認識装置100(図2参照)に記録され得る。
なお、画像認識システム1では、図1に示す車載カメラ2−1及び車載カメラ2−2のいずれか一方が車両CAに搭載されていてもよいし、車載カメラ2−1及び車載カメラ2−2の両方が車両CAに搭載されていてもよい。以下、車載カメラ2−1及び/又は車載カメラ2−2を「車載カメラ2」と呼ぶことにする。
画像認識システム1は、車外の様々な物体を認識するにあたり、フレーム画像の全体を探索範囲として画像認識を行うと、処理負荷が増え、応答性が低下したりコストアップにつながったりする。画像認識システム1において、フレーム画像の全体を探索範囲として画像認識を行うような構成は、現実的な構成として採用するのが困難である。そのため、画像認識システム1は、フレーム画像におけるその認識対象が出現する可能性のある領域を探索範囲として切り出して画像認識処理を行うことで、処理負荷を低減でき、実用的な応答性を確保できる。
このとき、車載カメラ2の視野範囲における画像認識に不要な物体(例えば、ボンネットBN及び/又はダッシュボードDB等)が映り込んだ領域を非有効視野範囲と呼び、車載カメラ2の視野範囲における非有効視野範囲を除いた範囲を有効視野範囲と呼ぶことにする。車載カメラ2の視野範囲における有効視野範囲の位置(すなわち、フレーム画像における有効視野範囲の位置)には、バラツキが発生することがある。画像認識システム1が画像認識を用いて車外の様々な物体を認識し運転状況を把握するためには、フレーム画像における有効視野範囲の位置にバラツキがあると、フレーム画像から正確に探索範囲を切り出すことが困難となりやすく、画像認識の精度が低下する可能性がある。
例えば、図1に破線で示されるように、車載カメラ2−1の視野範囲は、車両CAにおける車載カメラ2−1の取り付け位置や取付角度によってばらつき、車両CAのボンネットBNの少なくとも一部を含んでしまうことがある。あるいは、例えば、図1に一点鎖線で示されるように、車載カメラ2−2の視野範囲は、車両CAにおける車載カメラ2−2の取り付け位置や取付角度によってばらつき、車両CA内のダッシュボードDBの少なくとも一部を含んでしまうことがある。
このとき、車外における物体(例えば、歩行者、自転車、オートバイ、他の車両、ガードレール、信号機、交通標識、路面上の白線、及び/又は建築物など)を認識するために、画像認識システム1は、非有効視野範囲と重なるように探索範囲を切り出した場合、不要な物体(例えば、ボンネットBN及び/又はダッシュボードDB等)を車外における物体と誤認識する可能性がある。
そこで、本実施形態では、画像認識システム1において、不要な物体及びその周辺を含む探索領域に対して直線検出を行いその結果に基づいて有効視野範囲と非有効視野範囲との境界位置を推定し、その推定結果に応じて有効視野範囲から抽出された新たな探索領域に対して画像認識を行うようにすることで、有効視野範囲の位置のバラツキによる影響の低減を図る。
すなわち、車載カメラ2の視野範囲にバラツキがあった場合でも、不要な物体及びその周辺を含む探索領域に対して路面上から検出した直線の端点座標をサンプリングする。これにより、不要な物体(例えば、ボンネットBN及び/又はダッシュボードDB等)の映り込み位置を、直線の切れる位置として検出できるので、有効視野範囲と非有効視野範囲との境界位置を推定できる。また、その推定結果に応じて、非有効視野範囲に重ならないように有効視野範囲から探索領域を抽出し、抽出された探索領域に対して画像認識処理を行うので、安定した画像認識処理が可能となる。
具体的には、画像認識システム1は、図2に示すようなハードウェア構成を有する。図2は、画像認識システム1のハードウェア構成を示す図である。
画像認識システム1は、車載カメラ(撮像手段)2及び画像認識装置100を有する。画像認識装置100は、ROM3、RAM4、表示部5、スピーカ部6、操作部7、入出力インタフェース(入出力I/F)8、通信インタフェース(通信I/F)9、記憶部10及びCPU11を有している。車載カメラ2、ROM3、RAM4、表示部5、スピーカ部6、操作部7、入出力インタフェース(入出力I/F)8、通信インタフェース(通信I/F)9、記憶部10及びCPU11は、バスライン12を介して相互に接続されている。ROMは、「Read Only Memory」の略記である。RAMは、「Random Access Memory」の略記である。CPUは、「Central Processing Unit」の略記である。
ROM3には、CPU11にシステム動作を実行させるためのOSプログラムが記憶されている。OSは、「Operating System」の略記である。画像認識装置100は、車載カメラ2の撮像画像(フレーム画像)に対して画像認識を行い、車外における物体(例えば、歩行者、自転車、オートバイ、他の車両、ガードレール、信号機、交通標識、路面上の白線、及び/又は建築物など)を認識する。このため、記憶部10には、CPU11に、このような画像認識処理を実行させるための画像認識プログラム10aが記憶されている。画像認識プログラム10aの実行時となると、CPU11は、図3に示す各機能構成をRAM4に展開して実行する。また、記憶部10は、例えば、HDD等の磁気記録を利用した記憶媒体であってもよいし、SSD等の半導体メモリを利用した記憶媒体であってもよい。記憶部10には、画像認識処理時(テンプレートマッチング時)に用いる各物体の基準画像(テンプレート画像)が記憶されている。
表示部5には、車載カメラ2で撮像されている撮像画像(フレーム画像)がリアルタイムで表示され得る。表示部5には、画像認識処理の対象となる探索領域を示す枠が撮像画像(フレーム画像)に重ねて表示され得る。また、表示部5には、画像認識処理の結果が撮像画像(フレーム画像)に代えて又は撮像画像(フレーム画像)に重ねて表示され得る。
操作部7は、画像認識装置100の設定入力時等に、ユーザにより操作される。入出力I/F8には、車両のECUから車両情報が入力され得る。CPU11は、例えば車外における物体が認識された際に、画像認識結果に応じて、警告情報(警告を示すメッセージ等の画像情報及び音声情報)を生成し、表示部5及びスピーカ部6を介して出力する。
また、画像認識システム1は、図3に示すような機能構成を有する。図3は、画像認識システム1の機能構成を示す図である。
車載カメラ2は、車両CAに搭載される。車載カメラ2は、フロントガラスFGの内側など(図1参照)に装着され、車両CAの進行方向前方の画像(動画像)を撮像する。
画像記録部101は、車載カメラ2で撮像された画像(フレーム画像)を車載カメラ2から受けて記録する。画像記録部101は、例えば、SDカードなどのリムーバブルメディアでもよいし、通信可能に接続されたSSD、HDDなどの記録メディアでもよい。画像記録部101は、図2に示すハードウェア構成における記憶部10に対応している。
画像入力部102は、画像記録部101に格納された画像(フレーム画像)を画像記録部101から読み出す。画像記録部101に格納された画像(フレーム画像)の信号がアナログ信号である場合、画像入力部102は、画像の信号をA/D変換するとともに所定の信号処理を施して画像処理に適した画像データを生成する。画像記録部101に格納された画像(フレーム画像)の信号がデジタル信号である場合、画像入力部102は、画像の信号に対して所定の信号処理を施して画像処理に適した画像データを生成する。画像データは、例えば、フレーム画像における画素の座標(X座標、Y座標)と輝度レベルとが複数の画素のそれぞれについて対応付けられた情報を含む。画像入力部102は、画像データを画像処理部103へ供給する。画像入力部102は、図2に示すハードウェア構成におけるCPU11に対応している。
なお、この画像入力部102以降の各部103〜108は、車載カメラ2と一体でリアルタイムに(すなわち、車載カメラ2から画像記録部101への画像(フレーム画像)の信号が転送されるタイミングに同期して)処理を行ってもよい。あるいは、画像入力部102以降の各部103〜108は、車載カメラ2とは別体のオフラインで(すなわち、車載カメラ2から画像記録部101への画像(フレーム画像)の信号が転送されるタイミングと非同期で)処理を行っても良い。
画像処理部103は、画像認識に関する処理を行う。例えば、画像処理部103は、画像認識の前処理として、フレーム画像から直線検出を行うための探索領域(第1の探索領域)を抽出し、抽出された探索領域の情報を直線検出部105へ供給する。画像処理部103は、図2に示すハードウェア構成におけるCPU11に対応している。
パラメータ設定記憶部104には、直線検出に必要な各種パラメータと画像認識処理に必要な各種パラメータとがあらかじめ設定され、設定されたパラメータを記憶する。画像処理部103は、直線検出又は画像認識処理を行う際に、パラメータ設定記憶部104を参照してパラメータを取得する。パラメータ設定記憶部104は、図2に示すハードウェア構成におけるROM3又は記憶部10に対応している。
直線検出部105は、探索領域の情報を画像処理部103から取得するとともに、直線検出に必要な各種パラメータをパラメータ設定記憶部104から画像処理部103経由で取得する。探索領域は複数の画素を含み、探索領域の情報は、探索領域内の各画素の輝度レベル(階調値)と座標位置とが対応付けられた情報を含む。座標位置は、絶対的な座標位置(フレーム画像内における座標位置)であってもよいし、相対的な座標位置(探索領域内における参照位置からの座標位置)であってもよい。座標位置が相対的な座標位置である場合、探索領域の情報は、フレーム画像における探索領域の参照位置に関する情報をさらに含むことができる。
直線検出部(検出手段)105は、直線検出に必要な各種パラメータを使い、探索領域(第1の探索領域)から直線を検出する。例えば、直線検出部105は、ハフ変換または最小二乗法等により、探索領域から直線を検出する。直線検出部105は、検出された直線の情報を直線座標処理部106へ供給する。検出された直線の情報は、直線に含まれる各画素の座標位置の情報を含む。直線検出部105は、図2に示すハードウェア構成におけるCPU11に対応している。
直線座標処理部(演算手段)106は、直線検出部105で検出された直線のうち路面に対応した直線の端点座標を求める。直線座標処理部106は、検出された1以上の直線の情報を直線検出部105から取得する。直線座標処理部106は、直線検出部105で検出された直線のうち、抽出条件を満たす直線を抽出する。抽出条件は、有効視野範囲と非有効視野範囲との境界位置の推定に適した直線を抽出するための条件である。抽出条件は、車両CAの進行方向に対して所定の角度範囲に収まった傾きを有する直線であることを含んでもよい(図7(a)参照)。抽出条件は、基準座標比較部107により既に基準座標が設定されている場合(2回目以降の直線検出である場合)にその基準座標から所定の距離以内にある端点座標を有する直線であることを含んでもよい(図7(b)参照)。直線座標処理部106は、抽出された直線のうち、複数のフレーム画像の間で略同一である直線を棄却する。複数のフレーム画像の間で略同一である直線は、不要な物体(例えば、ボンネットBN及び/又はダッシュボードDB等)の一部である可能性があるため、棄却され得る。直線座標処理部106は、残った直線(候補直線)の情報に基づいて、直線の端点座標(例えば、直線の下端の座標)を求める。直線座標処理部106は、求められた端点座標の情報を基準座標比較部107へ供給する。直線座標処理部106は、図2に示すハードウェア構成におけるCPU11に対応している。
基準座標比較部(設定手段)107は、直線座標処理部106で求められた端点座標に基づいて、基準座標を設定又は更新する。例えば、基準座標比較部107は、1回目の直線検出で検出された直線の端点座標の情報を取得した場合、取得された端点座標を基準座標の初期値として設定する。基準座標比較部107は、2回目以降の直線検出で検出された直線の端点座標の情報を取得した場合、取得された端点座標を既に設定されている基準座標と比較する。基準座標比較部107は、例えば端点座標の方が基準座標より下方(−Y方向)であれば、求められた端点座標と既に設定されている基準座標とについて平均化された平均座標を求め、設定されている基準座標に代えて平均座標を基準座標として設定し直す。すなわち、基準座標比較部107は、平均座標で基準座標を更新する。基準座標比較部107は、設定又は更新された基準座標の情報を画像処理部103及び消失点検出処理部108へ供給する。基準座標比較部107は、図2に示すハードウェア構成におけるCPU11に対応している。
消失点検出処理部108は、基準座標比較部107で設定された基準座標を基準(ベース)としてフレーム画像における有効視野範囲から消失点検出のための探索領域を抽出できる。消失点検出処理部108は、抽出された探索領域に対して消失点検出処理を行う。消失点検出処理部108は、検出された消失点の座標情報を画像処理部103へ供給する。消失点検出処理部108は、図2に示すハードウェア構成におけるCPU11に対応している。
画像処理部(認識手段)103は、消失点検出処理部108で検出された消失点の座標を考慮しながら、基準座標比較部107で設定された基準座標を基準としてフレーム画像における有効視野範囲から認識対象(例えば、標識などの車外の物体)を探索する探索領域(第2の探索領域)を抽出できる。
すなわち、画像処理部103は、消失点検出処理部108から受けた消失点の座標情報に基づいて、フレーム画像の位置の所定位置からのずれ量(ベクトル量)を求め、ずれ量に基づいて、フレーム画像の位置を補正する。画像処理部103は、ずれ量をキャンセルするように、フレーム画像の中心に対して各画素データをシフトさせる移動処理を行う。このとき、基準座標比較部107で設定された基準座標と消失点検出処理部108で検出された消失点の座標とを、同様にシフトさせる。画像処理部103は、シフト後の基準座標を基準として、フレーム画像における有効視野範囲と非有効視野範囲との境界の位置を推定できる。画像処理部103は、シフト後の消失点の座標を基準として、フレーム画像における車外における物体(例えば、歩行者、自転車、オートバイ、他の車両、ガードレール、信号機、交通標識、路面上の白線、及び/又は建築物など)の位置を推定する。画像処理部103は、これらの推定の結果に基づいて、フレーム画像における非有効視野範囲に重ならず且つ車外における物体を含むように探索領域(第2の探索領域)を抽出できる。画像処理部103は、抽出された探索領域に対して画像認識処理を行う。すなわち、画像処理部103が非有効視野範囲に重ならないように有効視野範囲から探索領域を抽出でき、抽出された探索領域に対して画像認識処理を行うことができるので、有効視野範囲の位置のバラツキによる影響を低減でき、安定した画像認識処理が可能となる。
なお、図3に示された画像認識システム1の各機能構成は、ハードウェア的に実現される代わりに、その一部がソフトウェア的に実現されてもよい。例えば、ソフトウェア的に実現される各機能構成は、例えば、画像認識プログラム10aの実行により一括して又は処理の進行に応じて順次にRAM4上に展開され得る。
また、画像認識システム1は、図4に示すような動作を行う。図4は、画像認識システム1の動作を示すフローチャートである。
画像認識システム1において、画像認識装置100は、車載カメラ2から撮像された画像(動画像)が入力されると(S1)、動画形式の画像(動画像)を連続する複数のフレーム期間に対応した複数のフレーム画像に変換する。すなわち、画像認識装置100は、動画像を、画像単位で処理可能な形式のフレーム画像に変換する。
画像認識装置100は、フレーム画像から探索領域(第1の探索領域)を抽出し、探索領域の画像データを生成する(S2)。フレーム画像における縦方向をY方向、横方向をX方向とすると、画像認識装置100は、フレーム画像FIにおけるY方向の下側で且つX方向の中央側に位置した領域を探索領域SR1(図5参照)として抽出できる。すなわち、画像認識装置100は、フレーム画像から、ボンネットBN、ダッシュボードDB等の少なくとも一方が映り込んだ領域(非有効視野範囲)の検出に使用する領域の部分画像を切り出して、探索領域SR1の画像データとすることができる。
画像認識装置100は、切り出された探索領域SR1の画像データに対して、直線検出のために適した前処理として平滑化、二値化といった画像処理を施す(S3)。画像認識装置100は、平滑化フィルタ(例えば、3画素×3画素の輝度レベルを単純平均するフィルタ)を用いて探索領域SR1の画像データを平滑化できる。画像認識装置100は、探索領域の画像データにおける各画素ごとに、輝度レベル(階調値)を閾値レベルと比較し、閾値レベルより高いか低いかを判定することで、探索領域SR1の画像データを二値化できる。
そして、画像認識装置100は、探索領域SR1の画像データにハフ変換(又は最小二乗法)を施すことにより、探索領域SR1から直線を検出する(S4)。
画像認識装置100は、ここで得られた直線群から、所定の抽出条件に従い、非有効視野範囲と有効視野範囲との境界位置の推定に適した候補直線を抽出する(S5)。所定の抽出条件は、車両の進行方向(Y方向)に対して所定の角度範囲に収まっている直線であることを含むことができる。また、現在の処理が2回目以降のループ処理(S1〜S8)における処理であれば、所定の抽出条件は、基準座標比較部107で設定された基準座標(Y座標)から所定の距離以内(±Y方向に所定の距離以内)にある端点座標を有する直線であることを含むことができる。画像認識装置100は、ここで抽出された候補直線の両端(始点、終点)の端点座標を取得する。
画像認識装置100は、候補直線の両端の端点座標のうち下方に位置する端点座標(例えば、終点のY座標)をサンプリングし(S6)、サンプリングされた端点座標をサンプル数と共に保持する。また、画像認識装置100は、複数のフレーム期間について同様の位置から切り出して探索領域SR1を抽出している場合、複数のフレーム期間の間で略同一の直線を検出し棄却する。例えば、画像認識装置100は、前のフレーム期間に検出された直線の情報を保持しており、今回のフレーム期間に検出された直線に対して前のフレーム期間に検出された直線との一致度を計算し、一致度が所定の閾値より高い直線について複数のフレーム期間の間で略同一の直線と判断し棄却することができる。これにより、S5で抽出された候補直線から有効視野範囲と非有効視野範囲との境界位置の推定に不要な直線が取り除かれるので、画像認識装置100は、残った候補直線の端点座標により基準座標を設定又は更新する(S7)。
すなわち、画像認識装置100は、現在の処理が1回目のループ処理(S1〜S8)における処理であり、残った候補直線の端点座標(Y座標)が1個であれば、その端点座標を基準座標の初期位置として設定する。画像認識装置100は、現在の処理が1回目のループ処理(S1〜S8)における処理であり、残った候補直線の端点座標(Y座標)が複数個であれば、複数個の端点座標を平均化した平均座標を求め、その平均座標を基準座標の初期位置として設定する。画像認識装置100は、現在の処理が2回目以降のループ処理(S1〜S8)における処理であれば、基準座標(Y座標)と残った候補直線の端点座標(Y座標)とを平均化した平均座標を求め、既に設定された基準座標に代えて、求められた平均座標で基準座標を更新する。
フレーム期間ごと(フレーム画像ごと)にループ処理(S1〜S8)が繰り返され基準座標が更新されていくが、画像認識装置100は、更新量やサンプル数などに応じてあらかじめ設定された閾値を使って基準座標を確定させることができる。
例えば、画像認識装置100は、基準座標が更新(S7)される度にその更新された基準座標の最初の基準座標に対する変化量(更新量)を求めて保持しており、その変化量が変化量閾値に達するまで(S8でNo)、ループ処理(S1〜S8)を繰り返す。あるいは、画像認識装置100は、基準座標が更新(S7)される度にその更新回数をカウントして保持しており、基準座標の更新回数が回数閾値に達するまで(S8でNo)、ループ処理(S1〜S8)を繰り返す。
画像認識装置100は、直前のS7で更新された基準座標の最初の基準座標に対する変化量が変化量閾値に達すると(S8でYes)、又は、基準座標の更新回数が回数閾値に達すると(S8でYes)、基準座標を確定させる。
基準座標が確定されると、画像認識装置100は、基準座標に基づいて、フレーム画像における有効視野範囲と非有効視野範囲との境界位置の座標(ボンネット/ダッシュボード位置座標)を特定する(S9)。例えば、画像認識装置100は、基準座標(Y座標)を概略的に境界位置の座標として特定できる(図8(c)参照)。
また、基準座標が確定されるとS9の処理と並行して、画像認識装置100は、基準座標を基準として消失点検出用の探索領域SR3(図9参照)を抽出し、抽出された探索領域SR3に対して消失点検出処理を行い(S10)、消失点の座標を特定する(S11)。消失点とは、画像によって表現される3次元空間中の平行線群の収束点である。例えば、画像認識装置100は、ループ処理(S1〜S8)で検出し抽出された直線を保持しておき、それらの直線を用いて(例えば、それらの直線の交点を求めることで)消失点の座標を算出することができる。
境界位置の座標が特定されること(S9)と消失点の座標を特定されること(S11)とがともに完了したことを確認すると、画像認識装置100は、消失点の座標を基準にしてフレーム画像の位置を補正する(S12)。例えば、画像認識装置100は、フレーム画像の中心点と消失点の位置との関係が予め決められた関係(例えば、両者の位置が一致される関係)からどの程度ずれているのかについてずれ量(ベクトル量)を求め、ずれ量をキャンセルするように、フレーム画像の中心に対して各画素データをシフトさせる移動処理を行う。このとき、基準座標比較部107で設定された基準座標と消失点検出処理部108で検出された消失点の座標とを、同様にシフトさせる。
画像認識装置100は、S9で特定された境界位置の座標(ボンネット/ダッシュボード位置座標)とS11で特定された消失点の座標とに基づいて、フレーム画像における有効視野範囲から認識対象(例えば、標識などの車外の物体)を探索する探索領域SR2(図11参照)を抽出する(S13)。例えば、画像認識装置100は、フレーム画像における非有効視野範囲に重ならず且つ車外における物体を含むように探索領域SR2を抽出できる。
画像認識装置100は、S13で抽出された探索領域SR2に対して各種の画像認識処理を行う(S14)。例えば、画像認識装置100は、探索領域SR2から車外における物体(例えば、歩行者、自転車、オートバイ、他の車両、ガードレール、信号機、交通標識、路面上の白線、及び/又は建築物など)を認識することができる(図11参照)。
次に、画像認識装置100の具体的な動作例について説明する。
画像認識装置100は、フレーム画像FIから探索領域SR1の画像を切り出す処理(S2)において、フレーム画像FIにおける図5に示すような位置に探索領域SR1を決定して抽出できる。図5は、車載カメラ2で撮像されたフレーム画像FIから抽出される探索領域SR1を示す図である。例えば、フレーム画像FIにおける縦方向(Y方向)の下側で且つ横方向(X方向)の中央側の領域に車両CAのボンネットBN及びダッシュボードDBの少なくとも一方が映り込む可能性が高いので(図1参照)、画像認識装置100は、そのような位置に探索領域SR1を決定して抽出できる。フレーム画像FIの中心が(Xc,Yc)である場合、例えば、画像認識装置100は、フレーム画像FIからY座標がY01〜Y02(Yc>Y01>Y02)で且つX座標がX01〜X02(X01<Xc<X02)である探索領域SR1を抽出できる。図5では、ボンネットBNが略等脚台形状に模式化されて示されているが、実際には、ボンネットBNが+Y側に凸に丸く映り込むことがある。このため、探索領域SR1をフレーム画像FIにおけるY方向の下側で且つX方向の中央側に決定することで、ボンネットBNが+Y側に最も出っ張る位置Ybを特定可能である。また、図5に示すように、画像認識装置100は、フレーム画像FIに重ねて探索領域SR1を示す枠を表示部5に表示することができ、探索領域SR1を示す枠の内側をハイライト表示することができる。
画像認識装置100は、探索領域SR1から直線を検出する処理(S4)において、図6(a)〜図6(d)に示す動作を行うことができる。図6(a)〜図6(d)は、それぞれ、フレーム画像FIから直線検出用に抽出された探索領域SR1を示す図である。
例えば、図6(a)、図6(c)では、あるフレーム期間の探索領域SR1−1に対して直線検出処理(S4)が行われ、直線LN1,LN3が検出されたことを示している。図6(b)、図6(d)では、次のフレーム期間の探索領域SR1−2に対して直線検出処理(S4)が行われ、直線LN2,LN4が検出されたことを示している。図6(a)、図6(c)に示す探索領域SR1−1が直線検出処理を施される最初の探索領域である場合、図6(b)に一点鎖線で示されるように、直線LN1の端点EP1の座標(Y座標Y0)が基準座標の初期位置EL1として設定され得る。直線LN2は、基準座標の初期位置EL1より下方に端点EP2を有する。
直線検出処理(S4)で検出された直線のうち非有効視野範囲と有効視野範囲との境界位置(ボンネットBN及び/又はダッシュボードDBのエッジ位置)の推定に適した候補直線を抽出する(S5)際に、図7(a)、図7(b)に示すような抽出条件が用いられる。図7(a)、図7(b)は、探索領域での抽出条件を示す図である。
図7(a)は、直線の角度に関する条件を示す。図7(a)に示されるように、路面上のセンターラインや路肩など進行方向に対して概略的におなじ向きとみなせる直線の角度範囲が抽出条件として直線座標処理部106に設定され得る。路面上には進行方向の角度範囲以外の線も存在し、前方車両から抽出される直線などと区別が困難になり得るため、直線抽出量などの状況に応じて角度範囲は可変とするのが望ましい。
図7(b)は、既に基準座標が設定されている場合における基準座標からの距離に関する条件を示す。図7(b)に示されるように、基準座標(Y座標Yk、kは任意の整数)に対して(±Y方向に)どれだけ離れているかで候補直線に含めるか否かを判定する。あまり離れていると誤認識の可能性があるためである。例えば、図7(b)では、抽出条件が、基準座標(Y座標Yk)から+Y方向にd1以内のY方向距離であり且つ基準座標(Y座標Yk)から−Y方向にd2以内のY方向距離であるような端点座標を有する直線を抽出することである場合が例示されている。d1とd2とは、同じであってもよいし、異なっていてもよい。この範囲(d1,d2)は、角度範囲(図7(a)参照)と同様に状況に応じて可変とするのが望ましい。
直線の端点座標がサンプリングされる際(S6)には、抽出された候補直線のうち、図6(c)、図6(d)に示すような複数のフレーム期間の間で略同一の直線を検出し棄却する。例えば、図6(c)、図6(d)に示すように、連続するフレーム期間の探索領域SR1−1,SR1−2で同じ位置にある直線LN3,LN4は、ボンネットBN及び/又はダッシュボードDB(図1参照)上の直線か、あるいは車両CAが停止しているか、あるいは前方車両の直線であるため、基準座標の設定には採用されず、棄却され得る。
基準座標が設定又は更新される際(S7)には、画像認識装置100は、図8(a)〜図8(c)に示す動作を行うことができる。図8(a)〜図8(c)は、基準座標を設定又は更新する処理を示す図である。
図8(a)に示すように、探索領域SR1−3において、基準位置(Y座標Y1)を中心にした直線検出範囲(Y座標についてY1+d1〜Y1−d2の範囲)内の端点座標を有する直線について端点座標(終点座標)をサンプリングする。例えば、検出された直線LN5,LN6のうち抽出条件を満足するのが直線LN5である場合、画像認識装置100は、基準座標(Y座標Y1)とサンプルされた直線LN5の端点座標(Y座標Y2)との平均値Y3を次の数式1により計算する。
Y3=(Y1+Y2)/2・・・数式1
図8(b)に示すように、画像認識装置100は、数式1の平均値を新たな基準座標として更新する。すなわち、画像認識装置100は、基準座標に対応した基準位置をEL2からEL3に更新する。
図8(a)及び図8(b)に示されるような処理を繰り返すことで、図8(c)に示すように、数式2に示す基準座標Yn(nは任意の正の整数)が得られる。
Yn=(Yn−2+Yn−1)/2・・・数式2
図8(c)には、探索領域SR1−nにおいて、基準座標Ynに対応した基準位置ELn(≒ボンネットBN及び/又はダッシュボードDBの位置)が得られた状態が示されている。図8(c)に示すように基準位置が得られた状態として確定するには、更新量やサンプル数などに応じてあらかじめ設定された閾値を使って判定を行うことが考えられる。
画像認識装置100は、フレーム画像FIにおける消失点を検出する処理(S10)において、フレーム画像FIにおける図9に示すような位置に探索領域SR3を決定できる。図9は、車載カメラ2で撮像されたフレーム画像FI及び探索領域SR3を示す図である。例えば、画像認識装置100は、フレーム画像FIにおける基準位置ELn(≒ボンネットBN及び/又はダッシュボードDBの位置)以上のY座標に対応したY位置を路面有効範囲(有効視野範囲)として、消失点検出に使用する探索領域SR3を決定できる。図9では、路面上や路肩から得られる直線の延長交点から消失点を検出する処理を想定しており、Y方向はボンネット/ダッシュボード位置(Y座標Yn)から画像中心位置(Y座標Yc)までの範囲、X方向は歩道を含まない路面として両端を含まない範囲(X座標についてX1〜X2の範囲)が探索領域SR3として設定された場合が例示されている。
画像認識装置100は、フレーム画像FIの位置を補正する処理(S12)において、図10(a)、図10(b)に示す動作を行うことができる。図10(a)、図10(b)は、フレーム画像FIの位置を補正する処理を示す図である。
例えば、図10(a)において黒点が、検出された消失点VPを示し、白抜きの点が、フレーム画像FIの中心点CPを示している。このとき、画像認識装置100は、フレーム画像FIの中心点と消失点の位置との関係が予め決められた関係(例えば、両者の位置を一致される関係)からどの程度ずれているのかについてずれ量(ベクトル量)を求める。例えば、予め決められた関係が両者の位置を一致される関係である場合、画像認識装置100は、求めるべきずれ量として、消失点VPの画像中心点CPからのずれ量MAを求めることができる。ずれ量MAは、ベクトル量である。
このとき、画像認識装置100は、ずれ量MAに基づいて、フレーム画像FIの位置を補正する。すなわち、画像認識装置100は、ずれ量MAをキャンセルするように、フレーム画像FIの位置を補正すべき補正量CRを求める。補正量CRは、例えば、次の数式3を満たすベクトル量である。
CR=−MA・・・数式3
画像認識装置100は、フレーム画像FIにおける各画素の位置を補正量CRでシフトさせるように各画素データを調整し、フレーム画像FIにおける画素データが存在しない領域の各画素位置の輝度レベルに例えば0埋めを行う。これにより、画像認識装置100は、フレーム画像FIの中心点と消失点の位置との関係が予め決められた関係に補正されたフレーム画像FIを表示部5に表示することができ、画素データが存在しない領域を背景色又は黒色などで表示することができる。
例えば、図11(a)に示すように、非有効視野範囲にボンネットBNが含まれていても、画像認識装置100は、基準座標(Y座標Yn)を基準として有効視野範囲から探索領域SR2−1,SR2−2,SR2−3を抽出できる。画像認識装置100は、抽出された探索領域SR2−1,SR2−2,SR2−3に対して画像認識を行う。例えば、画像認識装置100は、それぞれ、交通標識、信号機、路面上の白線のテンプレート画像を用いたテンプレートマッチングを行い、探索領域SR2−1,SR2−2,SR2−3から交通標識、信号機、路面上の白線を認識できる。
同様に、図11(b)に示すように、非有効視野範囲にダッシュボードDBが含まれていても、画像認識装置100は、基準座標(Y座標Yn’)を基準として有効視野範囲から探索領域SR2−1’,SR2−2’,SR2−3’を抽出できる。画像認識装置100は、抽出された探索領域SR2−1’,SR2−2’,SR2−3’に対して画像認識を行う。例えば、画像認識装置100は、それぞれ、交通標識、信号機、路面上の白線のテンプレート画像を用いたテンプレートマッチングを行い、探索領域SR2−1’,SR2−2’,SR2−3’から交通標識、信号機、路面上の白線を認識できる。
以上のように、実施形態では、画像認識システム1において、不要な物体及びその周辺を含む探索領域に対して直線検出を行いその結果に基づいて有効視野範囲と非有効視野範囲との境界位置(ボンネットBN、ダッシュボードDBの映り込み位置)を推定し、その推定結果に応じて有効視野範囲から抽出された新たな探索領域に対して画像認識を行う。これにより、車載カメラ2の取り付け位置や角度のバラツキによる有効視野範囲と非有効視野範囲との境界位置の変動を自動で検出でき、有効視野範囲を正確に得ることができる。この結果、画像認識処理において、不要な物体(例えば、ボンネットBN及び/又はダッシュボードDB等)の映り込みによる誤認識を防ぐことができ、有効視野範囲の位置のバラツキによる影響を低減できる。すなわち、車載カメラ2の取り付け位置や角度のバラツキがあっても、車両ごとの視野調整が必要なく、車外における物体(例えば、歩行者、自転車、オートバイ、他の車両、ガードレール、信号機、交通標識、路面上の白線、及び/又は建築物など)に対する安定した画像認識性能を確保することができる。
1 画像認識システム
2 車載カメラ
100 画像認識装置
103 画像処理部
105 直線検出部
106 直線座標処理部
107 基準座標比較部
特開2013−225179号公報

Claims (10)

  1. 車両に搭載された撮像手段で撮像されたフレーム画像における第1の探索領域から直線を検出する検出手段と、
    前記検出手段で検出された直線のうち路面に対応した直線の端点座標を求める演算手段と、
    前記演算手段で求められた端点座標に基づいて、前記フレーム画像における有効視野範囲と非有効視野範囲との境界に対応した基準座標を設定する設定手段と、
    前記設定手段で設定された基準座標を基準として前記有効視野範囲から抽出された第2の探索領域に対して画像認識を行う認識手段と、
    を備えた画像認識装置。
  2. 前記非有効視野範囲は、前記車両のボンネット及びダッシュボードの少なくとも一方が映り込んだ領域を含む
    請求項1に記載の画像認識装置。
  3. 前記第1の探索領域は、前記フレーム画像における縦方向の下側で且つ横方向の中央側に位置した領域を含む
    請求項1又は2に記載の画像認識装置。
  4. 前記演算手段は、前記検出手段で検出された1以上の直線のうち前記車両の進行方向に対して所定の角度範囲に収まった傾きを有する直線について端点座標を求める
    請求項1から3のいずれか1項に記載の画像認識装置。
  5. 前記撮像手段で撮像された複数のフレーム画像を記録する記録手段をさらに備え、
    前記演算手段は、前記検出手段で検出された1以上の直線のうち前記複数のフレーム画像の間で略同一である直線を棄却し残った直線の端点座標を求める
    請求項1から4のいずれか1項に記載の画像認識装置。
  6. 前記演算手段は、前記設定手段で基準座標が設定されている場合に、前記検出手段で検出された1以上の直線のうち前記設定された基準座標から所定の距離以内にある端点座標を有する直線について端点座標を求める
    請求項5に記載の画像認識装置。
  7. 前記設定手段は、前記設定手段で基準座標が設定されている場合に、前記設定された基準座標と前記求められた端点座標とについて平均化された平均座標を求め、前記平均座標で前記基準座標を更新する
    請求項5又は6に記載の画像認識装置。
  8. 前記設定手段は、最初に設定された前記基準座標に対する更新後の前記基準座標の変化量が変化量閾値に達した場合、あるいは、前記基準座標が更新される回数が回数閾値に達した場合、前記基準座標を確定する
    請求項7に記載の画像認識装置。
  9. 車両に搭載された撮像手段と、
    前記撮像手段で撮像されたフレーム画像が供給される画像認識装置と、
    を備え、
    前記画像認識装置は、
    前記供給されたフレーム画像における第1の探索領域から直線を検出する検出手段と、
    前記検出手段で検出された直線のうち路面に対応した直線の端点座標を求める演算手段と、
    前記演算手段で求められた端点座標に基づいて、前記フレーム画像における有効視野範囲と非有効視野範囲との境界に対応した基準座標を設定する設定手段と、
    前記設定手段で設定された基準座標を基準として前記有効視野範囲から抽出された第2の探索領域に対して画像認識を行う認識手段と、
    を有する
    画像認識システム。
  10. 車両に搭載された撮像手段で撮像されたフレーム画像における第1の探索領域から直線を検出する検出工程と、
    前記検出工程で検出された直線のうち路面に対応した直線の端点座標を求める演算工程と、
    前記演算工程で求められた端点座標に基づいて、前記フレーム画像における有効視野範囲と非有効視野範囲との境界に対応した基準座標を設定する設定工程と、
    前記設定工程で設定された基準座標を基準として前記有効視野範囲から抽出された第2の探索領域に対して画像認識を行う認識工程と、
    を備えた画像認識方法。
JP2016210690A 2016-10-27 2016-10-27 画像認識装置、画像認識システム、及び画像認識方法 Pending JP2018073049A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210690A JP2018073049A (ja) 2016-10-27 2016-10-27 画像認識装置、画像認識システム、及び画像認識方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210690A JP2018073049A (ja) 2016-10-27 2016-10-27 画像認識装置、画像認識システム、及び画像認識方法

Publications (1)

Publication Number Publication Date
JP2018073049A true JP2018073049A (ja) 2018-05-10

Family

ID=62114293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210690A Pending JP2018073049A (ja) 2016-10-27 2016-10-27 画像認識装置、画像認識システム、及び画像認識方法

Country Status (1)

Country Link
JP (1) JP2018073049A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153166A (ja) * 2019-03-20 2020-09-24 株式会社前田製作所 凍結防止剤の散布制御方法および定置式凍結防止剤散布装置
JP2021072003A (ja) * 2019-10-31 2021-05-06 りんかい日産建設株式会社 安全航行のための警報装置、警報方法、及び警報プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153166A (ja) * 2019-03-20 2020-09-24 株式会社前田製作所 凍結防止剤の散布制御方法および定置式凍結防止剤散布装置
JP7249589B2 (ja) 2019-03-20 2023-03-31 株式会社前田製作所 凍結防止剤の散布制御方法および定置式凍結防止剤散布装置
JP2021072003A (ja) * 2019-10-31 2021-05-06 りんかい日産建設株式会社 安全航行のための警報装置、警報方法、及び警報プログラム

Similar Documents

Publication Publication Date Title
JP4871909B2 (ja) 物体認識装置、および物体認識方法
JP4654163B2 (ja) 車両の周囲環境認識装置及びシステム
JP5421072B2 (ja) 接近物体検知システム
JP4420011B2 (ja) 物体検知装置
CN106647776B (zh) 车辆变道趋势的判断方法、判断装置和计算机存储介质
JP5399027B2 (ja) 自動車の運転を支援するための、立体画像を捕捉することができるシステムを有するデバイス
US20130286205A1 (en) Approaching object detection device and method for detecting approaching objects
JP4832321B2 (ja) カメラ姿勢推定装置、車両、およびカメラ姿勢推定方法
US20150339535A1 (en) On-vehicle image processor
WO2013011952A1 (ja) 車線認識装置
EP2928178B1 (en) On-board control device
JP4528283B2 (ja) 車両周辺監視装置
WO2018116841A1 (ja) 物体検出装置
KR101268282B1 (ko) 차량용 내비게이션의 차선 이탈 알림 시스템 및 방법
JP5097681B2 (ja) 地物位置認識装置
JP2014106739A (ja) 車載画像処理装置
JP2018073049A (ja) 画像認識装置、画像認識システム、及び画像認識方法
JP2010061375A (ja) 物体認識装置及びプログラム
JP2007164566A (ja) 感応制御用車両感知システムおよび装置
JP2011103058A (ja) 誤認識防止装置
JP2007018451A (ja) 道路区画線検出装置
JP5832850B2 (ja) 車線監視システム及び車線監視方法
US11679769B2 (en) Traffic signal recognition method and traffic signal recognition device
JP4228082B2 (ja) カメラの姿勢変化の検知方法及びその装置
JP2013257151A (ja) 視差値演算装置及びこれを備えた視差値演算システム、移動面領域認識システム、視差値演算方法、並びに、視差値演算用プログラム