WO2021049503A1 - Diamine compound and method for producing same - Google Patents

Diamine compound and method for producing same Download PDF

Info

Publication number
WO2021049503A1
WO2021049503A1 PCT/JP2020/034020 JP2020034020W WO2021049503A1 WO 2021049503 A1 WO2021049503 A1 WO 2021049503A1 JP 2020034020 W JP2020034020 W JP 2020034020W WO 2021049503 A1 WO2021049503 A1 WO 2021049503A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
diamine
resin
formula
epoxy resin
Prior art date
Application number
PCT/JP2020/034020
Other languages
French (fr)
Japanese (ja)
Inventor
孔明 小山
佳太郎 子田
正幸 馬野
康之 山側
Original Assignee
岡村製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡村製油株式会社 filed Critical 岡村製油株式会社
Priority to KR1020227012227A priority Critical patent/KR20220062086A/en
Priority to JP2021545554A priority patent/JP7357391B2/en
Priority to CN202080064182.2A priority patent/CN114364656A/en
Publication of WO2021049503A1 publication Critical patent/WO2021049503A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/54Preparation of compounds containing amino groups bound to a carbon skeleton by rearrangement reactions
    • C07C209/56Preparation of compounds containing amino groups bound to a carbon skeleton by rearrangement reactions from carboxylic acids involving a Hofmann, Curtius, Schmidt, or Lossen-type rearrangement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds

Definitions

  • the present invention relates to a diamine compound and a method for producing the same. More specifically, the present invention is used in coexistence with a monomer or a curing agent capable of constituting a polymer material such as a thermosetting resin or a thermoplastic resin, or the polymer material.
  • the present invention relates to a diamine compound useful as an additive and a method for producing the same.
  • Resin materials composed of polymers are used in a wide range of applications such as paints, building materials, flooring materials, earth and wood, and electronic materials. Since the required properties differ depending on these uses, there are a wide variety of resin materials that satisfy the properties.
  • resin materials such as epoxy resin, polyimide, and polyamide-imide, which are polymers whose main chain is composed of aromatic rings, have excellent mechanical and electrical properties, but are hard and brittle, and are generally resistant. It has been pointed out that it lacks impact resistance and toughness. Therefore, it is necessary to alleviate the brittleness depending on the application, and various means have been proposed so far.
  • a method of modifying the polymer by introducing a flexible chain into the main chain of the polymer to impart flexibility is known.
  • a method for introducing such a flexible chain for example, in the case of producing a thermosetting resin, a compound having a flexible chain (for example, a polar group such as an ether group, an ester group, an amide group, or a urethane group) is used as a main agent or cured. It is known to be used as an agent.
  • a thermoplastic resin it is known to use a compound having such a flexible chain as a raw material monomer.
  • An object of the present invention is to solve the above problems, and an object of the present invention is to be flexible with respect to the resin without introducing a polar group into the constituent molecules of the resin such as an epoxy resin. It is an object of the present invention to provide a diamine compound which can be used as a resin additive and a method for producing the same, which can impart the above-mentioned substances and have little influence on other properties.
  • the present invention has the following formula (I):
  • R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups.
  • An alkylene group or an alkenylene group having a branched chain of It is a diamine compound represented by.
  • the main chain portion of the alkylene group or alkenylene group constituting R 1 has C 2n carbon atoms (where n is 7 to 14).
  • the linear alkylene group or linear alkenylene group of C 14 to C 28 constituting R 1 has a branched chain composed of an ethyl group.
  • the diamine compound of the present invention is 7-ethylhexadecanediamine, 7,12-dimethyloctadecanediamine-7,11-ene, or 8,13-dimethyloctadecanediamine-8,12-ene.
  • the present invention is also a method for producing a diamine compound represented by the above formula (I).
  • R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups.
  • An alkylene group or an alkenylene group having a branched chain of R 2 is a linear alkyl group of C 1 to C 4, The method.
  • the main chain portion of the alkylene group or alkenylene group constituting R 1 has C 2n carbon atoms (where n is 7 to 14).
  • the present invention is also a method for producing a diamine compound represented by the above formula (I).
  • R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups.
  • the main chain portion of the alkylene group or alkenylene group constituting R 1 has C 2n carbon atoms (where n is 7 to 14).
  • the present invention is also a resin additive containing the above diamine compound.
  • the present invention is also a resin composition containing a resin and the above resin additive.
  • the present invention is also a resin composition containing one or more monomer compounds and a resin composed of the above resin additives.
  • the present invention is also a lubricating rust preventive for metal products containing the above diamine compound.
  • the diamine compound of the present invention can also be applied as an active ingredient such as a softener as a cationic surfactant and a rust preventive.
  • the diamine compound of the present invention has the following formula (I):
  • R 1 is an alkylene group or an alkylene group having a total carbon number of C 14 to C 28 , preferably C 16 to C 24 , and more preferably C 18 to C 22.
  • alkylene group or alkenylene group having a total carbon number of C 14 to C 28 is a linear or branched alkylene group having 14 to 28 carbon atoms and 14 carbon atoms. It includes a linear or branched alkenylene group having ⁇ 28.
  • Examples of an alkylene group or an alkenylene group having 14 to 28 carbon atoms are an alkylene group having a total carbon number of C 14 to C 28 and a linear structure; a total carbon number of C 14 to C 28 and 1 An alkylene group having a branched chain of one or more C 1 to C 4 alkyl groups and / or alkenyl groups; an alkenylene group having a total carbon number of C 14 to C 28 and being linear; a total carbon number of Alkenylene groups; which are C 14 to C 28 and have one or more branched chains of alkyl and / or alkenyl groups of C 1 to C 4;
  • Examples of the alkylene group having a total carbon number of C 14 to C 28 and being linear include an n-tetradecanylene group, an n-pentadecanylene group, an n-hexadecanylene group, an n-heptadecanelen group, and an n-octadecanylene group.
  • N-nonadecanylene group n-icosanilen group, n-henicosanilen group, n-docosanilen group, n-tricosanilen group, n-tetracosanilen group, n-pentacosanilen group, n-hexacosanilen group, n-heptacosanilen group, and n-octacosanilen group.
  • the group is mentioned.
  • Examples of the alkenylene group having a total carbon number of C 14 to C 28 and being linear include a tetradecenelene group, a pentadeceneylene group, a hexadecenelene group, a heptadecenelene group, an octadecenelene group, a nonadekenylene group, an icosenylene group, a henicosenylene group, and a docosenylene group.
  • Tricosenylene group Tricosenylene group, tetracosenylene group, pentacosenylene group, hexacosenylene group, heptacosenylene group, and octacosenylene group.
  • Total carbon atoms having a branched-chain alkyl groups and / or alkenyl group C 14 is ⁇ C 28 and one or more of C 1 ⁇ C 4, alkylene group", C 1 ⁇ C 4 alkyl group and Refers to an alkylene group having a total carbon number of C 14 to C 28 , which comprises at least one group selected from the group consisting of C 1 to C 4 alkenyl groups as a branched chain.
  • Total carbon atoms having a branched-chain alkyl groups and / or alkenyl group C 14 is ⁇ C 28 and one or more of C 1 ⁇ C 4, alkenylene group", C 1 ⁇ C 4 alkyl group and Refers to an alkylene group having a total carbon number of C 14 to C 28 , which comprises at least one group selected from the group consisting of C 1 to C 4 alkenyl groups as a branched chain.
  • alkyl groups C 1 to C 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group.
  • R 1 of the formula (I) can be imparted with appropriate flexibility to the obtained resin composition.
  • the diamine compound of the present invention can be easily produced using a commercially available dibasic acid or a derivative thereof as described later, and therefore, in the above formula (I), the alkylene group constituting R 1 or It is preferable that the main chain portion of the alkenylene group (that is, the chain hydrocarbon portion excluding the branched chain) has C 2n carbon atoms (where n is 7 to 14).
  • Linear saturated diamines such as tetradecane diamine, hexadecane diamine, octadecane diamine, eikosa diamine, docosa diamine, tetracosa diamine, octacosa diamine; Tetradecanediamine-7-ene, hexadecanediamine-6-ene, hexadecanediamine-8-ene, octadecanediamine-8-ene, octadecanediamine-10-ene, eikosadiamine-6-ene, eikosadiamine-8-ene , Eikosadiamine-12-ene, Eikosadiamine-8,12-diamine, Eikosadiamine-10,14-diamine, docosadiamine-7,11,15-triene, docosadiamine-8,12,16-triene, 1 , 24-Tetracosadiamine-8,12,16-
  • the diamine compound represented by the above formula (I) can be produced, for example, by the following first method or second method.
  • a dihydrazide compound is synthesized by reacting the dibasic acid esters represented by (1) with hydrazine.
  • R 1 is an alkylene group or an alkylene group having a total carbon number of C 14 to C 28 , preferably C 16 to C 24 , more preferably C 18 to C 22, and is linear. Or an alkylene or alkenylene group having a branched chain of one or more C 1 to C 4 alkyl groups and / or alkenyl groups, where R 2 is a C 1 to C 4 linear alkyl. It is a group.
  • R 1 is similar to that defined in formula (I) above.
  • R 1 when the diamine compound is used, for example, as a constituent component of a resin additive described later, R 1 can impart appropriate flexibility to the obtained resin composition.
  • compounds of the formula (II) are, for reasons of easy availability commercially as will be described later, in the above formula (II), the main chain portion of the alkylene group or alkenylene group constituting R 1 It is preferable that (that is, the chain hydrocarbon moiety excluding the branched chain) has C 2n carbon atoms (where n is 7 to 14).
  • examples of the linear alkyl groups C 1 to C 4 that can constitute R 2 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • the dibasic acid esters represented by the above formula (II) are known and are commercially available, for example, by Okamura Oil Refinery Co., Ltd.
  • the reaction between the dibasic acid esters represented by the formula (II) and hydrazine is carried out, for example, by heating under reflux in an appropriate organic solvent.
  • organic solvents include alcohols such as methanol, ethanol, 1-propanol and 2-propanol.
  • the time required for heating and reflux can be appropriately selected by those skilled in the art depending on the dibasic acid esters used and the amount.
  • the dibasic acid esters of the formula (II) are hydrazideized, and a dihydrazide compound (carboxylic acid hydrazide) can be obtained.
  • this dihydrazide compound reacts with a nitrite compound to produce an azide.
  • the nitrite compound is a compound capable of producing an azide (carboxylic acid azide) from the above dihydrazide compound (carboxylic acid hydrazide).
  • examples of nitrite compounds include nitrites and nitrite esters.
  • reaction conditions can be appropriately selected by those skilled in the art.
  • the azide is heat-dislocated and hydrolyzed.
  • the azide is converted to isocyanate through the Curtius rearrangement by heating, and the subsequent hydrolysis produces the diamine compound represented by the above formula (I).
  • the conditions for the Curtius rearrangement and hydrolysis can also be appropriately selected by those skilled in the art.
  • a diamide compound is produced by reacting the dibasic acid represented by (1) with ammonia.
  • R 1 is an alkylene group or an alkenylene group having a total carbon number of C 14 to C 28 , preferably C 16 to C 24 , more preferably C 18 to C 22, and is linear. Or an alkylene or alkenylene group having a branched chain of one or more C 1 to C 4 alkyl and / or alkenyl groups.
  • R 1 is similar to that defined in formula (I) above.
  • R when the obtained diamine compound is used, for example, as a constituent component of a resin additive described later, R can be imparted to the obtained resin composition with appropriate flexibility.
  • Reference numeral 1 denotes an alkylene group having a total carbon number of C 14 to C 28, which is linear or has a branched chain of one or more C 1 to C 4 alkyl groups. It is more preferable that the alkylene group has a total carbon number of C 14 to C 28 , and the alkylene group has a branched chain of one C 1 to C 4 alkyl group, and the total carbon number is C.
  • the alkylene group is 14 to C 28 , and the alkylene group has a branched chain of one ethyl group.
  • the compound represented by the formula (III) has a main chain portion of an alkylene group or an alkenylene group constituting R 1 in the above formula (III) because it is easily available on the market as described later. It is preferable that (that is, the chain hydrocarbon moiety excluding the branched chain) has C 2n carbon atoms (where n is 7 to 14).
  • the dibasic acid represented by the above formula (III) is known and is commercially available, for example, by Okamura Oil Refinery Co., Ltd.
  • the reaction between the dibasic acid represented by the formula (III) and ammonia is preferably carried out under pressure and heating.
  • the conditions of pressurization and heating and the time required for them can be appropriately selected by those skilled in the art depending on the dibasic acid and the amount used.
  • the diamide compound can be obtained from the dibasic acid of the formula (III).
  • this diamide compound is nitridated and hydrogenated.
  • the conditions for nitridation and hydrogen reduction are not particularly limited, and appropriate conditions can be appropriately selected by those skilled in the art.
  • the resin additive of the present invention contains a diamine compound represented by the above formula (I).
  • the term "resin additive" used in the present specification is used in a broad sense, and for example, (1) when constituting a resin composition, it is added independently of the resin which is a constituent component. Thereby, those caused by the improvement of the stability and / or the impartation of functionality of the obtained resin composition (for example, those capable of improving the stability of stabilizers, antioxidants, ultraviolet absorbers, etc.).
  • plasticizers flame retardants, nucleating agents, clearing agents, antistatic agents, lubricants, etc.
  • predetermined functions such as plasticizers, flame retardants, nucleating agents, clearing agents, antistatic agents, lubricants, etc.
  • It includes those that are physically or chemically linked or reacted with each other (for example, a cross-linking agent and a curing agent); and (3) those that can form the resin itself through the reaction (for example, a raw material monomer).
  • the resin additive of the present invention may contain other components that can be added in a normal resin composition, in addition to the diamine compound represented by the above formula (I).
  • Such other components are not particularly limited, but are, for example, antioxidants such as phenol-based antioxidants, sulfur-based antioxidants, and / or phosphorus-based antioxidants; anionic activators, cationic activities.
  • Antistatic agents such as agents, nonionic activators, amphoteric activators; lubricants such as hydrocarbon-based lubricants, fatty acid-based lubricants, higher alcohol-based lubricants, fatty acid amide-based lubricants, metallic soap-based lubricants, ester-based lubricants; organic Flame retardants such as flame retardants and inorganic flame retardants; and combinations thereof;
  • lubricants such as hydrocarbon-based lubricants, fatty acid-based lubricants, higher alcohol-based lubricants, fatty acid amide-based lubricants, metallic soap-based lubricants, ester-based lubricants; organic Flame retardants such as flame retardants and inorganic flame retardants; and combinations thereof;
  • organic Flame retardants such as flame retardants and inorganic flame retardants; and combinations thereof;
  • the content of the above other components that can be contained in the resin additive of the present invention is not particularly limited, and any amount can be selected by those skilled in the art.
  • the resin composition of the present invention contains the above resin additive and resin (hereinafter, such a resin composition is referred to as "first resin composition").
  • the resin that can constitute the first resin composition of the present invention is a thermosetting resin or a thermoplastic resin, and examples thereof include various resins obtained by reacting with an amino group. Examples of such examples include epoxy resins, polyurethanes, polyimides, polyamideimides, maleimide resins, and polyamides.
  • the resin additive (that is, the diamine compound represented by the formula (I)) is preferably a curing agent or resin constituent material of the resin, more preferably, because it can impart appropriate flexibility. Can be used as a curing agent for epoxy resins.
  • the contents of the resin and the resin additive are not particularly limited, and an appropriate content can be selected by those skilled in the art.
  • the resin composition of the present invention contains one or more monomer compounds and a resin composed of the above resin additives (hereinafter, such a resin composition is referred to as "second resin”. Composition ").
  • the monomer compound that can constitute the second resin composition of the present invention is one or more compounds that can constitute a thermoplastic resin or a thermosetting resin, and is, for example, ⁇ -caprolactam; undecanelamtam; Lauryl lactam; combination of hexamethylenediamine and adipic acid; combination of hexamethylenediamine and sebacic acid; combination of hexamethylenediamine and terephthalic acid; combination of hexamethylenediamine and isophthalic acid; combination of nonanediamine and terephthalic acid Combination of methylpentanediamine and terephthalic acid; combination of ⁇ -caprolactam and lauryllactam; combination of p-phenylenediamine and terephthalic acid; combination of m-phenylenediamine and isophthalic acid; pyromellitic acid anhydride; anhydrous Examples include a combination of trimellitic acid and diisocyanates; and a combination of trimelli
  • the resin additive (or the diamine compound represented by the above formula (I)) constitutes a resin with respect to one or more of the above monomer compounds. Can function as a monomer component.
  • the above-mentioned monomer compound and the above-mentioned resin additive (or the above-mentioned diamine compound represented by the formula (I)) can be polymerized by using, for example, a coupling reaction known to those skilled in the art.
  • the mixing ratio of the monomer compound and the resin additive (or the diamine compound represented by the above formula (I)) is not particularly limited, and combinations of various contents can be appropriately selected by those skilled in the art. As a result, a resin composed of one or more monomer compounds and the above resin additive is produced.
  • the first resin composition and the second resin composition of the present invention may also contain other resin additives.
  • other resin additives are not particularly limited, but include those included in other components that may be contained in the resin additive of the present invention.
  • the blending amount of the other resin additive that can be contained in the resin additive of the present invention is not particularly limited, and any amount can be selected by those skilled in the art.
  • Both the first resin composition and the second resin composition of the present invention are suitable for the constituent resin by, for example, the contained resin additive (that is, the diamine compound represented by the formula (I)). Flexibility can be imparted.
  • the first resin composition and the second resin composition of the present invention are preferably other than flexible as compared with the case where a flexible chain of a polar group is introduced into the constituent molecules of the resin as described above. There is no significant variation in other properties. Further, the flexibility imparted by such a resin additive can be easily adjusted by, for example, the blending amount of the resin additive.
  • the resin contained in the second resin composition of the present invention is a resin such as an epoxy resin, a polyimide, or a polyamide-imide, which is a polymer whose main chain is composed of an aromatic ring
  • a resin such as an epoxy resin, a polyimide, or a polyamide-imide, which is a polymer whose main chain is composed of an aromatic ring
  • the second resin composition of the present invention is expected to be useful in the field of electronic materials, for example.
  • the diamine compound represented by the formula (I) can be applied to other uses other than the resin additives as described above.
  • Examples of such other applications are fabric softeners, antistatic agents, and surfactants such as lubricants and rust inhibitors that can prevent corrosion of metal products (eg steel, stainless steel, aluminum products).
  • a cationic surfactant for example, a cationic surfactant.
  • Example 1 Synthesis of C18 saturated branched diamine compound
  • SB-20MM manufactured by Okamura Oil Co., Ltd./main component: dimethyl isoeicosate, molecular weight 370
  • hydrazine monohydrate 804 g (16.1 mol) and 1500 mL of 2-propanol as a solvent were charged and refluxed for 5 hours.
  • Infrared spectroscopic analysis confirmed the disappearance of the peaks (1627 cm -1 and 1533 cm -1) corresponding to the hydrazide bond observed in the dihydrazide 1a. However, new appearances of peaks (1722 cm -1 and 1571 cm -1 ) corresponding to the amino group were confirmed.
  • high performance liquid chromatograph mass spectrometry confirmed the disappearance of the peak confirmed by dihydrazide 1a (molecular weight 370).
  • 1 1 H NMR analysis (Mercury-300: manufactured by Varian) was performed on each of the isolated diamines. The ⁇ values are shown in Table 1 (CDCl 3 ).
  • the obtained dihydrazide 2a was subjected to infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) to eliminate the peak (1731 cm -1 ) corresponding to the ester bond of dimethyl isodocosaziendiate and the peak corresponding to the hydrazide bond (1731 cm -1). The formation of 1627 cm -1 and 1533 cm -1 ) was confirmed. At the same time, by high performance liquid chromatograph mass spectrometry (LC-MS-20: manufactured by Shimadzu Corporation), the peak of dimethyl isoeicosate (molecular weight 394), which is a raw material, disappeared, and dihydrazide isodocosadiene diacid (molecular weight 394) was obtained. The appearance of the corresponding new peak was confirmed.
  • FT-IR infrared spectroscopic analysis
  • dihydrazide 1a 400 g (1.0 mol) of the dihydrazide 2a obtained above was used, and instead of hydrochloric acid, 582 g (6.1 mol) of methanesulfonic acid was used, and the amount of sodium nitrite was 167 g (2.4 mol). it was changed to), the same procedure as in example 1 to obtain 100.7g of C 20 unsaturated branched diamines 2b amine value 339.
  • Infrared spectroscopic analysis confirmed the disappearance of the peaks (1627 cm -1 and 1533 cm -1) corresponding to the hydrazide bond observed in the dihydrazide 2a. However, new appearances of peaks (1722 cm -1 and 1572 cm -1 ) corresponding to the amino group were confirmed.
  • high performance liquid chromatograph mass spectrometry LC-MS-20: manufactured by Shimadzu Corporation
  • Example 3 Synthesis of C 22 unsaturated diamine compound
  • 1661 g of long-chain dibasic acid IPU-22 manufactured by Okamura Oil Co., Ltd./main component: isodocosadiene diacid, molecular weight 366
  • 50 g of silica gel were charged into a 5 L autoclave equipped with a thermometer and a stirrer, and under pressurized conditions.
  • the reaction was carried out at 300 ° C. for 2 hours with 300 g (17.6 mol) of ammonia gas.
  • the obtained diamine 3 was confirmed by infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) to confirm the disappearance of the peak (1711 cm -1) corresponding to the carboxyl group derived from the raw material isodocosadiene diacid. New appearances of peaks (1722 cm -1 and 1572 cm -1 ) corresponding to the amino group were confirmed. Furthermore, gas chromatograph mass spectrometry (GC-MSQP-2010: manufactured by Shimadzu Corporation) confirmed the disappearance of the peak corresponding to the raw material isodocosadiene diacid (molecular weight 366).
  • FT-IR infrared spectroscopic analysis
  • FT-IR manufactured by JASCO Corporation
  • 1 1 H NMR analysis (Mercury-300: manufactured by Varian) was performed on each of the isolated diamines. The ⁇ values are shown in Table 3 (CDCl 3 ).
  • Example 4 Preparation of cured epoxy resin (E1)) 10.0 g of bisphenol A type epoxy resin (EPOMIC manufactured by Mitsui Chemicals, Inc., epoxy equivalent (hereinafter, WPE) 188) and 4.4 g of diamine 1b (0.95 equivalent with respect to WPE) obtained in Example 1 as a curing agent. And 0.1 g (1 phr) of N, N-dimethylbenzylamine as a curing accelerator was mixed to prepare an epoxy resin composition. Next, 10 g of this resin composition was weighed in a heat-resistant container, heated at 70 ° C. for 15 hours, and further heat-cured at 120 ° C. for 1 hour to obtain an epoxy resin cured product (E1).
  • EPOMIC bisphenol A type epoxy resin
  • WPE epoxy equivalent
  • a sample was held at ⁇ 50 ° C. for 10 minutes using a differential scanning calorimeter (DSC) (DSC-60 manufactured by Shimadzu Corporation), and then at 10 ° C. per minute. By heating to 200 ° C. at a heating rate, the glass transition point (Tg) was measured from the change in calorific value with respect to the temperature rise. Further, in order to measure the gelation rate of the cured epoxy resin (E1), a 5 g sample was extracted with acetone for 5 hours by Soxhlet extraction. The gelation rate of the resin was measured by the ratio of the mass of the raw material before extraction to the mass of the extract. The results obtained are shown in Table 4.
  • DSC differential scanning calorimeter
  • Example 5 Preparation of cured epoxy resin (E2)
  • An epoxy resin cured product (E2) was prepared in the same manner as in Example 1 except that the diamine 2b (4.2 g) prepared in Example 2 was used instead of the diamine 1b as the curing agent.
  • DSC analysis and gelation rate measurement of the cured product were performed in the same manner as in Example 1. The results obtained are shown in Table 4.
  • Example 6 Preparation of cured epoxy resin (E3)
  • E3 An epoxy resin cured product (E3) was prepared in the same manner as in Example 1 except that diamine 3 (4.9 g) prepared in Example 3 was used instead of diamine 1b as a curing agent.
  • diamine 3 4.9 g
  • diamine 1b diamine 1b
  • DSC analysis and gelation rate measurement of the cured product were performed in the same manner as in Example 1. The results obtained are shown in Table 4.
  • Example 2 Preparation of Epoxy Resin Cured Product (CE2)
  • An epoxy resin cured product (CE2) was prepared in the same manner as in Example 1 except that triethylenetetramine (1.2 g) was used as the curing agent instead of diamine 1b.
  • the obtained epoxy resin cured product (CE2) was subjected to DSC analysis and gelation rate measurement of the cured product in the same manner as in Example 1. The results obtained are shown in Table 4.
  • the epoxy resin cured products (E1) to (E3) produced in Examples 4 to 6 are epoxy resin cured products (CE1) using the general-purpose amine-based curing agents of Comparative Examples 1 and 2. And (CE2) have a lower Tg, and moreover, Tg is higher than the epoxy resin cured product (CE3) using C 6 diamine of Comparative Example 3 and the epoxy resin cured product (CE 4) using C 10 diamine of Comparative Example 4. It was low and had an excellent flexibility-imparting effect.
  • the epoxy resin cured products (E1) to (E3) of Examples 1 to 3 using diamines 1b, 2b or 3 are the epoxy resin cured products (CE5) of Comparative Example 5 using a curing agent containing a polyether chain. It can be seen that they had substantially the same Tg and gelation rate.
  • Example 7 Evaluation of curability of epoxy resin composition (EC1)
  • 50 g of an epoxy resin composition (EC1) was prepared in the same manner as in Example 4, and this was charged into a glass sample tube. This was immersed in an oil bath at 70 ° C., and the temperature of the resin was plotted every hour (every 20 seconds) as a state of heat-generating curing. From the obtained heat-generating curve, the gelation point, gelation time, maximum heat-generating point, minimum curing time, and pot life were determined. The pot life was calculated to be 0.8 times ( ⁇ 0.8) the gelation time. The results obtained are shown in Table 5.
  • Example 8 Evaluation of curability of epoxy resin composition (EC2)
  • An epoxy resin composition (EC2) was prepared in the same manner as in Example 4 except that the diamine 2b (21.0 g) prepared in Example 2 was used instead of the diamine 1b as a curing agent.
  • the gel point, gelation time, maximum heat generation point, minimum curing time, and pot life were determined from the heat curing curve of the resin composition. The results obtained are shown in Table 5.
  • Example 9 Evaluation of curability of epoxy resin composition (EC3)
  • An epoxy resin composition (EC3) was prepared in the same manner as in Example 4 except that diamine 3 (24.5 g) prepared in Example 3 was used instead of diamine 1b as a curing agent.
  • the gel point, gelation time, maximum heat generation point, minimum curing time, and pot life were determined from the heat curing curve of the resin composition. The results obtained are shown in Table 5.
  • the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 have a long gelation time and minimum curing time, and therefore the epoxy resin compositions of Comparative Examples 6 to 11 It had the characteristic of curing more slowly than those of (CC1) to (CC6).
  • the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 were compared with the epoxy resin compositions (CC1) to (CC6) of Comparative Examples 6 to 11. It is about 2 to 3 times longer. Focusing on the gelation temperature and the maximum heat generation point, the heat generation of the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 is the heat generation of the epoxy resin compositions (CC1) of Comparative Examples 6 to 11.
  • the polyether diamine which is a flexibility-imparting agent which is similar to that of (CC6) and shows high reactivity, has low reactivity, and therefore at a low temperature.
  • the diamines 1b, 2b and 3 used in the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 are Comparative Examples 6 to 11 which are also known as commercially available amine-based curing agents. It can be seen that the pot life is longer than that of the curing agents of the epoxy resin compositions (CC1) to (CC6) of No. 1 and the temperature curability is superior to that of other flexibility-imparting agents.
  • Example 10 Water resistance of the cured epoxy resin (E1)
  • Example 11 Water resistance of the cured epoxy resin (E2)
  • the water absorption rate (%) of the cured epoxy resin (E2) was calculated. The results obtained are shown in Table 6.
  • Example 12 Water resistance of the cured epoxy resin (E3)) Boil the cured product in the same manner as in Example 10 except that the epoxy resin cured product (E3) (containing diamine 3 as a curing agent) prepared in Example 6 was used instead of the epoxy resin cured product (E1). The water absorption rate (%) of the cured epoxy resin (E3) was calculated. The results obtained are shown in Table 6.
  • Comparative Example 12 Water resistance of cured epoxy resin (CE1)) Boil the cured product in the same manner as in Example 10 except that the epoxy resin cured product (CE1) (tetraethylenepentamine as a curing agent) prepared in Comparative Example 1 was used instead of the epoxy resin cured product (E1). The water absorption rate (%) of the cured epoxy resin (CE1) was calculated. The results obtained are shown in Table 6.
  • Comparative Example 13 Water resistance of hardened epoxy resin (CE5)
  • the cured product was boiled in the same manner as in Example 10 except that the epoxy resin cured product (CE5) (polyetherdiamine as a curing agent) prepared in Comparative Example 5 was used instead of the epoxy resin cured product (E1). Then, the water absorption rate (%) of the cured epoxy resin (CE5) was calculated. The results obtained are shown in Table 6.
  • the epoxy resin cured products (E1) to (E3) evaluated in Examples 10 to 12 (containing diamines 1b, 2b or 3 as a curing agent) and the general-purpose products evaluated in Comparative Example 12 In the corresponding epoxy resin cured product (CE1) (containing tetraethylenepentamine as a curing agent), the water absorption rate of the cured product was 0%, and the cured product had sufficient water resistance.
  • the epoxy resin cured product (CE5) evaluated in Comparative Example 13 containing a polyether diamine (molecular weight 400), which is also known as a flexibility-imparting agent, as a curing agent has a water absorption rate of about 1%. Was shown.
  • the polyether diamine is accompanied by a decrease in water resistance in exchange for imparting flexibility, whereas a cured epoxy resin (E1) using diamines 1b, 2b or 3 (produced in Examples 4 to 6) is used. It can be seen that in (E3), flexibility was imparted without impairing water resistance.
  • Example 13 Preparation of bismaleimide prepolymer (EM1)
  • EM1 bismaleimide prepolymer 1
  • Diamine 1b (5.2 g) (30.0 mmol equivalent as an amino group) was added dropwise. The temperature was raised to 50 ° C. with stirring, and the mixture was further stirred for 1.5 hours. Then, 3.1 g (30.1 mmol) of acetic anhydride was added, and the mixture was further stirred for 1 hour, and THF was removed under reduced pressure to obtain 27.6 g of bismaleimide prepolymer (EM1).
  • the obtained bismaleimide prepolymer (EM1) was subjected to infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) with a decrease in peaks (1606 cm -1) corresponding to ⁇ , ⁇ -unsaturated bonds and an imide. The peaks corresponding to the bonds (1705 cm -1 and 1510 cm -1 ) and the peaks corresponding to the amide bonds (1636 cm -1 ) were confirmed.
  • FT-IR infrared spectroscopic analysis
  • Example 14 Preparation of bismaleimide prepolymer (EM2)
  • EM2 bismaleimide prepolymer
  • Example 15 Preparation of bismaleimide prepolymer (EM3)
  • EM3 bismaleimide prepolymer (EM3) was obtained in the same manner as in Example 13 except that diamine 3 (5.8 g) prepared in Example 3 was used instead of diamine 1b as a modifier.
  • This bismaleimide prepolymer (EM3) was subjected to DSC analysis of the cured product in the same manner as in Example 13. The results obtained are shown in Table 7.
  • the cured products of the bismaleimide prepolymers (EM1) to (EM3) prepared in Examples 13 to 15 are all compared with the bismaleimide prepolymer (CM1) prepared in Comparative Example 14.
  • the Tg was significantly lower, and the two amino groups constituting diamines 1b, 2b and 3 used as the modifier were used. It can be seen that the longer the carbon chain arranged between them, the higher the flexibility can be imparted to the obtained cured product.
  • Example 16 Preparation of polyamides 18 and 6
  • 1b (3.8 g) of diamine obtained in Example 1 (21.8 mmol equivalent as an amino group)
  • triethylamine (2.2 g) (21.8 mmol) and 50 mL of hexane were charged and dissolved in 50 mL of hexane.
  • Adipoyl chloride (2.0 g) (10.9 mmol) was added with stirring, and solution polymerization was carried out. After stirring for 30 minutes, the mixture was filtered, the filtrate was washed with water and acetone, and dried to obtain 2.3 g of polyamides 18 and 6.
  • a differential scanning calorimeter (DSC-60 manufactured by Shimadzu Corporation) was used to hold the sample at 0 ° C. for 10 minutes, and then the temperature was raised at 5 ° C. per minute. By heating to 100 ° C., the glass transition point (Tg) was measured from the change in calorific value with respect to the temperature rise. The results obtained are shown in Table 8.
  • Example 17 Preparation of polyamides 20 and 6
  • 2.5 g of polyamide 6.6 was obtained in the same manner as in Example 16 except that the diamine 2b (3.6 g) prepared in Example 2 was used instead of the diamine 1b.
  • the polyamide 20.6 was subjected to DSC analysis of the cured product in the same manner as in Example 16. The results obtained are shown in Table 8.
  • Example 18 Preparation of polyamides 2 and 6
  • Example 18 2.3 g of polyamide 6.6 was obtained in the same manner as in Example 16 except that diamine 3 (3.8 g) prepared in Example 3 was used instead of diamine 1b.
  • the polyamide 22.6 was subjected to DSC analysis of the cured product in the same manner as in Example 16. The results obtained are shown in Table 8.
  • the polyamides (polyamide 18.6, polyamide 20.6, polyamide 22.6) prepared in Examples 16 to 18 are all compared with the polyamide 2.6 prepared in Comparative Example 16.
  • Tg is significantly lower than that of Polyamide 6.6 in Example 17.
  • the longer the carbon chain arranged between the two amino groups constituting the diamines 1b, 2b and 3 used in the polyamide the higher the flexibility of the obtained cured product. You can see that it was possible.
  • Example 19 Fabrication of polyimide (ED1)
  • ED1 polyimide
  • a reactor equipped with a stirrer, a water divider, a thermometer and a nitrogen gas introduction tube was charged with pyromellitic anhydride (50.0 g) and cyclohexanone (200 ml) and heated to 60 ° C.
  • pyromellitic anhydride 50.0 g
  • cyclohexanone 200 ml
  • 40.0 g of the diamine 1b obtained in Example 1 dissolved in toluene (100 ml) was added, imidized at 140 ° C. for 3 hours, the solvent was removed under reduced pressure, and 80.1 g of polyimide (ED1) was obtained. It was.
  • Example 20 Fabrication of polyimide (ED2)
  • ED2 polyimide
  • 78.9 g of polyimide (ED2) was obtained in the same manner as in Example 19 except that the diamine 2b (37.9 g) prepared in Example 2 was used instead of the diamine 1b.
  • the polyimide (ED2) was subjected to DSC analysis of the resin in the same manner as in Example 19. The results obtained are shown in Table 9.
  • Example 21 Fabrication of polyimide (ED3) 81.3 g of polyimide (ED3) was obtained in the same manner as in Example 19 except that the diamine 3 (44.3 g) prepared in Example 3 was used instead of the diamine 1b.
  • ED3 DSC analysis of the resin was carried out in the same manner as in Example 19. The results obtained are shown in Table 9.
  • diamine compound of the present invention (diamine 1b, 2b and 3) having a long carbon chain between two amino groups is used as a resin additive, flexibility is imparted to the resin.
  • these diamine compounds have slower reactivity than commercially available amine curing agents as epoxy resin curing agents as used in Comparative Examples 6 to 11, but gels from Table 1 show. The conversion rate is high, and it can be seen that the curing reaction is sufficiently progressing. Therefore, it is the most suitable material for adjusting the pot life.
  • the polyether diamine (molecular weight 400), which had a flexibility-imparting effect, had a flexibility-imparting effect corresponding to the molecular weight (Table 1), but the reactivity was remarkably low (70 ° C.). At worst, the curing reaction proceeds at 120 ° C. (Table 2). Further, from Table 3, the cured product using a polyether diamine is inferior in water resistance, while the cured product using a long-chain diamine has the same water resistance as a general-purpose amine curing agent without impairing the water resistance. Be done. For this reason, the diamine compound of the present invention is more useful than the current flexibility-imparting agent, polyether diamine.
  • Example 22 Corrosion prevention effect on metal products
  • a glass sample tube was charged with 50 mL of an aqueous solution containing the diamine 1b obtained in Example 1 as a corrosion inhibitor in a proportion of 0.05% by mass in 10% hydrochloric acid.
  • a standard test plate JIS G 3141; manufactured by Nippon Test Panel Co., Ltd.
  • the test plate after corrosion was washed with water and dried, and the corrosion rate (%) was calculated according to the following formula from the mass difference before and after immersion.
  • Corrosion rate (%) (mass of test plate before immersion-mass of test plate after immersion) / (mass of test plate before immersion) x 100
  • the diamine 1b (isooctadecanediamine) used in Example 22 has the lowest corrosion rate of the steel sheet and has a high anticorrosive effect against an acidic aqueous solution.
  • Such corrosion inhibitors are useful during cleaning treatments such as pickling, acid immersion, and etching of metals.
  • the diamine compound of the present invention it is possible to provide a resin composition having excellent flexibility by using various resins.
  • the resin composition is used as a material composed of resins such as epoxy, polyurethane, polyimide, polyamideimide, maleimide, and polyamide, for example, in earth and wood, building materials, repair materials for flooring materials, various paints, various adhesives, and electronic materials.
  • resins such as epoxy, polyurethane, polyimide, polyamideimide, maleimide, and polyamide
  • resins such as epoxy, polyurethane, polyimide, polyamideimide, maleimide, and polyamide
  • sealants underfills
  • insulating members such as insulating members, mold resins, resist materials, resin-reinforced solder solder paste materials, flexible printed substrate materials, various films, plastic molded products in thermoplastic resins, nylon fibers, etc. Is.
  • the diamine compound of the present invention when used as a cationic surfactant in a lubricating rust preventive, it can exert a high corrosion prevention effect on metal products. Therefore, it is also useful in the fields of metal processing, machinery, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Disclosed are a diamine compound and a method for producing the same. This diamine compound is a compound represented by formula (I): H2N-R1-NH2 (in formula (I), R1 is an alkylene group or an alkenylene group having a total carbon number of C14-C28, the alkylene group or alkenylene group either being linear or having a branched chain of one or a more C1-C4 alkyl groups and/or alkenyl groups). This diamine compound can impart appropriate flexibility to a resin such as an epoxy resin.

Description

ジアミン化合物およびその製造方法Diamine compound and its manufacturing method
 本発明は、ジアミン化合物およびその製造方法に関し、より詳細には、例えば熱硬化性樹脂、熱可塑性樹脂などの高分子材料を構成し得るモノマーまたは硬化剤、あるいは当該高分子材料と共存して使用され得る添加剤として有用なジアミン化合物およびその製造方法に関する。 The present invention relates to a diamine compound and a method for producing the same. More specifically, the present invention is used in coexistence with a monomer or a curing agent capable of constituting a polymer material such as a thermosetting resin or a thermoplastic resin, or the polymer material. The present invention relates to a diamine compound useful as an additive and a method for producing the same.
 高分子で構成される樹脂材料は、塗料、建築用材料、床材、土木材、電子部材などの幅広い用途に利用されている。これらの用途に応じて、要求される特性が異なることから、その特性を満たす樹脂材料の種類も多岐に亘っている。 Resin materials composed of polymers are used in a wide range of applications such as paints, building materials, flooring materials, earth and wood, and electronic materials. Since the required properties differ depending on these uses, there are a wide variety of resin materials that satisfy the properties.
 中でも特に、主鎖が芳香環で構成された高分子であるエポキシ樹脂、ポリイミド、ポリアミドイミドなどの樹脂材料は、機械特性および電気特性などに優れる反面、硬くて脆いという性質を有し、一般に耐衝撃性や靭性に乏しいことが指摘されている。したがって、用途によっては脆さを緩和する必要があり、これまでに様々な手段が提案されている。 In particular, resin materials such as epoxy resin, polyimide, and polyamide-imide, which are polymers whose main chain is composed of aromatic rings, have excellent mechanical and electrical properties, but are hard and brittle, and are generally resistant. It has been pointed out that it lacks impact resistance and toughness. Therefore, it is necessary to alleviate the brittleness depending on the application, and various means have been proposed so far.
 このような手段の一つとして、高分子の主鎖中に柔軟鎖を導入することにより可撓性を付与して当該高分子を改質する方法が知られている。このような柔軟鎖の導入する方法として、例えば熱硬化性樹脂を製造する場合には、柔軟鎖(例えばエーテル基、エステル基、アミド基、ウレタン基などの極性基)を有する化合物を主剤または硬化剤として使用することが知られている。あるいは、熱可塑性樹脂を製造する場合には、このような柔軟鎖を有する化合物を原料のモノマーとして使用することが知られている。 As one of such means, a method of modifying the polymer by introducing a flexible chain into the main chain of the polymer to impart flexibility is known. As a method for introducing such a flexible chain, for example, in the case of producing a thermosetting resin, a compound having a flexible chain (for example, a polar group such as an ether group, an ester group, an amide group, or a urethane group) is used as a main agent or cured. It is known to be used as an agent. Alternatively, when producing a thermoplastic resin, it is known to use a compound having such a flexible chain as a raw material monomer.
 しかし、これらの方法では、相溶性や粘度が低下する、硬化性が低下する、得られる硬化物に対して可撓性以外の諸特性が変化する、などの所望でない他の特性が変化または低減することがある。これらは、柔軟鎖として導入する上記極性基を介在させるために生じていると考えられる。 However, these methods change or reduce other undesired properties such as reduced compatibility and viscosity, reduced curability, and changes in properties other than flexibility with respect to the resulting cured product. I have something to do. It is considered that these are caused by interposing the polar group introduced as a flexible chain.
 本発明は、上記問題の解決を課題とするものであり、その目的とするところは、エポキシ樹脂などの樹脂の構成分子中に極性基を導入することなく、かつ当該樹脂に対して可撓性を付与することができ、かつ他の特性には影響をほとんど及ぼすことのない樹脂添加剤として使用され得るジアミン化合物およびその製造方法を提供することにある。 An object of the present invention is to solve the above problems, and an object of the present invention is to be flexible with respect to the resin without introducing a polar group into the constituent molecules of the resin such as an epoxy resin. It is an object of the present invention to provide a diamine compound which can be used as a resin additive and a method for producing the same, which can impart the above-mentioned substances and have little influence on other properties.
 本発明は、以下の式(I): The present invention has the following formula (I):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(I)中、
 Rは、全炭素数がC14~C28であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基である、
 で表される、ジアミン化合物である。
In formula (I),
R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups. An alkylene group or an alkenylene group having a branched chain of
It is a diamine compound represented by.
 1つの実施形態では、式(I)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分がC2n個(ここでnは7~14である)の炭素原子を有する。 In one embodiment, in formula (I), the main chain portion of the alkylene group or alkenylene group constituting R 1 has C 2n carbon atoms (where n is 7 to 14).
 1つの実施形態では、式(I)において、Rを構成する前記C14~C28の直鎖アルキレン基または直鎖アルケニレン基が、エチル基で構成される分岐鎖を有する。 In one embodiment, in formula (I), the linear alkylene group or linear alkenylene group of C 14 to C 28 constituting R 1 has a branched chain composed of an ethyl group.
 1つの実施形態では、本発明のジアミン化合物は、7-エチルヘキサデカンジアミン、7,12-ジメチルオクタデカンジアミン-7,11-エン、または8,13-ジメチルオクタデカンジアミン-8,12-エンである。 In one embodiment, the diamine compound of the present invention is 7-ethylhexadecanediamine, 7,12-dimethyloctadecanediamine-7,11-ene, or 8,13-dimethyloctadecanediamine-8,12-ene.
 本発明はまた、上記式(I)で表されるジアミン化合物の製造方法であって、
 以下の式(II):
The present invention is also a method for producing a diamine compound represented by the above formula (I).
The following formula (II):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 で表される二塩基酸エステル類とヒドラジンとを反応させてジヒドラジド化合物を得る工程、
 該ジヒドラジド化合物を亜硝酸化合物と反応させてアジ化物を得る工程、および
 該アジ化物を加熱転位かつ加水分解する工程、
 を包含し、
 式(II)中、
 Rは、全炭素数がC14~C28であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基であり、
 Rは、C~Cの直鎖アルキル基である、
 方法である。
A step of reacting a dibasic acid ester represented by (1) with hydrazine to obtain a dihydrazide compound.
A step of reacting the dihydrazide compound with a nitrite compound to obtain an azide, and a step of heating and hydrolyzing the azide.
Including,
In formula (II),
R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups. An alkylene group or an alkenylene group having a branched chain of
R 2 is a linear alkyl group of C 1 to C 4,
The method.
 1つの実施形態では、式(II)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分がC2n個(ここでnは7~14である)の炭素原子を有する。 In one embodiment, in formula (II), the main chain portion of the alkylene group or alkenylene group constituting R 1 has C 2n carbon atoms (where n is 7 to 14).
 本発明はまた、上記式(I)で表されるジアミン化合物の製造方法であって、
 以下の式(III):
The present invention is also a method for producing a diamine compound represented by the above formula (I).
The following formula (III):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 で表される二塩基酸とアンモニアとを反応させてジアミド化合物を得る工程、および
 該ジアミド化合物をニトリル化しかつ水素還元する工程、
 を包含し、
 式(III)中、
 Rは、全炭素数がC14~C28であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基である、
 方法である。
A step of reacting a dibasic acid represented by (1) with ammonia to obtain a diamide compound, and a step of nitriding and hydrogen reducing the diamide compound.
Including,
In formula (III),
R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups. An alkylene group or an alkenylene group having a branched chain of
The method.
 1つの実施形態では、式(III)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分がC2n個(ここでnは7~14である)の炭素原子を有する。 In one embodiment, in formula (III), the main chain portion of the alkylene group or alkenylene group constituting R 1 has C 2n carbon atoms (where n is 7 to 14).
 本発明はまた、上記ジアミン化合物を含有する、樹脂添加剤である。 The present invention is also a resin additive containing the above diamine compound.
 本発明はまた、樹脂と、上記樹脂添加剤とを含有する、樹脂組成物である。 The present invention is also a resin composition containing a resin and the above resin additive.
 本発明はまた、1つまたはそれ以上のモノマー化合物および上記樹脂添加剤から構成される樹脂を含有する、樹脂組成物である。 The present invention is also a resin composition containing one or more monomer compounds and a resin composed of the above resin additives.
 本発明はまた、上記ジアミン化合物を含有する、金属製品用潤滑防錆剤である。 The present invention is also a lubricating rust preventive for metal products containing the above diamine compound.
 本発明によれば、例えば、エポキシ樹脂のような樹脂に対して可撓性を提供することができる。その一方で、当該樹脂のその他の特性を大きく変化させることは回避される。本発明のジアミン化合物は、このような樹脂添加剤の他、カチオン界面活性剤としての柔軟剤、防錆剤などの有効成分としても応用することができる。 According to the present invention, it is possible to provide flexibility to a resin such as an epoxy resin. On the other hand, it is avoided that the other properties of the resin are significantly changed. In addition to such resin additives, the diamine compound of the present invention can also be applied as an active ingredient such as a softener as a cationic surfactant and a rust preventive.
 以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.
(ジアミン化合物)
 本発明のジアミン化合物は、以下の式(I):
(Diamine compound)
The diamine compound of the present invention has the following formula (I):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 で表される化合物である。ここで、式(I)中、Rは、全炭素数がC14~C28、好ましくはC16~C24、より好ましくはC18~C22であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基である。 It is a compound represented by. Here, in the formula (I), R 1 is an alkylene group or an alkylene group having a total carbon number of C 14 to C 28 , preferably C 16 to C 24 , and more preferably C 18 to C 22. An alkylene or alkenylene group that is linear or has one or more branched chains of C 1 to C 4 alkyl and / or alkenyl groups.
 本明細書中で用いられる用語「全炭素数がC14~C28であるアルキレン基またはアルケニレン基」とは、炭素数14~28を有する直鎖状または分岐鎖状のアルキレン基および炭素数14~28を有する直鎖状または分岐鎖状のアルケニレン基を包含していう。 As used herein, the term " alkylene group or alkenylene group having a total carbon number of C 14 to C 28 " is a linear or branched alkylene group having 14 to 28 carbon atoms and 14 carbon atoms. It includes a linear or branched alkenylene group having ~ 28.
 炭素数14~28を有するアルキレン基またはアルケニレン基の例としては、全炭素数がC14~C28でありかつ直鎖状であるアルキレン基;全炭素数がC14~C28でありかつ1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基;全炭素数がC14~C28でありかつ直鎖状であるアルケニレン基;全炭素数がC14~C28でありかつ1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルケニレン基;が挙げられる。 Examples of an alkylene group or an alkenylene group having 14 to 28 carbon atoms are an alkylene group having a total carbon number of C 14 to C 28 and a linear structure; a total carbon number of C 14 to C 28 and 1 An alkylene group having a branched chain of one or more C 1 to C 4 alkyl groups and / or alkenyl groups; an alkenylene group having a total carbon number of C 14 to C 28 and being linear; a total carbon number of Alkenylene groups; which are C 14 to C 28 and have one or more branched chains of alkyl and / or alkenyl groups of C 1 to C 4;
 全炭素数がC14~C28でありかつ直鎖状であるアルキレン基としては、例えば、n-テトラデカニレン基、n-ペンタデカニレン基、n-ヘキサデカニレン基、n-ヘプタデカニレン基、n-オクタデカニレン基、n-ノナデカニレン基、n-イコサニレン基、n-ヘンイコサニレン基、n-ドコサニレン基、n-トリコサニレン基、n-テトラコサニレン基、n-ペンタコサニレン基、n-ヘキサコサニレン基、n-ヘプタコサニレン基、およびn-オクタコサニレン基が挙げられる。全炭素数がC14~C28でありかつ直鎖状であるアルケニレン基としては、例えば、テトラデケニレン基、ペンタデケニレン基、ヘキサデケニレン基、ヘプタデケニレン基、オクタデケニレン基、ノナデケニレン基、イコセニレン基、ヘンイコセニレン基、ドコセニレン基、トリコセニレン基、テトラコセニレン基、ペンタコセニレン基、ヘキサコセニレン基、ヘプタコセニレン基、およびオクタコセニレン基が挙げられる。 Examples of the alkylene group having a total carbon number of C 14 to C 28 and being linear include an n-tetradecanylene group, an n-pentadecanylene group, an n-hexadecanylene group, an n-heptadecanelen group, and an n-octadecanylene group. , N-nonadecanylene group, n-icosanilen group, n-henicosanilen group, n-docosanilen group, n-tricosanilen group, n-tetracosanilen group, n-pentacosanilen group, n-hexacosanilen group, n-heptacosanilen group, and n-octacosanilen group. The group is mentioned. Examples of the alkenylene group having a total carbon number of C 14 to C 28 and being linear include a tetradecenelene group, a pentadeceneylene group, a hexadecenelene group, a heptadecenelene group, an octadecenelene group, a nonadekenylene group, an icosenylene group, a henicosenylene group, and a docosenylene group. , Tricosenylene group, tetracosenylene group, pentacosenylene group, hexacosenylene group, heptacosenylene group, and octacosenylene group.
 「全炭素数がC14~C28でありかつ1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基」は、C~Cアルキル基およびC~Cアルケニル基からなる群から選択される少なくとも1つの基を分岐鎖として含む、全炭素数がC14~C28であるアルキレン基を指して言う。「全炭素数がC14~C28でありかつ1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルケニレン基」は、C~Cアルキル基およびC~Cアルケニル基からなる群から選択される少なくとも1つの基を分岐鎖として含む、全炭素数がC14~C28であるアルケニレン基を指して言う。C~Cのアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、およびtert-ブチル基が挙げられる。C~Cのアルケニル基の例としては、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、および3-ブテニル基が挙げられる。 "Total carbon atoms having a branched-chain alkyl groups and / or alkenyl group C 14 is ~ C 28 and one or more of C 1 ~ C 4, alkylene group", C 1 ~ C 4 alkyl group and Refers to an alkylene group having a total carbon number of C 14 to C 28 , which comprises at least one group selected from the group consisting of C 1 to C 4 alkenyl groups as a branched chain. "Total carbon atoms having a branched-chain alkyl groups and / or alkenyl group C 14 is ~ C 28 and one or more of C 1 ~ C 4, alkenylene group", C 1 ~ C 4 alkyl group and Refers to an alkylene group having a total carbon number of C 14 to C 28 , which comprises at least one group selected from the group consisting of C 1 to C 4 alkenyl groups as a branched chain. Examples of alkyl groups C 1 to C 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group. Examples of alkenyl groups of C 1 ~ C 4, a vinyl group, 1-propenyl group, an allyl group, a 1-butenyl group, 2-butenyl group, and 3-butenyl groups.
 本発明のジアミン化合物は、例えば、後述する樹脂添加剤の構成成分として使用する場合、得られる樹脂組成物に適切な可撓性を付与することができるという点から、式(I)のRは、全炭素数がC14~C28であるアルキレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基の分岐鎖を有するアルキレン基であることが好ましく、全炭素数がC14~C28であるアルキレン基であって、1つのC~Cのアルキル基の分岐鎖を有するアルキレン基であることがより好ましく、全炭素数がC14~C28であるアルキレン基であって、1つのエチル基の分岐鎖を有するアルキレン基であることがさらにより好ましい。 When the diamine compound of the present invention is used, for example, as a constituent component of a resin additive described later, R 1 of the formula (I) can be imparted with appropriate flexibility to the obtained resin composition. Is an alkylene group having a total carbon number of C 14 to C 28, which is linear or has a branched chain of one or more C 1 to C 4 alkyl groups. Is more preferable, and an alkylene group having a total carbon number of C 14 to C 28 and having a branched chain of one alkyl group of C 1 to C 4 is more preferable, and a total carbon number of C 14 is preferable. It is even more preferable that the alkylene group having ~ C 28 is an alkylene group having a branched chain of one ethyl group.
 あるいは、本発明のジアミン化合物は、後述するように市販の二塩基酸またはその誘導体を用いて簡便に製造することができるという点から、上記式(I)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分(すなわち、分岐鎖を除いた鎖式炭化水素部分)がC2n個(ここでnは7~14である)の炭素原子を有することが好ましい。 Alternatively, the diamine compound of the present invention can be easily produced using a commercially available dibasic acid or a derivative thereof as described later, and therefore, in the above formula (I), the alkylene group constituting R 1 or It is preferable that the main chain portion of the alkenylene group (that is, the chain hydrocarbon portion excluding the branched chain) has C 2n carbon atoms (where n is 7 to 14).
 このようなジアミン化合物のより具体例としては、
 テトラデカンジアミン、ヘキサデカンジアミン、オクタデカンジアミン、エイコサジアミン、ドコサジアミン、テトラコサジアミン、オクタコサジアミンなどの直鎖飽和ジアミン;
 テトラデカンジアミン-7-エン、ヘキサデカンジアミン-6-エン、ヘキサデカンジアミン-8-エン、オクタデカンジアミン-8-エン、オクタデカンジアミン-10-エン、エイコサジアミン-6-エン、エイコサジアミン-8-エン、エイコサジアミン-12-エン、エイコサジアミン-8,12-ジエン、エイコサジアミン-10,14-ジエン、ドコサジアミン-7,11,15-トリエン、ドコサジアミン-8,12,16-トリエン、1,24-テトラコサジアミン-8,12,16-トリエン、テトラコサジアミン-10,14,18-トリエンなどの直鎖不飽和ジアミン;
 6,8-ジメチルテトラデカンジアミン、7-エチルテトラデカンジアミン、7-プロピルテトラデカンジアミン、7-エチルヘキサデカンジアミン、7-ブチルヘキサデカンジアミン、7-イソプロピル-10-メチルヘキサデカンジアミン、8-エチルオクタデカンジアミン、8-イソプロピル-11-メチルオクタデカンジアミン、8,13-ジエチルオクタデカンジアミン、8,13-ジメチルエイコサジアミン、9,12-ジメチルエイコサジアミン、9,12-ジエチルエイコサジアミンなどの分岐飽和ジアミン;
 7-ビニルテトラデカンジアミン、7-ビニルヘキサデカンジアミン-8-エン、7-イソプロぺニル-10-メチルヘキサデカンジアミン-9-エン、8-ビニル-オクタデカンジアミン-9-エン、7,12-ジメチルオクタデカンジアミン-7,11-ジエン、7,12-ジエチルオクタデカンジアミン-7,11-ジエン、8-イソプロぺニル-11-メチルオクタデカンジアミン-10-エン、8-エチル-11-イソプロぺニルオクタデカンジアミン-10-エン、8,13-ジメチルエイコサジアミン-8,12-ジエン、9,12-ジメチルエイコサジアミン-8,12-ジエン、などの分岐不飽和ジアミン;
 などが挙げられる。
As a more specific example of such a diamine compound,
Linear saturated diamines such as tetradecane diamine, hexadecane diamine, octadecane diamine, eikosa diamine, docosa diamine, tetracosa diamine, octacosa diamine;
Tetradecanediamine-7-ene, hexadecanediamine-6-ene, hexadecanediamine-8-ene, octadecanediamine-8-ene, octadecanediamine-10-ene, eikosadiamine-6-ene, eikosadiamine-8-ene , Eikosadiamine-12-ene, Eikosadiamine-8,12-diamine, Eikosadiamine-10,14-diamine, docosadiamine-7,11,15-triene, docosadiamine-8,12,16-triene, 1 , 24-Tetracosadiamine-8,12,16-Triene, Tetracosadiamine-10,14,18-Triene and other linear unsaturated diamines;
6,8-Dimethyltetradecanediamine, 7-ethyltetradecanediamine, 7-propyltetradecanediamine, 7-ethylhexadecanediamine, 7-butylhexadecandiamine, 7-isopropyl-10-methylhexadecanediamine, 8-ethyloctadecandiamine, 8- Branch saturated diamines such as isopropyl-11-methyloctadecanediamine, 8,13-diethyloctadecanediamine, 8,13-dimethyleicosadiamine, 9,12-dimethyleicosadiamine, 9,12-diethyleicosadiamine;
7-Vinyltetradecanediamine, 7-vinylhexadecanediamine-8-ene, 7-isopropenyl-10-methylhexadecanediamine-9-ene, 8-vinyl-octadecandiamine-9-ene, 7,12-dimethyloctadecanediamine -7,11-diamine, 7,12-diethyloctadecanediamine-7,11-diamine, 8-isopropenyl-11-methyloctadecandiamine-10-ene, 8-ethyl-11-isopropenyloctadecandiamine-10 Branched unsaturated diamines such as -ene, 8,13-dimethyleicosadiamine-8,12-diamine, 9,12-dimethyleicosadiamine-8,12-diamine;
And so on.
(ジアミン化合物の製造方法)
 上記式(I)で表されるジアミン化合物は、例えば以下の第1の方法または第2の方法によって製造することができる。
(Manufacturing method of diamine compound)
The diamine compound represented by the above formula (I) can be produced, for example, by the following first method or second method.
 式(I)で表されるジアミン化合物の第1の製造方法について説明する。 The first method for producing the diamine compound represented by the formula (I) will be described.
 本発明の第1の方法では、まず以下の式(II): In the first method of the present invention, first, the following formula (II):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 で表される二塩基酸エステル類とヒドラジンとを反応させて、ジヒドラジド化合物が合成される。 A dihydrazide compound is synthesized by reacting the dibasic acid esters represented by (1) with hydrazine.
 式(II)中、Rは、全炭素数がC14~C28、好ましくはC16~C24、より好ましくはC18~C22であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基であり、Rは、C~Cの直鎖アルキル基である。 In formula (II), R 1 is an alkylene group or an alkylene group having a total carbon number of C 14 to C 28 , preferably C 16 to C 24 , more preferably C 18 to C 22, and is linear. Or an alkylene or alkenylene group having a branched chain of one or more C 1 to C 4 alkyl groups and / or alkenyl groups, where R 2 is a C 1 to C 4 linear alkyl. It is a group.
 式(II)において、Rは上記式(I)において定義したものと同様である。 In formula (II), R 1 is similar to that defined in formula (I) above.
 式(II)において、ジアミン化合物が、例えば、後述する樹脂添加剤の構成成分として使用される場合、得られる樹脂組成物に適切な可撓性を付与することができるという点から、Rは、全炭素数がC14~C28であるアルキレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基の分岐鎖を有するアルキレン基であることが好ましく、全炭素数がC14~C28であるアルキレン基であって、1つのC~Cのアルキル基の分岐鎖を有するアルキレン基であることがより好ましく、全炭素数がC14~C28であるアルキレン基であって、1つのエチル基の分岐鎖を有するアルキレン基であることがさらにより好ましい。あるいは、式(II)で表される化合物は、後述するように市販により入手が容易であるとの理由から、上記式(II)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分(すなわち、分岐鎖を除いた鎖式炭化水素部分)がC2n個(ここでnは7~14である)の炭素原子を有することが好ましい。 In formula (II), when the diamine compound is used, for example, as a constituent component of a resin additive described later, R 1 can impart appropriate flexibility to the obtained resin composition. , An alkylene group having a total carbon number of C 14 to C 28, which is linear or has a branched chain of one or more C 1 to C 4 alkyl groups. preferably, the total number of carbon atoms is an alkylene group which is C 14 ~ C 28, more preferably an alkylene group having one branched alkyl group of C 1 ~ C 4, the total number of carbon atoms is C 14 ~ It is even more preferable that the alkylene group is C 28 and has a branched chain of one ethyl group. Alternatively, compounds of the formula (II) are, for reasons of easy availability commercially as will be described later, in the above formula (II), the main chain portion of the alkylene group or alkenylene group constituting R 1 It is preferable that (that is, the chain hydrocarbon moiety excluding the branched chain) has C 2n carbon atoms (where n is 7 to 14).
 一方、式(II)において、Rを構成し得るC~Cの直鎖アルキル基の例としては、メチル基、エチル基、n-プロピル基、およびn-ブチル基が挙げられる。 On the other hand, in the formula (II), examples of the linear alkyl groups C 1 to C 4 that can constitute R 2 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
 上記式(II)で表される二塩基酸エステル類は公知であり、例えば岡村製油株式会社により市販されている。 The dibasic acid esters represented by the above formula (II) are known and are commercially available, for example, by Okamura Oil Refinery Co., Ltd.
 式(II)で表される二塩基酸エステル類とヒドラジンとの反応は、適切な有機溶媒中で例えば加熱還流することにより行われる。使用可能な有機溶媒の例としては、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール類が挙げられる。加熱還流に要する時間は、使用する二塩基酸エステル類および量に応じて当業者により適宜選択され得る。 The reaction between the dibasic acid esters represented by the formula (II) and hydrazine is carried out, for example, by heating under reflux in an appropriate organic solvent. Examples of usable organic solvents include alcohols such as methanol, ethanol, 1-propanol and 2-propanol. The time required for heating and reflux can be appropriately selected by those skilled in the art depending on the dibasic acid esters used and the amount.
 このようにして、式(II)の二塩基酸エステル類がヒドラジド化され、ジヒドラジド化合物(カルボン酸ヒドラジド)を得ることができる。 In this way, the dibasic acid esters of the formula (II) are hydrazideized, and a dihydrazide compound (carboxylic acid hydrazide) can be obtained.
 次いで、このジヒドラジド化合物は亜硝酸化合物を反応させてアジ化物が生成される。 Next, this dihydrazide compound reacts with a nitrite compound to produce an azide.
 本発明において、亜硝酸化合物は、上記ジヒドラジド化合物(カルボン酸ヒドラジド)からアジ化物(カルボン酸アジド)を生成可能な化合物である。亜硝酸化合物の例としては、亜硝酸塩および亜硝酸エステルが挙げられる。 In the present invention, the nitrite compound is a compound capable of producing an azide (carboxylic acid azide) from the above dihydrazide compound (carboxylic acid hydrazide). Examples of nitrite compounds include nitrites and nitrite esters.
 このアジ化物の生成において、反応条件は当業者によって適宜選択され得る。 In the production of this azide, reaction conditions can be appropriately selected by those skilled in the art.
 その後、アジ化物は加熱転位され加水分解される。 After that, the azide is heat-dislocated and hydrolyzed.
 具体的には、アジ化物は加熱によるCurtius転位を通じてイソシアネートに変換され、その後の加水分解によって、上記式(I)で表されるジアミン化合物が生成される。なお、このCurtius転位および加水分解の各条件もまた当業者によって適宜選択され得る。 Specifically, the azide is converted to isocyanate through the Curtius rearrangement by heating, and the subsequent hydrolysis produces the diamine compound represented by the above formula (I). The conditions for the Curtius rearrangement and hydrolysis can also be appropriately selected by those skilled in the art.
 次に、式(I)で表されるジアミン化合物の第2の製造方法について説明する。 Next, a second method for producing the diamine compound represented by the formula (I) will be described.
 本発明の第2の方法では、まず以下の式(III): In the second method of the present invention, first, the following formula (III):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 で表される二塩基酸とアンモニアとを反応させてジアミド化合物が作製される。 A diamide compound is produced by reacting the dibasic acid represented by (1) with ammonia.
 式(III)中、Rは、全炭素数がC14~C28、好ましくはC16~C24、より好ましくはC18~C22であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基である。 In formula (III), R 1 is an alkylene group or an alkenylene group having a total carbon number of C 14 to C 28 , preferably C 16 to C 24 , more preferably C 18 to C 22, and is linear. Or an alkylene or alkenylene group having a branched chain of one or more C 1 to C 4 alkyl and / or alkenyl groups.
 式(III)において、Rは上記式(I)において定義したものと同様である。 In formula (III), R 1 is similar to that defined in formula (I) above.
 式(III)において、得られるジアミン化合物が、例えば、後述する樹脂添加剤の構成成分として使用される場合、得られる樹脂組成物に適切な可撓性を付与することができるという点から、Rは、全炭素数がC14~C28であるアルキレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基の分岐鎖を有するアルキレン基であることが好ましく、全炭素数がC14~C28であるアルキレン基であって、1つのC~Cのアルキル基の分岐鎖を有するアルキレン基であることがより好ましく、全炭素数がC14~C28であるアルキレン基であって、1つのエチル基の分岐鎖を有するアルキレン基であることがさらにより好ましい。あるいは、式(III)で表される化合物は、後述するように市販により入手が容易であるとの理由から、上記式(III)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分(すなわち、分岐鎖を除いた鎖式炭化水素部分)がC2n個(ここでnは7~14である)の炭素原子を有することが好ましい。 In formula (III), when the obtained diamine compound is used, for example, as a constituent component of a resin additive described later, R can be imparted to the obtained resin composition with appropriate flexibility. Reference numeral 1 denotes an alkylene group having a total carbon number of C 14 to C 28, which is linear or has a branched chain of one or more C 1 to C 4 alkyl groups. It is more preferable that the alkylene group has a total carbon number of C 14 to C 28 , and the alkylene group has a branched chain of one C 1 to C 4 alkyl group, and the total carbon number is C. It is even more preferable that the alkylene group is 14 to C 28 , and the alkylene group has a branched chain of one ethyl group. Alternatively, the compound represented by the formula (III) has a main chain portion of an alkylene group or an alkenylene group constituting R 1 in the above formula (III) because it is easily available on the market as described later. It is preferable that (that is, the chain hydrocarbon moiety excluding the branched chain) has C 2n carbon atoms (where n is 7 to 14).
 上記式(III)で表される二塩基酸は公知であり、例えば岡村製油株式会社により市販されている。 The dibasic acid represented by the above formula (III) is known and is commercially available, for example, by Okamura Oil Refinery Co., Ltd.
 式(III)で表される二塩基酸とアンモニアとの反応は、好ましくは加圧かつ加熱下で行われる。加圧および加熱の条件ならびにそれに要する時間は、使用する二塩基酸および量に応じて当業者により適宜選択され得る。 The reaction between the dibasic acid represented by the formula (III) and ammonia is preferably carried out under pressure and heating. The conditions of pressurization and heating and the time required for them can be appropriately selected by those skilled in the art depending on the dibasic acid and the amount used.
 このようにして、式(III)の二塩基酸からジアミド化合物を得ることができる。 In this way, the diamide compound can be obtained from the dibasic acid of the formula (III).
 次いで、このジアミド化合物はニトリル化されかつ水素還元される。 Next, this diamide compound is nitridated and hydrogenated.
 ニトリル化および水素還元の条件は特に限定されず、当業者によって適切な条件が適宜選択され得る。 The conditions for nitridation and hydrogen reduction are not particularly limited, and appropriate conditions can be appropriately selected by those skilled in the art.
 このようにして、本発明の上記式(I)で表されるジアミン化合物が製造される。 In this way, the diamine compound represented by the above formula (I) of the present invention is produced.
(樹脂添加剤および樹脂組成物)
 本発明の樹脂添加剤は、上記式(I)で表されるジアミン化合物を含有する。
(Resin additive and resin composition)
The resin additive of the present invention contains a diamine compound represented by the above formula (I).
 ここで、本明細書中に用いられる用語「樹脂添加剤」は、広義の意味で用いられ、例えば、(1)樹脂組成物を構成するにあたり、構成成分である樹脂とは独立して添加されることにより、得られる樹脂組成物の安定性の向上および/または機能性の付与に起因するもの(例えば、安定化剤、酸化防止剤、紫外線吸収剤などの安定性の向上を可能にするもの、および/または可塑剤、難燃剤、核剤、透明化剤、帯電防止剤、滑剤などの所定の機能を付与し得るもの);(2)樹脂組成物を構成するにあたり、構成成分である樹脂に対して物理的または化学的に連結または反応させるもの(例えば架橋剤、硬化剤);ならびに(3)反応を通じて樹脂自体を構成することができるもの(例えば原料モノマー);を包含して言う。 Here, the term "resin additive" used in the present specification is used in a broad sense, and for example, (1) when constituting a resin composition, it is added independently of the resin which is a constituent component. Thereby, those caused by the improvement of the stability and / or the impartation of functionality of the obtained resin composition (for example, those capable of improving the stability of stabilizers, antioxidants, ultraviolet absorbers, etc.). , And / or those that can impart predetermined functions such as plasticizers, flame retardants, nucleating agents, clearing agents, antistatic agents, lubricants, etc.); It includes those that are physically or chemically linked or reacted with each other (for example, a cross-linking agent and a curing agent); and (3) those that can form the resin itself through the reaction (for example, a raw material monomer).
 本発明の樹脂添加剤では、上記式(I)で表されるジアミン化合物以外に、通常の樹脂組成物において添加され得る他の成分を含有していてもよい。このような他の成分としては、特に限定されないが、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤、および/またはリン系酸化防止剤などの酸化防止剤;アニオン系活性剤、カチオン系活性剤、非イオン系活性剤、両性活性剤などの帯電防止剤;炭化水素系滑剤、脂肪酸系滑剤、高級アルコール系滑剤、脂肪酸アミド系滑剤、金属石ケン系滑剤、エステル系滑剤などの滑剤;有機系難燃剤、無機系難燃剤などの難燃剤;ならびにそれらの組み合わせ;が挙げられる。本発明の樹脂添加剤において含有され得る上記他の成分の含有量は、特に限定されず、当業者によって任意の量が選択され得る。 The resin additive of the present invention may contain other components that can be added in a normal resin composition, in addition to the diamine compound represented by the above formula (I). Such other components are not particularly limited, but are, for example, antioxidants such as phenol-based antioxidants, sulfur-based antioxidants, and / or phosphorus-based antioxidants; anionic activators, cationic activities. Antistatic agents such as agents, nonionic activators, amphoteric activators; lubricants such as hydrocarbon-based lubricants, fatty acid-based lubricants, higher alcohol-based lubricants, fatty acid amide-based lubricants, metallic soap-based lubricants, ester-based lubricants; organic Flame retardants such as flame retardants and inorganic flame retardants; and combinations thereof; The content of the above other components that can be contained in the resin additive of the present invention is not particularly limited, and any amount can be selected by those skilled in the art.
 1つの実施形態では、本発明の樹脂組成物は、上記樹脂添加剤および樹脂を含有する(以下、このような樹脂組成物を「第1の樹脂組成物」という)。 In one embodiment, the resin composition of the present invention contains the above resin additive and resin (hereinafter, such a resin composition is referred to as "first resin composition").
 本発明の第1の樹脂組成物を構成し得る樹脂は熱硬化性樹脂または熱可塑性樹脂であり、例えば、アミノ基との反応により得られる各種樹脂が挙げられる。このような例としては、エポキシ樹脂、ポリウレタン、ポリイミド、ポリアミドイミド、マレイミド樹脂、ポリアミドなどが挙げられる。適切な可撓性を付与することができるとの理由から、上記樹脂添加剤(すなわち、式(I)で表されるジアミン化合物)は、好ましくは上記樹脂の硬化剤または樹脂構成材料、より好ましくはエポキシ樹脂の硬化剤として用いられ得る。 The resin that can constitute the first resin composition of the present invention is a thermosetting resin or a thermoplastic resin, and examples thereof include various resins obtained by reacting with an amino group. Examples of such examples include epoxy resins, polyurethanes, polyimides, polyamideimides, maleimide resins, and polyamides. The resin additive (that is, the diamine compound represented by the formula (I)) is preferably a curing agent or resin constituent material of the resin, more preferably, because it can impart appropriate flexibility. Can be used as a curing agent for epoxy resins.
 本発明の第1の樹脂組成物において、上記樹脂および樹脂添加剤の含有量は特に限定されず、当業者によって適切な含有量が選択され得る。 In the first resin composition of the present invention, the contents of the resin and the resin additive are not particularly limited, and an appropriate content can be selected by those skilled in the art.
 1つの実施形態では、本発明の樹脂組成物は、1つまたはそれ以上のモノマー化合物および上記樹脂添加剤から構成される樹脂を含有する(以下、このような樹脂組成物を「第2の樹脂組成物」という)。 In one embodiment, the resin composition of the present invention contains one or more monomer compounds and a resin composed of the above resin additives (hereinafter, such a resin composition is referred to as "second resin". Composition ").
 本発明の第2の樹脂組成物を構成し得るモノマー化合物は、熱可塑性樹脂または熱硬化性樹脂を構成し得る1つまたはそれ以上の化合物であって、例えば、ε-カプロラクタム;ウンデカンラムタム;ラウリルラクタム;ヘキサメチレンジアミンとアジピン酸との組み合わせ;ヘキサメチレンジアミンとセバシン酸との組み合わせ;ヘキサメチレンジアミンとテレフタル酸との組み合わせ;ヘキサメチレンジアミンとイソフタル酸との組み合わせ;ノナンジアミンとテレフタル酸との組み合わせ;メチルペンタンジアミンとテレフタル酸との組み合わせ;ε-カプロラクタムとラウリルラクタムとの組み合わせ;p-フェニレンジアミンとテレフタル酸との組み合わせ;m-フェニレンジアミンとイソフタル酸との組み合わせ;ピロメリット酸無水物;無水トリメリット酸とジイソシアネート類との組み合わせ;ならびに無水トリメリット酸クロライドとジアミン類との組み合わせ;が挙げられる。 The monomer compound that can constitute the second resin composition of the present invention is one or more compounds that can constitute a thermoplastic resin or a thermosetting resin, and is, for example, ε-caprolactam; undecanelamtam; Lauryl lactam; combination of hexamethylenediamine and adipic acid; combination of hexamethylenediamine and sebacic acid; combination of hexamethylenediamine and terephthalic acid; combination of hexamethylenediamine and isophthalic acid; combination of nonanediamine and terephthalic acid Combination of methylpentanediamine and terephthalic acid; combination of ε-caprolactam and lauryllactam; combination of p-phenylenediamine and terephthalic acid; combination of m-phenylenediamine and isophthalic acid; pyromellitic acid anhydride; anhydrous Examples include a combination of trimellitic acid and diisocyanates; and a combination of trimellitic anhydride chloride and diamines.
 本発明の第2の樹脂組成物においては、上記モノマー化合物の1つまたはそれ以上に対して、上記樹脂添加剤(または上記式(I)で表されるジアミン化合物)は樹脂を構成するためのモノマー成分として機能し得る。上記モノマー化合物と、上記樹脂添加剤(または上記式(I)で表されるジアミン化合物)とは、例えば当業者に公知のカップリング反応を利用して高分子化することができる。モノマー化合物と上記樹脂添加剤(または上記式(I)で表されるジアミン化合物)との混合割合は特に限定されず、様々な含有量の組み合わせが当業者によって適宜選択され得る。これにより、1つまたはそれ以上のモノマー化合物および上記樹脂添加剤から構成される樹脂が作製される。 In the second resin composition of the present invention, the resin additive (or the diamine compound represented by the above formula (I)) constitutes a resin with respect to one or more of the above monomer compounds. Can function as a monomer component. The above-mentioned monomer compound and the above-mentioned resin additive (or the above-mentioned diamine compound represented by the formula (I)) can be polymerized by using, for example, a coupling reaction known to those skilled in the art. The mixing ratio of the monomer compound and the resin additive (or the diamine compound represented by the above formula (I)) is not particularly limited, and combinations of various contents can be appropriately selected by those skilled in the art. As a result, a resin composed of one or more monomer compounds and the above resin additive is produced.
 本発明の第1の樹脂組成物および第2の樹脂組成物はまた、いずれもその他の樹脂添加剤を含有していてもよい。このようなその他の樹脂添加剤の例としては、特に限定されないが、上記本発明の樹脂添加剤に含有されていてもよい他の成分に包含されるものが挙げられる。本発明の樹脂添加剤において含有され得る上記他の樹脂添加剤の配合量は、特に限定されず、当業者によって任意の量が選択され得る。 The first resin composition and the second resin composition of the present invention may also contain other resin additives. Examples of such other resin additives are not particularly limited, but include those included in other components that may be contained in the resin additive of the present invention. The blending amount of the other resin additive that can be contained in the resin additive of the present invention is not particularly limited, and any amount can be selected by those skilled in the art.
 本発明の第1の樹脂組成物および第2の樹脂組成物はいずれも、例えば含有される樹脂添加剤(すなわち、式(I)で表されるジアミン化合物)によって構成成分の樹脂に対して適切な可撓性を付与することができる。その際、本発明の第1の樹脂組成物および第2の樹脂組成物は、上述したような樹脂の構成分子に極性基の柔軟鎖を導入する場合と比較して、好ましくは可撓性以外の他の特性には大きな変動がない。また、このような樹脂添加剤によって付与される可撓性は、例えば樹脂添加剤の配合量によって容易に調製可能である。なお、本発明の第2の樹脂組成物に含有される樹脂が、主鎖が芳香環で構成された高分子であるエポキシ樹脂、ポリイミド、ポリアミドイミド等の樹脂である場合、このような樹脂は、例えば、低誘電率、低誘電正接、低伝送損失等の点で優れた物性を有し得る。このため、本発明の第2の樹脂組成物は、例えば電子材料分野における有用性が期待される。 Both the first resin composition and the second resin composition of the present invention are suitable for the constituent resin by, for example, the contained resin additive (that is, the diamine compound represented by the formula (I)). Flexibility can be imparted. At that time, the first resin composition and the second resin composition of the present invention are preferably other than flexible as compared with the case where a flexible chain of a polar group is introduced into the constituent molecules of the resin as described above. There is no significant variation in other properties. Further, the flexibility imparted by such a resin additive can be easily adjusted by, for example, the blending amount of the resin additive. When the resin contained in the second resin composition of the present invention is a resin such as an epoxy resin, a polyimide, or a polyamide-imide, which is a polymer whose main chain is composed of an aromatic ring, such a resin is used. For example, it may have excellent physical properties in terms of low dielectric constant, low dielectric loss tangent, low transmission loss, and the like. Therefore, the second resin composition of the present invention is expected to be useful in the field of electronic materials, for example.
(その他の用途)
 式(I)で表されるジアミン化合物は、上記のような樹脂添加剤以外のその他の用途にも応用可能である。このような他の用途の例としては、柔軟剤、帯電防止剤、および金属製品(例えば、鉄鋼、ステンレススチール、アルミニウムの各製品)の腐食を防止し得る潤滑防錆剤などの界面活性剤(例えばカチオン系界面活性剤)が挙げられる。
(Other uses)
The diamine compound represented by the formula (I) can be applied to other uses other than the resin additives as described above. Examples of such other applications are fabric softeners, antistatic agents, and surfactants such as lubricants and rust inhibitors that can prevent corrosion of metal products (eg steel, stainless steel, aluminum products). For example, a cationic surfactant).
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
(実施例1:C18飽和分岐ジアミン化合物の合成)
 温度計および撹拌機を備えた5Lの四つ口フラスコに、長鎖二塩基酸ジエステル(岡村製油株式会社製SB-20MM/主成分:イソエイコサ二酸ジメチル、分子量370)1500gおよびヒドラジン1水和物804g(16.1mol)と、溶媒として2-プロパノール1500mLを仕込み、5時間還流させた。反応終了後、赤外分光分析(FT-IR:日本分光株式会社製)により、イソエイコサ二酸ジメチルのエステル結合に対応するピーク(1731cm-1)の消失ならびにヒドラジド結合に対応するピーク(1627cm-1および1533cm-1)の生成を確認した。併せて、高速液体クロマトグラフ質量分析(LC-MS-20:株式会社島津製作所製)により、原料であるイソエイコサ二酸ジメチル(分子量370)のピークの消失と、イソエイコサ二酸ジヒドラジド(分子量370)に対応する新たなピークの出現を確認した。このようにしてイソエイコサ二酸ジヒドラジドに対応するジヒドラジド1aを得た。
(Example 1: Synthesis of C18 saturated branched diamine compound)
In a 5 L four-necked flask equipped with a thermometer and a stirrer, 1500 g of long-chain dibasic acid diester (SB-20MM manufactured by Okamura Oil Co., Ltd./main component: dimethyl isoeicosate, molecular weight 370) and hydrazine monohydrate 804 g (16.1 mol) and 1500 mL of 2-propanol as a solvent were charged and refluxed for 5 hours. After completion of the reaction, infrared spectroscopy: by (FT-IR JASCO Corp.), Isoeikosa disappearance and peaks corresponding to the hydrazide bond acid dimethyl peaks corresponding to the ester bond (1731cm -1) (1627cm -1 And the formation of 1533 cm -1 ) was confirmed. At the same time, by high performance liquid chromatograph mass spectrometry (LC-MS-20: manufactured by Shimadzu Corporation), the peak of dimethyl isoeicosate (molecular weight 370), which is a raw material, disappeared and dihydrazide isoeicosadioate (molecular weight 370) was obtained. The appearance of the corresponding new peak was confirmed. In this way, dihydrazide 1a corresponding to isoeicosadioic acid dihydrazide was obtained.
 温度計、撹拌機および滴下ロートを備える5Lの四つ口フラスコに、上記で得られたジヒドラジド1a(450g)、水2100mL、35%塩酸759gを添加し、撹拌しながら温度を10℃以下にまで冷却した。次いで、水300mLに溶解させた亜硝酸ナトリウム170g(2.5mol)水溶液を、10℃以下を維持しながら滴下し、この溶液中でアジ化物を生成した。その後、得られた溶液を還流下で加熱して、この生成したアジ化物をCurtius転位し、窒素および二酸化炭素の発生を目視により確認した。さらに続けて、3時間還流した後、49%水酸化ナトリウム水溶液714g(8.7 mol)を加えて加水分解し、トルエンでジアミンを抽出し、水洗した。さらに減圧下にてトルエンを留去し、JIS K 7237に準じてアミン価を測定したところ、アミン価321のC18飽和分岐ジアミン1bを221.3g得た。 To a 5 L four-necked flask equipped with a thermometer, a stirrer and a dropping funnel, add dihydrazide 1a (450 g), 2100 mL of water and 759 g of 35% hydrochloric acid obtained above, and bring the temperature to 10 ° C. or lower while stirring. Cooled. Then, a 170 g (2.5 mol) aqueous solution of sodium nitrite dissolved in 300 mL of water was added dropwise while maintaining 10 ° C. or lower to generate an azide in this solution. Then, the obtained solution was heated under reflux to perform Curtius rearrangement of the produced azide, and the generation of nitrogen and carbon dioxide was visually confirmed. Further, after refluxing for 3 hours, 714 g (8.7 mol) of a 49% aqueous sodium hydroxide solution was added for hydrolysis, diamine was extracted with toluene, and the mixture was washed with water. Further, toluene was distilled off under reduced pressure, and the amine value was measured according to JIS K 7237. As a result, 221.3 g of C18 saturated branched diamine 1b having an amine value of 321 was obtained.
 得られたジアミン1bについて、赤外分光分析(FT-IR:日本分光株式会社製)により、上記ジヒドラジド1aで観察されたヒドラジド結合に対応するピーク(1627cm-1および1533cm-1)の消失を確認し、かつアミノ基に対応するピーク(1722cm-1および1571cm-1)の新たな出現を確認した。また、高速液体クロマトグラフ質量分析(LC-MS-20:株式会社島津製作所製)により、ジヒドラジド1a(分子量370)で確認されたピークの消失を確認した。さらに、ガスクロマトグラフ質量分析(GC-MSQP-2010:株式会社島津製作所製)により、ジアミン1b中には、主成分であるC18飽和分岐ジアミンとして、7-エチルヘキサデカンジアミン、およびC16飽和分岐ジアミンとして7―エチルテトラデカンジアミン(分子量256)が含まれていることを確認した。それらの特徴的なフラグメントは以下の通りであった。 Infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) confirmed the disappearance of the peaks (1627 cm -1 and 1533 cm -1) corresponding to the hydrazide bond observed in the dihydrazide 1a. However, new appearances of peaks (1722 cm -1 and 1571 cm -1 ) corresponding to the amino group were confirmed. In addition, high performance liquid chromatograph mass spectrometry (LC-MS-20: manufactured by Shimadzu Corporation) confirmed the disappearance of the peak confirmed by dihydrazide 1a (molecular weight 370). Further, gas chromatography-mass spectrometry: by (GC-MSQP-2010 manufactured by Shimadzu Corporation), during diamine 1b, as C 18 saturated branched diamine as the main component, 7-ethyl-hexadecane-diamine, and C 16 saturated branched diamine It was confirmed that 7-ethyltetradecanediamine (molecular weight 256) was contained. Their characteristic fragments were as follows.
(7-エチルヘキサデカンジアミン)
 m/z 284(分子イオンピーク)、m/z 100(基準ピーク)
(7-エチルテトラデカンジアミン)
 m/z 256(分子イオンピーク)、m/z 100(基準ピーク)
(7-Ethyl hexadecane diamine)
m / z 284 (molecular ion peak), m / z 100 (reference peak)
(7-Ethyltetradecanediamine)
m / z 256 (molecular ion peak), m / z 100 (reference peak)
 次いで、上記で得られたジアミン1bをシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/1(容量比))にて精製し、主成分として7-エチルヘキサデカンジアミン(91%)および7―エチルテトラデカンジアミン(3%)をそれぞれ単離した。単離した各々のジアミンについて、H NMR分析(Mercury-300:Varian社製)を行った。δ値を表1に示す(CDCl)。 Next, the diamine 1b obtained above was purified by silica gel column chromatography (ethyl acetate / n-hexane = 3/1 (volume ratio)), and the main components were 7-ethylhexadecanediamine (91%) and 7-. Ethyltetradecanediamine (3%) was isolated respectively. 1 1 H NMR analysis (Mercury-300: manufactured by Varian) was performed on each of the isolated diamines. The δ values are shown in Table 1 (CDCl 3 ).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(実施例2:C20不飽和分岐ジアミン化合物の合成)
 長鎖二塩基酸ジエステル(岡村製油株式会社製IPU-22MM/主成分:イソドコサジエン二酸ジメチル、分子量394)1000g、ヒドラジン1水和物527g(10.5mol)、および溶媒として2-プロパノール1000mLを用いたこと以外は、実施例1と同様にしてジヒドラジド2a(イソドコサジエン二酸ジヒドラジド)999gを得た。
(Synthesis to C 20 unsaturated branched diamine compound Example 2)
1000 g of long-chain dibasic acid diester (IPU-22MM manufactured by Okamura Oil Co., Ltd./main component: dimethyl isodocosadiene diate, molecular weight 394), 527 g (10.5 mol) of hydrazine monohydrate, and 1000 mL of 2-propanol as a solvent are used. 999 g of dihydrazide 2a (isodocosadiene dianodic acid dihydrazide) was obtained in the same manner as in Example 1.
 得られたジヒドラジド2aについて、赤外分光分析(FT-IR:日本分光株式会社製)により、イソドコサジエン二酸ジメチルのエステル結合に対応するピーク(1731cm-1)の消失ならびにヒドラジド結合に対応するピーク(1627cm-1および1533cm-1)の生成を確認した。併せて、高速液体クロマトグラフ質量分析(LC-MS-20:株式会社島津製作所製)により、原料であるイソエイコサ二酸ジメチル(分子量394)のピークの消失と、イソドコサジエン二酸ジヒドラジド(分子量394)に対応する新たなピークの出現を確認した。 The obtained dihydrazide 2a was subjected to infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) to eliminate the peak (1731 cm -1 ) corresponding to the ester bond of dimethyl isodocosaziendiate and the peak corresponding to the hydrazide bond (1731 cm -1). The formation of 1627 cm -1 and 1533 cm -1 ) was confirmed. At the same time, by high performance liquid chromatograph mass spectrometry (LC-MS-20: manufactured by Shimadzu Corporation), the peak of dimethyl isoeicosate (molecular weight 394), which is a raw material, disappeared, and dihydrazide isodocosadiene diacid (molecular weight 394) was obtained. The appearance of the corresponding new peak was confirmed.
 ジヒドラジド1aの代わりに400g(1.0mol)の上記で得られたジヒドラジド2aを用い、塩酸の代わりに582g(6.1mol)のメタンスルホン酸を用い、亜硝酸ナトリウムの量を167g(2.4mol)に変更したこと以外は、実施例1と同様にして、アミン価339のC20不飽和分岐ジアミン2bを100.7g得た。 Instead of dihydrazide 1a, 400 g (1.0 mol) of the dihydrazide 2a obtained above was used, and instead of hydrochloric acid, 582 g (6.1 mol) of methanesulfonic acid was used, and the amount of sodium nitrite was 167 g (2.4 mol). it was changed to), the same procedure as in example 1 to obtain 100.7g of C 20 unsaturated branched diamines 2b amine value 339.
 得られたジアミン2bについて、赤外分光分析(FT-IR:日本分光株式会社製)により、上記ジヒドラジド2aで観察されたヒドラジド結合に対応するピーク(1627cm-1および1533cm-1)の消失を確認し、かつアミノ基に対応するピーク(1722cm-1および1572cm-1)の新たな出現を確認した。また、高速液体クロマトグラフ質量分析(LC-MS-20:株式会社島津製作所製)により、ジヒドラジド2a(分子量394)で確認されたピークの消失を確認した。さらに、ガスクロマトグラフ質量分析(GC-MSQP-2010:株式会社島津製作所製)により、ジアミン2b中には、主成分であるC20不飽和分岐ジアミンとして、7,12ジメチルオクタデカンジアミン-7,11-ジエンおよび7-イソプロぺニル-10-メチルヘキサデカンジアミン-9-エン(分子量308)が含まれていることを確認した。それらの特徴的なフラグメントは以下の通りであった。 Infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) confirmed the disappearance of the peaks (1627 cm -1 and 1533 cm -1) corresponding to the hydrazide bond observed in the dihydrazide 2a. However, new appearances of peaks (1722 cm -1 and 1572 cm -1 ) corresponding to the amino group were confirmed. In addition, high performance liquid chromatograph mass spectrometry (LC-MS-20: manufactured by Shimadzu Corporation) confirmed the disappearance of the peak confirmed by dihydrazide 2a (molecular weight 394). Furthermore, according to gas chromatograph mass spectrometry (GC-MSQP-2010: manufactured by Shimadzu Corporation), 7,12 dimethyl octadecane diamine-7,11- as the main component C 20 unsaturated branched diamine in diamine 2b. It was confirmed that diene and 7-isopropenyl-10-methylhexadecanediamine-9-ene (molecular weight 308) were contained. Their characteristic fragments were as follows.
(7,12-ジメチルオクタデカンジアミン-7,11-ジエン)
 m/z 308(分子イオンピーク)、m/z 181(基準ピーク)
(7-イソプロぺニル-10-メチルヘキサデカンジアミン-9-エン)
 m/z 308(分子イオンピーク)、m/z 100(基準ピーク)
(7,12-Dimethyloctadecanediamine-7,11-diene)
m / z 308 (molecular ion peak), m / z 181 (reference peak)
(7-Isopropanol-10-Methylhexadecanediamine-9-ene)
m / z 308 (molecular ion peak), m / z 100 (reference peak)
 次いで、上記で得られたジアミン2bをシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/1(容量比))にて精製し、主成分として7,12ジメチル-7,11-エイコサジアミン-7,11-ジエン(49%)および7-イソブテニル-10-メチルヘキサデカンジアミン-9-エン(30%)をそれぞれ単離した。単離した各々のジアミンについて、H NMR分析(Mercury-300:Varian社製)を行った。δ値を表2に示す(CDCl)。 Next, the diamine 2b obtained above was purified by silica gel column chromatography (ethyl acetate / n-hexane = 3/1 (volume ratio)), and the main component was 7,12 dimethyl-7,11-eikosadiamine. -7,11-diene (49%) and 7-isobutenyl-10-methylhexadecanediamine-9-ene (30%) were isolated, respectively. 1 1 H NMR analysis (Mercury-300: manufactured by Varian) was performed on each of the isolated diamines. The δ values are shown in Table 2 (CDCl 3 ).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例3:C22不飽和分岐ジアミン化合物の合成)
 温度計および撹拌機を備える5Lのオートクレーブに長鎖二塩基酸(岡村製油株式会社製IPU-22/主成分:イソドコサジエン二酸、分子量366)1661g、およびシリカゲル50gを仕込み、加圧条件下にて300℃で2時間、アンモニアガス300g(17.6mol)と反応させた。次いで、メタノール650mL、および活性炭担持ニッケル70gを投入し、加圧条件下でさらにアンモニアガス130g(7.6mol)および水素ガス420g(210mol)と180℃で2時間反応させた。冷却後、得られた反応液を濾過し、希硫酸を添加して下層を除去した。有機層を水洗し、減圧下水分を除去することによりアミン価290のジアミン3を1495g得た。
(Example 3: Synthesis of C 22 unsaturated diamine compound)
1661 g of long-chain dibasic acid (IPU-22 manufactured by Okamura Oil Co., Ltd./main component: isodocosadiene diacid, molecular weight 366) and 50 g of silica gel were charged into a 5 L autoclave equipped with a thermometer and a stirrer, and under pressurized conditions. The reaction was carried out at 300 ° C. for 2 hours with 300 g (17.6 mol) of ammonia gas. Next, 650 mL of methanol and 70 g of nickel supported on activated carbon were added, and the mixture was further reacted with 130 g (7.6 mol) of ammonia gas and 420 g (210 mol) of hydrogen gas at 180 ° C. for 2 hours under pressurized conditions. After cooling, the obtained reaction solution was filtered, and dilute sulfuric acid was added to remove the lower layer. The organic layer was washed with water and the water content was removed under reduced pressure to obtain 1495 g of diamine 3 having an amine value of 290.
 得られたジアミン3について、赤外分光分析(FT-IR:日本分光株式会社製)により、原料のイソドコサジエン二酸に由来するカルボキシル基に対応するピーク(1711cm-1)の消失を確認し、かつアミノ基に対応するピーク(1722cm-1および1572cm-1)の新たな出現を確認した。さらに、ガスクロマトグラフ質量分析(GC-MSQP-2010:株式会社島津製作所製)により、原料のイソドコサジエン二酸(分子量366)に対応するピークの消失を確認した。加えて、ジアミン2b中には、主成分であるC20不飽和分岐ジアミンとして、8,13-ジメチル-8,12-ドコサジエンジアミンおよび8-イソプロぺニル-11-メチル-10-オクタデカエンジアミン(分子量336)が含まれていることを確認した。それらの特徴的なフラグメントは以下の通りであった。 The obtained diamine 3 was confirmed by infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) to confirm the disappearance of the peak (1711 cm -1) corresponding to the carboxyl group derived from the raw material isodocosadiene diacid. New appearances of peaks (1722 cm -1 and 1572 cm -1 ) corresponding to the amino group were confirmed. Furthermore, gas chromatograph mass spectrometry (GC-MSQP-2010: manufactured by Shimadzu Corporation) confirmed the disappearance of the peak corresponding to the raw material isodocosadiene diacid (molecular weight 366). In addition, during diamine 2b, as C 20 unsaturated branched diamine as the main component, 8,13- dimethyl -8,12- docosanol diene diamine and 8 isopropenyl-11-methyl-10-octadecadienoic engine It was confirmed that amine (molecular weight 336) was contained. Their characteristic fragments were as follows.
(8,13-ジメチルエイコサジアミン-8,12-ジエン)
 m/z 336(分子イオンピーク)、m/z 195(基準ピーク)
(8-イソプロぺニル-11-メチルオクタデカンジアミン-10-エン)
 m/z 336(分子イオンピーク)、m/z 114(基準ピーク)
(8,13-Dimethyleicosadiamine-8,12-diene)
m / z 336 (molecular ion peak), m / z 195 (reference peak)
(8-Isopropanol-11-methyloctadecanediamine-10-ene)
m / z 336 (molecular ion peak), m / z 114 (reference peak)
 次いで、上記で得られたジアミン3をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/1(容量比))にて精製し、主成分として8,13-ジメチルエイコサジアミン-8,12-ジエン(50%)および8-イソプロぺニル-11-メチルオクタデカンジアミン-10-エン(28%)をそれぞれ単離した。単離した各々のジアミンについて、H NMR分析(Mercury-300:Varian社製)を行った。δ値を表3に示す(CDCl)。 Next, the diamine 3 obtained above was purified by silica gel column chromatography (ethyl acetate / n-hexane = 3/1 (volume ratio)), and the main component was 8,13-dimethyleicosadiamine-8,12. -Diene (50%) and 8-isopropenyl-11-methyloctadecanediamine-10-ene (28%) were isolated, respectively. 1 1 H NMR analysis (Mercury-300: manufactured by Varian) was performed on each of the isolated diamines. The δ values are shown in Table 3 (CDCl 3 ).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(実施例4:エポキシ樹脂硬化物(E1)の作製)
 ビスフェノールA型エポキシ樹脂(三井化学株式会社製EPOMIC、エポキシ当量(以下WPE)188)10.0gと、硬化剤として実施例1で得られたジアミン1b4.4g(WPEに対し0.95当量)、および硬化促進剤としてN,N-ジメチルベンジルアミン0.1g(1phr)とを混合し、エポキシ樹脂組成物を作製した。次いで、この樹脂組成物10gを耐熱性容器に量りとり、70℃で15時間加熱し、加えて120℃で1時間加熱硬化させることによりエポキシ樹脂硬化物(E1)を得た。得られたエポキシ樹脂硬化物(E1)について、示差走査熱量計(DSC)(株式会社島津製作所製DSC-60)を用い、サンプルを-50℃で10分間保持した後、1分当たり10℃の昇温速度で200℃まで加熱することにより、昇温に対する熱量変化からガラス転移点(Tg)を測定した。また、エポキシ樹脂硬化物(E1)のゲル化率を測定するため、5gのサンプルをアセトンにて5時間ソックスレー抽出した。抽出前の原料質量と抽出物の質量との比により樹脂のゲル化率を測定した。得られた結果を表4に示す。
(Example 4: Preparation of cured epoxy resin (E1))
10.0 g of bisphenol A type epoxy resin (EPOMIC manufactured by Mitsui Chemicals, Inc., epoxy equivalent (hereinafter, WPE) 188) and 4.4 g of diamine 1b (0.95 equivalent with respect to WPE) obtained in Example 1 as a curing agent. And 0.1 g (1 phr) of N, N-dimethylbenzylamine as a curing accelerator was mixed to prepare an epoxy resin composition. Next, 10 g of this resin composition was weighed in a heat-resistant container, heated at 70 ° C. for 15 hours, and further heat-cured at 120 ° C. for 1 hour to obtain an epoxy resin cured product (E1). For the obtained cured epoxy resin (E1), a sample was held at −50 ° C. for 10 minutes using a differential scanning calorimeter (DSC) (DSC-60 manufactured by Shimadzu Corporation), and then at 10 ° C. per minute. By heating to 200 ° C. at a heating rate, the glass transition point (Tg) was measured from the change in calorific value with respect to the temperature rise. Further, in order to measure the gelation rate of the cured epoxy resin (E1), a 5 g sample was extracted with acetone for 5 hours by Soxhlet extraction. The gelation rate of the resin was measured by the ratio of the mass of the raw material before extraction to the mass of the extract. The results obtained are shown in Table 4.
(実施例5:エポキシ樹脂硬化物(E2)の作製)
 硬化剤としてジアミン1bの代わりに実施例2で作製したジアミン2b(4.2g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(E2)を作製した。得られたエポキシ樹脂硬化物(E2)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Example 5: Preparation of cured epoxy resin (E2))
An epoxy resin cured product (E2) was prepared in the same manner as in Example 1 except that the diamine 2b (4.2 g) prepared in Example 2 was used instead of the diamine 1b as the curing agent. With respect to the obtained epoxy resin cured product (E2), DSC analysis and gelation rate measurement of the cured product were performed in the same manner as in Example 1. The results obtained are shown in Table 4.
(実施例6:エポキシ樹脂硬化物(E3)の作製)
 硬化剤としてジアミン1bの代わりに実施例3で作製したジアミン3(4.9g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(E3)を作製した。得られたエポキシ樹脂硬化物(E3)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Example 6: Preparation of cured epoxy resin (E3))
An epoxy resin cured product (E3) was prepared in the same manner as in Example 1 except that diamine 3 (4.9 g) prepared in Example 3 was used instead of diamine 1b as a curing agent. With respect to the obtained epoxy resin cured product (E3), DSC analysis and gelation rate measurement of the cured product were performed in the same manner as in Example 1. The results obtained are shown in Table 4.
(比較例1:エポキシ樹脂硬化物(CE1)の作製)
 硬化剤としてジアミン1bの代わりにテトラエチレンペンタミン(1.4g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(CE1)を作製した。得られたエポキシ樹脂硬化物(CE1)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Comparative Example 1: Preparation of Epoxy Resin Cured Product (CE1))
An epoxy resin cured product (CE1) was prepared in the same manner as in Example 1 except that tetraethylenepentamine (1.4 g) was used as the curing agent instead of diamine 1b. The obtained epoxy resin cured product (CE1) was subjected to DSC analysis and gelation rate measurement of the cured product in the same manner as in Example 1. The results obtained are shown in Table 4.
(比較例2:エポキシ樹脂硬化物(CE2)の作製)
 硬化剤としてジアミン1bの代わりにトリエチレンテトラミン(1.2g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(CE2)を作製した。得られたエポキシ樹脂硬化物(CE2)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Comparative Example 2: Preparation of Epoxy Resin Cured Product (CE2))
An epoxy resin cured product (CE2) was prepared in the same manner as in Example 1 except that triethylenetetramine (1.2 g) was used as the curing agent instead of diamine 1b. The obtained epoxy resin cured product (CE2) was subjected to DSC analysis and gelation rate measurement of the cured product in the same manner as in Example 1. The results obtained are shown in Table 4.
(比較例3:エポキシ樹脂硬化物(CE3)の作製)
 硬化剤として、ジアミン1bの代わりにヘキサメチレンジアミン(1.5g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(CE3)を作製した。得られたエポキシ樹脂硬化物(CE3)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Comparative Example 3: Preparation of Epoxy Resin Cured Product (CE3))
An epoxy resin cured product (CE3) was prepared in the same manner as in Example 1 except that hexamethylenediamine (1.5 g) was used as the curing agent instead of diamine 1b. The obtained epoxy resin cured product (CE3) was subjected to DSC analysis and gelation rate measurement of the cured product in the same manner as in Example 1. The results obtained are shown in Table 4.
(比較例4:エポキシ樹脂硬化物(CE4)の作製)
 硬化剤としてジアミン1bの代わりに1,10-デカンジアミン(2.1g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(CE4)を作製した。得られたエポキシ樹脂硬化物(CE4)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Comparative Example 4: Preparation of Epoxy Resin Cured Product (CE4))
An epoxy resin cured product (CE4) was prepared in the same manner as in Example 1 except that 1,10-decanediamine (2.1 g) was used instead of diamine 1b as the curing agent. With respect to the obtained epoxy resin cured product (CE4), DSC analysis and gelation rate measurement of the cured product were performed in the same manner as in Example 1. The results obtained are shown in Table 4.
(比較例5:エポキシ樹脂硬化物(CE5)の作製)
 硬化剤としてジアミン1bの代わりにポリエーテルジアミン(三井化学イファイン株式会社製Baxxodure EC302;平均分子量400)(5.6g)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂硬化物(CE5)を作製した。得られたエポキシ樹脂硬化物(CE5)について、実施例1と同様にして硬化物のDSC分析とゲル化率の測定とを行った。得られた結果を表4に示す。
(Comparative Example 5: Preparation of Epoxy Resin Cured Product (CE5))
Epoxy resin cured product (CE5) in the same manner as in Example 1 except that a polyether diamine (Baxxodure EC302 manufactured by Mitsui Kagaku Ifine Co., Ltd .; average molecular weight 400) (5.6 g) was used as the curing agent. ) Was prepared. The obtained epoxy resin cured product (CE5) was subjected to DSC analysis and gelation rate measurement of the cured product in the same manner as in Example 1. The results obtained are shown in Table 4.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表4に示すように、実施例4~6で作製されたエポキシ樹脂硬化物(E1)~(E3)は、比較例1および2の汎用アミン系硬化剤を用いたエポキシ樹脂硬化物(CE1)および(CE2)よりもTgが低く、さらに比較例3のCジアミンを用いたエポキシ樹脂硬化物(CE3)および比較例4のC10ジアミンを用いたエポキシ樹脂硬化物(CE4)よりもTgが低く、可撓性付与効果に優れていた。すなわち、1分子中、2つのアミノ基の間に配置される炭素鎖が長いものほど、エポキシ樹脂に対して高い可撓性を付与することができ、かつアミノ基と炭素鎖のみで構成されるジアミン1b、2bまたは3を用いた実施例1~3のエポキシ樹脂硬化物(E1)~(E3)は、ポリエーテル鎖を含む硬化剤を用いた比較例5のエポキシ樹脂硬化物(CE5)と略同等のTgおよびゲル化率を有していたことがわかる。 As shown in Table 4, the epoxy resin cured products (E1) to (E3) produced in Examples 4 to 6 are epoxy resin cured products (CE1) using the general-purpose amine-based curing agents of Comparative Examples 1 and 2. And (CE2) have a lower Tg, and moreover, Tg is higher than the epoxy resin cured product (CE3) using C 6 diamine of Comparative Example 3 and the epoxy resin cured product (CE 4) using C 10 diamine of Comparative Example 4. It was low and had an excellent flexibility-imparting effect. That is, the longer the carbon chain arranged between the two amino groups in one molecule, the higher the flexibility can be imparted to the epoxy resin, and the longer the carbon chain is, the more flexible the epoxy resin is, and the more the carbon chain is composed of only the amino group and the carbon chain. The epoxy resin cured products (E1) to (E3) of Examples 1 to 3 using diamines 1b, 2b or 3 are the epoxy resin cured products (CE5) of Comparative Example 5 using a curing agent containing a polyether chain. It can be seen that they had substantially the same Tg and gelation rate.
(実施例7:エポキシ樹脂組成物(EC1)の硬化性の評価)
 硬化剤として実施例1で得られたジアミン1bを用い、実施例4と同様にしてエポキシ樹脂組成物(EC1)50gを作製し、これをガラス製のサンプル管に仕込んだ。これを70℃のオイルバスに浸漬し、発熱硬化の様子として樹脂の温度を時間毎(20秒毎)にプロットした。得られた発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。なお、ポットライフはゲル化時間の0.8倍(×0.8)の値を算出した。得られた結果を表5に示す。
(Example 7: Evaluation of curability of epoxy resin composition (EC1))
Using the diamine 1b obtained in Example 1 as a curing agent, 50 g of an epoxy resin composition (EC1) was prepared in the same manner as in Example 4, and this was charged into a glass sample tube. This was immersed in an oil bath at 70 ° C., and the temperature of the resin was plotted every hour (every 20 seconds) as a state of heat-generating curing. From the obtained heat-generating curve, the gelation point, gelation time, maximum heat-generating point, minimum curing time, and pot life were determined. The pot life was calculated to be 0.8 times (× 0.8) the gelation time. The results obtained are shown in Table 5.
(実施例8:エポキシ樹脂組成物(EC2)の硬化性の評価)
 硬化剤としてジアミン1bの代わりに実施例2で作製されたジアミン2b(21.0g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(EC2)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Example 8: Evaluation of curability of epoxy resin composition (EC2))
An epoxy resin composition (EC2) was prepared in the same manner as in Example 4 except that the diamine 2b (21.0 g) prepared in Example 2 was used instead of the diamine 1b as a curing agent. In the same manner as in No. 4, the gel point, gelation time, maximum heat generation point, minimum curing time, and pot life were determined from the heat curing curve of the resin composition. The results obtained are shown in Table 5.
(実施例9:エポキシ樹脂組成物(EC3)の硬化性の評価)
 硬化剤としてジアミン1bの代わりに実施例3で作製されたジアミン3(24.5g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(EC3)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Example 9: Evaluation of curability of epoxy resin composition (EC3))
An epoxy resin composition (EC3) was prepared in the same manner as in Example 4 except that diamine 3 (24.5 g) prepared in Example 3 was used instead of diamine 1b as a curing agent. In the same manner as in No. 4, the gel point, gelation time, maximum heat generation point, minimum curing time, and pot life were determined from the heat curing curve of the resin composition. The results obtained are shown in Table 5.
(比較例6:エポキシ樹脂組成物(CC1)の硬化性の評価)
 硬化剤としてジアミン1bの代わりにテトラエチレンペンタミン(7.0g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(CC1)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Comparative Example 6: Evaluation of Curability of Epoxy Resin Composition (CC1))
An epoxy resin composition (CC1) was prepared in the same manner as in Example 4 except that tetraethylenepentamine (7.0 g) was used as the curing agent instead of diamine 1b, and in the same manner as in Example 4. From the heat-generating curing curve of the resin composition, the gelation point, gelation time, maximum heat-generating point, minimum curing time, and pot life were determined. The results obtained are shown in Table 5.
(比較例7:エポキシ樹脂組成物(CC2)の硬化性の評価)
 硬化剤としてジアミン1bの代わりにトリエチレンテトラミン(6.0g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(CC2)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Comparative Example 7: Evaluation of Curability of Epoxy Resin Composition (CC2))
An epoxy resin composition (CC2) was prepared in the same manner as in Example 4 except that triethylenetetramine (6.0 g) was used as the curing agent instead of diamine 1b, and the same was applied in the same manner as in Example 4. From the heat-curing curve of the resin composition, the gelation point, gelation time, maximum heat-generating point, minimum curing time, and pot life were determined. The results obtained are shown in Table 5.
(比較例8:エポキシ樹脂組成物(CC3)の硬化性の評価)
 硬化剤としてジアミン1bの代わりにヘキサメチエレンジアミン(7.5g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(CC3)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Comparative Example 8: Evaluation of Curability of Epoxy Resin Composition (CC3))
An epoxy resin composition (CC3) was prepared in the same manner as in Example 4 except that hexamethylylenediamine (7.5 g) was used as the curing agent instead of diamine 1b, and in the same manner as in Example 4. From the heat-generating curing curve of the resin composition, the gelation point, gelation time, maximum heat-generating point, minimum curing time, and pot life were determined. The results obtained are shown in Table 5.
(比較例9:エポキシ樹脂組成物(CC4)の硬化性の評価)
 硬化剤としてジアミン1bの代わりに1,10-デカンジアミン(10.5g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(CC4)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Comparative Example 9: Evaluation of Curability of Epoxy Resin Composition (CC4))
An epoxy resin composition (CC4) was prepared in the same manner as in Example 4 except that 1,10-decanediamine (10.5 g) was used as the curing agent instead of diamine 1b, and the same as in Example 4. From the heat-generating curing curve of the resin composition, the gelation point, gelation time, maximum heat-generating point, minimum curing time, and pot life were determined. The results obtained are shown in Table 5.
(比較例10:エポキシ樹脂組成物(CC5)の硬化性の評価1)
 硬化剤としてジアミン1bの代わりにポリエーテルジアミン(28.0g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(CC5)を作製し、かつ実施例4と同様にして当該樹脂組成物の発熱硬化曲線の作製を試みた。しかし、樹脂温度がオイルバス温度と同温となる70℃に達した後、30分を経過しても発熱を伴わず、この組成物(CC5)は硬化性が著しく低いことがわかった。
(Comparative Example 10: Evaluation of Curability of Epoxy Resin Composition (CC5) 1)
An epoxy resin composition (CC5) was prepared in the same manner as in Example 4 except that a polyether diamine (28.0 g) was used instead of the diamine 1b as a curing agent. An attempt was made to prepare a heat-generating curve of the resin composition. However, it was found that the composition (CC5) had extremely low curability without heat generation even 30 minutes after the resin temperature reached 70 ° C., which is the same temperature as the oil bath temperature.
(比較例11:エポキシ樹脂組成物(CC5)の硬化性の評価2)
 硬化剤としてジアミン1bの代わりにポリエーテルジアミン(28.0g)を用いたこと以外は、実施例4と同様にしてエポキシ樹脂組成物(CC5)を作製し、かつオイルバス温度を120℃に設定したこと以外は実施例4と同様にして当該樹脂組成物の発熱硬化曲線から、ゲル化点、ゲル化時間、最高発熱点、最小硬化時間、およびポットライフを求めた。得られた結果を表5に示す。
(Comparative Example 11: Evaluation of curability of epoxy resin composition (CC5) 2)
An epoxy resin composition (CC5) was prepared in the same manner as in Example 4 except that polyether diamine (28.0 g) was used instead of diamine 1b as a curing agent, and the oil bath temperature was set to 120 ° C. The gelation point, gelation time, maximum heat generation point, minimum curing time, and pot life were obtained from the heat-generating curing curve of the resin composition in the same manner as in Example 4 except for the above. The results obtained are shown in Table 5.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表5に示すように、実施例7~9で作製されたエポキシ樹脂組成物(EC1)~(EC3)は、ゲル化時間および最小硬化時間が長いため、比較例6~11のエポキシ樹脂組成物(CC1)~(CC6)のものよりもゆっくりと硬化する特徴を有していた。硬化時のポットライフは、実施例7~9で作製されたエポキシ樹脂組成物(EC1)~(EC3)が、比較例6~11のエポキシ樹脂組成物(CC1)~(CC6)に対して、約2~3倍の長さとなった。また、ゲル化温度および最高発熱点に注目すると、実施例7~9で作製されたエポキシ樹脂組成物(EC1)~(EC3)の発熱は、比較例6~11のエポキシ樹脂組成物(CC1)~(CC6)のものと同程度であり、高い反応性を示した可撓性付与剤であるポリエーテルジアミンは、比較例10ならびに11の結果から反応性が低いことが考察され、したがって低温での硬化性に劣るものであった。すなわち、実施例7~9で作製されたエポキシ樹脂組成物(EC1)~(EC3)に使用したジアミン1b、2bおよび3は、市販のアミン系硬化剤としても知られている比較例6~11のエポキシ樹脂組成物(CC1)~(CC6)の硬化剤よりもポットライフが長く、また他の可撓性付与剤よりも低温硬化性に優れたものであるとわかる。 As shown in Table 5, the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 have a long gelation time and minimum curing time, and therefore the epoxy resin compositions of Comparative Examples 6 to 11 It had the characteristic of curing more slowly than those of (CC1) to (CC6). Regarding the pot life at the time of curing, the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 were compared with the epoxy resin compositions (CC1) to (CC6) of Comparative Examples 6 to 11. It is about 2 to 3 times longer. Focusing on the gelation temperature and the maximum heat generation point, the heat generation of the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 is the heat generation of the epoxy resin compositions (CC1) of Comparative Examples 6 to 11. It is considered from the results of Comparative Examples 10 and 11 that the polyether diamine, which is a flexibility-imparting agent which is similar to that of (CC6) and shows high reactivity, has low reactivity, and therefore at a low temperature. Was inferior in curability. That is, the diamines 1b, 2b and 3 used in the epoxy resin compositions (EC1) to (EC3) produced in Examples 7 to 9 are Comparative Examples 6 to 11 which are also known as commercially available amine-based curing agents. It can be seen that the pot life is longer than that of the curing agents of the epoxy resin compositions (CC1) to (CC6) of No. 1 and the temperature curability is superior to that of other flexibility-imparting agents.
(実施例10:エポキシ樹脂硬化物(E1)の耐水性)
 実施例4で作製したエポキシ樹脂硬化物(E1)(硬化剤としてジアミン1bを含有)を、煮沸した水中に投入し、1時間煮沸した。投入前の樹脂と1時間煮沸後の樹脂(なお、表面に付着した水分は取り除いた)の質量を測定し、以下の式:
 吸水率(%)=(煮沸後の樹脂質量-投入前の樹脂質量)/(投入前の樹脂質量)×100
からエポキシ樹脂硬化物(E1)の吸水率(%)を算出し、これをエポキシ樹脂硬化物(E1)の耐水性として評価した。得られた結果を表6に示す。
(Example 10: Water resistance of the cured epoxy resin (E1))
The epoxy resin cured product (E1) (containing diamine 1b as a curing agent) prepared in Example 4 was put into boiling water and boiled for 1 hour. The mass of the resin before charging and the resin after boiling for 1 hour (the water adhering to the surface was removed) was measured, and the following formula:
Water absorption rate (%) = (mass of resin after boiling-mass of resin before charging) / (mass of resin before charging) x 100
The water absorption rate (%) of the cured epoxy resin (E1) was calculated from the above, and this was evaluated as the water resistance of the cured epoxy resin (E1). The results obtained are shown in Table 6.
(実施例11:エポキシ樹脂硬化物(E2)の耐水性)
 エポキシ樹脂硬化物(E1)の代わりに実施例5で作製したエポキシ樹脂硬化物(E2)(硬化剤としてジアミン2bを含有)を用いたこと以外は実施例10と同様にして、硬化物の煮沸を行い、エポキシ樹脂硬化物(E2)の吸水率(%)を算出した。得られた結果を表6に示す。
(Example 11: Water resistance of the cured epoxy resin (E2))
Boil the cured product in the same manner as in Example 10 except that the epoxy resin cured product (E2) (containing diamine 2b as a curing agent) prepared in Example 5 was used instead of the epoxy resin cured product (E1). The water absorption rate (%) of the cured epoxy resin (E2) was calculated. The results obtained are shown in Table 6.
(実施例12:エポキシ樹脂硬化物(E3)の耐水性)
 エポキシ樹脂硬化物(E1)の代わりに実施例6で作製したエポキシ樹脂硬化物(E3)(硬化剤としてジアミン3を含有)を用いたこと以外は実施例10と同様にして、硬化物の煮沸を行い、エポキシ樹脂硬化物(E3)の吸水率(%)を算出した。得られた結果を表6に示す。
(Example 12: Water resistance of the cured epoxy resin (E3))
Boil the cured product in the same manner as in Example 10 except that the epoxy resin cured product (E3) (containing diamine 3 as a curing agent) prepared in Example 6 was used instead of the epoxy resin cured product (E1). The water absorption rate (%) of the cured epoxy resin (E3) was calculated. The results obtained are shown in Table 6.
(比較例12:エポキシ樹脂硬化物(CE1)の耐水性)
 エポキシ樹脂硬化物(E1)の代わりに比較例1で作製したエポキシ樹脂硬化物(CE1)(硬化剤としてテトラエチレンペンタミン)を用いたこと以外は実施例10と同様にして、硬化物の煮沸を行い、エポキシ樹脂硬化物(CE1)の吸水率(%)を算出した。得られた結果を表6に示す。
(Comparative Example 12: Water resistance of cured epoxy resin (CE1))
Boil the cured product in the same manner as in Example 10 except that the epoxy resin cured product (CE1) (tetraethylenepentamine as a curing agent) prepared in Comparative Example 1 was used instead of the epoxy resin cured product (E1). The water absorption rate (%) of the cured epoxy resin (CE1) was calculated. The results obtained are shown in Table 6.
(比較例13:エポキシ樹脂硬化物(CE5)の耐水性)
 エポキシ樹脂硬化物(E1)の代わりに比較例5で作製したエポキシ樹脂硬化物(CE5)(硬化剤としてポリエーテルジアミン)を用いたこと以外は実施例10と同様にして、硬化物の煮沸を行い、エポキシ樹脂硬化物(CE5)の吸水率(%)を算出した。得られた結果を表6に示す。
(Comparative Example 13: Water resistance of hardened epoxy resin (CE5))
The cured product was boiled in the same manner as in Example 10 except that the epoxy resin cured product (CE5) (polyetherdiamine as a curing agent) prepared in Comparative Example 5 was used instead of the epoxy resin cured product (E1). Then, the water absorption rate (%) of the cured epoxy resin (CE5) was calculated. The results obtained are shown in Table 6.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表6に示すように、実施例10~12で評価したエポキシ樹脂硬化物(E1)~(E3)(硬化剤としてジアミン1b、2bまたは3を含有)、および比較例12で評価した汎用品に相当するエポキシ樹脂硬化物(CE1)(硬化剤としてテトラエチレンペンタミンを含有)では、硬化物の吸水率がいずれも0%であり、十分な耐水性を有していた。これに対し、可撓性付与剤としても知られているポリエーテルジアミン(分子量400)を硬化剤として含有する、比較例13で評価したエポキシ樹脂硬化物(CE5)では、約1%の吸水率を示していた。すなわち、ポリエーテルジアミンは可撓性の付与と引き換えに耐水性の低下を伴い、これに対しジアミン1b、2bまたは3を用いる(実施例4~6で作製された)エポキシ樹脂硬化物(E1)~(E3)は耐水性を損ねることなく、可撓性が付与されたことがわかる。 As shown in Table 6, the epoxy resin cured products (E1) to (E3) evaluated in Examples 10 to 12 (containing diamines 1b, 2b or 3 as a curing agent) and the general-purpose products evaluated in Comparative Example 12 In the corresponding epoxy resin cured product (CE1) (containing tetraethylenepentamine as a curing agent), the water absorption rate of the cured product was 0%, and the cured product had sufficient water resistance. On the other hand, the epoxy resin cured product (CE5) evaluated in Comparative Example 13 containing a polyether diamine (molecular weight 400), which is also known as a flexibility-imparting agent, as a curing agent has a water absorption rate of about 1%. Was shown. That is, the polyether diamine is accompanied by a decrease in water resistance in exchange for imparting flexibility, whereas a cured epoxy resin (E1) using diamines 1b, 2b or 3 (produced in Examples 4 to 6) is used. It can be seen that in (E3), flexibility was imparted without impairing water resistance.
(実施例13:ビスマレイミドプレポリマー(EM1)の作製)
 温度計、撹拌機および滴下ロートを備える500mLの四つ口フラスコに、4,4’-ビスマレイミドジフェニルメタン21.5g(60.1mmol)、およびTHF200mLを仕込み、改質剤として実施例1で得られたジアミン1b(5.2g)(アミノ基として30.0mmol当量)を滴下した。撹拌しながら50℃まで昇温し、さらに1.5時間撹拌した。次いで、無水酢酸3.1g(30.1mmol)を添加し、さらに1時間撹拌し、減圧下でTHFを除去することによりビスマレイミドプレポリマー(EM1)27.6gを得た。
(Example 13: Preparation of bismaleimide prepolymer (EM1))
In a 500 mL four-necked flask equipped with a thermometer, a stirrer and a dropping funnel, 21.5 g (60.1 mmol) of 4,4'-bismaleimidediphenylmethane and 200 mL of THF were charged and obtained as a modifier in Example 1. Diamine 1b (5.2 g) (30.0 mmol equivalent as an amino group) was added dropwise. The temperature was raised to 50 ° C. with stirring, and the mixture was further stirred for 1.5 hours. Then, 3.1 g (30.1 mmol) of acetic anhydride was added, and the mixture was further stirred for 1 hour, and THF was removed under reduced pressure to obtain 27.6 g of bismaleimide prepolymer (EM1).
 得られたビスマレイミドプレポリマー(EM1)について、赤外分光分析(FT-IR:日本分光株式会社製)により、α,β-不飽和結合に対応するピーク(1606cm-1)の減少とともに、イミド結合に対応するピーク(1705cm-1および1510cm-1)、アミド結合に対応するピーク(1636cm-1)を確認した。 The obtained bismaleimide prepolymer (EM1) was subjected to infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation) with a decrease in peaks (1606 cm -1) corresponding to α, β-unsaturated bonds and an imide. The peaks corresponding to the bonds (1705 cm -1 and 1510 cm -1 ) and the peaks corresponding to the amide bonds (1636 cm -1 ) were confirmed.
 また、このビスマレイミドプレポリマー(EM1)10gを耐熱性容器に量りとり、170℃で2時間加熱して硬化させた。得られた硬化物について、示差走査熱量計(DSC)(株式会社島津製作所製DSC-60)を用い、サンプルを0℃で10分間保持した後、1分当たり10℃の昇温速度で400℃まで加熱することにより、昇温に対する熱量変化からガラス転移点(Tg)を測定した。得られた結果を表7に示す。 Further, 10 g of this bismaleimide prepolymer (EM1) was weighed in a heat-resistant container and heated at 170 ° C. for 2 hours to cure. For the obtained cured product, a differential scanning calorimeter (DSC) (DSC-60 manufactured by Shimadzu Corporation) was used to hold the sample at 0 ° C. for 10 minutes, and then the temperature was raised to 400 ° C. at 10 ° C. per minute. The glass transition point (Tg) was measured from the change in calorific value with respect to the temperature rise. The results obtained are shown in Table 7.
(実施例14:ビスマレイミドプレポリマー(EM2)の作製)
 改質剤としてジアミン1bの代わりに実施例2で作製したジアミン2b(5.0g)を用いたこと以外は、実施例13と同様にしてビスマレイミドプレポリマー(EM2)27.8gを得た。このビスマレイミドプレポリマー(EM2)について、実施例13と同様にして硬化物のDSC分析を行った。得られた結果を表7に示す。
(Example 14: Preparation of bismaleimide prepolymer (EM2))
27.8 g of bismaleimide prepolymer (EM2) was obtained in the same manner as in Example 13 except that diamine 2b (5.0 g) prepared in Example 2 was used instead of diamine 1b as a modifier. This bismaleimide prepolymer (EM2) was subjected to DSC analysis of the cured product in the same manner as in Example 13. The results obtained are shown in Table 7.
(実施例15:ビスマレイミドプレポリマー(EM3)の作製)
 改質剤としてジアミン1bの代わりに実施例3で作製したジアミン3(5.8g)を用いたこと以外は、実施例13と同様にしてビスマレイミドプレポリマー(EM3)58.0gを得た。このビスマレイミドプレポリマー(EM3)について、実施例13と同様にして硬化物のDSC分析を行った。得られた結果を表7に示す。
(Example 15: Preparation of bismaleimide prepolymer (EM3))
58.0 g of bismaleimide prepolymer (EM3) was obtained in the same manner as in Example 13 except that diamine 3 (5.8 g) prepared in Example 3 was used instead of diamine 1b as a modifier. This bismaleimide prepolymer (EM3) was subjected to DSC analysis of the cured product in the same manner as in Example 13. The results obtained are shown in Table 7.
(比較例14:ビスマレイミドプレポリマー(CM1)の作製)
 改質剤としてジアミン1bの代わりにヘキサメチレンジアミン(1.8g)を用いたこと以外は、実施例13と同様にしてビスマレイミドプレポリマー(CM1)22.5gを得た。このビスマレイミドプレポリマー(CM1)について、実施例13と同様にして硬化物のDSC分析を行った。得られた結果を表7に示す。
(Comparative Example 14: Preparation of Bismaleimide Prepolymer (CM1))
22.5 g of bismaleimide prepolymer (CM1) was obtained in the same manner as in Example 13 except that hexamethylenediamine (1.8 g) was used instead of diamine 1b as a modifier. This bismaleimide prepolymer (CM1) was subjected to DSC analysis of the cured product in the same manner as in Example 13. The results obtained are shown in Table 7.
(比較例15:4,4’-ビスマレイミドジフェニルメタンのDSC分析)
 比較のためにジアミン1bを添加することなく、4,4’-ビスマレイミドジフェニルメタン10gを単独で硬化させ、実施例13と同様にしてDSC分析を行った。得られた結果を表7に示す。
(Comparative Example 15: DSC analysis of 4,4'-bismaleimidediphenylmethane)
For comparison, 10 g of 4,4′-bismaleimidediphenylmethane was cured alone without adding diamine 1b, and DSC analysis was performed in the same manner as in Example 13. The results obtained are shown in Table 7.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表7に示すように、実施例13~15で作製されたビスマレイミドプレポリマー(EM1)~(EM3)の硬化物はいずれも、比較例14で作製されたビスマレイミドプレポリマー(CM1)および比較例15の4,4’-ビスマレイミドジフェニルメタン(改質剤無添加)の硬化物と比較してTgが著しく低く、改質剤として使用したジアミン1b、2bおよび3を構成する2つのアミノ基の間に配置される炭素鎖が長いものほど、得られる硬化物に高い可撓性を付与することができたことがわかる。 As shown in Table 7, the cured products of the bismaleimide prepolymers (EM1) to (EM3) prepared in Examples 13 to 15 are all compared with the bismaleimide prepolymer (CM1) prepared in Comparative Example 14. Compared with the cured product of 4,4'-bismaleimide diphenylmethane (without modifier) of Example 15, the Tg was significantly lower, and the two amino groups constituting diamines 1b, 2b and 3 used as the modifier were used. It can be seen that the longer the carbon chain arranged between them, the higher the flexibility can be imparted to the obtained cured product.
(実施例16:ポリアミド18,6の作製)
 200mlビーカーに、実施例1で得られたジアミン1b(3.8g)(アミノ基として21.8mmol当量)、トリエチルアミン(2.2g)(21.8mmol)、ヘキサン50mLを仕込み、ヘキサン50mLに溶解させた塩化アジポイル(2.0g)(10.9mmol)を撹拌しながら添加し、溶液重合させた。30分間撹拌を続けた後、ろ過し、ろ物を水およびアセトンで洗浄し、乾燥させることによりポリアミド18,6を2.3g得た。
(Example 16: Preparation of polyamides 18 and 6)
In a 200 ml beaker, 1b (3.8 g) of diamine obtained in Example 1 (21.8 mmol equivalent as an amino group), triethylamine (2.2 g) (21.8 mmol) and 50 mL of hexane were charged and dissolved in 50 mL of hexane. Adipoyl chloride (2.0 g) (10.9 mmol) was added with stirring, and solution polymerization was carried out. After stirring for 30 minutes, the mixture was filtered, the filtrate was washed with water and acetone, and dried to obtain 2.3 g of polyamides 18 and 6.
 得られたポリアミド18,6について、赤外分光分析(FT-IR:日本分光株式会社製)により、アミド結合に対応するピーク(1635cm-1、1542cm-1)を確認した。 For the obtained polyamides 18 and 6, peaks (1635 cm -1 , 1542 cm -1 ) corresponding to the amide bond were confirmed by infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation).
 また、このポリアミド18,6について、示差走査熱量計(DSC)(株式会社島津製作所製DSC-60)を用い、サンプルを0℃で10分間保持した後、1分当たり5℃の昇温速度で100℃まで加熱することにより、昇温に対する熱量変化からガラス転移点(Tg)を測定した。得られた結果を表8に示す。 Further, for the polyamides 18 and 6, a differential scanning calorimeter (DSC) (DSC-60 manufactured by Shimadzu Corporation) was used to hold the sample at 0 ° C. for 10 minutes, and then the temperature was raised at 5 ° C. per minute. By heating to 100 ° C., the glass transition point (Tg) was measured from the change in calorific value with respect to the temperature rise. The results obtained are shown in Table 8.
(実施例17:ポリアミド20,6の作製)
 ジアミン1bの代わりに実施例2で作製したジアミン2b(3.6g)を用いたこと以外は、実施例16と同様にしてポリアミド6.6を2.5g得た。このポリアミド20.6について、実施例16と同様にして硬化物のDSC分析を行った。得られた結果を表8に示す。
(Example 17: Preparation of polyamides 20 and 6)
2.5 g of polyamide 6.6 was obtained in the same manner as in Example 16 except that the diamine 2b (3.6 g) prepared in Example 2 was used instead of the diamine 1b. The polyamide 20.6 was subjected to DSC analysis of the cured product in the same manner as in Example 16. The results obtained are shown in Table 8.
(実施例18:ポリアミド22,6の作製)
 ジアミン1bの代わりに実施例3で作製したジアミン3(3.8g)を用いたこと以外は、実施例16と同様にしてポリアミド6.6を2.3g得た。このポリアミド22.6について、実施例16と同様にして硬化物のDSC分析を行った。得られた結果を表8に示す。
(Example 18: Preparation of polyamides 2 and 6)
2.3 g of polyamide 6.6 was obtained in the same manner as in Example 16 except that diamine 3 (3.8 g) prepared in Example 3 was used instead of diamine 1b. The polyamide 22.6 was subjected to DSC analysis of the cured product in the same manner as in Example 16. The results obtained are shown in Table 8.
(比較例16:ポリアミド2,6の作製)
 200mlのビーカーに、エチレンジアミン(0.7g)(10.9mmol)、49%水酸化ナトリウム(0.9g)(10.9mmol)、水50mLを仕込み、ヘキサン50mLに溶解させた塩化アジポイル(2.0g)(10.9mmol)を撹拌しながら添加し、界面重合させた。30分間撹拌を続けた後、ろ過し、ろ物を水およびアセトンで洗い、乾燥させることによりポリアミド2,6を0.9g得た。このポリアミド2.6について、実施例16と同様にして硬化物のDSC分析を行った。得られた結果を表8に示す。
(Comparative Example 16: Fabrication of Polyamides 2 and 6)
Ethylenediamine (0.7 g) (10.9 mmol), 49% sodium hydroxide (0.9 g) (10.9 mmol) and 50 mL of water were placed in a 200 ml beaker, and adipoyl chloride (2.0 g) dissolved in 50 mL of hexane was added. ) (10.9 mmol) was added with stirring and interfacial polymerization was carried out. After stirring for 30 minutes, the mixture was filtered, the filtrate was washed with water and acetone, and dried to obtain 0.9 g of polyamides 2 and 6. The polyamide 2.6 was subjected to DSC analysis of the cured product in the same manner as in Example 16. The results obtained are shown in Table 8.
(比較例17:ポリアミド6,6の作製)
 エチレンジアミンの代わりにヘキサメチレンジアミン(1.3g)を用いたこと以外は、比較例16と同様にしてポリアミド6.6を0.7g得た。このポリアミド6.6について、実施例16と同様にして硬化物のDSC分析を行った。得られた結果を表8に示す。
(Comparative Example 17: Fabrication of Polyamides 6 and 6)
0.7 g of polyamide 6.6 was obtained in the same manner as in Comparative Example 16 except that hexamethylenediamine (1.3 g) was used instead of ethylenediamine. The polyamide 6.6 was subjected to DSC analysis of the cured product in the same manner as in Example 16. The results obtained are shown in Table 8.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表8に示すように、実施例16~18で作製されたポリアミド(ポリアミド18.6、ポリアミド20.6、ポリアミド22.6)はいずれも、比較例16で作製されたポリアミド2.6および比較例17のポリアミド6.6と比較してTgが著しく低い。他の実施例と同様に、ポリアミドにおいても使用したジアミン1b、2bおよび3を構成する2つのアミノ基の間に配置される炭素鎖が長いものほど、得られる硬化物に高い可撓性を付与することができたことがわかる。 As shown in Table 8, the polyamides (polyamide 18.6, polyamide 20.6, polyamide 22.6) prepared in Examples 16 to 18 are all compared with the polyamide 2.6 prepared in Comparative Example 16. Tg is significantly lower than that of Polyamide 6.6 in Example 17. As in the other examples, the longer the carbon chain arranged between the two amino groups constituting the diamines 1b, 2b and 3 used in the polyamide, the higher the flexibility of the obtained cured product. You can see that it was possible.
(実施例19:ポリイミド(ED1)の作製)
 撹拌機、分水器、温度計および窒素ガス導入管を備えた反応器にピロメリット酸無水物(50.0g)、シクロヘキサノン(200ml)を仕込み、60℃まで加熱した。次いでトルエン(100ml)に溶解させた、実施例1で得られたジアミン1bを40.0g添加し、140℃で3時間イミドさせ、減圧下溶剤を除去し、ポリイミド(ED1)を80.1g得た。
(Example 19: Fabrication of polyimide (ED1))
A reactor equipped with a stirrer, a water divider, a thermometer and a nitrogen gas introduction tube was charged with pyromellitic anhydride (50.0 g) and cyclohexanone (200 ml) and heated to 60 ° C. Next, 40.0 g of the diamine 1b obtained in Example 1 dissolved in toluene (100 ml) was added, imidized at 140 ° C. for 3 hours, the solvent was removed under reduced pressure, and 80.1 g of polyimide (ED1) was obtained. It was.
 上記得られたポリイミド(ED1)について、赤外分光分析(FT-IR:日本分光株式会社製)により、イミド結合に対応するピーク(1769cm-1)を確認した。 With respect to the obtained polyimide (ED1), a peak (1769 cm- 1 ) corresponding to an imide bond was confirmed by infrared spectroscopic analysis (FT-IR: manufactured by JASCO Corporation).
 また、このポリイミド(ED1)について、示差走査熱量計(DSC)(株式会社島津製作所製DSC-60)を用い、サンプルを0℃で10分間保持した後、1分当たり10℃の昇温速度で400℃まで加熱することにより、昇温に対する熱量変化からガラス転移点(Tg)を測定した。得られた結果を表9に示す。 Further, for this polyimide (ED1), a differential scanning calorimeter (DSC) (DSC-60 manufactured by Shimadzu Corporation) was used to hold the sample at 0 ° C. for 10 minutes, and then the temperature was raised at 10 ° C. per minute. By heating to 400 ° C., the glass transition point (Tg) was measured from the change in calorific value with respect to the temperature rise. The results obtained are shown in Table 9.
(実施例20:ポリイミド(ED2)の作製)
 ジアミン1bの代わりに実施例2で作製したジアミン2b(37.9g)を用いたこと以外は、実施例19と同様にしてポリイミド(ED2)を78.9g得た。このポリイミド(ED2)について、実施例19と同様にして樹脂のDSC分析を行った。得られた結果を表9に示す。
(Example 20: Fabrication of polyimide (ED2))
78.9 g of polyimide (ED2) was obtained in the same manner as in Example 19 except that the diamine 2b (37.9 g) prepared in Example 2 was used instead of the diamine 1b. The polyimide (ED2) was subjected to DSC analysis of the resin in the same manner as in Example 19. The results obtained are shown in Table 9.
(実施例21:ポリイミド(ED3)の作製)
 ジアミン1bの代わりに実施例3で作製したジアミン3(44.3g)を用いたこと以外は、実施例19と同様にしてポリイミド(ED3)を81.3g得た。このポリイミド(ED3)について、実施例19と同様にして樹脂のDSC分析を行った。得られた結果を表9に示す。
(Example 21: Fabrication of polyimide (ED3))
81.3 g of polyimide (ED3) was obtained in the same manner as in Example 19 except that the diamine 3 (44.3 g) prepared in Example 3 was used instead of the diamine 1b. For this polyimide (ED3), DSC analysis of the resin was carried out in the same manner as in Example 19. The results obtained are shown in Table 9.
(比較例18:ポリイミド(CD1)の作製)
 ジアミン1bの代わりにp-フェニレンジアミン(24.8g)用いたこと以外は、実施例19と同様にしてポリイミド(CD1)を69.7g得た。このポリイミド(CD1)について、実施例19と同様にして樹脂のDSC分析を行った。得られた結果を表9に示す。
(Comparative Example 18: Fabrication of Polyimide (CD1))
69.7 g of polyimide (CD1) was obtained in the same manner as in Example 19 except that p-phenylenediamine (24.8 g) was used instead of diamine 1b. For this polyimide (CD1), DSC analysis of the resin was carried out in the same manner as in Example 19. The results obtained are shown in Table 9.
(比較例19:ポリイミド(CD2)の作製)
 ジアミン1bの代わりにヘキサメチレンジアミン(26.6g)用いたこと以外は、実施例19と同様にしてポリイミド(CD2)を70.9g得た。このポリイミド(CD2)について、実施例19と同様にして樹脂のDSC分析を行った。得られた結果を表9に示す。
(Comparative Example 19: Fabrication of Polyimide (CD2))
70.9 g of polyimide (CD2) was obtained in the same manner as in Example 19 except that hexamethylenediamine (26.6 g) was used instead of diamine 1b. For this polyimide (CD2), DSC analysis of the resin was carried out in the same manner as in Example 19. The results obtained are shown in Table 9.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表9に示すように、比較例18と19では、同じ炭素数6のジアミンでありながら脂肪族ジアミンを利用した比較例19の方がTgは低かった。これに対し実施例19~20で使用したジアミンはさらに炭素数の多い脂肪族ジアミンであり、比較例19よりもTgが低かった。したがって他の実施例と同様に、ポリイミドにおいても使用したジアミン1b、2bおよび3を構成する2つのアミノ基の間に配置される炭素鎖が長いものほど、得られるポリマーに高い可撓性を付与することができたことがわかる。 As shown in Table 9, in Comparative Examples 18 and 19, Tg was lower in Comparative Example 19 using an aliphatic diamine even though it was a diamine having the same carbon number of 6. On the other hand, the diamines used in Examples 19 to 20 were aliphatic diamines having a higher carbon number, and their Tg was lower than that of Comparative Example 19. Therefore, as in the other examples, the longer the carbon chain arranged between the two amino groups constituting the diamines 1b, 2b and 3 used in the polyimide, the higher the flexibility is imparted to the obtained polymer. You can see that it was possible.
(小括)
 上記までの実施例についてまとめると、2つのアミノ基の間に長い炭素鎖を有する本発明のジアミン化合物(ジアミン1b、2bおよび3)を樹脂添加剤として用いると、樹脂に対し可撓性を付与することができる(例えば表4、表7、表8、および表9を参照)。また、表2より、これらのジアミン化合物は、エポキシ樹脂硬化剤としては比較例6~11で使用したような、市販により入手可能なアミン硬化剤よりも遅い反応性であるものの、表1よりゲル化率は高く、硬化反応は十分に進行していることがわかる。このため、ポットライフの調整に最適な材料である。一方、可撓性付与効果が見られたポリエーテルジアミン(分子量400)は、分子量に対応して可撓性付与効果が得られたが(表1)、反応性は低温(70℃)では著しく悪く、120℃で硬化反応が進行する(表2)。また表3から、ポリエーテルジアミンを使用した硬化物は耐水性に劣る一方で、長鎖ジアミンを使用した硬化物は耐水性を損ねることなく、汎用のアミン硬化剤と同程度の耐水性が得られる。このことから、本発明のジアミン化合物は、現行の可撓性付与剤であるポリエーテルジアミンよりも有用である。
(Brief Summary)
Summarizing the above examples, when the diamine compound of the present invention (diamine 1b, 2b and 3) having a long carbon chain between two amino groups is used as a resin additive, flexibility is imparted to the resin. (See, for example, Table 4, Table 7, Table 8, and Table 9). Further, from Table 2, these diamine compounds have slower reactivity than commercially available amine curing agents as epoxy resin curing agents as used in Comparative Examples 6 to 11, but gels from Table 1 show. The conversion rate is high, and it can be seen that the curing reaction is sufficiently progressing. Therefore, it is the most suitable material for adjusting the pot life. On the other hand, the polyether diamine (molecular weight 400), which had a flexibility-imparting effect, had a flexibility-imparting effect corresponding to the molecular weight (Table 1), but the reactivity was remarkably low (70 ° C.). At worst, the curing reaction proceeds at 120 ° C. (Table 2). Further, from Table 3, the cured product using a polyether diamine is inferior in water resistance, while the cured product using a long-chain diamine has the same water resistance as a general-purpose amine curing agent without impairing the water resistance. Be done. For this reason, the diamine compound of the present invention is more useful than the current flexibility-imparting agent, polyether diamine.
(実施例22:金属製品への腐食防止効果)
 10%塩酸中に、腐食防止剤として実施例1で得られたジアミン1bを0.05質量%の割合で含有する水溶液50mLをガラス製サンプル管に仕込んだ。この水溶液中に、研磨およびトルエン洗浄処理を3回繰り返した標準試験板(JIS G 3141;日本テストパネル株式会社製)を浸漬させ、60℃で1時間加温し、試験板を腐食させた。腐食後の試験板を水洗および乾燥し、浸漬前後の質量差より以下の式にしたがって腐食率(%)を算出した。
 腐食率(%)=(浸漬前の試験板の質量-浸漬後の試験板の質量)/(浸漬前の試験板の質量)×100
(Example 22: Corrosion prevention effect on metal products)
A glass sample tube was charged with 50 mL of an aqueous solution containing the diamine 1b obtained in Example 1 as a corrosion inhibitor in a proportion of 0.05% by mass in 10% hydrochloric acid. A standard test plate (JIS G 3141; manufactured by Nippon Test Panel Co., Ltd.), which was subjected to polishing and toluene cleaning treatment three times, was immersed in this aqueous solution and heated at 60 ° C. for 1 hour to corrode the test plate. The test plate after corrosion was washed with water and dried, and the corrosion rate (%) was calculated according to the following formula from the mass difference before and after immersion.
Corrosion rate (%) = (mass of test plate before immersion-mass of test plate after immersion) / (mass of test plate before immersion) x 100
 得られた結果を表10に示す。 The results obtained are shown in Table 10.
(比較例20:金属製品への腐食防止効果)
 腐食防止剤(実施例1のジアミン1b)を添加しなかったこと以外は実施例22と同様にして標準試験板の腐食率を測定した。得られた結果を表10に示す。
(Comparative Example 20: Corrosion prevention effect on metal products)
The corrosion rate of the standard test plate was measured in the same manner as in Example 22 except that the corrosion inhibitor (diamine 1b of Example 1) was not added. The results obtained are shown in Table 10.
(比較例21:金属製品への腐食防止効果)
 腐食防止剤として、ジアミン1bの代わりにドデシルアミン0.05質量%を用いたこと以外は実施例22と同様にして標準試験板の腐食率を測定した。得られた結果を表10に示す。
(Comparative Example 21: Corrosion prevention effect on metal products)
The corrosion rate of the standard test plate was measured in the same manner as in Example 22 except that 0.05% by mass of dodecylamine was used instead of diamine 1b as the corrosion inhibitor. The results obtained are shown in Table 10.
(比較例22:金属製品への腐食防止効果)
 腐食防止剤として、ジアミン1bの代わりにヘキサメチレンジアミン0.05質量%を用いたこと以外は実施例22と同様にして標準試験板の腐食率を測定した。得られた結果を表10に示す。
(Comparative Example 22: Corrosion prevention effect on metal products)
The corrosion rate of the standard test plate was measured in the same manner as in Example 22 except that 0.05% by mass of hexamethylenediamine was used as the corrosion inhibitor instead of diamine 1b. The results obtained are shown in Table 10.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表10に示すように、鉄鋼板の腐食率は実施例22で使用したジアミン1b(イソオクタデカンジアミン)が最も低く、酸性水溶液に対して高い防食効果を有することがわかる。このような腐食防止剤は、金属の酸洗い、酸浸漬、エッチングなどの洗浄処理時に有用である。 As shown in Table 10, it can be seen that the diamine 1b (isooctadecanediamine) used in Example 22 has the lowest corrosion rate of the steel sheet and has a high anticorrosive effect against an acidic aqueous solution. Such corrosion inhibitors are useful during cleaning treatments such as pickling, acid immersion, and etching of metals.
 本発明のジアミン化合物によれば、種々の樹脂を用いて可撓性に優れた樹脂組成物を提供することができる。当該樹脂組成物は、エポキシ、ポリウレタン、ポリイミド、ポリアミドイミド、マレイミド、ポリアミドなどの樹脂で構成される材料として、例えば土木材、建材、床材における補修材、各種塗料、各種接着剤、電子材料における封止剤(アンダーフィル)、絶縁部材、モールド樹脂、レジスト材料、樹脂補強ハンダソルダーペースト材料、フレキシブルプリント基板材料、各種フィルム、熱可塑性樹脂におけるプラスチック成型品、ナイロン繊維などの種々の技術分野において有用である。さらに、本発明のジアミン化合物を、カチオン界面活性剤として潤滑防錆剤に利用した場合、金属製品に対して高い腐食防止効果を発揮し得る。このことから、金属加工分野、機械分野等においても有用である。 According to the diamine compound of the present invention, it is possible to provide a resin composition having excellent flexibility by using various resins. The resin composition is used as a material composed of resins such as epoxy, polyurethane, polyimide, polyamideimide, maleimide, and polyamide, for example, in earth and wood, building materials, repair materials for flooring materials, various paints, various adhesives, and electronic materials. Useful in various technical fields such as sealants (underfills), insulating members, mold resins, resist materials, resin-reinforced solder solder paste materials, flexible printed substrate materials, various films, plastic molded products in thermoplastic resins, nylon fibers, etc. Is. Furthermore, when the diamine compound of the present invention is used as a cationic surfactant in a lubricating rust preventive, it can exert a high corrosion prevention effect on metal products. Therefore, it is also useful in the fields of metal processing, machinery, and the like.

Claims (12)

  1.  以下の式(I):
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、
     Rは、全炭素数がC14~C28であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基である、
     で表される、ジアミン化合物。
    The following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    In formula (I),
    R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups. An alkylene group or an alkenylene group having a branched chain of
    A diamine compound represented by.
  2.  式(I)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分がC2n個(ここでnは7~14である)の炭素原子を有する、請求項1に記載のジアミン化合物。 In formula (I), the main chain portion of the alkylene group or alkenylene group constituting R 1 has a carbon atom of the C 2n pieces (where n is 7-14), the diamine compound of Claim 1.
  3.  式(I)において、Rを構成する前記C14~C28の直鎖アルキレン基または直鎖アルケニレン基が、エチル基で構成される分岐鎖を有する、請求項1または2に記載のジアミン化合物。 The diamine compound according to claim 1 or 2, wherein in the formula (I), the linear alkylene group or the linear alkenylene group of C 14 to C 28 constituting R 1 has a branched chain composed of an ethyl group. ..
  4.  7-エチルヘキサデカンジアミン、7,12-ジメチルオクタデカンジアミン-7,11-エン、または8,13-ジメチルオクタデカンジアミン-8,12-エンである、請求項1に記載のジアミン化合物。 The diamine compound according to claim 1, which is 7-ethylhexadecanediamine, 7,12-dimethyloctadecanediamine-7,11-ene, or 8,13-dimethyloctadecanediamine-8,12-ene.
  5.  請求項1に記載のジアミン化合物の製造方法であって、
     以下の式(II):
    Figure JPOXMLDOC01-appb-C000002
     で表される二塩基酸エステル類とヒドラジンとを反応させてジヒドラジド化合物を得る工程、
     該ジヒドラジド化合物を亜硝酸化合物と反応させてアジ化物を得る工程、および
     該アジ化物を加熱転位かつ加水分解する工程、
     を包含し、
     式(II)中、
     Rは、全炭素数がC14~C28であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基であり、
     Rは、C~Cの直鎖アルキル基である、
     方法。
    The method for producing a diamine compound according to claim 1.
    The following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    A step of reacting a dibasic acid ester represented by (1) with hydrazine to obtain a dihydrazide compound.
    A step of reacting the dihydrazide compound with a nitrite compound to obtain an azide, and a step of heating and hydrolyzing the azide.
    Including,
    In formula (II),
    R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups. An alkylene group or an alkenylene group having a branched chain of
    R 2 is a linear alkyl group of C 1 to C 4,
    Method.
  6.  式(II)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分がC2n個(ここでnは7~14である)の炭素原子を有する、請求項5に記載の方法。 In Formula (II), the main chain portion of the alkylene group or alkenylene group constituting R 1 has a carbon atom of the C 2n pieces (where n is 7-14) The method of claim 5.
  7.  請求項1に記載のジアミン化合物の製造方法であって、
     以下の式(III):
    Figure JPOXMLDOC01-appb-C000003
     で表される二塩基酸とアンモニアとを反応させてジアミド化合物を得る工程、および
     該ジアミド化合物をニトリル化しかつ水素還元する工程、
     を包含し、
     式(III)中、
     Rは、全炭素数がC14~C28であるアルキレン基またはアルケニレン基であって、直鎖状であるか、あるいは1つまたは複数のC~Cのアルキル基および/またはアルケニル基の分岐鎖を有する、アルキレン基またはアルケニレン基である、
     方法。
    The method for producing a diamine compound according to claim 1.
    The following formula (III):
    Figure JPOXMLDOC01-appb-C000003
    A step of reacting a dibasic acid represented by (1) with ammonia to obtain a diamide compound, and a step of nitriding and hydrogen reducing the diamide compound.
    Including,
    In formula (III),
    R 1 is an alkylene or alkenylene group having a total carbon number of C 14 to C 28, which is linear or has one or more C 1 to C 4 alkyl and / or alkenyl groups. An alkylene group or an alkenylene group having a branched chain of
    Method.
  8.  式(III)において、Rを構成するアルキレン基またはアルケニレン基の主鎖部分がC2n個(ここでnは7~14である)の炭素原子を有する、請求項7に記載の方法。 In the formula (III), the main chain portion of the alkylene group or alkenylene group constituting R 1 has a carbon atom of the C 2n pieces (where n is 7-14) The method of claim 7.
  9.  請求項1から4のいずれかに記載のジアミン化合物を含有する、樹脂添加剤。 A resin additive containing the diamine compound according to any one of claims 1 to 4.
  10.  樹脂と、請求項9に記載の樹脂添加剤とを含有する、樹脂組成物。 A resin composition containing a resin and the resin additive according to claim 9.
  11.  1つまたはそれ以上のモノマー化合物および請求項9に記載の樹脂添加剤から構成される樹脂を含有する、樹脂組成物。 A resin composition containing one or more monomer compounds and a resin composed of the resin additive according to claim 9.
  12.  請求項1から4のいずれかに記載のジアミン化合物を含有する、金属製品用潤滑防錆剤。 A lubricating rust preventive for metal products containing the diamine compound according to any one of claims 1 to 4.
PCT/JP2020/034020 2019-09-13 2020-09-08 Diamine compound and method for producing same WO2021049503A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227012227A KR20220062086A (en) 2019-09-13 2020-09-08 Diamine compound and method for preparing same
JP2021545554A JP7357391B2 (en) 2019-09-13 2020-09-08 Diamine compound and its manufacturing method
CN202080064182.2A CN114364656A (en) 2019-09-13 2020-09-08 Diamine compound and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019167694 2019-09-13
JP2019-167694 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049503A1 true WO2021049503A1 (en) 2021-03-18

Family

ID=74866170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034020 WO2021049503A1 (en) 2019-09-13 2020-09-08 Diamine compound and method for producing same

Country Status (4)

Country Link
JP (1) JP7357391B2 (en)
KR (1) KR20220062086A (en)
CN (1) CN114364656A (en)
WO (1) WO2021049503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090348A1 (en) * 2021-11-22 2023-05-25 日本化薬株式会社 Polyimide resin, resin composition containing said polyimide resin, and cured product thereof
WO2023112849A1 (en) * 2021-12-13 2023-06-22 日本化薬株式会社 Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647146A (en) * 1949-07-01 1953-07-28 Du Pont Process for the preparation of diprimary diamines
US3382186A (en) * 1965-09-22 1968-05-07 Betz Laboratories Aliphatic hydrocarbon amine corrosion inhibitors
JPS5112674B1 (en) * 1970-07-09 1976-04-21
JPS51125500A (en) * 1974-11-07 1976-11-01 Ciba Geigy Ag Setting composite and process for producing same
JPS5471189A (en) * 1977-10-28 1979-06-07 Ciba Geigy Ag Crystalline polyamide
JPS5555127A (en) * 1978-10-18 1980-04-22 Ciba Geigy Ag Substituted 1*111diaminoundecane*its manufacture and its use
JPS5883656A (en) * 1981-10-12 1983-05-19 チバ−ガイギ−・アクチエンゲゼルシヤフト Manufacture of substituted 1,11-diaminoundecane
JP2006143759A (en) * 2004-11-16 2006-06-08 Yokohama Rubber Co Ltd:The Two-part room temperature-curable epoxy resin composition and metal adhesive composition
US20150183724A1 (en) * 2012-07-06 2015-07-02 Monash University Process for producing amine compounds
JP2018070699A (en) * 2016-10-26 2018-05-10 三菱ケミカル株式会社 Polyimide resin composition
CN108671746A (en) * 2018-05-05 2018-10-19 安徽乐金环境科技有限公司 A kind of compound air purification filter core and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307218B (en) * 2008-06-20 2011-06-22 上海天洋热熔胶有限公司 High temperature resistant water washing polyamide hot-melt adhesive for clothes and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647146A (en) * 1949-07-01 1953-07-28 Du Pont Process for the preparation of diprimary diamines
US3382186A (en) * 1965-09-22 1968-05-07 Betz Laboratories Aliphatic hydrocarbon amine corrosion inhibitors
JPS5112674B1 (en) * 1970-07-09 1976-04-21
JPS51125500A (en) * 1974-11-07 1976-11-01 Ciba Geigy Ag Setting composite and process for producing same
JPS5471189A (en) * 1977-10-28 1979-06-07 Ciba Geigy Ag Crystalline polyamide
JPS5555127A (en) * 1978-10-18 1980-04-22 Ciba Geigy Ag Substituted 1*111diaminoundecane*its manufacture and its use
JPS5883656A (en) * 1981-10-12 1983-05-19 チバ−ガイギ−・アクチエンゲゼルシヤフト Manufacture of substituted 1,11-diaminoundecane
JP2006143759A (en) * 2004-11-16 2006-06-08 Yokohama Rubber Co Ltd:The Two-part room temperature-curable epoxy resin composition and metal adhesive composition
US20150183724A1 (en) * 2012-07-06 2015-07-02 Monash University Process for producing amine compounds
JP2018070699A (en) * 2016-10-26 2018-05-10 三菱ケミカル株式会社 Polyimide resin composition
CN108671746A (en) * 2018-05-05 2018-10-19 安徽乐金环境科技有限公司 A kind of compound air purification filter core and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthesis and Reaction of Organic Compounds III", THE CHEMICAL SOCIETY OF JAPAN, NEW EXPERIMENTAL CHEMISTRY LECTURE 14, vol. 14, no. III, 1978, pages 1391 - 1393 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090348A1 (en) * 2021-11-22 2023-05-25 日本化薬株式会社 Polyimide resin, resin composition containing said polyimide resin, and cured product thereof
WO2023112849A1 (en) * 2021-12-13 2023-06-22 日本化薬株式会社 Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same

Also Published As

Publication number Publication date
JP7357391B2 (en) 2023-10-06
JPWO2021049503A1 (en) 2021-03-18
CN114364656A (en) 2022-04-15
KR20220062086A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
US4179551A (en) Low temperature curable compliant bismaleimide compositions
JP7357391B2 (en) Diamine compound and its manufacturing method
US20220169791A1 (en) Polyamic Acid Resin, Polyimide Resin, and Resin Composition Including These
US4269961A (en) Low temperature curable compliant bismaleimide compositions
CN113396173B (en) Epoxy resin solution
WO2011125888A1 (en) Polyamide curing agent composition
TW202219116A (en) Isocyanate modified polyimide resin, resin composition and cured product thereof
US10619008B2 (en) Aliphatic polyimides from unsaturated monoanhydride or unsaturated diacid reacted with both monoamine and diamine
JP2022517851A (en) Elastic adhesive containing bio-derived compounds
US4541958A (en) Hardening agent for epoxy resins comprising an amideamine compound
JP2009263570A (en) Terminus modified imide oligomer, varnish, and highly elastic cured product thereof
US20170044320A1 (en) Aliphatic polyimides from a 1:1 molar ratio of diamine and unsaturated monoanhydride or unsaturated diacid
US9221849B2 (en) Silane coupling agent, making method, primer composition, and coating composition
Shah et al. Synthesis and characterisation of cycloaliphatic and aromatic amines based cardanol benzoxazines: A comparative study
KR101803753B1 (en) Preparation method of polyamide curing agent for heavy duty epoxy coating and heavy duty epoxy coating comprising polyamide curing agent prepared by the same
Mirmohseni et al. Polyamidoamines based on castor oil‐styrene co‐oligomer/triethylenetetramine as curing agents in high‐performance epoxy coatings
TW201518285A (en) Benzofuran derivative composition, polyimide precursor composition, polyimide resin and manufacturing method for the same
JP7432331B2 (en) Method of curing epoxy resin composition
EP1999184A1 (en) Polyamides
JP2022162256A (en) Composite and composite production method
JP2021134236A (en) Polyamideimide
WO2019189542A1 (en) Silicone rubber-silicone modified polyimide resin laminated body
JP5477327B2 (en) Method for producing polyimide resin
JP7322837B2 (en) Silicone modified polyimide resin composition
WO2018158877A1 (en) Polyamide imide resin and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227012227

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20862962

Country of ref document: EP

Kind code of ref document: A1