JP2013181332A - Reinforcing method for building structure - Google Patents

Reinforcing method for building structure Download PDF

Info

Publication number
JP2013181332A
JP2013181332A JP2012045733A JP2012045733A JP2013181332A JP 2013181332 A JP2013181332 A JP 2013181332A JP 2012045733 A JP2012045733 A JP 2012045733A JP 2012045733 A JP2012045733 A JP 2012045733A JP 2013181332 A JP2013181332 A JP 2013181332A
Authority
JP
Japan
Prior art keywords
steel plate
mortar
building
reinforcing
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012045733A
Other languages
Japanese (ja)
Other versions
JP5597897B2 (en
JP2013181332A5 (en
Inventor
Eiji Makitani
栄次 槇谷
Original Assignee
Eiji Makitani
栄次 槇谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiji Makitani, 栄次 槇谷 filed Critical Eiji Makitani
Priority to JP2012045733A priority Critical patent/JP5597897B2/en
Publication of JP2013181332A publication Critical patent/JP2013181332A/en
Publication of JP2013181332A5 publication Critical patent/JP2013181332A5/ja
Application granted granted Critical
Publication of JP5597897B2 publication Critical patent/JP5597897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing method for a building structure which can improve strength and toughness with effective earthquake resistance and damping performance.SOLUTION: In a reinforcing method, a plurality of steel plates 31 are faced each other on surfaces of an existing column (building structure) 1 so that the column 1 is surrounded. Then, spaces between the surfaces of the column 1 and the laminated steel plates 31 are filled with grout materials 61, longitudinal ribs 391 projecting inward and extending in a vertical direction are formed in side edges of the adjacent steel plates 31, so that the longitudinal ribs 391 are overlapped each other to be contacted. Connection strength of the steel plates 31 to the grout materials 61 are enhanced via the longitudinal ribs 391. The longitudinal ribs 391 are contacted each other so as to restrain the movement of the steel plates 31 in a horizontal direction and improve earthquake resistance or the like.

Description

本発明は、主にビル等のコンクリート建造物を補強する建造物の補強工法に関する。   The present invention mainly relates to a method for reinforcing a building for reinforcing a concrete structure such as a building.
既設のコンクリート建造物の躯体(柱、梁、床、壁など)は、耐震性の向上等を図るために強度および靱性を向上させる補強が実施される場合がある。従来の補強工法としては、躯体の表面にモルタルを塗布して補強する工法(特許文献1)や、躯体の周囲に配設した鋼板と躯体との間にモルタル等のグラウト材を充填して補強する工法(特許文献2)などが知られている。   The existing concrete building frames (columns, beams, floors, walls, etc.) may be reinforced to improve strength and toughness in order to improve earthquake resistance. As a conventional reinforcing method, a method of reinforcing mortar by applying mortar to the surface of the casing (Patent Document 1), or reinforcing a grout material such as mortar between the steel plate and the casing disposed around the casing. A construction method (Patent Document 2) is known.
特開2010−159611号公報JP 2010-159611 A 特開2006−063608号公報JP 2006-063608 A
上記従来工法では強度および靱性等の向上の増大に限界があり、また、耐震性とともに制震性を備えた補強工法の開発が望まれた。   The above-mentioned conventional method has a limit in increasing strength and toughness, and the development of a reinforcing method having seismic control as well as earthquake resistance has been desired.
本発明は上記事情に鑑みてなされたものであり、その主たる技術的課題は、強度および靱性の向上が図られるとともに、効果的な耐震性および制震性を備えた建造物の補強工法を提供することにある。   The present invention has been made in view of the above circumstances, and its main technical problem is to improve the strength and toughness and to provide a method for reinforcing a building having effective seismic resistance and vibration control. There is to do.
本発明の建造物の補強工法は、既設の建造物の表面に対面させた複数の鋼板を、該表面に沿って水平方向に配列して前記表面を覆う鋼板配列工程と、前記建造物の表面と、前記鋼板との間に、グラウト材を充填するグラウト材充填工程とを備え、前記複数の鋼板の水平方向に互いに隣接する側縁に、前記建造物側に突出して略上下方向に延びる縦リブが形成されており、前記鋼板配列工程において、隣接する該縦リブどうしを対向させた状態とすることを特徴とする。   The reinforcing method for a building according to the present invention includes a steel plate arranging step of covering a plurality of steel plates facing a surface of an existing building in a horizontal direction along the surface, and a surface of the building. And a grout material filling step for filling a grout material between the steel plates, and vertically extending in the vertical direction projecting toward the building side at side edges adjacent to each other in the horizontal direction of the plurality of steel plates. Ribs are formed, and in the steel plate arranging step, adjacent vertical ribs are made to face each other.
本発明によれば、建造物の表面にグラウト材を介して鋼板が固着されて一体化されることにより、補強がなされる。鋼板の縦リブがグラウト材中に埋設された状態となることによってグラウト材と鋼板が一体化する結合強度が高くなり、その結果、建造物にかかる引っ張りやせん断等の応力に対する抵抗力が高まる。また、縦リブどうしが対向する状態となっていることによって水平方向への鋼板の動きが拘束され、このため補強後の建造物の水平方向への抵抗力が高まり、その結果、耐震性の向上が図られる。   According to the present invention, the steel plate is fixed to and integrated with the surface of the building via the grout material, thereby reinforcing the structure. When the longitudinal ribs of the steel plate are embedded in the grout material, the bonding strength at which the grout material and the steel plate are integrated increases, and as a result, the resistance to stress such as tension and shear applied to the building increases. In addition, the movement of the steel plates in the horizontal direction is constrained by the vertical ribs facing each other, which increases the resistance to the horizontal direction of the building after reinforcement, resulting in improved earthquake resistance. Is planned.
本発明では、隣接する前記縦リブは、直接重ね合わせて当接させた状態、または離間した状態、または縦リブ間に粘弾性部材を挟んだ状態のいずれかの状態であることを特徴とする。   In the present invention, the adjacent vertical ribs are in a state where they are in direct contact with each other, in a separated state, or in a state where a viscoelastic member is sandwiched between the vertical ribs. .
縦リブどうしが直接重ね合わせて当接された状態では、地震等によって上下方向や水平方向の振動を受けた際に接触面に摩擦が生じる。また、離間している状態では、縦リブ間の隙間にグラウト材が入り込み、縦リブとグラウト材との間に摩擦が生じる。これら摩擦が生じると、摩擦力が振動を抑制するダンパーとなり、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得ることができる。   In a state where the vertical ribs are in direct contact with each other, friction is generated on the contact surface when subjected to vibrations in the vertical direction or the horizontal direction due to an earthquake or the like. In the separated state, the grout material enters the gaps between the vertical ribs, and friction occurs between the vertical ribs and the grout material. When these frictions occur, the frictional force becomes a damper that suppresses vibrations, and the damping performance is effectively exhibited. For this reason, it is possible to obtain an effect of suppressing the shaking quickly by reducing the shaking or reducing the shaking.
また、縦リブ間に粘弾性部材を挟んだ状態とした場合には、縦リブが粘弾性部材により一体化した状態になる。そして地震等によって上下方向や水平方向の振動を受けた際に、粘弾性部材によって粘弾性ダンパー効果が生じ、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。   Further, when the viscoelastic member is sandwiched between the longitudinal ribs, the longitudinal rib is integrated with the viscoelastic member. And when it receives the vibration of an up-down direction or a horizontal direction by an earthquake etc., a viscoelastic damper effect will arise by a viscoelastic member, and the damping property will be exhibited effectively. For this reason, the effect which attenuates a shake and suppresses a shake quickly, or makes a shake small is acquired.
本発明では、前記リブは、前記鋼板の端部を折り曲げ加工して形成されている形態を含む。   In this invention, the said rib contains the form formed by bending the edge part of the said steel plate.
また、本発明では、積層された前記鋼板の表面に繊維シートを張って接着する繊維シート接着工程を有する形態を含む。   Moreover, in this invention, the form which has a fiber sheet adhesion process which stretches | bonds and adheres a fiber sheet to the surface of the laminated said steel plate is included.
また、本発明では、前記繊維シート接着工程で鋼板の表面に張られた前記繊維シートの表面に、仕上げ材としてモルタルを塗布するモルタル施工工程を有することを特徴とする。   Moreover, in this invention, it has the mortar construction process which apply | coats mortar as a finishing material on the surface of the said fiber sheet stretched on the surface of the steel plate by the said fiber sheet adhesion process.
また、本発明では、前記モルタル施工工程においては、前記繊維シートの表面に、含有セメントが微粒子状である微細モルタルを塗布する一次モルタル施工工程と、この微細モルタルの表面に二次モルタルを塗布する二次モルタル施工工程とを行うことを特徴とする請求項5に記載の建造物の補強工法。   Moreover, in this invention, in the said mortar construction process, the primary mortar construction process which apply | coats the fine mortar in which the containing cement is a fine particle form to the surface of the said fiber sheet, and apply | coats a secondary mortar to the surface of this fine mortar. The method for reinforcing a building according to claim 5, wherein a secondary mortar construction step is performed.
また、本発明では、前記二次モルタルは、ポリマーセメントモルタルまたは繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物である形態を含む。   In the present invention, the secondary mortar includes a polymer cement mortar, a fiber-containing mortar, or a mixture of the polymer cement mortar and the fiber-containing mortar.
本発明によれば、強度および靱性の向上が図られるとともに、効果的な耐震性および制震性を備えた建造物の補強工法を提供されるといった効果を奏する。   According to the present invention, the strength and toughness are improved, and an effect is provided that a method for reinforcing a building having effective earthquake resistance and vibration control is provided.
本発明の第1実施形態によって柱を補強した状態を示す斜視図である。It is a perspective view which shows the state which reinforced the pillar by 1st Embodiment of this invention. 同横断面図である。FIG. 変形例の鋼板で柱を補強した状態を示す横断面図である。It is a cross-sectional view which shows the state which reinforced the column with the steel plate of the modification. 隣接する鋼板の各縦リブを示す鋼板の一部縦断面図であって、(a)各縦リブを離間させた状態、(b)各縦リブ間に粘弾性部材を挟んだ状態である。It is a partial longitudinal cross-sectional view of the steel plate which shows each longitudinal rib of an adjacent steel plate, (a) The state which separated each longitudinal rib, (b) The state which pinched | interposed the viscoelastic member between each longitudinal rib. 本発明の第2実施形態によって柱を補強した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which strengthened the pillar by 2nd Embodiment of this invention. 同横断面図である。FIG. 第1実施形態で用いる鋼板および鋼板で構成される鋼板ユニットを示す斜視図である。It is a perspective view which shows the steel plate unit comprised with the steel plate and steel plate used by 1st Embodiment. 同鋼板ユニットの横断面図であって、(a)分解した状態、(b)組み立てた状態である。It is a cross-sectional view of the steel plate unit, (a) a disassembled state, (b) an assembled state. 同鋼板ユニットの側面図である。It is a side view of the steel plate unit. 鋼板の表面に設けられる繊維シートおよびモルタル層からなる被覆層の基本形態を示す断面図である。It is sectional drawing which shows the basic form of the coating layer which consists of a fiber sheet provided on the surface of a steel plate, and a mortar layer. 同被覆層のモルタル層の別形態を示す断面図である。It is sectional drawing which shows another form of the mortar layer of the same coating layer. 同被覆層のモルタル層のさらに別形態を示す断面図である。It is sectional drawing which shows another form of the mortar layer of the same coating layer. 本発明の第3実施形態を示す横断面図である。It is a cross-sectional view showing a third embodiment of the present invention. 本発明の第4実施形態を示す横断面図である。It is a cross-sectional view showing a fourth embodiment of the present invention. 本発明の第5実施形態を示す横断面図である。It is a cross-sectional view showing a fifth embodiment of the present invention. 本発明の第6実施形態を示す横断面図である。It is a cross-sectional view showing a sixth embodiment of the present invention. 本発明の第7実施形態を示す横断面図である。It is a cross-sectional view showing a seventh embodiment of the present invention. 本発明の第8実施形態によって柱・梁接合部を補強した状態を示す側面図である。It is a side view which shows the state which reinforced the column and beam junction part by 8th Embodiment of this invention. 図18のA−A断面図である。It is AA sectional drawing of FIG. 図18のB−B断面図である。It is BB sectional drawing of FIG. 本発明の第9実施形態によって柱・梁接合部を補強した状態を示す側面図である。It is a side view which shows the state which reinforced the column and beam junction part by 9th Embodiment of this invention. 図21のC−C断面図である。It is CC sectional drawing of FIG. 図21のD−D断面図である。It is DD sectional drawing of FIG. 図21のE−E断面図である。It is EE sectional drawing of FIG.
以下、図面を参照して本発明の実施形態を説明する。
[1]柱の全面補強
[1−1]第1実施形態
図1および図2は、本発明の補強工法によって既設の柱を補強した第1実施形態を示している。これら図において符号1は断面矩形状の鉛直方向に立設されている既設の鉄筋コンクリート製の柱の一部を示している。この実施形態においては、柱1の全周面(4面)が補強対象面である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[1] Full reinforcement of pillar [1-1] First embodiment FIGS. 1 and 2 show a first embodiment in which an existing pillar is reinforced by a reinforcement method of the present invention. In these drawings, reference numeral 1 indicates a part of an existing reinforced concrete column that is erected in a vertical direction having a rectangular cross section. In this embodiment, the entire peripheral surface (four surfaces) of the pillar 1 is a surface to be reinforced.
柱1の周囲の4つの角部11に対応する位置には、柱1と所定の間隔を空けて補強用の鉄筋21が柱1と平行にそれぞれ立てられる。鉄筋21は、柱1の断面における対角線の延長上に配置され、例えば図視せぬ支保工等で立設状態を保持する。鉄筋21の配置数および配置位置は任意であり、補強条件等に応じて選択される。   At positions corresponding to the four corners 11 around the pillar 1, reinforcing reinforcing bars 21 are erected in parallel with the pillar 1 at predetermined intervals. The reinforcing bar 21 is arranged on an extension of the diagonal line in the cross section of the column 1 and holds the standing state by a support work or the like not shown in the figure. The number and position of the reinforcing bars 21 are arbitrary and are selected according to the reinforcing conditions and the like.
柱1の周囲であって鉄筋21の外側には、柱1の各面に対し複数の鋼板31を一定の間隔(かぶり厚さ)を空けて平行に対面させ、柱1を囲むように水平方向に配列している。鋼板31は、長方形状の素材鋼板の長手方向中間部を直角に折り曲げてL字状に形成したもので、4枚1組で柱1の全周を囲う鋼板ユニット30Aが構成される。柱1と鋼板31間は、例えば120〜300mm程度の間隔とされる。柱1の全長にわたって補強が必要な場合には、鋼板ユニット30Aは柱1の全長にわたって下方から積層され、複数段に設けられる。   Around the column 1 and outside the reinforcing bar 21, a plurality of steel plates 31 face each other in parallel with a certain interval (cover thickness) with respect to each surface of the column 1, and horizontally so as to surround the column 1 Are arranged. The steel plate 31 is formed by bending an intermediate portion in the longitudinal direction of a rectangular steel plate at a right angle to form an L shape, and a steel plate unit 30 </ b> A that surrounds the entire circumference of the column 1 with a set of four sheets. The space between the pillar 1 and the steel plate 31 is, for example, about 120 to 300 mm. When reinforcement is required over the entire length of the column 1, the steel plate units 30 </ b> A are stacked from below along the entire length of the column 1 and are provided in a plurality of stages.
鋼板31は、直角の角部311の両側に同じ長さの板部312を有し、両端の側縁には、内側、すなわち柱1側に突出する一定幅の縦リブ391が側縁の全長に形成されている。縦リブ391は、鋼板31の側縁を直角に折り曲げ加工して形成されている。鋼板31を柱1の周囲に配列する配列工程においては、隣接する鋼板31の縦リブ391どうしを直接重ね合わせて当接させた状態としており、鋼板31は、厚さ方向(柱1に対する内外方向)には重畳してはいない。隣接する縦リブ391は接触状態が保持されればそのままでもよいが、クリップやボルト等で、互いに摺動可能な程度に仮止めされていてもよい。なお、鋼板31の厚さは、例えば1.6〜3.2mm程度、高さは例えば300〜600mm程度、縦リブ391の幅は例えば20〜100mm程度である。   The steel plate 31 has plate portions 312 having the same length on both sides of a right-angled corner portion 311, and longitudinal ribs 391 having a constant width projecting inward, that is, on the column 1 side, are formed on the side edges of both ends. Is formed. The vertical ribs 391 are formed by bending the side edges of the steel plate 31 at a right angle. In the arranging step of arranging the steel plates 31 around the pillars 1, the vertical ribs 391 of the adjacent steel plates 31 are directly overlapped and brought into contact with each other. ) Is not superimposed. The adjacent vertical ribs 391 may be left as they are as long as they are in contact with each other, but may be temporarily fixed with clips, bolts, or the like to the extent that they can slide with each other. In addition, the thickness of the steel plate 31 is, for example, about 1.6 to 3.2 mm, the height is, for example, about 300 to 600 mm, and the width of the vertical rib 391 is, for example, about 20 to 100 mm.
そして鋼板31の表面には、繊維シート51が張られて接着されている。繊維シート51を接着するには、帯状に加工した連続する繊維シートに接着剤を含浸させたものを鋼板ユニット30Aにテンションを付与しながら巻き付ける手法が好適である。このようにすると1枚の長い繊維シート51により鋼板ユニット30Aの表面全面に容易に張ることができ、含浸する接着剤によって巻き付けと同時に鋼板20の外面に接着させることができる。   A fiber sheet 51 is stretched and bonded to the surface of the steel plate 31. In order to bond the fiber sheet 51, a technique in which a continuous fiber sheet processed into a strip shape is impregnated with an adhesive is wound around the steel plate unit 30A while applying tension. In this way, the single long fiber sheet 51 can be easily stretched over the entire surface of the steel plate unit 30A, and can be bonded to the outer surface of the steel plate 20 at the same time as being wound by the impregnating adhesive.
繊維シート51の繊維材料は、例えばポリエチレン、カーボン、ガラス、ビニロン、アラミド等からなるものが挙げられるが、耐アルカリ性に優れたポリエチレンおよびカーボンが好適とされる。   Examples of the fiber material of the fiber sheet 51 include polyethylene, carbon, glass, vinylon, aramid, and the like, and polyethylene and carbon excellent in alkali resistance are preferable.
図2に示すように、鋼板ユニット30Aの中、すなわち柱1の表面と鋼板31との間には、グラウト材61が充填されている。グラウト材61は、例えば無収縮性のモルタル、セメント、コンクリート等が挙げられ、適宜なものが選択される。なお、図2は、グラウト材61を充填する前の状態を示している。   As shown in FIG. 2, a grout material 61 is filled in the steel plate unit 30 </ b> A, that is, between the surface of the column 1 and the steel plate 31. Examples of the grout material 61 include non-shrinkable mortar, cement, concrete, and the like, and an appropriate one is selected. FIG. 2 shows a state before the grout material 61 is filled.
以上が第1実施形態による柱1の補強構造であり、この補強構造は、柱1の周囲に鉄筋21を配筋し、次いで、柱1の周囲に縦リブ391を突き合わせながら鋼板31を配列して柱1を鋼板31で囲み(鋼板配列工程)、次に鋼板31の表面に繊維シート51を張って接着し(繊維シート接着工程)、この後、柱1の表面と鋼板との間にグラウト材61を充填する(グラウト材充填工程)といった方法で得られる。   The reinforcing structure of the pillar 1 according to the first embodiment is as described above. This reinforcing structure arranges the reinforcing bars 21 around the pillar 1 and then arranges the steel plates 31 while abutting the vertical ribs 391 around the pillar 1. The column 1 is surrounded by the steel plate 31 (steel plate arranging step), and then the fiber sheet 51 is stretched and bonded to the surface of the steel plate 31 (fiber sheet adhering step). Thereafter, the grout is formed between the surface of the column 1 and the steel plate. It is obtained by a method of filling the material 61 (grouting material filling step).
以上が第1実施形態の補強工法であり、この実施形態によれば、柱1の表面にグラウト材61を介して鋼板31が固着されて一体化されることにより、柱1の補強がなされる。鋼板1には縦リブ391が形成され、この縦リブ391が2枚重ねられた状態でグラウト材61中に埋設されるため、リブ効果による鋼板31自体の強度や、グラウト材61と鋼板31が一体化する結合強度が高くなり、その結果、柱1にかかる引っ張りやせん断等の応力に対する抵抗力が高いものとなる。また、縦リブ391によって鋼板31の面外方向の剛性が高まるため、グラウト材61の充填による内圧に対し抵抗力が高く鋼板31の変形が抑えられる。その結果、鋼板31を支保工で支える場合には、その支保工の数の低減が可能となり、施工性の向上が図られる。   The above is the reinforcing method of the first embodiment, and according to this embodiment, the steel plate 31 is fixed to and integrated with the surface of the pillar 1 via the grout material 61, whereby the pillar 1 is reinforced. . Since the steel plate 1 is formed with vertical ribs 391, and the two vertical ribs 391 are stacked in the grout material 61, the strength of the steel plate 31 itself due to the rib effect, the grout material 61 and the steel plate 31 are The bond strength to be integrated is increased, and as a result, resistance to stress such as pulling and shearing applied to the column 1 is increased. Further, since the longitudinal ribs 391 increase the rigidity in the out-of-plane direction of the steel plate 31, the resistance to the internal pressure due to the filling of the grout material 61 is high, and deformation of the steel plate 31 is suppressed. As a result, when the steel plate 31 is supported by a supporting work, the number of supporting works can be reduced, and the workability can be improved.
また、隣接する鋼板31の縦リブ391どうしが対向しており、この場合直接当接することにより、水平方向への鋼板31の動きが拘束される。このため補強後の柱1の水平方向への抵抗力が高まり、その結果、耐震性の向上が図られる。一方、地震等によって上下方向や水平方向の振動を受けた際には、当接する縦リブ391の接触面が摺動して摩擦が生じ、このときの摩擦力が、振動を抑制するダンパーとなり、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得ることができる。   Moreover, the vertical ribs 391 of the adjacent steel plates 31 are opposed to each other, and in this case, the movement of the steel plates 31 in the horizontal direction is restrained by direct contact. For this reason, the resistance force to the horizontal direction of the pillar 1 after reinforcement increases, As a result, improvement in earthquake resistance is achieved. On the other hand, when subjected to vibration in the vertical direction or horizontal direction due to an earthquake or the like, the contact surfaces of the vertical ribs 391 that come into contact slide to generate friction, and the frictional force at this time becomes a damper that suppresses vibration, Seismic control is demonstrated effectively. For this reason, it is possible to obtain an effect of suppressing the shaking quickly by reducing the shaking or reducing the shaking.
また、引っ張りやせん断等の応力は、グラウト材61を介して繊維シート51に伝わる。繊維シート51はそのような応力に対する抵抗力が高く、鋼板31に比べて例えば約10倍以上の引っ張り強度を有する場合がある。このため、柱1は高い強度および靱性をもって補強される。   Further, stress such as tension and shear is transmitted to the fiber sheet 51 through the grout material 61. The fiber sheet 51 has a high resistance to such stress, and may have a tensile strength that is, for example, about 10 times or more that of the steel plate 31. For this reason, the column 1 is reinforced with high strength and toughness.
また、施工するにあたっては、複数(この場合、4枚)の鋼板31で柱1を囲む1つの鋼板ユニット31Aを構成することにより、鋼板1枚当たりの重量が軽減し、したがって鋼板31を運搬したり施工したりするための負担が軽減して施工性が向上するとともに、鋼板31の厚さを大きくして剛性をさらに高くすることも可能である。   Further, when constructing, by constituting one steel plate unit 31A surrounding the column 1 with a plurality of (in this case, four) steel plates 31, the weight per one steel plate is reduced, and therefore the steel plates 31 are transported. It is also possible to reduce the burden for carrying out the construction and improve the workability, and to increase the thickness of the steel plate 31 to further increase the rigidity.
[1−2]鋼板の変形例
上記鋼板31はL字状に折り曲げられ、両端の側縁に上下方向に延びる縦リブ391が形成されたものであるが、本発明の鋼板はこのような形状に限定されず、例えば、図3に示すような鋼板31も含む。この鋼板31は、柱1の4面の各面を覆う幅を有する平坦な板部を主体としており、この板部の両端の側縁に、上下方向に延びる縦リブ391が、柱1側に突出している。この場合の縦リブ391は板部に対して45°の角度で折り曲げ加工されており、柱1の周囲には、4枚の鋼板31が縦リブ391どうしを当接させて配列され、縦リブ391の先端は鉄筋21に近接した状態とされる。
[1-2] Modified Example of Steel Plate The steel plate 31 is bent in an L shape, and vertical ribs 391 extending in the vertical direction are formed on the side edges of both ends. The steel plate of the present invention has such a shape. For example, a steel plate 31 as shown in FIG. 3 is also included. The steel plate 31 is mainly a flat plate portion having a width covering each of the four surfaces of the column 1, and vertical ribs 391 extending in the vertical direction are provided on the side edges of both ends of the plate portion on the column 1 side. It protrudes. In this case, the vertical rib 391 is bent at an angle of 45 ° with respect to the plate portion, and around the pillar 1, four steel plates 31 are arranged with the vertical ribs 391 in contact with each other. The tip of 391 is close to the reinforcing bar 21.
なお、上記実施形態では、隣接する縦リブ391どうしは直接当接させた状態としているが、図4(a)に示すように、縦リブ391を離間させた状態としてもよい。この場合、グラウト材61は縦リブ391間の隙間にも入り込む。この形態では、縦リブ391とグラウト材61との間に摩擦が生じて振動を抑制するダンパーとなり、制震性が効果的に発揮される。   In the above embodiment, the adjacent vertical ribs 391 are in direct contact with each other, but the vertical ribs 391 may be separated as shown in FIG. In this case, the grout material 61 also enters the gap between the vertical ribs 391. In this embodiment, friction is generated between the vertical ribs 391 and the grout material 61 to provide a damper that suppresses vibrations, and the damping performance is effectively exhibited.
さらに、図4(b)に示すように、縦リブ391間に粘弾性部材91を挟んだ状態としてもよい。粘弾性部材91としては、例えば天然ゴム、合成ゴム等のゴムを材料としたものが用いられる。この場合、粘弾性部材91によって縦リブ391どうしが一体化したような状態になる。そして地震等によって振動を受けた際に、粘弾性部材91によって粘弾性ダンパー効果が生じ、制震性が効果的に発揮される。このため、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。   Further, as shown in FIG. 4B, a viscoelastic member 91 may be sandwiched between the longitudinal ribs 391. As the viscoelastic member 91, for example, a material made of rubber such as natural rubber or synthetic rubber is used. In this case, the vertical ribs 391 are integrated by the viscoelastic member 91. When receiving vibration due to an earthquake or the like, a viscoelastic damper effect is generated by the viscoelastic member 91, and the damping performance is effectively exhibited. For this reason, the effect which attenuates a shake and suppresses a shake quickly, or makes a shake small is acquired.
[1−3]第2実施形態
図5〜図12は、本発明を既設の柱1の補強に適用した第2実施形態を示している。本実施形態においては柱1の全周面が補強対象面であり、床スラブ2と梁3間の内法高さの全長にわたって補強している。以下、柱1を補強する第2実施形態の補強工法を説明する。
[1-3] Second Embodiment FIGS. 5 to 12 show a second embodiment in which the present invention is applied to reinforcement of an existing column 1. In the present embodiment, the entire circumferential surface of the column 1 is a surface to be reinforced, and is reinforced over the entire length of the internal height between the floor slab 2 and the beam 3. Hereinafter, the reinforcing method of the second embodiment for reinforcing the pillar 1 will be described.
はじめに、図5および図6に示すように、柱1の周囲の4つの角部11に対応する位置に、上記第1実施形態と同様に補強用の鉄筋21を柱1と平行に立て、その状態を保持する。   First, as shown in FIG. 5 and FIG. 6, reinforcing reinforcing bars 21 are erected in parallel with the pillar 1 at positions corresponding to the four corners 11 around the pillar 1 in the same manner as in the first embodiment. Keep state.
次に、柱1の4面に対し、それら表面に沿って複数の鋼板31を載置した状態で積層し、これら鋼板31で柱1の内法高さの全面を囲って覆う(鋼板配列工程)。鋼板31は、図7〜図9に示すように、上記第1実施形態と同様に両端の側縁に縦リブ391が形成されており、さらに、上端および下端に、内側に直角に折り曲げ加工されて水平に突出する横リブ39がそれぞれ形成されている。横リブ39は、縦リブ391と同じ幅を有している。横リブ39は、鋼板31自体をL字状に折り曲げ加工する前に形成され、角部311で横リブ39どうしが重畳せず円滑に折り曲げ可能とするために、横リブ39の角部311に対応する箇所には、逃げ用の切欠きが予め形成される。   Next, it laminates | stacks in the state which mounted the several steel plate 31 along those surfaces with respect to four surfaces of the pillar 1, and surrounds and covers the whole surface of the internal height of the pillar 1 with these steel plates 31 (steel plate arrangement | sequence process) ). As shown in FIGS. 7 to 9, the steel plate 31 has vertical ribs 391 formed on the side edges at both ends in the same manner as in the first embodiment, and is further bent at the upper and lower ends at a right angle inside. A horizontal rib 39 protruding horizontally is formed. The horizontal rib 39 has the same width as the vertical rib 391. The lateral rib 39 is formed before the steel plate 31 itself is bent into an L shape, and the corner rib 311 is formed on the corner portion 311 of the transverse rib 39 in order to be able to bend smoothly without overlapping the rib portions 39 at the corner portion 311. A notch for escape is formed in advance at the corresponding location.
図5に示すように、柱1の周囲には鋼板ユニット30Aを複数段(図示例で4段)積層して柱1の全面を覆う。鋼板ユニット30Aの積層は、はじめに床スラブ2に4枚の鋼板31で1組の鋼板ユニット30Aを組んで柱1の下端部を覆い、続いて、組んだ鋼板ユニット30A上に鋼板31を積層しながら、2段目、3段目…の鋼板ユニット30Aを順に積み上げていく。   As shown in FIG. 5, a plurality of stages (four stages in the illustrated example) are stacked around the pillar 1 to cover the entire surface of the pillar 1. The lamination of the steel plate unit 30A is performed by first assembling one set of steel plate units 30A with the four steel plates 31 on the floor slab 2 to cover the lower end of the pillar 1, and then laminating the steel plate 31 on the assembled steel plate unit 30A. However, the second, third,... Steel plate units 30A are sequentially stacked.
鋼板31の上に鋼板31を積層する際には、下側の鋼板の横リブ39に上側の鋼板の横リブ39を重ね合わせて載置した状態とし、上下の横リブ39が互いに直接面接触した状態とする。また、横に隣接する鋼板31の縦リブ391どうしを当接する状態とし、必要に応じて上記のように仮止めする。このように下側の鋼板31の上端の横リブ39に、上側の鋼板31の下端の横リブ39を積層しながら1組の鋼板ユニット30Aを組んで積み上げ、次いでその鋼板ユニット30Aに4枚の鋼板31を載置するといった手順を繰り返して、柱1を複数段の鋼板ユニット30Aで覆う。先に配筋した鉄筋21は、図6に示すように、横リブ39の直角の内隅に配置され、かつ、横リブ39に当接した状態とされる。   When laminating the steel plate 31 on the steel plate 31, the upper and lower horizontal ribs 39 are in direct surface contact with each other, with the horizontal ribs 39 of the upper steel plate placed on the horizontal ribs 39 of the lower steel plate. It is assumed that Further, the vertical ribs 391 of the steel plates 31 adjacent to each other are brought into contact with each other, and temporarily fixed as described above as necessary. In this way, a pair of steel plate units 30A is assembled and stacked on the horizontal ribs 39 at the upper end of the lower steel plate 31 while the horizontal ribs 39 at the lower end of the upper steel plate 31 are stacked, and then four sheets are stacked on the steel plate unit 30A. The procedure of placing the steel plate 31 is repeated to cover the column 1 with a plurality of steel plate units 30A. As shown in FIG. 6, the reinforcing bars 21 previously arranged are arranged at the inner corners at right angles to the lateral ribs 39 and are in contact with the lateral ribs 39.
横リブ39の上に横リブ39を重ねることにより、横リブ39を形成していない下側の鋼板の上端縁に上側の鋼板の下端縁を合わせて積層する場合と比べると、鋼板31の積層状態は安定し、積層状態を保持する必要がある場合には、その手段が簡素なものでよい。   By stacking the horizontal ribs 39 on the horizontal ribs 39, the stacking of the steel plates 31 is compared with the case where the upper end of the lower steel plate not forming the horizontal ribs 39 is aligned with the lower end of the upper steel plate. When the state is stable and it is necessary to maintain the laminated state, the means may be simple.
以上のようにして鋼板配列工程を完了したら、次に、図10に示すように、積層した鋼板31の表面に繊維シート51を張って接着する(繊維シート接着工程)。繊維シート接着工程は、下側の鋼板ユニット30Aに1つの鋼板ユニット30Aを積層するごとに、上下の鋼板ユニット30Aの境界に対して繊維シート51を巻き付けていくといった手法を採ることでも遂行することができる。この手法によれば、積層した鋼板ユニット30Aを繊維シート51で保持しながら、鋼板ユニット30Aの積層を進めることができ、鋼板ユニット30Aの積層状態を繊維シート51によって速やかに安定した状態とすることができる。   When the steel plate arranging step is completed as described above, the fiber sheet 51 is then stretched and bonded to the surface of the laminated steel plates 31 as shown in FIG. 10 (fiber sheet bonding step). The fiber sheet bonding step is also performed by adopting a technique in which the fiber sheet 51 is wound around the boundary between the upper and lower steel plate units 30A each time one steel plate unit 30A is stacked on the lower steel plate unit 30A. Can do. According to this method, while the laminated steel plate units 30A are held by the fiber sheets 51, the lamination of the steel plate units 30A can be advanced, and the lamination state of the steel plate units 30A can be promptly stabilized by the fiber sheets 51. Can do.
次に、図6に示すように、積層した鋼板ユニット30Aの中、すなわち柱1の表面と積層した鋼板31との間に、グラウト材61を充填する(グラウト材充填工程)。グラウト材61は、上記のように例えば無収縮性のモルタル、セメント、コンクリート等が挙げられる。なお、鋼板ユニット30Aは内法高さの全長にわたって積層されるが、床スラブ2に近接する下端部分にグラウト材充填用の孔を形成し、その孔からグラウト材61を充填していくか、あるいは、梁3に近接する上端部分にグラウト材充填用の孔を形成し、その孔からグラウト材61を充填する。   Next, as shown in FIG. 6, the grout material 61 is filled in the laminated steel plate units 30A, that is, between the surface of the pillars 1 and the laminated steel plates 31 (grouting material filling step). Examples of the grout material 61 include non-shrinkable mortar, cement, concrete and the like. In addition, although the steel plate unit 30A is laminated over the entire length of the internal height, a hole for filling the grout material is formed in the lower end portion close to the floor slab 2, and the grout material 61 is filled from the hole, Alternatively, a grout material filling hole is formed in the upper end portion adjacent to the beam 3 and the grout material 61 is filled from the hole.
次に、図10に示すように、鋼板ユニット30Aの各鋼板31の表面に巻き付けて接着した繊維シート51の表面に、仕上げ材としてモルタルを塗布してモルタル層71を形成する(モルタル施工工程)。モルタル施工工程では、モルタルのみを適宜な厚さに施工してもよいが、図示例のようにモルタル中に格子状のメッシュ繊維シート72を埋め込んだ状態のモルタル、あるいは有機高分子を混和させたポリマーセメントモルタル、炭素繊維やポリエチレン繊維等の繊維を適宜な長さにカットしたものを分散させた繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物のモルタルを用いることにより、モルタル層71の強度が向上するので好適である。   Next, as shown in FIG. 10, mortar is applied as a finishing material to form a mortar layer 71 on the surface of the fiber sheet 51 that is wound around and adhered to the surface of each steel plate 31 of the steel plate unit 30A (mortar construction process). . In the mortar construction process, only the mortar may be constructed to an appropriate thickness. However, as shown in the illustrated example, a mortar in which the lattice mesh fiber sheet 72 is embedded in the mortar or an organic polymer is mixed. By using a polymer cement mortar, a fiber-containing mortar in which fibers such as carbon fiber or polyethylene fiber are cut to an appropriate length, or a mixture of these polymer cement mortar and fiber-containing mortar, a mortar layer 71 is used. This is preferable because the strength of the is improved.
また、モルタル層71は、鋼板ユニット30Aの各鋼板31の表面に巻き付けて接着した繊維シート51の表面に、含有セメントが微粒子状である微細モルタルを塗布する一次モルタル施工工程と、この微細モルタルの表面に二次モルタルを塗布する二次モルタル施工工程の2工程を含む複数工程に分けて形成してもよい。二次モルタルとしては、ポリマーセメントモルタルまたは繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物を用いることができる。   In addition, the mortar layer 71 includes a primary mortar construction process in which fine mortar in which the cement is fine is applied to the surface of the fiber sheet 51 that is wound around and adhered to the surface of each steel plate 31 of the steel plate unit 30A. You may divide and form in two or more processes including two processes of the secondary mortar construction process which applies secondary mortar to the surface. As the secondary mortar, polymer cement mortar or fiber-containing mortar, or a mixture of these polymer cement mortar and fiber-containing mortar can be used.
図11はその例であり、繊維シート51の表面に、微細モルタル71A、二次モルタル71Bを順に塗布してモルタル層71を形成している。微細モルタル71Aは、含有セメントの平均粒径が通常のものより微細なモルタルであり、含有セメントは、平均粒径が20μm以下、好ましくは10μm以下、より好ましくは2〜5μmのものとされる。この微細モルタル71A中に有機高分子を混和させたポリマーセメントモルタルを用いてもよい。微細モルタル71Aの厚さは、例えば1〜3mm程度とされ、モルタル層71全体の厚さは、例えば10〜30mm程度とされる。   FIG. 11 shows an example, in which fine mortar 71A and secondary mortar 71B are sequentially applied to the surface of fiber sheet 51 to form mortar layer 71. The fine mortar 71A is a mortar whose average particle size of the contained cement is finer than a normal one, and the contained cement has an average particle size of 20 μm or less, preferably 10 μm or less, more preferably 2 to 5 μm. You may use the polymer cement mortar which mixed the organic polymer in this fine mortar 71A. The thickness of the fine mortar 71A is, for example, about 1 to 3 mm, and the total thickness of the mortar layer 71 is, for example, about 10 to 30 mm.
また、図12に示すように、繊維シート51の表面に微細モルタル71Aを塗布し、次いで、下塗りモルタル71Cを塗布した後、この下塗りモルタル71Cの表面に、微細モルタル中に格子状のメッシュ繊維シート72を埋め込んだ状態のモルタル71Dを施工する。この微細モルタル71Dとして、ポリマーセメントモルタルを用いてもよい。そして最後に上塗りモルタル71Eを施工するといった工程を採ってもよい。   Further, as shown in FIG. 12, after applying fine mortar 71A to the surface of the fiber sheet 51, and then applying the undercoat mortar 71C, the surface of the undercoat mortar 71C has a grid-like mesh fiber sheet in the fine mortar. A mortar 71D in which 72 is embedded is applied. As this fine mortar 71D, polymer cement mortar may be used. And finally, you may take the process of constructing top coat mortar 71E.
以上が第2実施形態の補強工法であり、この実施形態によれば、柱1の表面にグラウト材61を介して鋼板31が固着されて一体化されることにより、柱1の補強がなされる。鋼板1には、両側縁に縦リブ391が、また、上下の端縁に横リブ39がそれぞれ形成され、これら縦リブ391および横リブ39がグラウト材61中に埋設されるため、リブ効果による鋼板31自体の強度や、グラウト材61に対する鋼板31の結合強度が高くなり、その結果、柱1にかかる引っ張りやせん断等の応力に対する抵抗力が高いものとなる。   The above is the reinforcing method of the second embodiment, and according to this embodiment, the steel plate 31 is fixed to and integrated with the surface of the pillar 1 via the grout material 61, whereby the pillar 1 is reinforced. . In the steel plate 1, vertical ribs 391 are formed on both side edges, and horizontal ribs 39 are formed on upper and lower end edges, and these vertical ribs 391 and horizontal ribs 39 are embedded in the grout material 61. The strength of the steel plate 31 itself and the bonding strength of the steel plate 31 to the grout material 61 are increased, and as a result, the resistance to stress such as tension and shear applied to the column 1 is increased.
また、引っ張りやせん断等の応力は、グラウト材61を介して繊維シート51に伝わる。繊維シート51はそのような応力に対する抵抗力が高く、鋼板31に比べて例えば約10倍以上の引っ張り強度を有する場合がある。このため、柱1は高い強度および靱性をもって補強される。さらに繊維シート51は、外側に塗布されるモルタル層71により補強されるため、外側から繊維シート51にかかる応力に対する抵抗力も十分に強いものとなる。   Further, stress such as tension and shear is transmitted to the fiber sheet 51 through the grout material 61. The fiber sheet 51 has a high resistance to such stress, and may have a tensile strength that is, for example, about 10 times or more that of the steel plate 31. For this reason, the column 1 is reinforced with high strength and toughness. Furthermore, since the fiber sheet 51 is reinforced by the mortar layer 71 applied to the outside, the resistance against the stress applied to the fiber sheet 51 from the outside is sufficiently strong.
また、図11または図12に示したように、繊維シート51の表面に微細モルタル71Aを塗布し、微細モルタル71Aの上にモルタルを塗布する多層のモルタル層71とすることにより、繊維シート51が微細モルタル71Aを介して高い結合力または付着力でモルタルに結合する。このため、柱1にかかる応力は、モルタル層71にひび割れ等の損傷を生じさせることなく繊維シート51に伝播しやすい。すなわち、応力の多くを繊維シート51で受けることになり、これによっても高い補強構造が得られる。   Moreover, as shown in FIG. 11 or FIG. 12, by applying fine mortar 71A to the surface of the fiber sheet 51 and forming a multi-layered mortar layer 71 that applies mortar on the fine mortar 71A, the fiber sheet 51 is formed. Bonding to the mortar with high bonding force or adhesion force through the fine mortar 71A. For this reason, the stress applied to the pillar 1 is easily propagated to the fiber sheet 51 without causing damage such as cracks in the mortar layer 71. That is, most of the stress is received by the fiber sheet 51, and this also provides a high reinforcing structure.
また、地震等によって横方向の振動を受けた場合、鋼板ユニット31A単位で横方向に相対的に動こうとするが、その際には、重なっている横リブ39の接触面に摩擦が生じ、この摩擦力が振動を抑制するダンパーとなって制震性が効果的に発揮される。また、鋼板31の横方向および上下方向の動きは繊維シート51で拘束されようとする。これらの結果、揺れを減衰させて揺れを早く抑えたり、揺れを小さくしたりする効果を得る。また、横リブ39を重ねて鋼板31を載置しながら積層するため、鋼板31を積層しやすく、また、積層状態が安定し、施工を安全、かつ、速やかに進めることができる。   In addition, when subjected to vibration in the horizontal direction due to an earthquake or the like, the steel plate unit 31A tries to move relatively in the horizontal direction, but in that case, friction occurs on the contact surface of the overlapping horizontal rib 39, This frictional force becomes a damper that suppresses vibration, and the damping performance is effectively exhibited. Further, the movement of the steel plate 31 in the horizontal direction and the vertical direction tends to be restrained by the fiber sheet 51. As a result, it is possible to obtain an effect of suppressing the shaking quickly by reducing the shaking or reducing the shaking. Further, since the steel plates 31 are stacked while placing the horizontal ribs 39 on top of each other, the steel plates 31 can be easily stacked, the stacked state is stable, and the construction can proceed safely and promptly.
上記第1実施形態および第2実施形態は、柱1の全面を補強する例であるが、本発明では、柱1の補強が必要な面のみに同じ構造で補強を施すことができる。また、本発明では補強対象の建造物は柱に限定されず、柱以外の、壁、梁、床スラブ等の躯体の補強に適用することができる。以下、その例を示していく。なお、参照図面では上記実施形態、あるいはその実施形態以前の既出の構成要素と同一の構成要素には同一の符号を付し、説明を簡略化あるいは省略する。   Although the said 1st Embodiment and 2nd Embodiment are the examples which reinforce the whole surface of the pillar 1, in this invention, it can reinforce only the surface which needs reinforcement of the pillar 1 with the same structure. In the present invention, the building to be reinforced is not limited to a pillar, and can be applied to reinforcement of a housing other than a pillar, such as a wall, a beam, or a floor slab. An example is shown below. In the reference drawings, the same reference numerals are given to the same constituent elements as those in the above-described embodiment or the previous embodiment, and the description will be simplified or omitted.
[2]柱の補強の変形例
[2−1]第3実施形態
図13は、柱1の1面のみが補強対象面であり、その補強対象面1aを本発明の補強工法で補強した第3実施形態を示している。この場合は、長板部322と短板部323とを有するL字状の鋼板32が2枚1組で鋼板ユニット30Bを構成する。1組の鋼板ユニット30Bの鋼板32は、柱1と間隔を空けて、補強対象面1aに長板部322を平行に対面させ、短板部323の端部を補強対象面1aの両側に対応させて配設される。
[2] Modified Examples of Column Reinforcement [2-1] Third Embodiment FIG. 13 shows a first embodiment in which only one surface of the column 1 is a surface to be reinforced, and the surface 1a to be reinforced is reinforced by the reinforcing method of the present invention. Three embodiments are shown. In this case, the L-shaped steel plate 32 having the long plate portion 322 and the short plate portion 323 constitutes a steel plate unit 30B by one set. The steel plates 32 of the pair of steel plate units 30B are spaced apart from the pillars 1, with the long plate portions 322 facing the reinforcement target surface 1a in parallel, and the ends of the short plate portions 323 correspond to both sides of the reinforcement target surface 1a. Arranged.
鋼板32の互いに突き当てられる側縁には、上下方向に延びる縦リブ391が形成されており、縦リブ391どうしが重ね合わされて直接当接した状態となっている。また、鋼板32の上端および下端には、内側に直角に折り曲げ加工することにより横リブ39がそれぞれ形成されている。そして鋼板ユニット30Bを、横リブ39を重ねることにより積層して柱1の補強対象面1aを覆い、鋼板32の表面への繊維シート51の接着、鋼板32と柱1の間の空間へのグラウト材61の充填、繊維シート51の表面へのモルタル層71の形成を、この順で行う。   Vertical ribs 391 extending in the vertical direction are formed on the side edges of the steel plates 32 that are abutted against each other, and the vertical ribs 391 are overlapped with each other and are in direct contact with each other. Further, at the upper end and the lower end of the steel plate 32, lateral ribs 39 are formed by bending the inner side at a right angle. Then, the steel plate units 30B are stacked by overlapping the horizontal ribs 39 so as to cover the reinforcement target surface 1a of the pillar 1, the adhesion of the fiber sheet 51 to the surface of the steel sheet 32, and the grout to the space between the steel sheet 32 and the pillar 1 Filling of the material 61 and formation of the mortar layer 71 on the surface of the fiber sheet 51 are performed in this order.
また、この場合には、柱1の補強対象面1aに直交させて適宜本数のアンカー81を挿入し、アンカー81の頭部をグラウト材61中に埋め込んでいる。アンカー81は、柱1に穿孔したアンカー孔に挿入し、接着剤により挿入状態を固定する。柱1へのアンカー81の固定は、鋼板32の施工の前に行う。さらに、鋼板ユニット30Bの2枚の鋼板32の短板部323間にわたりタイバー82を貫通させ、タイバー82をナット83で締め込んで緊張状態に締結しており、タイバー82もグラウト材61中に埋め込んでいる。アンカー81により柱1に対するグラウト材61の結合、および柱1に対する鋼板32とモルタル層71の結合が一層強くなり、また、タイバー82により鋼板32の水平拘束強度が向上するものとなっている。   In this case, an appropriate number of anchors 81 are inserted so as to be orthogonal to the reinforcement target surface 1 a of the pillar 1, and the heads of the anchors 81 are embedded in the grout material 61. The anchor 81 is inserted into an anchor hole drilled in the column 1 and the inserted state is fixed by an adhesive. The anchor 81 is fixed to the column 1 before the steel plate 32 is constructed. Further, the tie bar 82 is penetrated between the short plate portions 323 of the two steel plates 32 of the steel plate unit 30B, and the tie bar 82 is tightened with a nut 83 to be tightened. The tie bar 82 is also embedded in the grout material 61. It is out. The anchor 81 further strengthens the coupling of the grout material 61 to the column 1 and the coupling of the steel plate 32 and the mortar layer 71 to the column 1, and the tie bar 82 improves the horizontal restraint strength of the steel plate 32.
[2−2]第4実施形態
図14は、柱1の隣接する2面が補強対象面1aであり、それら面に対し本発明の補強工法で補強した第4実施形態を示している。この場合、2つの補強対象面1aの間の角部11aに対応する2枚の板部332の長さが同じL字状の鋼板33と、この鋼板33の両側に配設される長板部342と短板部343とを有する2枚のL字状の鋼板34との組み合わせで、1段の鋼板ユニット30Cが構成される。鋼板33,34の互いに隣接する側縁には、上下方向に延びる縦リブ391が形成されており、隣接する縦リブ391どうしが重ね合わされて直接当接した状態となっている。また、いずれの鋼板33,34にも上下の端部に互いに重なる横リブ39が形成されており、上下の横リブ39を重ねて鋼板ユニット30Cが複数段に積層され、柱1の補強対象面1aを覆って施工される。この場合にも、補強対象面1aにアンカー81が挿入、固定され、また、補強対象面1aに対応してタイバー82が鋼板34に貫通されている。
[2-2] Fourth Embodiment FIG. 14 shows a fourth embodiment in which two adjacent surfaces of the pillar 1 are reinforcing target surfaces 1a, and these surfaces are reinforced by the reinforcing method of the present invention. In this case, the L-shaped steel plate 33 having the same length of the two plate portions 332 corresponding to the corner portion 11a between the two reinforcement target surfaces 1a, and the long plate portions disposed on both sides of the steel plate 33 A single-stage steel plate unit 30C is configured by a combination of two L-shaped steel plates 34 each having 342 and a short plate portion 343. Vertical ribs 391 extending in the vertical direction are formed on the side edges of the steel plates 33 and 34 adjacent to each other, and the adjacent vertical ribs 391 are overlapped with each other and are in direct contact with each other. Further, both the steel plates 33 and 34 are formed with horizontal ribs 39 that overlap each other at the upper and lower ends, and the steel plate units 30C are stacked in a plurality of stages by overlapping the upper and lower horizontal ribs 39, and the reinforcement target surface of the column 1 It is constructed over 1a. Also in this case, the anchor 81 is inserted and fixed to the reinforcement target surface 1a, and the tie bar 82 penetrates the steel plate 34 corresponding to the reinforcement target surface 1a.
[2−3]第5実施形態
図15は、補強用の鉄筋21を四隅に配筋することを省略して、図6で示した例と同様に柱1の全面に鋼板31、繊維シート51およびモルタル層71からなる補強構造を施工した第5実施形態を示している。この場合、鉄筋21を配筋しない分、鋼板31は柱1の表面に接近しており、縦リブ391および横リブ39と柱1との間隔も狭い。このため、横リブ39が仕切りとなって柱1と鋼板31との間の空間が鋼板ユニット30Aごとに隔絶された状態に近くなり、1箇所からグラウト材61を充填しても、空間全体をグラウト材61で充満させることができない場合がある。したがってこのような場合には、鋼板ユニット30Aごとにグラウト材61を充填すればよい。
[2-3] Fifth Embodiment FIG. 15 omits reinforcing bars 21 for reinforcement at the four corners, and a steel plate 31 and a fiber sheet 51 are formed on the entire surface of the pillar 1 as in the example shown in FIG. And the 5th Embodiment which constructed the reinforcement structure which consists of mortar layers 71 is shown. In this case, since the reinforcing bars 21 are not arranged, the steel plate 31 is close to the surface of the column 1 and the intervals between the vertical ribs 391 and the horizontal ribs 39 and the columns 1 are narrow. For this reason, the horizontal rib 39 serves as a partition, and the space between the pillar 1 and the steel plate 31 is close to the state of being separated for each steel plate unit 30A. Even if the grout material 61 is filled from one place, the entire space is reduced. In some cases, the grout material 61 cannot be filled. Therefore, in such a case, the grout material 61 may be filled for each steel plate unit 30A.
[3]柱と壁を含む補強例
[3−1]第6実施形態
図16は、柱1の一面の両側に袖壁4が連続して施工された建造物を補強した第6実施形態を示している。この場合には、柱1と両側の袖壁4が平坦に連続する面が補強対象面14aであり、左右対称の一対の鋼板35で鋼板ユニット30Eが構成される。鋼板35は、柱1から袖壁4にわたって柱1と間隔を空けて平坦に配設される主板部351の一端部に、袖壁4に近接するようにクランク状に屈曲部352が形成されたもので、屈曲部352の端部には、柱1に挿入されるボルト84が通される。
[3] Reinforcing Example Including Column and Wall [3-1] Sixth Embodiment FIG. 16 shows a sixth embodiment in which a building in which sleeve walls 4 are continuously constructed on both sides of one surface of the column 1 is reinforced. Show. In this case, the surface where the pillar 1 and the sleeve walls 4 on both sides are continuously flat is the reinforcement target surface 14a, and the steel plate unit 30E is composed of a pair of symmetrical steel plates 35. In the steel plate 35, a bent portion 352 is formed in a crank shape so as to be close to the sleeve wall 4 at one end portion of the main plate portion 351 that is disposed flat from the pillar 1 to the sleeve wall 4 at a distance from the pillar 1. Therefore, a bolt 84 inserted into the column 1 is passed through the end of the bent portion 352.
鋼板35の互いに隣接する側縁には、上下方向に延びる縦リブ391が形成されており、これら縦リブ391どうしが重ね合わされて直接当接した状態となっている。鋼板ユニット30Eは、鋼板35の上下端に形成されている横リブ39を重ねて複数段に積層され、補強対象面14aを覆って施工される。そして、補強対象面14aの、左右の鋼板35の主板部351に対応する部分にはアンカー81が挿入されて固定され、グラウト材61中にアンカー81が埋設される。   Vertical ribs 391 extending in the vertical direction are formed on the side edges adjacent to each other of the steel plates 35, and the vertical ribs 391 are overlapped with each other and are in direct contact with each other. The steel plate unit 30 </ b> E is laminated in a plurality of stages by overlapping the horizontal ribs 39 formed at the upper and lower ends of the steel plate 35, and is constructed so as to cover the reinforcement target surface 14 a. The anchor 81 is inserted and fixed in a portion of the reinforcement target surface 14 a corresponding to the main plate portion 351 of the left and right steel plates 35, and the anchor 81 is embedded in the grout material 61.
[3−2]第7実施形態
図16では、柱1と袖壁4が平坦に連続する面を補強対象面としていたが、図17は、柱1が突出する側の面を補強対象面14bとする第7実施形態を示している。この場合は、柱1の2つの外隅側の角部11bに対応する2枚のL字状の鋼板36と、柱1と袖壁4とで形成される2つの内隅側の角部11cに対応する2枚のL字状の鋼板37とが左右対称に組まれて、鋼板ユニット30Fが構成される。
[3-2] Seventh Embodiment In FIG. 16, the surface on which the pillar 1 and the sleeve wall 4 are flat and continuous is used as the surface to be reinforced, but in FIG. A seventh embodiment is shown. In this case, two inner corner corners 11c formed by the two L-shaped steel plates 36 corresponding to the two outer corner corners 11b of the pillar 1 and the pillars 1 and the sleeve walls 4 are used. The two L-shaped steel plates 37 corresponding to are assembled symmetrically to constitute a steel plate unit 30F.
この場合も、互いに隣接する鋼板36,37の側縁には、上下方向に延びる縦リブ391が形成されており、これら縦リブ391どうしが重ね合わされて直接当接した状態となっている。鋼板ユニット30Fは、鋼板36,37の上下端に形成されている横リブ39を重ねて複数段に積層され、補強対象面14bを覆って施工される。両側の鋼板37の端部には、袖壁4に挿入されるボルト84が通される。図示例では上記のようなグラウト材61に埋設されるアンカー81は柱1に挿入されていないが、同様にアンカー81を設けてもよい。   Also in this case, vertical ribs 391 extending in the vertical direction are formed on the side edges of the steel plates 36 and 37 adjacent to each other, and the vertical ribs 391 are overlapped with each other and are in direct contact with each other. The steel plate unit 30F is constructed in such a manner that the horizontal ribs 39 formed on the upper and lower ends of the steel plates 36 and 37 are stacked in a plurality of stages and the reinforcing target surface 14b is covered. Bolts 84 inserted into the sleeve wall 4 are passed through the ends of the steel plates 37 on both sides. In the illustrated example, the anchor 81 embedded in the grout material 61 as described above is not inserted into the column 1, but the anchor 81 may be provided similarly.
[4]柱・梁接合部の補強
[4−1]第8実施形態
次に、図18〜図20を参照して柱1の4面に梁3が直交して接合された柱・梁接合部を本発明を適用することによって補強した第8実施形態を説明する。この場合、梁3の上面には床スラブ2が施工されている。柱1、梁3および床スラブ2は、いずれも既設の鉄筋コンクリート製の建造物の躯体である。
[4] Reinforcement of Column / Beam Joint [4-1] Eighth Embodiment Next, a column / beam joint in which beams 3 are orthogonally joined to four surfaces of a column 1 with reference to FIGS. 8th Embodiment which reinforced the part by applying this invention is described. In this case, the floor slab 2 is constructed on the upper surface of the beam 3. The pillar 1, the beam 3, and the floor slab 2 are all skeletons of existing reinforced concrete structures.
第8実施形態では、はじめに、柱1の周囲に、角部11に対応して補強用の鉄筋21を鉛直方向に立てて保持する。また、特に梁3と重なる部分の鉄筋21の周囲には、鉄筋21に通した螺旋フープ筋22を巻いた状態として保持する。次に、柱1の周囲に、上記第2実施形態と同様に、縦リブ391および横リブ39を有する4枚のL字状の鋼板31を配列して鋼板ユニット30Aを組み、梁3の上下の柱1に、鋼板ユニット30Aを積層する。   In the eighth embodiment, first, reinforcing reinforcing bars 21 are vertically held around the pillar 1 in correspondence with the corner portions 11. In particular, a spiral hoop bar 22 that passes through the bar 21 is held around the bar 21 that overlaps the beam 3. Next, as in the second embodiment, four L-shaped steel plates 31 having the vertical ribs 391 and the horizontal ribs 39 are arranged around the pillar 1 to assemble the steel plate units 30A. The steel plate unit 30 </ b> A is stacked on the pillar 1.
また、図19に示すように、柱1と、柱1よりも幅が小さい梁3が十字状に交わる接合部の外面を、柱1および梁3との間に一定間隔をおいて配列した側面鋼板381で覆う。側面鋼板381は、床スラブ2の下面に沿った上端部が、床スラブ2にボルト84で固定される。側面鋼板381の梁3を覆う下端部は梁3の下面に沿って屈曲し、その先端部の間が、内側に配された継手鋼板41で塞がれる。この継手鋼板41は、少なくとも一方側の側面鋼板381にスポット溶接等の手段で固着される。また、図20に示すように、側面鋼板381の横方向端部は、梁3の側面に近接するようにクランク状に屈曲し、その端部には、梁3に固定されるボルト84が通される。   In addition, as shown in FIG. 19, the side surface in which the outer surface of the joint where the column 1 and the beam 3 having a width smaller than the column 1 intersect in a cross shape is arranged with a certain interval between the column 1 and the beam 3. Cover with steel plate 381. The side steel plate 381 is fixed to the floor slab 2 with bolts 84 at the upper end along the lower surface of the floor slab 2. The lower end portion of the side steel plate 381 covering the beam 3 is bent along the lower surface of the beam 3, and the space between the tip ends thereof is closed with a joint steel plate 41 arranged on the inner side. The joint steel plate 41 is fixed to at least one side steel plate 381 by means such as spot welding. Further, as shown in FIG. 20, the lateral end of the side steel plate 381 is bent in a crank shape so as to be close to the side of the beam 3, and a bolt 84 fixed to the beam 3 is passed through the end. Is done.
この場合の工法手順は、柱1を覆う鋼板ユニット30Aと側面鋼板381を施工して柱・梁接合部をこれら鋼板で覆った後、鋼板表面に繊維シート51を接着する。次いで、各鋼板と柱1および梁3との間の空間へのグラウト材61の充填を行い、最後に、柱1の部分の繊維シート51の表面にモルタル層71を形成して完了する。   In this case, the steel sheet unit 30A and the side surface steel plate 381 that cover the column 1 are installed, the column / beam joint is covered with these steel plates, and then the fiber sheet 51 is bonded to the steel plate surface. Next, the grout material 61 is filled into the space between each steel plate and the pillar 1 and the beam 3, and finally, the mortar layer 71 is formed on the surface of the fiber sheet 51 in the pillar 1 portion to complete.
[4−2]第9実施形態
図21〜図24は、柱1の3面に梁3が直交して接合された柱・梁接合部に本発明を適用して補強した第9実施形態を示している。この場合、柱1の両側に延びる梁3は外面(図24で下側の面)側で面一の状態に施工されており、柱1および柱1から両側の梁3に連なる平坦な外面が補強対象面13aとなっている。
[4-2] Ninth Embodiment FIGS. 21 to 24 show a ninth embodiment in which the present invention is applied to a column / beam joint in which the beam 3 is orthogonally joined to the three surfaces of the column 1. Show. In this case, the beams 3 extending on both sides of the column 1 are constructed so as to be flush with each other on the outer surface (the lower surface in FIG. 24), and the flat outer surface connecting the columns 1 and 1 to the beams 3 on both sides is formed. It becomes the reinforcement object surface 13a.
第9実施形態では、図22に示すように、柱1の外面(補強対象面13a)に、図13で示したものと同様の長板部322と短板部323とを有するL字状の鋼板32を2枚1組とする鋼板ユニット30Bを配設する。鋼板32の互いに突き当てられる側縁には、上下方向に延びる縦リブ391が形成されており、縦リブ391どうしが重ね合わされて直接当接した状態となっている。また、鋼板32の上端および下端には、内側に直角に折り曲げ加工することにより横リブ39がそれぞれ形成されている。そして鋼板ユニット30Bを、リブ39を重ねることにより積層して柱1が覆われ、鋼板32の表面に繊維シート51が接着される。2枚の鋼板32の短板部323間にわたりタイバー82を貫通させており、タイバー82の両端をナット83で締め込んで緊張状態に締結し、タイバー82をグラウト材61中に埋め込んでいる。   In the ninth embodiment, as shown in FIG. 22, an L-shape having a long plate portion 322 and a short plate portion 323 similar to those shown in FIG. 13 on the outer surface (reinforcement target surface 13 a) of the pillar 1. A steel plate unit 30 </ b> B including two steel plates 32 is provided. Vertical ribs 391 extending in the vertical direction are formed on the side edges of the steel plates 32 that are abutted against each other, and the vertical ribs 391 are overlapped with each other and are in direct contact with each other. Further, at the upper end and the lower end of the steel plate 32, lateral ribs 39 are formed by bending the inner side at a right angle. Then, the steel plate units 30 </ b> B are stacked by overlapping the ribs 39 to cover the pillar 1, and the fiber sheet 51 is bonded to the surface of the steel plate 32. The tie bar 82 is penetrated between the short plate portions 323 of the two steel plates 32, and both ends of the tie bar 82 are tightened with nuts 83 to be tightened, and the tie bar 82 is embedded in the grout material 61.
また、図21および図23に示すように、柱1と柱1の両側の梁3からなる平坦な外面(補強対象面13a)には左右一対の梁部鋼板383が補強対象面13aと間隔を空けて配設される。梁部鋼板383の互いに隣接する側縁には、上下方向に延びる縦リブ391が形成されており、これら縦リブ391どうしが重ね合わされて直接当接した状態となっている。また、梁部鋼板383の離れた側の端部は梁3の側面に近接するようにクランク状に屈曲し、その端部には、梁3に固定されるボルト84が通される。梁部鋼板383が施工される前に、梁3に複数のアンカー81を挿入して固定される。図20に示すように、梁部鋼板383の縦断面形状は床スラブ2および梁3の表面に沿って屈曲しており、上端部側はボルト84で床スラブ2に固定されている。   Further, as shown in FIGS. 21 and 23, a pair of left and right beam steel plates 383 are spaced apart from the reinforcement target surface 13a on the flat outer surface (the reinforcement target surface 13a) composed of the column 1 and the beams 3 on both sides of the column 1. It is arranged in a space. Vertical ribs 391 extending in the vertical direction are formed on adjacent side edges of the beam steel plate 383, and the vertical ribs 391 are overlapped with each other and are in direct contact with each other. Further, the end of the beam portion steel plate 383 on the remote side is bent in a crank shape so as to be close to the side surface of the beam 3, and a bolt 84 fixed to the beam 3 is passed through the end portion. Before the beam steel plate 383 is constructed, a plurality of anchors 81 are inserted and fixed to the beam 3. As shown in FIG. 20, the longitudinal cross-sectional shape of the beam steel plate 383 is bent along the surfaces of the floor slab 2 and the beam 3, and the upper end side is fixed to the floor slab 2 with bolts 84.
第9実施形態においては、柱1の外面に対する鋼板ユニット30Aと、柱・梁の外面に対する左右2枚の梁部鋼板383を施工し、鋼板31と梁部鋼板383の表面に繊維シート51を接着し、次いで、鋼板31,383と柱1および梁3との間の空間へグラウト材61の充填を行い、最後に、繊維シート51の表面にモルタル層71を形成する。   In the ninth embodiment, a steel plate unit 30A for the outer surface of the pillar 1 and two left and right beam steel plates 383 for the outer surfaces of the pillars and beams are constructed, and the fiber sheet 51 is bonded to the surfaces of the steel plate 31 and the beam steel plate 383. Next, the grout material 61 is filled into the space between the steel plates 31 and 383 and the columns 1 and 3, and finally, the mortar layer 71 is formed on the surface of the fiber sheet 51.
1…柱
3…梁
31,32,33,34,35,36,37…鋼板
381…側面鋼板
383…梁部鋼板
391…縦リブ
51…繊維シート
61…グラウト材
71…モルタル層
71A…微細モルタル
71B…二次モルタル
91…粘弾性部材
DESCRIPTION OF SYMBOLS 1 ... Column 3 ... Beam 31, 32, 33, 34, 35, 36, 37 ... Steel plate 381 ... Side surface steel plate 383 ... Beam part steel plate 391 ... Vertical rib 51 ... Fiber sheet 61 ... Grout material 71 ... Mortar layer 71A ... Fine mortar 71B ... Secondary mortar 91 ... Viscoelastic member

Claims (7)

  1. 既設の建造物の表面に対面させた複数の鋼板を、該表面に沿って水平方向に配列して前記表面を覆う鋼板配列工程と、
    前記建造物の表面と、前記鋼板との間に、グラウト材を充填するグラウト材充填工程と、
    を備え、
    前記複数の鋼板の水平方向に互いに隣接する側縁に、前記建造物側に突出して略上下方向に延びる縦リブが形成されており、前記鋼板配列工程において、隣接する該縦リブどうしを対向させた状態とすること
    を特徴とする建造物の補強方法。
    A plurality of steel plates facing the surface of an existing building, a steel plate arrangement step of horizontally arranging the steel plates covering the surface along the surface,
    A grout material filling step of filling a grout material between the surface of the building and the steel plate,
    With
    The side ribs adjacent to each other in the horizontal direction of the plurality of steel plates are formed with vertical ribs projecting toward the building side and extending in the substantially vertical direction. In the steel plate arranging step, the adjacent vertical ribs are opposed to each other. A method of reinforcing a building, characterized in that
  2. 隣接する前記縦リブは、直接重ね合わせて当接させた状態、または離間した状態、または縦リブ間に粘弾性部材を挟んだ状態のいずれかの状態であることを特徴とする請求項1に記載の建造物の補強工法。   The adjacent vertical ribs are in a state where they are in direct contact with each other, in a separated state, or in a state where a viscoelastic member is sandwiched between the vertical ribs. Reinforcement method for listed buildings.
  3. 前記縦リブは、前記鋼板の側縁を折り曲げ加工して形成されていることを特徴とする請求項1または2に記載の建造物の補強工法。   The method of reinforcing a building according to claim 1, wherein the vertical rib is formed by bending a side edge of the steel plate.
  4. 前記鋼板の表面に繊維シートを張って接着する繊維シート接着工程を有することを特徴とする請求項1〜3のいずれかに記載の建造物の補強工法。   The reinforcing method for a building according to any one of claims 1 to 3, further comprising a fiber sheet bonding step in which a fiber sheet is stretched and bonded to the surface of the steel plate.
  5. 前記繊維シート接着工程で鋼板の表面に張られた前記繊維シートの表面に、仕上げ材としてモルタルを塗布するモルタル施工工程を有することを特徴とする請求項1〜4のいずれかに記載の建造物の補強工法。   The building according to any one of claims 1 to 4, further comprising a mortar construction step of applying mortar as a finishing material to the surface of the fiber sheet stretched on the surface of the steel sheet in the fiber sheet bonding step. Reinforcement construction method.
  6. 前記モルタル施工工程においては、前記繊維シートの表面に、含有セメントが微粒子状である微細モルタルを塗布する一次モルタル施工工程と、この微細モルタルの表面に二次モルタルを塗布する二次モルタル施工工程とを行うことを特徴とする請求項5に記載の建造物の補強工法。   In the mortar construction process, a primary mortar construction process in which fine mortar containing fine particles of cement is applied to the surface of the fiber sheet; and a secondary mortar construction process in which secondary mortar is applied to the surface of the fine mortar; The method for reinforcing a building according to claim 5, wherein:
  7. 前記二次モルタルは、ポリマーセメントモルタルまたは繊維含有モルタル、もしくはこれらポリマーセメントモルタルおよび繊維含有モルタルの混合物であることを特徴とする請求項6に記載の建造物の補強工法。   The method for reinforcing a building according to claim 6, wherein the secondary mortar is polymer cement mortar, fiber-containing mortar, or a mixture of these polymer cement mortar and fiber-containing mortar.
JP2012045733A 2012-03-01 2012-03-01 Building reinforcement method Active JP5597897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045733A JP5597897B2 (en) 2012-03-01 2012-03-01 Building reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045733A JP5597897B2 (en) 2012-03-01 2012-03-01 Building reinforcement method

Publications (3)

Publication Number Publication Date
JP2013181332A true JP2013181332A (en) 2013-09-12
JP2013181332A5 JP2013181332A5 (en) 2013-12-19
JP5597897B2 JP5597897B2 (en) 2014-10-01

Family

ID=49272197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045733A Active JP5597897B2 (en) 2012-03-01 2012-03-01 Building reinforcement method

Country Status (1)

Country Link
JP (1) JP5597897B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664989B1 (en) * 2014-04-28 2015-02-04 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of existing columns
JP2015113599A (en) * 2013-12-10 2015-06-22 株式会社サンヨーホーム Method and structure for column reinforcement
JP2015140561A (en) * 2014-01-28 2015-08-03 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building structure
JP2015168921A (en) * 2014-03-05 2015-09-28 栄次 槇谷 Steel plate unit, precast skeleton, skeleton construction method, and skeleton structure
JP2015200097A (en) * 2014-04-08 2015-11-12 栄次 槇谷 Steel plate for concrete mold
JP2015203198A (en) * 2014-04-11 2015-11-16 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building structure
JP5843269B1 (en) * 2014-09-19 2016-01-13 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building
JP2016035188A (en) * 2014-06-03 2016-03-17 一般社団法人 レトロフィットジャパン協会 Building reinforcement structure
JP2016069886A (en) * 2014-09-30 2016-05-09 一般社団法人 レトロフィットジャパン協会 Reinforcement structure for building
JP2016102290A (en) * 2014-11-07 2016-06-02 一般社団法人 レトロフィットジャパン協会 Reinforcement structure for building
JP5974314B1 (en) * 2016-02-09 2016-08-23 株式会社フジモト Seismic reinforcement structure for H-shaped steel columns
JP5984273B1 (en) * 2015-06-09 2016-09-06 株式会社サンヨーホーム Column reinforcement method and column reinforcement structure
JP6016313B1 (en) * 2015-07-13 2016-10-26 槇谷 榮次 Concrete structure and concrete structure construction method
JP2017075446A (en) * 2015-10-13 2017-04-20 栄次 槇谷 Concrete structure earthquake strengthening structure
KR20200029102A (en) * 2018-09-07 2020-03-18 단국대학교 산학협력단 Reinforcing method to improve seismic performance of reinforced concrete school buildings
US10612253B2 (en) 2015-06-09 2020-04-07 Sanyohome Co., Ltd. Construction method for reinforcing a column and reinforcing structure for a column

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904987B1 (en) * 2018-02-27 2018-10-05 창원대학교 산학협력단 Method of reinforcing building using cft structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972108A (en) * 1995-09-05 1997-03-18 Shimizu Corp Reinforcing method of existing column body
JPH1088822A (en) * 1996-09-17 1998-04-07 Sato Kogyo Co Ltd Earthquake resisting and reinforcing method of existing concrete structure and earthquake resisting and reinforcing structure
JPH1181554A (en) * 1997-09-03 1999-03-26 Nishimatsu Constr Co Ltd Earthquake resistant reinforcing method for concrete skeleton and reinforced steel plate structure used therefor
JP2000336946A (en) * 1999-05-26 2000-12-05 Shiraishi Corp Reinforcing method for columnar structure
JP2007239421A (en) * 2006-03-13 2007-09-20 Fujita Corp Method of reinforcing existing structure
JP2008240368A (en) * 2007-03-27 2008-10-09 Eiji Makitani Reinforced concrete column reinforcing structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972108A (en) * 1995-09-05 1997-03-18 Shimizu Corp Reinforcing method of existing column body
JPH1088822A (en) * 1996-09-17 1998-04-07 Sato Kogyo Co Ltd Earthquake resisting and reinforcing method of existing concrete structure and earthquake resisting and reinforcing structure
JPH1181554A (en) * 1997-09-03 1999-03-26 Nishimatsu Constr Co Ltd Earthquake resistant reinforcing method for concrete skeleton and reinforced steel plate structure used therefor
JP2000336946A (en) * 1999-05-26 2000-12-05 Shiraishi Corp Reinforcing method for columnar structure
JP2007239421A (en) * 2006-03-13 2007-09-20 Fujita Corp Method of reinforcing existing structure
JP2008240368A (en) * 2007-03-27 2008-10-09 Eiji Makitani Reinforced concrete column reinforcing structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113599A (en) * 2013-12-10 2015-06-22 株式会社サンヨーホーム Method and structure for column reinforcement
JP2015140561A (en) * 2014-01-28 2015-08-03 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building structure
JP2015168921A (en) * 2014-03-05 2015-09-28 栄次 槇谷 Steel plate unit, precast skeleton, skeleton construction method, and skeleton structure
JP2015200097A (en) * 2014-04-08 2015-11-12 栄次 槇谷 Steel plate for concrete mold
JP2015203198A (en) * 2014-04-11 2015-11-16 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building structure
JP5664989B1 (en) * 2014-04-28 2015-02-04 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of existing columns
JP2016035188A (en) * 2014-06-03 2016-03-17 一般社団法人 レトロフィットジャパン協会 Building reinforcement structure
JP5843269B1 (en) * 2014-09-19 2016-01-13 一般社団法人 レトロフィットジャパン協会 Reinforcement structure of building
JP2016061106A (en) * 2014-09-19 2016-04-25 一般社団法人 レトロフィットジャパン協会 Reinforcing structure for building
JP2016069886A (en) * 2014-09-30 2016-05-09 一般社団法人 レトロフィットジャパン協会 Reinforcement structure for building
JP2016102290A (en) * 2014-11-07 2016-06-02 一般社団法人 レトロフィットジャパン協会 Reinforcement structure for building
JP5984273B1 (en) * 2015-06-09 2016-09-06 株式会社サンヨーホーム Column reinforcement method and column reinforcement structure
US10612253B2 (en) 2015-06-09 2020-04-07 Sanyohome Co., Ltd. Construction method for reinforcing a column and reinforcing structure for a column
JP6016313B1 (en) * 2015-07-13 2016-10-26 槇谷 榮次 Concrete structure and concrete structure construction method
JP2017075446A (en) * 2015-10-13 2017-04-20 栄次 槇谷 Concrete structure earthquake strengthening structure
JP5974314B1 (en) * 2016-02-09 2016-08-23 株式会社フジモト Seismic reinforcement structure for H-shaped steel columns
KR20200029102A (en) * 2018-09-07 2020-03-18 단국대학교 산학협력단 Reinforcing method to improve seismic performance of reinforced concrete school buildings
KR102134399B1 (en) * 2018-09-07 2020-07-16 단국대학교 산학협력단 Reinforcing method to improve seismic performance of reinforced concrete school buildings

Also Published As

Publication number Publication date
JP5597897B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5517516B2 (en) Reinforcement structure of building
JP4721273B2 (en) Seismic reinforcement method for existing buildings with reinforced concrete frame structures
CN107542190B (en) Composite structural wall and method of construction thereof
AU2018202709A1 (en) Modular Building System
JP4160078B2 (en) Construction structure of building members using fiber sheet as the main joining material
WO2014167624A1 (en) Buckling-restrained brace, and load-bearing structure provided therewith
JP6553442B2 (en) Reinforcement structure and reinforcement method for existing columns
KR20120074130A (en) Compisite column structure for steel and concrete
JP2009249851A (en) Seismic strengthening method for existing building
JP2005351078A (en) Construction method of steel frame reinforced concrete column
JP2005155049A (en) Anti-seismic reinforcing structure for building construction
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
JP5314356B2 (en) Composite beam, composite beam construction method, and fireproof building
JP2008240368A (en) Reinforced concrete column reinforcing structure
JP4247496B2 (en) Seismic reinforcement structure
JP6058332B2 (en) Seismic reinforcement structure for concrete column and seismic reinforcement method for concrete column
JP6754560B2 (en) Bearing plate member
JP2011196089A (en) Hybrid cogging and column-beam joint structure using the same
WO2019056717A1 (en) Post-tensioned prestressed assembly-style system of concrete framework and shock-resistant and energy-dissipating components, and construction method
JP5985929B2 (en) Composite structures and buildings
JP5991132B2 (en) Seismic reinforcement structure and construction method
JP4220919B2 (en) Seismic reinforcement structure
JP4590373B2 (en) Structural wall
RU2585316C1 (en) Building construction method using angular wall panels and bearing angular wall panel for realising said method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5597897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250