JP2018071301A - Earthquake performance recovery and repair method of structure - Google Patents

Earthquake performance recovery and repair method of structure Download PDF

Info

Publication number
JP2018071301A
JP2018071301A JP2016216005A JP2016216005A JP2018071301A JP 2018071301 A JP2018071301 A JP 2018071301A JP 2016216005 A JP2016216005 A JP 2016216005A JP 2016216005 A JP2016216005 A JP 2016216005A JP 2018071301 A JP2018071301 A JP 2018071301A
Authority
JP
Japan
Prior art keywords
fiber sheet
continuous fiber
reinforcing member
filler
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016216005A
Other languages
Japanese (ja)
Other versions
JP6821396B2 (en
Inventor
栄次 槇谷
Eiji Makitani
栄次 槇谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinnihon Corp
Original Assignee
Shinnihon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinnihon Corp filed Critical Shinnihon Corp
Priority to JP2016216005A priority Critical patent/JP6821396B2/en
Publication of JP2018071301A publication Critical patent/JP2018071301A/en
Application granted granted Critical
Publication of JP6821396B2 publication Critical patent/JP6821396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a repair method for recovering earthquake performance of a structure where earthquake performance is lowered.SOLUTION: An earthquake performance recovery and repair method in which reinforcement members where a continuous fiber sheet is stuck to the surface with an adhesive are arranged on a structure at predetermined intervals and a gap between the structure and the reinforcement member is filled with a solidification material to solidify the solidification material includes: a step of detecting a position of a gap between the solidification material and the reinforcement member with at least one gap detection means of a striking sound, a slide-contact sound and laser reflection; a step of detecting an adhesive failure portion of a continuous fiber sheet by visual inspection and feeling of a surface of the continuous fiber sheet; a step of forming a filler injection hole passing through the continuous fiber sheet and the reinforcement member at the detected position of the gap between the solidification material and the reinforcement member with a drill, and injecting a filler from the filler injection hole with filler injection means to solidify the filler; and a step of injecting an adhesive into the detected adhesive failure portion of the continuous fiber sheet with adhesive injection means such as an injection needle, and fixing the continuous fiber sheet onto the reinforcement member surface.SELECTED DRAWING: Figure 4

Description

本発明は、耐震補強された構造物の耐震性能回復補修工法に関する。   The present invention relates to a seismic performance recovery repair method for a structure that is seismically reinforced.

従来、表面に連続繊維シートを貼布した補強部材を構造物に対して所定間隔をおいて配置し、構造物と補強部材との間の間隙にグラウト材等の固化材を充填して固化させ、構造物と補強部材を一体化する構造物の耐震補強構造が提案されている。   Conventionally, a reinforcing member with a continuous fiber sheet pasted on its surface is arranged at a predetermined interval with respect to the structure, and a solidifying material such as a grout material is filled in the gap between the structure and the reinforcing member to be solidified. An earthquake-proof reinforcement structure for a structure in which the structure and the reinforcing member are integrated has been proposed.

特開2014−95221号公報JP 2014-95221 A

しかしながら、従来の構造物の耐震補強構造においては、固化材の固化に伴う収縮により補強部材と固化材の間に空隙が生じたり、補強部材の表面に貼布した連続繊維シートに接着不良の個所が生じたりして十分な耐震性能が得られないという問題を有していた。   However, in the seismic reinforcement structure of the conventional structure, there is a gap between the reinforcing member and the solidified material due to the shrinkage caused by the solidification of the solidified material, or the location where the continuous fiber sheet pasted on the surface of the reinforcing member has poor adhesion. The problem was that sufficient seismic performance could not be obtained.

本発明は、従来技術の持つ課題を解決するもので、耐震性能が低下した構造物の耐震性能を回復する補修工法を提供することを目的とする。   This invention solves the subject which the prior art has, and it aims at providing the repair construction method which recovers the earthquake resistance performance of the structure where earthquake resistance performance fell.

本発明の構造物の耐震性能回復補修工法は、前記課題を解決するために、表面に連続繊維シートを接着剤により貼布された補強部材を構造物に対して所定間隔をおいて配置し、構造物と補強部材との間隙に固化材を充填して固化させた構造物の耐震性能回復補修工法において、固化材と補強部材との間の空隙の位置を打音、摺接音、レーザーの反射の少なくとも1つの空隙検知手段で検知する工程と、連続繊維シートの表面目視、触感により連続繊維シートの接着不良個所を検知する工程と、検知された固化材と補強部材との間の空隙の位置に連続繊維シート、補強部材を貫通する充填材注入孔をドリルで形成し、充填材注入孔から充填材注入手段により充填材を注入し、充填材を固化させる工程と、検知された連続繊維シートの接着不良個所に注射針等の接着剤注入手段により接着剤を注入し連続繊維シートを補強部材表面に定着させる工程と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the earthquake-resistant performance recovery repair method of the structure of the present invention arranges a reinforcing member having a continuous fiber sheet pasted on its surface with an adhesive at a predetermined interval with respect to the structure, In the seismic performance recovery repair method for a structure that has been solidified by filling the gap between the structure and the reinforcing member with a solidifying material, the position of the gap between the solidifying material and the reinforcing member is determined by the impact sound, sliding contact sound, laser A step of detecting by at least one gap detecting means of reflection, a step of detecting a defective adhesion portion of the continuous fiber sheet by visual observation and touch of the surface of the continuous fiber sheet, and a gap between the detected solidified material and the reinforcing member A continuous fiber sheet, a filler injection hole penetrating the reinforcing member is formed by a drill, a filler is injected from the filler injection hole by a filler injection means, and the filler is solidified; and the detected continuous fiber Sheet adhesion failure Adhesive injection means such as a needle by, characterized in that it comprises a step of fixing the continuous fiber sheet by injecting an adhesive to the reinforcing member surface and the.

また、本発明の構造物の耐震性能回復補修工法は、固化材を無収縮モルタルとすることを特徴とする。   Moreover, the seismic performance recovery repair method of the structure of the present invention is characterized in that the solidified material is non-shrink mortar.

また、本発明の構造物の耐震性能回復補修工法は、連続繊維シートを表面に貼布した補強部材の端部を補強プレートを重ねて構造物に固定部材で固定することを特徴とする。   Moreover, the seismic performance recovery repair method for a structure according to the present invention is characterized in that the end of a reinforcing member having a continuous fiber sheet pasted on its surface is overlapped with a reinforcing plate and fixed to the structure with a fixing member.

また、本発明の構造物の耐震性能回復補修工法は、補強部材を連設して配置する場合、補強部材の連設部に重ね連続繊維シートを貼布することを特徴とする。   Moreover, the earthquake-resistant performance recovery repair method of the structure of this invention is characterized by sticking a continuous fiber sheet on the continuous part of a reinforcement member, when arranging a reinforcement member continuously.

表面に連続繊維シートを接着剤により貼布された補強部材を構造物に対して所定間隔をおいて配置し、構造物と補強部材との間隙に固化材を充填して固化させた構造物の耐震性能回復補修工法において、固化材と補強部材との間の空隙の位置を打音、摺接音、レーザーの反射の少なくとも1つの空隙検知手段で検知する工程と、連続繊維シートの表面目視、触感により連続繊維シートの接着不良個所を検知する工程と、検知された固化材と補強部材との間の空隙の位置に連続繊維シート、補強部材を貫通する充填材注入孔をドリルで形成し、充填材注入孔から充填材注入手段により充填材を注入し、充填材を固化させる工程と、検知された連続繊維シートの接着不良個所に注射針等の接着剤注入手段により接着剤を注入し連続繊維シートを補強部材表面に定着させる工程と、を備えることで、固化材の収縮により生じる補強部材と固化材間の空隙を検知し充填することで耐震性能を回復させ、連続繊維シートの接着不良個所を検知して補修することで連続繊維シートの引張強度と地震エネルギーの減衰性能を回復することが可能となる。
固化材を無収縮モルタルとすることで、補強部材と固化材間の空隙発生率を低下させることが可能となる。
連続繊維シートを表面に貼布した補強部材の端部を補強プレートを重ねて構造物に固定部材で固定することで、連続繊維シーの端部を固定することにより連続繊維シートの耐震性能を十分に発揮させることが可能となる。
補強部材を連設して配置する場合、補強部材の連設部に補修連続繊維シートを貼布することで、連接部の耐震性能を向上させることが可能となる。
A reinforcing member in which a continuous fiber sheet is bonded on the surface with an adhesive is arranged at a predetermined interval with respect to the structure, and a solidifying material is filled in a gap between the structure and the reinforcing member to be solidified. In the seismic performance recovery repair method, the step of detecting the position of the gap between the solidified material and the reinforcing member with at least one gap detection means of hammering sound, sliding contact sound, laser reflection, and visual inspection of the surface of the continuous fiber sheet, A step of detecting an adhesion failure portion of the continuous fiber sheet by tactile sensation, and forming a filler injection hole penetrating the continuous fiber sheet and the reinforcing member at a position of a gap between the detected solidified material and the reinforcing member, The process of injecting the filler by the filler injection means from the filler injection hole and solidifying the filler, and continuously injecting the adhesive by the adhesive injection means such as an injection needle into the detected defective bonding position of the continuous fiber sheet Fiber sheet supplement A step of fixing to the surface of the member, and detecting and filling the gap between the reinforcing member and the solidified material caused by the shrinkage of the solidified material to restore the seismic performance, and detect the defective bonding position of the continuous fiber sheet. This makes it possible to restore the tensile strength and seismic energy attenuation performance of the continuous fiber sheet.
By making the solidified material non-shrinkable mortar, it is possible to reduce the void generation rate between the reinforcing member and the solidified material.
Sufficient seismic performance of the continuous fiber sheet by fixing the end of the continuous fiber sheet by fixing the end of the reinforcing member with the continuous fiber sheet affixed to the surface and fixing the reinforcing plate to the structure with a fixing member Can be demonstrated.
When arranging and arranging a reinforcing member continuously, it is possible to improve the seismic performance of the connecting portion by sticking the repair continuous fiber sheet to the connecting portion of the reinforcing member.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の実施の形態を図により説明する。図1、図2は、構造物の耐震補強構造の一実施形態を示す図である。   Embodiments of the present invention will be described with reference to the drawings. 1 and 2 are diagrams showing an embodiment of a seismic reinforcement structure for a structure.

図1、図2は、構造物としてのコンクリート柱1の一面側を耐震補強する実施形態を示す。コンクリート柱1に対して、所定間隔をあけてコ字形の補強部材2が配置される。補強部材2は、鋼等の金属や繊維強化樹脂等の樹脂で形成される。補強部材2の表面には連続繊維シート3が接着剤により貼布される。連続繊維シートの材料としては、カーボン繊維などの無機系繊維、アラミド繊維、ポリエチレン繊維、ポリアレート繊維などの有機系繊維である。これらの繊維で形成される1方向及び2方向の繊維シート3の引張強度は5〜180ton/mと大きい。   1 and 2 show an embodiment in which one surface side of a concrete pillar 1 as a structure is seismically reinforced. A U-shaped reinforcing member 2 is arranged at a predetermined interval with respect to the concrete pillar 1. The reinforcing member 2 is formed of a metal such as steel or a resin such as fiber reinforced resin. A continuous fiber sheet 3 is attached to the surface of the reinforcing member 2 with an adhesive. Examples of the material for the continuous fiber sheet include inorganic fibers such as carbon fibers, and organic fibers such as aramid fibers, polyethylene fibers, and polyarate fibers. The tensile strength of the fiber sheet 3 in one direction and two directions formed with these fibers is as high as 5 to 180 ton / m.

連続繊維シート3が貼布された補強部材2の両端はコンクリート柱1の両側面に接するように配置される。連続繊維シート3が貼布された補強部材2の両端に補強プレート4を重ね固定ボルト5でコンクリート柱1の側面に固定する。連続繊維シート3の両端が固定ボルトを介してコンクリート柱1に固定されているので、連続繊維シート3の耐震性能が十分に発揮される。   Both ends of the reinforcing member 2 to which the continuous fiber sheet 3 is affixed are arranged so as to contact both side surfaces of the concrete column 1. A reinforcing plate 4 is overlapped on both ends of the reinforcing member 2 to which the continuous fiber sheet 3 is applied, and fixed to the side surface of the concrete column 1 with fixing bolts 5. Since both ends of the continuous fiber sheet 3 are fixed to the concrete pillar 1 via fixing bolts, the seismic performance of the continuous fiber sheet 3 is sufficiently exhibited.

補強部材2とコンクリート柱1の一面側とに囲まれた空間に、軸方向筋6とフープ筋7を配筋する。コンクリート柱1にあと施工アンカー8が設置され、その突出部が軸方向筋6とフープ筋7の近傍に位置させる。軸方向筋6とフープ筋7を配筋し、あと施工アンカー8の突出部を軸方向筋6とフープ筋7の近傍に位置させることで、コンクリート柱1と固化材の一体化を促進し耐震性能を向上させる。   An axial line 6 and a hoop line 7 are arranged in a space surrounded by the reinforcing member 2 and one surface side of the concrete column 1. A post-construction anchor 8 is installed on the concrete pillar 1, and its protruding portion is positioned in the vicinity of the axial reinforcement 6 and the hoop reinforcement 7. Axial reinforcement 6 and hoop reinforcement 7 are arranged, and the projecting portion of post-construction anchor 8 is positioned in the vicinity of axial reinforcement 6 and hoop reinforcement 7 to promote the integration of concrete column 1 and the solidified material to be earthquake resistant. Improve performance.

図2に示すように、補強部材2をコンクリート柱1に沿って床9から上に向かって連設配置する場合、補強部材2の連設部に重ね連続繊維シート10を接着剤により貼布する。重ね連続繊維シート10を補強部材2の連接部に貼布することにより連接部の耐震性能が向上する。   As shown in FIG. 2, when the reinforcing member 2 is arranged continuously from the floor 9 along the concrete pillar 1, the continuous continuous fiber sheet 10 is attached to the continuous portion of the reinforcing member 2 with an adhesive. . By pasting the laminated continuous fiber sheet 10 on the connecting portion of the reinforcing member 2, the seismic performance of the connecting portion is improved.

コンクリート柱1の耐震補強対象部に補強部材の配置が終了すると、補強部材2とコンクリート柱1の一面側とに囲まれた空間に、固化材11を充填する。固化材11としては高強度の無収縮モルタルを使用する。養生期間を経て固化材が固化し、コンクリート柱1と連続繊維シート3が貼布された補強部材2とが固化材11を介して一体化され、コンクリート柱1が耐震補強される。   When the arrangement of the reinforcing member at the seismic reinforcement target portion of the concrete pillar 1 is completed, the solidified material 11 is filled into the space surrounded by the reinforcing member 2 and one surface side of the concrete pillar 1. High strength non-shrink mortar is used as the solidifying material 11. After the curing period, the solidified material is solidified, the concrete column 1 and the reinforcing member 2 to which the continuous fiber sheet 3 is applied are integrated via the solidified material 11, and the concrete column 1 is seismically reinforced.

このように耐震補強されたコンクリート柱1は、ある要因により耐震性能が低下する事態が発生する。耐震性能が低下する一つの要因は、固化材11の固化に伴う収縮により補強部材2と固化材11の間に空隙12が発生する。固化材11として無収縮モルタルを用いても空隙率は低下するが若干の空隙12が発生する。空隙12の発生は、補強部材2と固化材11との一体化部分の一部が欠落するということで耐震性能が低下する。   The concrete pillar 1 thus reinforced with earthquake resistance has a situation in which the earthquake resistance is lowered due to a certain factor. One factor that reduces the seismic performance is that a gap 12 is generated between the reinforcing member 2 and the solidified material 11 due to shrinkage accompanying the solidification of the solidified material 11. Even if non-shrink mortar is used as the solidifying material 11, the porosity is reduced, but some voids 12 are generated. Generation | occurrence | production of the space | gap 12 has a seismic performance falling because a part of integrated part of the reinforcement member 2 and the solidification material 11 is missing.

そのため、連続繊維シート3が貼布された補強部材2の表面から、打音、摺接音、レーザーの反射の少なくとも1つの空隙検知手段を用いて、補強部材2と固化材11の間の空隙12の個所を検知する。   Therefore, from the surface of the reinforcing member 2 to which the continuous fiber sheet 3 is applied, the gap between the reinforcing member 2 and the solidified material 11 is detected using at least one gap detecting means for hitting sound, sliding contact sound, and laser reflection. 12 locations are detected.

検知された空隙12の位置に、ドリルを用いて連続繊維シート3、補強部材2を貫通し空隙12に連通する充填材注入孔13を形成する。図3の示すように、充填材注入孔13に充填材注入器14を用いて充填材15を充填し固化させる。充填材としては固化後に収縮する率が小さい材料として無収縮モルタル、エポキシ樹脂、アクリル樹脂を用いる。空隙12が充填され補強部材2と固化材11が一体化することで耐震性能が回復する。   A filler injection hole 13 that penetrates the continuous fiber sheet 3 and the reinforcing member 2 and communicates with the gap 12 is formed using a drill at the position of the detected gap 12. As shown in FIG. 3, a filler 15 is filled into a filler injection hole 13 using a filler injector 14 and solidified. As the filler, non-shrink mortar, epoxy resin, and acrylic resin are used as materials having a small shrinkage rate after solidification. Seismic performance is recovered by filling the gap 12 and integrating the reinforcing member 2 and the solidifying material 11 together.

補強部材2と連続繊維シート3との接着不良個所16の存在は、連続繊維シート3の耐震性能を著しく低下させる。図4は、接着不良個所16を補修する一実施形態を示す。連続繊維シート3と補強部材2との接着不良個所に注射針等の接着剤注入器17を差し込み、接着剤18を注入し、連続繊維シート3と補強部材2を定着させる。   Presence of the defective bonding portion 16 between the reinforcing member 2 and the continuous fiber sheet 3 significantly reduces the seismic performance of the continuous fiber sheet 3. FIG. 4 shows an embodiment for repairing the bonding failure portion 16. An adhesive injector 17 such as an injection needle is inserted into a location where the continuous fiber sheet 3 and the reinforcing member 2 are poorly bonded, and an adhesive 18 is injected to fix the continuous fiber sheet 3 and the reinforcing member 2.

構造物として、コンクリート柱を用いて説明したが、構造物として、コンクリート壁、コンクリート梁、コンクリート梁とコンクリート柱の交差部、鉄骨構造にも適用可能なことはいうまでもないことである。   Although the description has been given using the concrete pillar as the structure, it is needless to say that the structure can be applied to a concrete wall, a concrete beam, an intersection between the concrete beam and the concrete pillar, and a steel structure.

以上のように、本発明の構造物の耐震性能回復補修工法によれば、補強部材と固化材の間の空隙の充填、連続繊維シートの接着不良個所の接着剤を注入による定着により、構造物の耐震性能を回復することが可能となる。   As described above, according to the seismic performance recovery repair method of the structure of the present invention, the structure is obtained by filling the gap between the reinforcing member and the solidified material and fixing the adhesive by fixing the adhesive at the location where the continuous fiber sheet is poorly bonded. It will be possible to restore the seismic performance.

1:コンクリート柱、2:補強部材、3:連続繊維シート、4:補強プレート、5:固定ボルト、6:軸方向筋、7:フープ筋、8:あと施工アンカー、9:床、10:重ね連続繊維シート、11:固化材、12:空隙、13:充填材注入孔、14:充填材注入器、15:充填材、16:接着不良個所、17:接着剤注入器   1: Concrete column, 2: Reinforcement member, 3: Continuous fiber sheet, 4: Reinforcement plate, 5: Fixing bolt, 6: Axial reinforcement, 7: Hoop reinforcement, 8: Post-construction anchor, 9: Floor, 10: Overlap Continuous fiber sheet, 11: solidified material, 12: gap, 13: filler injection hole, 14: filler injector, 15: filler, 16: poor adhesion, 17: adhesive injector

Claims (4)

表面に連続繊維シートを接着剤により貼布された補強部材を構造物に対して所定間隔をおいて配置し、構造物と補強部材との間隙に固化材を充填して固化させた構造物の耐震性能回復補修工法において、
固化材と補強部材との間の空隙の位置を打音、摺接音、レーザーの反射の少なくとも1つの空隙検知手段で検知する工程と、
連続繊維シートの表面目視、触感により連続繊維シートの接着不良個所を検知する工程と、
検知された固化材と補強部材との間の空隙の位置に連続繊維シート、補強部材を貫通する充填材注入孔をドリルで形成し、充填材注入孔から充填材注入手段により充填材を注入し、充填材を固化させる工程と、
検知された連続繊維シートの接着不良個所に注射針等の接着剤注入手段により接着剤を注入し連続繊維シートを補強部材表面に定着させる工程と、
を備えることを特徴とする構造物の耐震性能回復補修工法。
A reinforcing member in which a continuous fiber sheet is bonded on the surface with an adhesive is arranged at a predetermined interval with respect to the structure, and a solidifying material is filled in a gap between the structure and the reinforcing member to be solidified. In the seismic performance recovery repair method,
Detecting the position of the air gap between the solidifying material and the reinforcing member with at least one air gap detecting means for hitting sound, sliding contact sound, and laser reflection;
The process of detecting the adhesion failure part of the continuous fiber sheet by visual inspection and touch of the surface of the continuous fiber sheet,
A continuous fiber sheet and a filler injection hole penetrating the reinforcement member are formed by a drill in the position of the detected gap between the solidified material and the reinforcement member, and the filler is injected from the filler injection hole by the filler injection means. A step of solidifying the filler;
A step of injecting an adhesive by means of an adhesive injection means such as an injection needle into the detected poor bonding position of the continuous fiber sheet and fixing the continuous fiber sheet to the reinforcing member surface;
A method for repairing seismic performance of a structure characterized by comprising
固化材を無収縮モルタルとすることを特徴とする請求項1に記載の構造物の耐震性能回復補修工法。   2. The method for repairing seismic performance of a structure according to claim 1, wherein the solidifying material is non-shrink mortar. 連続繊維シートを表面に貼布した補強部材の端部を補強プレートを重ねて構造物に固定部材で固定することを特徴とする請求項1又は2に記載の構造物の耐震性能回復補修工法。   The method for repairing seismic performance of a structure according to claim 1 or 2, wherein an end of a reinforcing member having a continuous fiber sheet attached to the surface is overlapped with a reinforcing plate and fixed to the structure with a fixing member. 補強部材を連設して配置する場合、補強部材の連設部に重ね連続繊維シートを貼布することを特徴とする請求項1ないし3のいずれか1項に記載の構造物の耐震性能回復補修工法。   4. The seismic performance recovery of a structure according to any one of claims 1 to 3, wherein when the reinforcing members are arranged in series, a continuous continuous fiber sheet is stuck on the continuous portions of the reinforcing members. Repair method.
JP2016216005A 2016-11-04 2016-11-04 Seismic performance recovery repair method for structures Active JP6821396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216005A JP6821396B2 (en) 2016-11-04 2016-11-04 Seismic performance recovery repair method for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216005A JP6821396B2 (en) 2016-11-04 2016-11-04 Seismic performance recovery repair method for structures

Publications (2)

Publication Number Publication Date
JP2018071301A true JP2018071301A (en) 2018-05-10
JP6821396B2 JP6821396B2 (en) 2021-01-27

Family

ID=62113687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216005A Active JP6821396B2 (en) 2016-11-04 2016-11-04 Seismic performance recovery repair method for structures

Country Status (1)

Country Link
JP (1) JP6821396B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277775A (en) * 1985-06-01 1986-12-08 良和エンジニアリング株式会社 Method and device for injecting adhesive in crack part or floated part of structure
JPH03235876A (en) * 1990-02-09 1991-10-21 Takenaka Komuten Co Ltd Cavity repairing method for concrete filled steel pipe
JPH1077683A (en) * 1996-09-03 1998-03-24 Denki Kagaku Kogyo Kk Joint structure of steel plate and reinforcement structure of structure with application of joint structure 0f the steel plate
JP2003184313A (en) * 2001-12-21 2003-07-03 Taiyo Gijutsu Kaihatsu Kk Repair method for injecting grout and repair device
JP2005043223A (en) * 2003-07-22 2005-02-17 Sankyo Eng Kk Method for inspecting joint section and method of constructing the same
JP2013181332A (en) * 2012-03-01 2013-09-12 Eiji Makitani Reinforcing method for building structure
JP2015063890A (en) * 2013-08-27 2015-04-09 一般社団法人 レトロフィットジャパン協会 Reinforcing structure of concrete column
JP2015129434A (en) * 2013-12-05 2015-07-16 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of existing column

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277775A (en) * 1985-06-01 1986-12-08 良和エンジニアリング株式会社 Method and device for injecting adhesive in crack part or floated part of structure
JPH03235876A (en) * 1990-02-09 1991-10-21 Takenaka Komuten Co Ltd Cavity repairing method for concrete filled steel pipe
JPH1077683A (en) * 1996-09-03 1998-03-24 Denki Kagaku Kogyo Kk Joint structure of steel plate and reinforcement structure of structure with application of joint structure 0f the steel plate
JP2003184313A (en) * 2001-12-21 2003-07-03 Taiyo Gijutsu Kaihatsu Kk Repair method for injecting grout and repair device
JP2005043223A (en) * 2003-07-22 2005-02-17 Sankyo Eng Kk Method for inspecting joint section and method of constructing the same
JP2013181332A (en) * 2012-03-01 2013-09-12 Eiji Makitani Reinforcing method for building structure
JP2015063890A (en) * 2013-08-27 2015-04-09 一般社団法人 レトロフィットジャパン協会 Reinforcing structure of concrete column
JP2015129434A (en) * 2013-12-05 2015-07-16 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of existing column

Also Published As

Publication number Publication date
JP6821396B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP4643364B2 (en) Pile head reinforcement method
JP5946041B2 (en) Column beam connection structure, column beam connection method, and precast concrete stigma member
JP6004558B1 (en) Seismic reinforcement structure for structures
JP4975460B2 (en) Load bearing material
US20140245695A1 (en) Method of reinforcing a column positioned proximate a blocking structure
JP5926615B2 (en) Shaft wall structure and construction method
KR102219654B1 (en) Reinforcing Method for Column using FRP and CRC board
JP2018071301A (en) Earthquake performance recovery and repair method of structure
KR20160015101A (en) Methods of increasing the sectional resisting force for negative moment acting at the end part of beam in case of repair or remodeling
JP4233106B2 (en) Seismic reinforcement method for existing pillars
CN103510705A (en) Connection and construction method for tie bars in concrete column and wall through embedded straight thread sleeves
Korany Effective techniques for restoration of heritage masonry
KR100838739B1 (en) Bridge pier of earthquake-proof efficiency reinforcement structure and method using the same
JP2001295478A (en) Connecting method for src constructed existing skeleton and repairing member
JP3627931B2 (en) Concrete surface repair structure and concrete surface repair method
JP2021001450A (en) Wall balustrade reinforcement method and reinforcement structure
JP6995537B2 (en) Joint structure between concrete members
CN203639922U (en) Concrete support straight-line shaped joint cracking reinforcing device
CN219060076U (en) Supporting construction based on steel corrugated plate and mould bag concrete
JP5980697B2 (en) Reinforcement structure of existing pile foundation and reinforcement method of existing pile foundation
JP6435115B2 (en) Prestressed member manufacturing method
CN216948317U (en) Basalt fiber anchor cable structure for foundation pit supporting
JP2019035297A (en) Vibration control and aseismic reinforcement structure of a concrete structure
JP5525884B2 (en) Reinforcement joint structure and method for constructing the joint structure
JP6460810B2 (en) Joint structure of steel column and reinforced concrete beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R150 Certificate of patent or registration of utility model

Ref document number: 6821396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150