JP2018070699A - Polyimide resin composition - Google Patents

Polyimide resin composition Download PDF

Info

Publication number
JP2018070699A
JP2018070699A JP2016209251A JP2016209251A JP2018070699A JP 2018070699 A JP2018070699 A JP 2018070699A JP 2016209251 A JP2016209251 A JP 2016209251A JP 2016209251 A JP2016209251 A JP 2016209251A JP 2018070699 A JP2018070699 A JP 2018070699A
Authority
JP
Japan
Prior art keywords
polyimide resin
resin composition
film
polyimide
aliphatic diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016209251A
Other languages
Japanese (ja)
Other versions
JP6780440B2 (en
Inventor
真保 蓮池
Maho Hasuike
真保 蓮池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2016209251A priority Critical patent/JP6780440B2/en
Priority to CN202111281828.5A priority patent/CN114143671B/en
Priority to PCT/JP2017/031386 priority patent/WO2018047708A1/en
Priority to CN201780054392.1A priority patent/CN109691132B/en
Priority to TW111115349A priority patent/TWI817455B/en
Priority to TW106130133A priority patent/TWI813545B/en
Publication of JP2018070699A publication Critical patent/JP2018070699A/en
Application granted granted Critical
Publication of JP6780440B2 publication Critical patent/JP6780440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide-based resin composition excellent in heat resistance, rigidity and impact resistance, and to provide a molded body and a film using the composition.SOLUTION: A polyimide-based resin composition contains a polyether imide resin (A) and a crystalline polyimide resin (B) containing a tetracarboxylic acid component (b-1) and an aliphatic diamine component (b-2), where a content ratio of the polyether imide resin (A) and the crystalline polyimide resin (B) is (A):(B)=1:99 to 99:1. In the polyimide-based resin composition, the aliphatic diamine component (b-2) preferably contains at least C4-12 linear aliphatic diamine, preferably further contains alicyclic diamine, and more preferably is 1,3-bis(aminomethyl)cyclohexane.SELECTED DRAWING: None

Description

本発明は、耐熱性、剛性、耐衝撃性に優れるポリイミド系樹脂組成物、及び、該ポリイミド系樹脂組成物を成形して得られる成形体、特にフィルムに関する。   The present invention relates to a polyimide resin composition having excellent heat resistance, rigidity, and impact resistance, and a molded body obtained by molding the polyimide resin composition, particularly a film.

ポリエーテルイミド樹脂は、ガラス転移温度が200℃を超える非晶性のスーパーエンジニアリングプラスチックであり、その優れた耐熱性や難燃性、成形性を活かして自動車部材、航空機部材、電気・電子部材等に幅広く使用されている。しかしながら、ポリエーテルイミド樹脂は非常に脆い材料であり、耐衝撃性が必要とされる用途では使用が難しいという課題がある。また、剛性が高く、柔軟性が低いため、プラスチックフィルム本来の柔軟性(しなやかさ)が要求される用途においては使用が難しいという課題がある。   Polyetherimide resin is a non-crystalline super engineering plastic with a glass transition temperature exceeding 200 ° C. Utilizing its excellent heat resistance, flame retardancy, and moldability, it is an automobile member, aircraft member, electric / electronic member, etc. Widely used in However, polyetherimide resin is a very brittle material, and there is a problem that it is difficult to use in applications that require impact resistance. Moreover, since the rigidity is high and the flexibility is low, there is a problem that it is difficult to use in applications that require the original flexibility (flexibility) of the plastic film.

これらの課題に対して、特許文献1には、ポリエーテルイミド樹脂に対してポリエステル樹脂とエポキシ系化合物をブレンドした樹脂組成物が開示されており、該組成物は耐衝撃性、耐加水分解性、耐タブ曲げ性(耐折り曲げ性)に優れる旨の記載がある。   In response to these problems, Patent Document 1 discloses a resin composition obtained by blending a polyester resin and an epoxy compound with a polyetherimide resin, and the composition has impact resistance and hydrolysis resistance. There is a description that it is excellent in tab bending resistance (bending resistance).

特表2002−532599号公報JP 2002-532599 A

しかしながら、ポリエーテルイミド樹脂はガラス転移温度が高く、成形時の温度が高いため、ブレンド時にポリエステル樹脂が分解・劣化してしまう恐れがある。また、ポリエーテルイミド樹脂とポリエステル樹脂は非相溶系の組み合わせが多く、ブレンドによって必ずしも耐衝撃性が向上するとは言えない。例えば、特許文献1の実施例では、引張破断伸度や耐折り曲げ性で評価した耐衝撃性が向上している例や、弾性率(剛性)が低下して適切な範囲に含まれている例が存在するが、全ての性能をバランス良く満たす例は無く、ポリエーテルイミド樹脂の持つ課題を十分満足に解決できているとは言えない。   However, since the polyetherimide resin has a high glass transition temperature and a high molding temperature, the polyester resin may be decomposed and deteriorated during blending. Moreover, polyetherimide resin and polyester resin have many incompatible combinations, and it cannot be said that the impact resistance is necessarily improved by blending. For example, in the examples of Patent Document 1, the impact resistance evaluated by the tensile elongation at break and the bending resistance is improved, and the elastic modulus (rigidity) is reduced and included in an appropriate range. However, there is no example that satisfies all the performance in a well-balanced manner, and it cannot be said that the problems of the polyetherimide resin can be solved satisfactorily.

一方、テトラカルボン酸と脂肪族ジアミンからなる結晶性ポリイミド樹脂は、耐熱性と耐衝撃性のバランスに優れる。しかし、耐衝撃性に優れるものの、剛性が比較的低いため、用途によっては、薄膜として使用する際のハンドリング性に劣るという課題がある。また、脂環族ジアミン等の高価なモノマーを使用するため、原料単価が高くなり、用途が限定されてしまうという課題もある。   On the other hand, a crystalline polyimide resin composed of tetracarboxylic acid and an aliphatic diamine has an excellent balance between heat resistance and impact resistance. However, although it is excellent in impact resistance, since the rigidity is relatively low, there is a problem that it is inferior in handling property when used as a thin film depending on the application. Moreover, since expensive monomers, such as alicyclic diamine, are used, the raw material unit price becomes high and the subject that an application will be limited also occurs.

本発明者は、鋭意検討を重ねた結果、特定の構造を有する結晶性ポリイミド樹脂はポリエーテルイミド樹脂との相溶性が高いため、これらのブレンド物は上記課題を解決できる事を見出し、本発明に至った。   As a result of intensive studies, the present inventors have found that crystalline polyimide resins having a specific structure are highly compatible with polyetherimide resins, so that these blends can solve the above problems, and the present invention. It came to.

すなわち本発明の第1の態様は、ポリエーテルイミド樹脂(A)、及び、テトラカルボン酸成分(b−1)と脂肪族ジアミン成分(b−2)とを含有する結晶性ポリイミド樹脂(B)を含有するポリイミド系樹脂組成物であって、前記ポリエーテルイミド樹脂(A)と前記結晶性ポリイミド樹脂(B)の含有割合が(A):(B)=1:99〜99:1質量%であることを特徴とするポリイミド系樹脂組成物である。   That is, the first aspect of the present invention is a polyetherimide resin (A) and a crystalline polyimide resin (B) containing a tetracarboxylic acid component (b-1) and an aliphatic diamine component (b-2). The content ratio of the said polyetherimide resin (A) and the said crystalline polyimide resin (B) is (A) :( B) = 1: 99-99: 1 mass%. It is a polyimide resin composition characterized by being.

本発明の第1の態様において、前記脂肪族ジアミン成分(b−2)が、少なくとも炭素数4〜12の直鎖状脂肪族ジアミンを含むことが好ましい。   1st aspect of this invention WHEREIN: It is preferable that the said aliphatic diamine component (b-2) contains a C4-C12 linear aliphatic diamine at least.

本発明の第1の態様において、前記脂肪族ジアミン成分(b−2)が、少なくとも脂環族ジアミンを含むことが好ましい。   1st aspect of this invention WHEREIN: It is preferable that the said aliphatic diamine component (b-2) contains an alicyclic diamine at least.

本発明の第1の態様において、前記脂環族ジアミンが、1,3−ビス(アミノメチル)シクロヘキサンであることが好ましい。   In the first aspect of the present invention, the alicyclic diamine is preferably 1,3-bis (aminomethyl) cyclohexane.

本発明の第1の態様において、JIS K7244−4に記載の動的粘弾性の温度分散測定により、歪み0.1%、周波数10Hz、昇温速度3℃/分にて測定した損失正接(tanδ)のピーク値が一つ存在することが好ましい。   In the first aspect of the present invention, the loss tangent (tan δ) measured at a strain of 0.1%, a frequency of 10 Hz, and a heating rate of 3 ° C./min by temperature dispersion measurement of dynamic viscoelasticity described in JIS K7244-4. It is preferable that there is one peak value.

本発明の第1の態様において、前記損失正接(tanδ)のピーク値が示す温度(Tg)が150℃以上、300℃以下であることが好ましい。   1st aspect of this invention WHEREIN: It is preferable that the temperature (Tg) which the peak value of the said loss tangent (tan-delta) shows is 150 to 300 degreeC.

本発明の第1の態様において、JIS K7127に準拠して測定した引張弾性率が2200MPa以上、3100MPa以下であることが好ましい。   1st aspect of this invention WHEREIN: It is preferable that the tensile elasticity modulus measured based on JISK7127 is 2200 Mpa or more and 3100 Mpa or less.

本発明の第1の態様において、JIS K7127に準拠して測定した引張破断伸度が130%以上であることが好ましい。   In the first aspect of the present invention, the tensile elongation at break measured in accordance with JIS K7127 is preferably 130% or more.

本発明の第2の態様は、上記本発明の第1の態様に係るポリイミド系樹脂組成物を用いて成形されてなる成形体である。   The second aspect of the present invention is a molded body formed by using the polyimide resin composition according to the first aspect of the present invention.

本発明の第2の態様において、前記成形体がフィルムであることが好ましい。   2nd aspect of this invention WHEREIN: It is preferable that the said molded object is a film.

本発明によれば、耐熱性、剛性、耐衝撃性に優れるポリイミド系樹脂組成物、ならびに、該組成物を用いた成形体やフィルムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polyimide resin composition excellent in heat resistance, rigidity, and impact resistance, and the molded object and film using this composition can be provided.

以下、本発明を詳しく説明するが、本発明は以下に説明する実施形態に限定されるものではない。なお、特に断らない限り、数値AおよびBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to the embodiments described below. Unless otherwise specified, the notation “A to B” for numerical values A and B means “A to B”. In this notation, when a unit is attached to only the numerical value B, the unit is also applied to the numerical value A.

本発明のポリイミド系樹脂組成物は、ポリエーテルイミド樹脂(A)、及び、結晶性ポリイミド樹脂(B)を含有する。   The polyimide resin composition of the present invention contains a polyetherimide resin (A) and a crystalline polyimide resin (B).

<ポリエーテルイミド樹脂(A)>
ポリエーテルイミド樹脂(A)は特に限定されることはなく、周知の化合物を使用することができ、その製造方法及び特性は例えば米国特許3,803,085及び同3,905,942に記載されている。
<Polyetherimide resin (A)>
The polyetherimide resin (A) is not particularly limited, and a known compound can be used, and its production method and characteristics are described in, for example, US Pat. Nos. 3,803,085 and 3,905,942. ing.

本発明において用いるポリエーテルイミド樹脂(A)としては、具体的には、下記の式(1)で表される構造を有している事が、耐熱性と成形性のバランスに優れる点で好ましい。   Specifically, the polyetherimide resin (A) used in the present invention preferably has a structure represented by the following formula (1) from the viewpoint of excellent balance between heat resistance and moldability. .

Figure 2018070699
上記式(化1)において、n(繰り返し数)は通常10〜1,000の範囲の整数であり、好ましくは10〜500である。nがかかる範囲にあれば、成形性と耐熱性のバランスに優れる。
Figure 2018070699
In the above formula (Formula 1), n (the number of repetitions) is usually an integer in the range of 10 to 1,000, preferably 10 to 500. If n is in such a range, the balance between moldability and heat resistance is excellent.

上記式(化1)は、結合様式の違い、具体的にはメタ結合とパラ結合の違いから、下記の(化2)と(化3)でそれぞれ表される構造に分類できる。   The above formula (Chemical Formula 1) can be classified into the structures represented by the following (Chemical Formula 2) and (Chemical Formula 3), respectively, from the difference in the bonding mode, specifically, the difference between the meta bond and the para bond.

Figure 2018070699
Figure 2018070699

Figure 2018070699
上記(化2)及び(化3)において、n(繰り返し数)は通常10〜1,000の範囲の整数であり、好ましくは10〜500である。nがかかる範囲にあれば、成形性と耐熱性のバランスに優れる。
Figure 2018070699
In the above (Chemical Formula 2) and (Chemical Formula 3), n (the number of repetitions) is usually an integer in the range of 10 to 1,000, preferably 10 to 500. If n is in such a range, the balance between moldability and heat resistance is excellent.

このような構造をもつポリエーテルイミド樹脂(A)の具体例としては、例えばサビックイノベーティブプラスチックス社から商品名「Ultem」シリーズとして市販されている。   Specific examples of the polyetherimide resin (A) having such a structure are commercially available, for example, from the Subic Innovative Plastics Corporation under the trade name “Ultem” series.

ポリエーテルイミド樹脂(A)のガラス転移温度は、160℃以上300℃以下であるのが好ましく、170℃以上290℃以下であるのがより好ましく、180℃以上280℃以下であるのが更に好ましく、190℃以上270℃以下であることが特に好ましく、200℃以上260℃以下であることがとりわけ好ましい。ポリエーテルイミド樹脂(A)のガラス転移温度が160℃以上であることにより、ポリイミド系樹脂組成物の耐熱性が十分なものとなる。一方、ポリエーテルイミド樹脂(A)のガラス転移温度が300℃以下であることにより、比較的低温で成形または二次加工できるため、結晶性ポリイミド樹脂(B)とブレンドする際に、結晶性ポリイミド樹脂(B)の分解・劣化を引き起こすことが無い。   The glass transition temperature of the polyetherimide resin (A) is preferably 160 ° C. or higher and 300 ° C. or lower, more preferably 170 ° C. or higher and 290 ° C. or lower, and still more preferably 180 ° C. or higher and 280 ° C. or lower. 190 ° C. or higher and 270 ° C. or lower is particularly preferable, and 200 ° C. or higher and 260 ° C. or lower is particularly preferable. When the glass transition temperature of the polyetherimide resin (A) is 160 ° C. or higher, the heat resistance of the polyimide-based resin composition becomes sufficient. On the other hand, when the polyetherimide resin (A) has a glass transition temperature of 300 ° C. or lower, it can be molded or secondary processed at a relatively low temperature. Therefore, when blended with the crystalline polyimide resin (B), the crystalline polyimide It does not cause decomposition or deterioration of the resin (B).

<結晶性ポリイミド樹脂(B)>
本発明に用いる結晶性ポリイミド樹脂(B)は、テトラカルボン酸成分とジアミン成分とを重合して得られる。
<Crystalline polyimide resin (B)>
The crystalline polyimide resin (B) used in the present invention is obtained by polymerizing a tetracarboxylic acid component and a diamine component.

結晶性ポリイミド樹脂(B)を構成するテトラカルボン酸成分(b−1)は、シクロブタン−1,2,3,4−テトラカルボン酸、シクロペンタン−1,2,3,4−テトラカルボン酸、シクロヘキサン−1,2,4,5−テトラカルボン酸等の脂環族テトラカルボン酸、3,3‘,4,4’−ジフェニルスルホンテトラカルボン酸、3,3‘,4,4’−ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ナフタレン−1,4,5,8−テトラカルボン酸、ピロメリット酸等を例示する事ができる。また、これらのアルキルエステル体も使用する事が出来る。   The tetracarboxylic acid component (b-1) constituting the crystalline polyimide resin (B) is cyclobutane-1,2,3,4-tetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid, Cycloaliphatic tetracarboxylic acid such as cyclohexane-1,2,4,5-tetracarboxylic acid, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetra Examples thereof include carboxylic acid, biphenyltetracarboxylic acid, naphthalene-1,4,5,8-tetracarboxylic acid, pyromellitic acid and the like. Moreover, these alkyl ester bodies can also be used.

なかでも、テトラカルボン酸成分(b−1)のうち50モル%を超える成分がピロメリット酸であることが好ましい。テトラカルボン酸成分(b−1)がピロメリット酸を主成分とする事により、本発明のポリイミド系樹脂組成物が耐熱性、二次加工性および低吸水性に優れる。かかる観点から、テトラカルボン酸成分(b−1)のうち、ピロメリット酸は60モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましく、とりわけテトラカルボン酸成分(a−1)の全て(100モル%)がピロメリット酸であることが好ましい。   Especially, it is preferable that the component exceeding 50 mol% among tetracarboxylic acid components (b-1) is pyromellitic acid. When the tetracarboxylic acid component (b-1) is mainly composed of pyromellitic acid, the polyimide resin composition of the present invention is excellent in heat resistance, secondary processability and low water absorption. From this viewpoint, among the tetracarboxylic acid component (b-1), pyromellitic acid is more preferably 60 mol% or more, further preferably 80 mol% or more, and 90 mol% or more. In particular, it is particularly preferable that all (100 mol%) of the tetracarboxylic acid component (a-1) is pyromellitic acid.

結晶性ポリイミド樹脂(B)を構成するジアミン成分は、脂肪族ジアミン(b−2)を主成分とする事が重要である。すなわち、ジアミン成分のうち50モル%を超える成分が脂肪族ジアミン(b−2)であることが重要であり、60モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましく、とりわけジアミン成分の全て(100モル%)が脂肪族ジアミン(b−2)であることが好ましい。このことにより、本発明のポリイミド系樹脂組成物に、耐熱性、低吸水性、成形性および二次加工性を付与することができる。なお、本発明における脂肪族ジアミンには、脂環族ジアミンも包まれる。   It is important that the diamine component constituting the crystalline polyimide resin (B) is mainly composed of an aliphatic diamine (b-2). That is, it is important that the component exceeding 50 mol% of the diamine component is the aliphatic diamine (b-2), more preferably 60 mol% or more, and still more preferably 80 mol% or more. 90 mol% or more is particularly preferable, and it is particularly preferable that all (100 mol%) of the diamine component is an aliphatic diamine (b-2). Thereby, heat resistance, low water absorption, moldability, and secondary processability can be imparted to the polyimide resin composition of the present invention. The aliphatic diamine in the present invention includes alicyclic diamines.

前記脂肪族ジアミン(b−2)としては、炭化水素基の両末端にアミン基を有するジアミン成分であれば特に制限はないが、耐熱性を重視する場合には、環状炭化水素の両末端にアミン基を有する脂環族ジアミンを含むことが好ましい。脂環族ジアミンの具体例としては、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロデカン等が挙げられる。これらの中でも、耐熱性、成形性および二次加工性を両立できるという観点から、1,3−ビス(アミノメチル)シクロヘキサンが好適に用いられる。   The aliphatic diamine (b-2) is not particularly limited as long as it is a diamine component having amine groups at both ends of the hydrocarbon group, but when heat resistance is important, it is added at both ends of the cyclic hydrocarbon. It is preferable to include an alicyclic diamine having an amine group. Specific examples of the alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis (2- Methylcyclohexylamine), isophoronediamine, norbornanediamine, bis (aminomethyl) tricyclodecane and the like. Among these, 1,3-bis (aminomethyl) cyclohexane is preferably used from the viewpoint of achieving both heat resistance, moldability, and secondary processability.

一方、本発明のポリイミド系樹脂組成物において、耐衝撃性、成形性、二次加工性を重視する場合には、前記脂肪族ジアミン(b−2)として、直鎖状炭化水素の量末端にアミン基を有する直鎖状脂肪族ジアミンを含むことが好ましい。直鎖状脂肪族ジアミンとしては、アルキル基の両末端にアミン基を有するジアミン成分であれば特に制限はないが、具体例としては、エチレンジアミン(炭素数2)、プロピレンジアミン(炭素数3)、ブタンジアミン(炭素数4)、ペンタンジアミン(炭素数5)、ヘキサンジアミン(炭素数6)、ヘプタンジアミン(炭素数7)、オクタンジアミン(炭素数8)、ノナンジアミン(炭素数9)、デカンジアミン(炭素数10)、ウンデカンジアミン(炭素数11)、ドデカンジアミン(炭素数12)、トリデカンジアミン(炭素数13)、テトラデカンジアミン(炭素数14)、ペンタデカンジアミン(炭素数15)、ヘキサデカンジアミン(炭素数16)、ヘプタデカンジアミン(炭素数17)、オクタデカンジアミン(炭素数18)、ノナデカンジアミン(炭素数19)、エイコサン(炭素数20)、トリアコンタン(炭素数30)、テトラコンタン(炭素数40)、ペンタコンタン(炭素数50)等が挙げられる。これらの中でも、成形性や二次加工性、低吸湿性に優れるという観点から、炭素数4〜12の直鎖状脂肪族ジアミンが挙げられる。また、これら直鎖状脂肪族ジアミンが炭素数1〜10の枝分かれ構造を有するものであってもよい。   On the other hand, in the polyimide resin composition of the present invention, when importance is placed on impact resistance, moldability, and secondary processability, as the aliphatic diamine (b-2), at the end of the linear hydrocarbon amount. It is preferable to include a linear aliphatic diamine having an amine group. The linear aliphatic diamine is not particularly limited as long as it is a diamine component having amine groups at both ends of the alkyl group. Specific examples include ethylene diamine (carbon number 2), propylene diamine (carbon number 3), Butanediamine (carbon number 4), pentanediamine (carbon number 5), hexanediamine (carbon number 6), heptanediamine (carbon number 7), octanediamine (carbon number 8), nonanediamine (carbon number 9), decanediamine ( 10 carbon atoms, undecane diamine (11 carbon atoms), dodecane diamine (12 carbon atoms), tridecane diamine (13 carbon atoms), tetradecane diamine (14 carbon atoms), pentadecane diamine (15 carbon atoms), hexadecane diamine (carbon) 16), heptadecanediamine (carbon number 17), octadecanediamine (carbon number 18) Nona decane diamine (19 carbon atoms), eicosane (20 carbon atoms), triacontane (30 carbon atoms), Tetorakontan (40 carbon atoms), pentacontanoic (number 50 atoms) and the like. Among these, C4-C12 linear aliphatic diamine is mentioned from a viewpoint that it is excellent in a moldability, secondary workability, and low hygroscopicity. These linear aliphatic diamines may have a branched structure having 1 to 10 carbon atoms.

前記脂肪族ジアミン(b−2)以外の成分として、他のジアミン成分を含んでいてもよい。具体的には、1,4−フェニレンジアミン、1,3−フェニレンジアミン、2,4−トルエンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、α,α’−ビス(4−アミノフェニル)1,4’−ジイソプロピルベンゼン、α,α’-ビス(3−アミノフェニル)−1,4−ジイソプロピルベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノジフェニルスルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,6−ジアミノナフタレン、1,5−ジアミノナフタレン、p−キシリレンジアミン、m−キシリレンジアミン等の芳香族ジアミン成分、ポリエチレングリコールビス(3−アミノプロピル)エーテル、ポリプロピレングリコールビス(3−アミノプロピル)エーテル等のエーテルジアミン成分、シロキサンジアミン類等が挙げられる。   As a component other than the aliphatic diamine (b-2), another diamine component may be included. Specifically, 1,4-phenylenediamine, 1,3-phenylenediamine, 2,4-toluenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, α, α'-bis (4-aminophenyl) ) 1,4′-diisopropylbenzene, α, α′-bis (3-aminophenyl) -1,4-diisopropylbenzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4 '-Diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) Enyl] sulfone, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene, aromatic diamine components such as p-xylylenediamine, m-xylylenediamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis Examples include ether diamine components such as (3-aminopropyl) ether, siloxane diamines, and the like.

脂肪族ジアミン(b−2)は、脂環族ジアミンと直鎖状脂肪族ジアミンのいずれか、または両方を含んでも良いが、耐熱性と成形性のバランスに優れる事から、脂環族ジアミンと直鎖状脂肪族ジアミンの両方を含む事が好ましい。脂環族ジアミンと直鎖状脂肪族ジアミンを両方含む場合、それぞれの含有量は、脂環族ジアミン:直鎖状脂肪族ジアミン=99:1〜1:99モル%の範囲であることが好ましく、90:10〜10:90モル%であることがより好ましく、80:20〜20:80モル%であることが更に好ましく、70:30〜30:70モル%であることが特に好ましく、60:40〜40:60モル%であることがとりわけ好ましい。脂肪族ジアミン(b−2)に含まれる脂環族ジアミンと直鎖状脂肪族ジアミンの割合がかかる範囲であれば、本発明のポリイミド系樹脂組成物は耐熱性、耐衝撃性、成形性のバランスに優れる。   The aliphatic diamine (b-2) may contain either or both of an alicyclic diamine and a linear aliphatic diamine, but since it has an excellent balance between heat resistance and moldability, It is preferable to include both linear aliphatic diamines. When both an alicyclic diamine and a linear aliphatic diamine are included, the content of each is preferably in the range of alicyclic diamine: linear aliphatic diamine = 99: 1 to 1:99 mol%. 90:10 to 10:90 mol%, more preferably 80:20 to 20:80 mol%, still more preferably 70:30 to 30:70 mol%, : 40 to 40: 60 mol% is particularly preferable. If the ratio of the alicyclic diamine and the linear aliphatic diamine contained in the aliphatic diamine (b-2) is within such a range, the polyimide resin composition of the present invention has heat resistance, impact resistance and moldability. Excellent balance.

結晶性ポリイミド樹脂(B)の結晶融解温度は260℃以上、350℃以下であることが好ましく、270℃以上、345℃以下であることがより好ましく、280℃以上、340℃以下であることが更に好ましい。結晶性ポリイミド樹脂(B)の結晶融解温度が260℃以上であれば、ポリイミド系樹脂組成物の耐熱性が十分なものとなる。一方、結晶融解温度が350℃以下であれば、例えば、本発明のポリイミド系樹脂組成物を用いて成形する際に、比較的低温で成形または二次加工が出来るため好ましい。   The crystal melting temperature of the crystalline polyimide resin (B) is preferably 260 ° C. or higher and 350 ° C. or lower, more preferably 270 ° C. or higher and 345 ° C. or lower, and more preferably 280 ° C. or higher and 340 ° C. or lower. Further preferred. If the crystal melting temperature of the crystalline polyimide resin (B) is 260 ° C. or higher, the heat resistance of the polyimide resin composition will be sufficient. On the other hand, a crystal melting temperature of 350 ° C. or lower is preferable because, for example, molding or secondary processing can be performed at a relatively low temperature when molding using the polyimide resin composition of the present invention.

結晶性ポリイミド樹脂(B)のガラス転移温度は150℃以上、300℃以下であることが好ましく、160℃以上、290℃以下であることがより好ましく、170℃以上、280℃以下であることが更に好ましい。結晶性ポリイミド樹脂(B)のガラス転移温度が150℃以上であれば、ポリイミド系樹脂組成物の耐熱性が十分なものとなる。一方、ガラス転移温度が300℃以下であれば、本発明のポリイミド系樹脂組成物を用いて成形する際に、比較的低温で成形が出来るため好ましい。また、得られた成形体を二次加工する場合も、同様の理由で好ましい。   The glass transition temperature of the crystalline polyimide resin (B) is preferably 150 ° C. or higher and 300 ° C. or lower, more preferably 160 ° C. or higher and 290 ° C. or lower, and 170 ° C. or higher and 280 ° C. or lower. Further preferred. When the glass transition temperature of the crystalline polyimide resin (B) is 150 ° C. or higher, the heat resistance of the polyimide resin composition is sufficient. On the other hand, a glass transition temperature of 300 ° C. or lower is preferable because molding can be performed at a relatively low temperature when molding using the polyimide resin composition of the present invention. Moreover, when the obtained molded object is secondary-processed, it is preferable for the same reason.

<ポリイミド系樹脂組成物>
本発明のポリイミド系樹脂組成物は、前記ポリエーテルイミド樹脂(A)と前記結晶性ポリイミド樹脂(B)の含有割合が(A):(B)=1:99〜99:1質量%であることを特徴とする。
<Polyimide resin composition>
In the polyimide resin composition of the present invention, the content ratio of the polyetherimide resin (A) and the crystalline polyimide resin (B) is (A) :( B) = 1: 99 to 99: 1 mass%. It is characterized by that.

前記ポリエーテルイミド樹脂(A)と前記結晶性ポリイミド樹脂(B)の含有割合は、要求される用途に応じて適宜調整することができる。本発明のポリイミド系樹脂組成物において、例えば耐熱性や剛性を重視する場合には、前記ポリエーテルイミド樹脂(A)と前記結晶性ポリイミド樹脂(B)の含有割合が(A):(B)=60:40であることが好ましく、70:30であることがより好ましく、80:20であることが更に好ましい。一方、耐衝撃性を重視する場合には、前記ポリエーテルイミド樹脂(A)と前記結晶性ポリイミド樹脂(B)の含有割合が(A):(B)=40:60であることが好ましく、30:70であることがより好ましく、20:80であることが更に好ましい。   The content rate of the said polyetherimide resin (A) and the said crystalline polyimide resin (B) can be suitably adjusted according to the use requested | required. In the polyimide resin composition of the present invention, for example, when importance is attached to heat resistance and rigidity, the content ratio of the polyetherimide resin (A) and the crystalline polyimide resin (B) is (A) :( B). = 60:40 is preferred, 70:30 is more preferred, and 80:20 is even more preferred. On the other hand, when the impact resistance is emphasized, the content ratio of the polyetherimide resin (A) and the crystalline polyimide resin (B) is preferably (A) :( B) = 40: 60, 30:70 is more preferable, and 20:80 is still more preferable.

本発明のポリイミド系樹脂組成物は、JIS K7244−4に記載の動的粘弾性の温度分散測定により、歪み0.1%、周波数10Hz、昇温速度3℃/分にて測定した損失正接(tanδ)のピーク値が一つ存在することを特徴とする。   The polyimide resin composition of the present invention has a loss tangent (measured by dynamic viscoelastic temperature dispersion measurement described in JIS K7244-4 at a strain of 0.1%, a frequency of 10 Hz, and a heating rate of 3 ° C./min ( There is one peak value of tan δ).

本発明においては、前記損失正接(tanδ)のピーク値が示す温度をガラス転移温度(Tg)と定義する。また、損失正接(tanδ)のピーク値が一つ存在するとは、前記ガラス転移温度(Tg)が単一である、と言い換えることもできる。さらに、JISK7121に準じて、加熱速度10℃/分で示差走査熱量計を用いてガラス転移温度を測定した際に、ガラス転移温度を示す変曲点が1つだけ現れる、ということもできる。   In the present invention, the temperature indicated by the peak value of the loss tangent (tan δ) is defined as the glass transition temperature (Tg). In addition, it can be said that the presence of one peak value of loss tangent (tan δ) means that the glass transition temperature (Tg) is single. Furthermore, according to JISK7121, it can be said that when the glass transition temperature is measured using a differential scanning calorimeter at a heating rate of 10 ° C./min, only one inflection point indicating the glass transition temperature appears.

一般的にポリマーブレンド組成物のガラス転移温度が単一であれば、混合する樹脂が分子レベルで相溶した状態にあることを意味し、相溶系と認める事ができる。また、ブレンド後の損失正接(tanδ)のピーク値が二つ存在するものの、それぞれのピークが中央に寄る場合、具体的には、高温側のピークが低温に、低温側のピークが高温にそれぞれシフトする場合、これらは部分相溶系であると言える。ブレンド後も損失正接(tanδ)のピーク値が二つ存在する場合、非相溶系であると言える。部分相溶系では、一方のピークが明確でなく、相溶系と明確に区別するのが難しい場合があるので、本発明においては、明らかにピークが二つ以上観察される場合を除いて、全て相溶系として取り扱う。   In general, if the polymer blend composition has a single glass transition temperature, it means that the resin to be mixed is in a compatible state at the molecular level, and can be recognized as a compatible system. In addition, when there are two peak values of loss tangent (tan δ) after blending, but each peak is close to the center, specifically, the peak on the high temperature side is at a low temperature and the peak on the low temperature side is at a high temperature. When shifting, it can be said that these are partially compatible systems. When two peak values of loss tangent (tan δ) exist after blending, it can be said that the system is incompatible. In a partially compatible system, one peak is not clear, and it may be difficult to clearly distinguish it from the compatible system. Therefore, in the present invention, all the phases except for the case where two or more peaks are clearly observed are all included. Handle as a solution.

一般的に非相溶系の場合、引張や曲げ等の外力を加えた際に界面で剥離が生じ、機械物性の低下や白化を招く。本発明のポリイミド系樹脂組成物を構成するポリエーテルイミド樹脂(A)と結晶性ポリイミド樹脂(B)は相溶系を示すため、耐衝撃性を損ねることなくそれぞれの樹脂の改質が可能である。   In general, in the case of an incompatible system, peeling occurs at the interface when an external force such as tension or bending is applied, resulting in a decrease in mechanical properties or whitening. Since the polyetherimide resin (A) and the crystalline polyimide resin (B) constituting the polyimide resin composition of the present invention exhibit a compatible system, each resin can be modified without impairing the impact resistance. .

上述の通り、本発明のポリイミド系樹脂組成物はガラス転移温度(Tg)が単一となる特徴を有する組成物である。当該ガラス転移温度は150℃以上、300℃以下であることが好ましく、160℃以上、290℃以下であることがより好ましく、170℃以上、280℃以下であることが更に好ましい。ポリイミド系樹脂組成物のガラス転移温度が150℃以上であれば、ポリイミド系樹脂組成物の耐熱性が十分なものとなる。一方、ガラス転移温度が300℃以下であれば、ポリイミド系樹脂組成物を用いて成形する際に比較的低温で成形が出来るため好ましい。また、得られた成形体を二次加工する場合も、同様の理由で好ましい。   As described above, the polyimide resin composition of the present invention is a composition having a characteristic that the glass transition temperature (Tg) is single. The glass transition temperature is preferably 150 ° C. or higher and 300 ° C. or lower, more preferably 160 ° C. or higher and 290 ° C. or lower, and further preferably 170 ° C. or higher and 280 ° C. or lower. When the glass transition temperature of the polyimide resin composition is 150 ° C. or higher, the heat resistance of the polyimide resin composition is sufficient. On the other hand, a glass transition temperature of 300 ° C. or lower is preferable because molding can be performed at a relatively low temperature when molding using a polyimide resin composition. Moreover, when the obtained molded object is secondary-processed, it is preferable for the same reason.

本発明のポリイミド系樹脂組成物は、JIS K7127に準拠した引張弾性率が2200MPa以上、3100MPa以下であることが好ましい。引張弾性率が2200MPa以上であれば、ポリイミド系樹脂組成物を用いて得られたフィルムは十分な剛性を有し、ハンドリング性に優れる。かかる観点から、引張弾性率は2250MPa以上であることがさらに好ましく、2300MPa以上であることが特に好ましい。一方、引張弾性率が3100MPa未満であれば、フィルムとして十分な柔軟性を有するため好ましい。かかる観点から、引張弾性率は3050MPa以下であることがさらに好ましく、3000MPa以下であることが特に好ましい。   The polyimide resin composition of the present invention preferably has a tensile elastic modulus based on JIS K7127 of 2200 MPa or more and 3100 MPa or less. If the tensile modulus is 2200 MPa or more, the film obtained using the polyimide resin composition has sufficient rigidity and excellent handling properties. From this viewpoint, the tensile elastic modulus is more preferably 2250 MPa or more, and particularly preferably 2300 MPa or more. On the other hand, a tensile modulus of less than 3100 MPa is preferable because it has sufficient flexibility as a film. From this viewpoint, the tensile elastic modulus is more preferably 3050 MPa or less, and particularly preferably 3000 MPa or less.

本発明のポリイミド系樹脂組成物は、JIS K7127に準拠して測定した引張破断伸度が130%以上であることが好ましく、135%以上であることがより好ましい。引張破断伸度がかかる範囲であれば、本発明のポリイミド系樹脂組成物をフィルムとしたとき耐衝撃性に優れる。また、破断等のトラブルを生じる事なく、種々の形状に安定して成形または二次加工する事ができる。   The polyimide resin composition of the present invention preferably has a tensile elongation at break of 130% or more, more preferably 135% or more, measured according to JIS K7127. When the tensile elongation at break is in the range, the impact resistance is excellent when the polyimide resin composition of the present invention is used as a film. Further, it can be stably molded or secondary processed into various shapes without causing troubles such as breakage.

さらに、本発明のポリイミド系樹脂組成物は、上記した成分以外に、本発明の趣旨を超えない範囲で、その他の樹脂や充填材、各種添加剤、例えば、熱安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜配合してもよい。   Furthermore, the polyimide resin composition of the present invention includes other resins, fillers, various additives such as heat stabilizers, ultraviolet absorbers, light, and the like within the scope of the present invention, in addition to the components described above. Stabilizers, nucleating agents, coloring agents, lubricants, flame retardants, and the like may be appropriately blended.

<成形体>
本発明のポリイミド系樹脂組成物を用いて成形されてなる成形体としては、例えば、フィルムやプレート、パイプ、棒、キャップ、ボルト等の形状を有する成形体が挙げられる。なかでも、本発明のポリイミド系樹脂組成物は耐熱性や剛性、耐衝撃性に優れることから、フィルムとして好適に使用することができる。
<Molded body>
As a molded object formed using the polyimide resin composition of this invention, the molded object which has shapes, such as a film, a plate, a pipe, a stick | rod, a cap, a volt | bolt, is mentioned, for example. Especially, since the polyimide resin composition of this invention is excellent in heat resistance, rigidity, and impact resistance, it can be used conveniently as a film.

成形体およびフィルムの用途としては、自動車用部材、航空機用部材、電気・電子用部材等の耐熱性や剛性、耐衝撃性が要求される用途が挙げられる。   Applications of the molded body and film include applications that require heat resistance, rigidity, and impact resistance, such as automobile members, aircraft members, and electrical / electronic members.

<成形体の製造方法>
前記成形体の製造方法としては、特に限定されるものではないが、公知の方法、例えば、押出成形、射出成形、ブロー成形、真空成形、圧空成形、プレス成形等を採用することができる。
<Method for producing molded body>
Although it does not specifically limit as a manufacturing method of the said molded object, For example, a well-known method, for example, extrusion molding, injection molding, blow molding, vacuum forming, pressure forming, press molding etc., is employable.

また、フィルムの成形(製膜)方法としては、特に限定されるものではないが、公知の方法、例えばTダイを用いる押出キャスト法やカレンダー法、あるいは流延法等を採用する事ができ、なかでもフィルムの生産性等の面からTダイを用いる押出キャスト法が好適に用いられる。   In addition, the film forming (film forming) method is not particularly limited, but a known method such as an extrusion casting method using a T die, a calendar method, or a casting method can be employed. Among these, an extrusion casting method using a T die is suitably used from the viewpoint of film productivity.

また、前記フィルムは、一方向または二方向に延伸を施した一軸または二軸延伸フィルムであっても良く、延伸フィルムの製造方法としては、Tダイキャスト法、プレス法、カレンダー法等によって前駆体としての未延伸フィルムを作製した後、ロール延伸法、テンター延伸法等により延伸成形する方法や、インフレーション法、チューブラー法等により、溶融押出と延伸成形を一体的に行う方法を挙げることが出来る。   Further, the film may be a uniaxial or biaxially stretched film stretched in one direction or in two directions, and a method for producing a stretched film is a precursor by a T-die casting method, a press method, a calendar method, or the like. Examples of a method of forming an unstretched film as a film and then performing a stretch molding method using a roll stretching method, a tenter stretching method, etc., and a method of integrally performing melt extrusion and stretching molding by an inflation method, a tubular method, or the like. .

Tダイを用いる押出キャスト法での成形温度は、用いる組成物の流動特性や製膜性等によって適宜調整されるが、概ね280℃以上、350℃以下である。溶融混練には、一般的に使用される単軸押出機、二軸押出機、ニーダーやミキサーなどが使用でき、特に制限されるものではない。   The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition used, but is generally 280 ° C. or higher and 350 ° C. or lower. For melt-kneading, generally used single-screw extruders, twin-screw extruders, kneaders, mixers, and the like can be used, and are not particularly limited.

Tダイを用いる押出キャスト法の場合、得られるフィルムは急冷して非晶状態で採取しても良いし、キャスティングロールで加熱することによって結晶化させても良いし、非晶状態で採取した後に加熱処理を施して結晶化した状態で採取しても良い。一般に非晶状態のフィルムは耐久性や二次加工性に優れ、結晶化後のフィルムは耐熱性や剛性(コシ)に優れるため、用途に応じて最適な結晶化状態のフィルムを使用することが重要である。   In the case of the extrusion casting method using a T-die, the obtained film may be rapidly cooled and collected in an amorphous state, or may be crystallized by heating with a casting roll, or after being collected in an amorphous state. You may extract | collect in the state which gave the heat processing and crystallized. In general, amorphous films are excellent in durability and secondary processability, and films after crystallization are excellent in heat resistance and rigidity (koshi). is important.

本発明のポリイミド系樹脂組成物を用いて成形されてなるフィルムの厚みは、特に制限されるものではないが、通常1〜200μmである。また、フィルムの押出機からの流れ方向(MD)とその直交方向(TD)における物性の異方性ができるだけ少なくなるように製膜する事も重要である。   Although the thickness of the film formed using the polyimide resin composition of the present invention is not particularly limited, it is usually 1 to 200 μm. It is also important to form a film so that the anisotropy of the physical properties in the flow direction (MD) from the film extruder (MD) and its orthogonal direction (TD) is as small as possible.

なお、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいい(JIS K6900)、一般的に「シート」とは、JISにおける定義上、薄く、その厚さが長さと幅のわりには小さく平らな製品をいう。しかし、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。   In general, "film" is a thin flat product whose thickness is extremely small compared to the length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll. (JIS K6900) In general, the term “sheet” refers to a product that is thin according to the definition in JIS, and whose thickness is small for the length and width but flat. However, since the boundary between the sheet and the film is not clear and it is not necessary to distinguish the two in terms of the present invention, in the present invention, even when the term “film” is used, the term “sheet” is included and the term “sheet” is used. In some cases, “film” is included.

以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に記載される原料及び本発明のポリイミド系樹脂組成物に用いられるフィルムについての種々の測定は次のようにして行った。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the various measurement about the film | membrane used for the raw material described in this specification and the polyimide-type resin composition of this invention was performed as follows.

(1)ガラス転移温度
原料ペレット及び得られたフィルムについて、粘弾性スペクトロメーターDVA−200(アイティー計測制御株式会社製)を用いて歪み0.1%、周波数10Hz、昇温速度3℃/分にて動的粘弾性の温度分散測定(JIS K7244−4法の動的粘弾性測定)を行い、損失正接(tanδ)の主分散のピークを示す温度をガラス転移温度とした。
(1) Glass transition temperature About a raw material pellet and the obtained film, using a viscoelastic spectrometer DVA-200 (made by IT measurement control Co., Ltd.), distortion 0.1%, frequency 10Hz, temperature increase rate 3 degree-C / min. Was measured for temperature dispersion of dynamic viscoelasticity (dynamic viscoelasticity measurement according to JIS K7244-4 method), and the temperature showing the peak of the main dispersion of loss tangent (tan δ) was defined as the glass transition temperature.

(2)引張弾性率
得られたフィルムについてJIS K7127に準拠して温度23℃の条件で測定した。
(2) Tensile modulus The obtained film was measured under the condition of a temperature of 23 ° C. according to JIS K7127.

(3)引張破断伸度
得られたフィルムについてJIS K7127に準拠して温度23℃、試験速度200mm/分の条件で測定した。
(3) Tensile elongation at break The obtained film was measured in accordance with JIS K7127 under conditions of a temperature of 23 ° C. and a test speed of 200 mm / min.

[ポリエーテルイミド樹脂(A)]
(A)−1:ポリエーテルイミド(SABICイノベーティブプラスチックス株式会社製、Ultem1000、ガラス転移温度:232℃)
(A)−2:ポリエーテルイミド(SABICイノベーティブプラスチックス株式会社製、UltemCRS5001、ガラス転移温度:240℃)
[Polyetherimide resin (A)]
(A) -1: Polyetherimide (manufactured by SABIC Innovative Plastics, Ultem 1000, glass transition temperature: 232 ° C.)
(A) -2: Polyetherimide (manufactured by SABIC Innovative Plastics, Ultem CRS 5001, glass transition temperature: 240 ° C.)

[結晶性ポリイミド樹脂(B)]
(B)−1:結晶性ポリイミド樹脂(三菱ガス化学株式会社製、商品名:サープリムTO65S、テトラカルボン酸成分:ピロメリット酸=100モル%、ジアミン成分:1,3−ビス(アミノメチル)シクロヘキサン/オクタメチレンジアミン=60/40モル%、結晶融解温度:322℃、ガラス転移温度:208℃)
[Crystalline polyimide resin (B)]
(B) -1: crystalline polyimide resin (Mitsubishi Gas Chemical Co., Ltd., trade name: Surprim TO65S, tetracarboxylic acid component: pyromellitic acid = 100 mol%, diamine component: 1,3-bis (aminomethyl) cyclohexane / Octamethylenediamine = 60/40 mol%, crystal melting temperature: 322 ° C., glass transition temperature: 208 ° C.)

(実施例1)
(A)−1、及び、(B)−1を混合質量比80:20の割合でドライブレンドした後、Φ40mm同方向二軸押出機を用いて340℃で混練した後、Tダイより押出し、次いで約200℃のキャスティングロールにて急冷し、厚み0.1mmのフィルムを作製した。得られたフィルムについて、ガラス転移温度、引張弾性率、引張破断伸度の評価を行った。結果を表1に示す。
Example 1
(A) -1 and (B) -1 were dry blended at a mixing mass ratio of 80:20, then kneaded at 340 ° C. using a Φ40 mm same-direction twin screw extruder, and then extruded from a T die. Next, the film was rapidly cooled with a casting roll at about 200 ° C. to produce a film having a thickness of 0.1 mm. The obtained film was evaluated for glass transition temperature, tensile modulus, and tensile elongation at break. The results are shown in Table 1.

(実施例2)
(A)−1と(B)−1の混合質量比を60:40とした以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Example 2)
A film was prepared and evaluated in the same manner as in Example 1 except that the mixing mass ratio of (A) -1 and (B) -1 was 60:40. The results are shown in Table 1.

(実施例3)
(A)−1と(B)−1の混合質量比を40:60とした以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Example 3)
A film was prepared and evaluated in the same manner as in Example 1 except that the mixing mass ratio of (A) -1 and (B) -1 was 40:60. The results are shown in Table 1.

(実施例4)
(A)−1と(B)−1の混合質量比を20:80とした以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
Example 4
A film was prepared and evaluated in the same manner as in Example 1 except that the mixing mass ratio of (A) -1 and (B) -1 was 20:80. The results are shown in Table 1.

(実施例5)
(A)−1の代わりに(A)−2を使用した以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Example 5)
A film was prepared and evaluated in the same manner as in Example 1 except that (A) -2 was used instead of (A) -1. The results are shown in Table 1.

(実施例6)
(A)−1の代わりに(A)−2を使用し、(A)−2と(B)−1の混合質量比を60:40とした以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Example 6)
(A) -2 was used instead of (A) -1, and the film mass was the same as in Example 1 except that the mixing mass ratio of (A) -2 and (B) -1 was 60:40. Fabrication and evaluation were performed. The results are shown in Table 1.

(実施例7)
(A)−1の代わりに(A)−2を使用し、(A)−2と(B)−1の混合質量比を40:60とした以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Example 7)
(A) -2 was used instead of (A) -1, and the film mass was the same as in Example 1 except that the mixing mass ratio of (A) -2 and (B) -1 was 40:60. Fabrication and evaluation were performed. The results are shown in Table 1.

(実施例8)
(A)−1の代わりに(A)−2を使用し、(A)−2と(B)−1の混合質量比を20:80とした以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Example 8)
(A) -2 was used instead of (A) -1, and the mixture mass ratio of (A) -2 and (B) -1 was set to 20:80. Fabrication and evaluation were performed. The results are shown in Table 1.

(比較例1)
(A)−1を単独で用いた以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Comparative Example 1)
A film was prepared and evaluated in the same manner as in Example 1 except that (A) -1 was used alone. The results are shown in Table 1.

(比較例2)
(A)−2を単独で用いた以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Comparative Example 2)
A film was prepared and evaluated in the same manner as in Example 1 except that (A) -2 was used alone. The results are shown in Table 1.

(比較例3)
(B)−1を単独で用いた以外は実施例1と同様の方法でフィルムの作製、評価を行った。結果を表1に示す。
(Comparative Example 3)
A film was prepared and evaluated in the same manner as in Example 1 except that (B) -1 was used alone. The results are shown in Table 1.

Figure 2018070699
Figure 2018070699

実施例1〜8の組成物からなるフィルムは、ポリエーテルイミド樹脂(A)と結晶性ポリイミド樹脂(B)のブレンド物であるにもかかわらず、主分散のピークで表されるガラス転移温度はいずれも単一であり、相溶系であると認める事が出来た。該フィルムは全ての物性が適切な範囲に含まれている。   Although the films formed from the compositions of Examples 1 to 8 are blends of polyetherimide resin (A) and crystalline polyimide resin (B), the glass transition temperature represented by the main dispersion peak is Both were single and could be recognized as compatible. The film includes all physical properties within an appropriate range.

一方、比較例1及び2のフィルムは、引張弾性率が高く、柔軟性が十分でない上、引張破断伸度の値が低く、耐衝撃性も十分ではない。   On the other hand, the films of Comparative Examples 1 and 2 have high tensile elastic modulus, insufficient flexibility, low tensile elongation at break, and insufficient impact resistance.

比較例3のフィルムは、逆に引張弾性率が低く、薄膜で使用した際のハンドリング性が懸念される。   On the contrary, the film of Comparative Example 3 has a low tensile elastic modulus, and there is a concern about handling properties when used as a thin film.

Claims (10)

ポリエーテルイミド樹脂(A)、及び、テトラカルボン酸成分(b−1)と脂肪族ジアミン成分(b−2)とを含有する結晶性ポリイミド樹脂(B)を含有するポリイミド系樹脂組成物であって、前記ポリエーテルイミド樹脂(A)と前記結晶性ポリイミド樹脂(B)の含有割合が(A):(B)=1:99〜99:1質量%であることを特徴とするポリイミド系樹脂組成物。   A polyimide-based resin composition containing a polyetherimide resin (A) and a crystalline polyimide resin (B) containing a tetracarboxylic acid component (b-1) and an aliphatic diamine component (b-2). The content ratio of the polyetherimide resin (A) and the crystalline polyimide resin (B) is (A) :( B) = 1: 99 to 99: 1 mass%. Composition. 前記脂肪族ジアミン成分(b−2)が、少なくとも炭素数4〜12の直鎖状脂肪族ジアミンを含むことを特徴とする請求項1に記載のポリイミド系樹脂組成物。   The said aliphatic diamine component (b-2) contains a C4-C12 linear aliphatic diamine at least, The polyimide resin composition of Claim 1 characterized by the above-mentioned. 前記脂肪族ジアミン成分(b−2)が、少なくとも脂環族ジアミンを含むことを特徴とする請求項1又は2に記載のポリイミド系樹脂組成物。   The said aliphatic diamine component (b-2) contains an alicyclic diamine at least, The polyimide resin composition of Claim 1 or 2 characterized by the above-mentioned. 前記脂環族ジアミンが、1,3−ビス(アミノメチル)シクロヘキサンであることを特徴とする請求項3に記載のポリイミド系樹脂組成物。   The polyimide resin composition according to claim 3, wherein the alicyclic diamine is 1,3-bis (aminomethyl) cyclohexane. JIS K7244−4に記載の動的粘弾性の温度分散測定により、歪み0.1%、周波数10Hz、昇温速度3℃/分にて測定した損失正接(tanδ)のピーク値が一つ存在することを特徴とする請求項1〜4のいずれか1項に記載のポリイミド系樹脂組成物。   There is one peak value of loss tangent (tan δ) measured at a strain of 0.1%, a frequency of 10 Hz, and a heating rate of 3 ° C./min by the temperature dispersion measurement of dynamic viscoelasticity described in JIS K7244-4. The polyimide-type resin composition of any one of Claims 1-4 characterized by the above-mentioned. 前記損失正接(tanδ)のピーク値が示す温度(Tg)が150℃以上、300℃以下であることを特徴とする請求項5に記載のポリイミド系樹脂組成物。   6. The polyimide resin composition according to claim 5, wherein a temperature (Tg) indicated by a peak value of the loss tangent (tan δ) is 150 ° C. or more and 300 ° C. or less. JIS K7127に準拠して測定した引張弾性率が2200MPa以上、3100MPa以下であることを特徴とする請求項1〜6のいずれか1項に記載のポリイミド系樹脂組成物。   The polyimide resin composition according to any one of claims 1 to 6, wherein a tensile elastic modulus measured in accordance with JIS K7127 is 2200 MPa or more and 3100 MPa or less. JIS K7127に準拠して測定した引張破断伸度が130%以上であることを特徴とする請求項1〜7のいずれか1項に記載のポリイミド系樹脂組成物。   The polyimide resin composition according to any one of claims 1 to 7, wherein a tensile elongation at break measured in accordance with JIS K7127 is 130% or more. 請求項1〜8のいずれか1項に記載のポリイミド系樹脂組成物を用いて成形されてなる成形体。   The molded object formed using the polyimide resin composition of any one of Claims 1-8. 前記成形体がフィルムであることを特徴とする請求項9に記載の成形体。   The molded body according to claim 9, wherein the molded body is a film.
JP2016209251A 2016-09-06 2016-10-26 Polyimide resin composition Active JP6780440B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016209251A JP6780440B2 (en) 2016-10-26 2016-10-26 Polyimide resin composition
CN202111281828.5A CN114143671B (en) 2016-09-06 2017-08-31 Vibrator element edge material for electroacoustic transducer, vibrator element for electroacoustic transducer, micro-speaker vibrator element, and method for manufacturing vibrator element
PCT/JP2017/031386 WO2018047708A1 (en) 2016-09-06 2017-08-31 Edge material of vibration plate for electro-acoustic transducer, vibration plate for electro-acoustic transducer, vibration plate for microspeaker, film, and polyimide resin composition
CN201780054392.1A CN109691132B (en) 2016-09-06 2017-08-31 Polyimide resin composition and molded body
TW111115349A TWI817455B (en) 2016-09-06 2017-09-04 Diaphragm edge materials for electroacoustic converters, diaphragms for electroacoustic transducers, microspeaker diaphragms, films, and polyimide resin compositions
TW106130133A TWI813545B (en) 2016-09-06 2017-09-04 Diaphragm edge material for electroacoustic transducer, diaphragm for electroacoustic transducer, microspeaker diaphragm, film, and polyimide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209251A JP6780440B2 (en) 2016-10-26 2016-10-26 Polyimide resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020163238A Division JP7115524B2 (en) 2020-09-29 2020-09-29 polyimide resin composition

Publications (2)

Publication Number Publication Date
JP2018070699A true JP2018070699A (en) 2018-05-10
JP6780440B2 JP6780440B2 (en) 2020-11-04

Family

ID=62112452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209251A Active JP6780440B2 (en) 2016-09-06 2016-10-26 Polyimide resin composition

Country Status (1)

Country Link
JP (1) JP6780440B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109862484A (en) * 2018-12-30 2019-06-07 瑞声声学科技(深圳)有限公司 A kind of loudspeaker
WO2021049503A1 (en) * 2019-09-13 2021-03-18 岡村製油株式会社 Diamine compound and method for producing same
KR20220120564A (en) 2019-12-23 2022-08-30 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition and molded article
KR20230071124A (en) 2020-09-23 2023-05-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition and molded article
WO2023105969A1 (en) * 2021-12-06 2023-06-15 三菱瓦斯化学株式会社 Polyimide resin composition and molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263839A (en) * 1992-04-02 1999-09-28 Mitsui Chem Inc Polyimide resin composition
JP2004123863A (en) * 2002-10-01 2004-04-22 Toray Ind Inc Biaxially oriented film
WO2015020020A1 (en) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin composition, and (polyimide resin)-fiber composite material
JP2015166852A (en) * 2014-02-12 2015-09-24 株式会社リコー Conductive resin belt, manufacturing method thereof, and image forming apparatus including the same
WO2016147996A1 (en) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 Polyimide resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263839A (en) * 1992-04-02 1999-09-28 Mitsui Chem Inc Polyimide resin composition
JP2004123863A (en) * 2002-10-01 2004-04-22 Toray Ind Inc Biaxially oriented film
WO2015020020A1 (en) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin composition, and (polyimide resin)-fiber composite material
JP2015166852A (en) * 2014-02-12 2015-09-24 株式会社リコー Conductive resin belt, manufacturing method thereof, and image forming apparatus including the same
WO2016147996A1 (en) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 Polyimide resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109862484A (en) * 2018-12-30 2019-06-07 瑞声声学科技(深圳)有限公司 A kind of loudspeaker
CN109862484B (en) * 2018-12-30 2021-10-01 瑞声声学科技(深圳)有限公司 Loudspeaker
WO2021049503A1 (en) * 2019-09-13 2021-03-18 岡村製油株式会社 Diamine compound and method for producing same
KR20220120564A (en) 2019-12-23 2022-08-30 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition and molded article
KR20230071124A (en) 2020-09-23 2023-05-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition and molded article
WO2023105969A1 (en) * 2021-12-06 2023-06-15 三菱瓦斯化学株式会社 Polyimide resin composition and molded body

Also Published As

Publication number Publication date
JP6780440B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6780440B2 (en) Polyimide resin composition
JP2023080072A (en) Insulation film
JP6809149B2 (en) Polyester resin composition
TW201431908A (en) Thermoplastic polyimide
WO2021131501A1 (en) Polyimide resin composition and molded body
JP7115524B2 (en) polyimide resin composition
JP2022045273A (en) Resin composition for substrate, film, laminate for substrate, circuit board, and electronic apparatus
WO2018047708A1 (en) Edge material of vibration plate for electro-acoustic transducer, vibration plate for electro-acoustic transducer, vibration plate for microspeaker, film, and polyimide resin composition
JP7040692B1 (en) Polyimide resin composition and molded product
JP7259295B2 (en) laminated film
JP6610326B2 (en) the film
JP2020044652A (en) Laminate film
JP6154646B2 (en) Polyamide resin composition and film comprising the same
CN114143671B (en) Vibrator element edge material for electroacoustic transducer, vibrator element for electroacoustic transducer, micro-speaker vibrator element, and method for manufacturing vibrator element
KR20210062011A (en) Foldable display
JP7334418B2 (en) Diaphragm film for electroacoustic transducer and diaphragm for electroacoustic transducer
JP6988594B2 (en) Resin compositions, films and composites
JP2018076430A (en) Polyester resin composition
WO2023105969A1 (en) Polyimide resin composition and molded body
JP7310261B2 (en) Acoustic member film and acoustic member diaphragm
JP2020089995A (en) Laminate film
JP2023006359A (en) Resin composition, film, laminate, circuit board, and electronic apparatus
JP6354361B2 (en) the film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R151 Written notification of patent or utility model registration

Ref document number: 6780440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151