WO2023112849A1 - Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same - Google Patents

Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same Download PDF

Info

Publication number
WO2023112849A1
WO2023112849A1 PCT/JP2022/045423 JP2022045423W WO2023112849A1 WO 2023112849 A1 WO2023112849 A1 WO 2023112849A1 JP 2022045423 W JP2022045423 W JP 2022045423W WO 2023112849 A1 WO2023112849 A1 WO 2023112849A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
isocyanate
group
compound
modified polyimide
Prior art date
Application number
PCT/JP2022/045423
Other languages
French (fr)
Japanese (ja)
Inventor
謙吾 西村
智江 佐々木
竜太朗 田中
憲幸 長嶋
和義 山本
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2023112849A1 publication Critical patent/WO2023112849A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to an isocyanate-modified polyimide resin with a novel structure, a resin composition containing the isocyanate-modified polyimide resin, and a cured product of the resin composition.
  • Printed wiring boards are indispensable members for electronic devices such as mobile communication devices such as smartphones and tablets, communication base station devices, computers and car navigation systems. 2. Description of the Related Art Various resin materials having excellent properties such as adhesion to metal foil, heat resistance and flexibility are used for printed wiring boards. In recent years, high-speed, large-capacity printed wiring boards for next-generation high-frequency radio have been developed. It is required to be tangent.
  • Polyimide resin which has excellent properties such as heat resistance, flame retardancy, flexibility, electrical properties, and chemical resistance, is widely used in electric and electronic parts, semiconductors, communication equipment and its circuit parts, peripheral equipment, etc.
  • hydrocarbon compounds such as petroleum and natural oils exhibit high insulating properties and low dielectric constants.
  • Patent Documents 1 and 2 describe examples in which a long alkyl chain is introduced into a polyimide resin
  • Patent Document 3 describes an example in which a dimer diamine skeleton, which is an alkyl having a longer carbon chain, is introduced into a polyimide resin.
  • these polyimide resins are excellent in terms of low dielectric loss tangent, they have high melt viscosities and low filling properties (filling properties means that the resin is properly filled) into the unevenness of the base material, so air bubbles are mixed in. In addition, the heat resistance is insufficient in addition to the cases where the adhesiveness to the base material is lowered.
  • An object of the present invention is to provide a resin material having a novel structure that can be suitably used for printed wiring boards, a metal foil containing the resin material, excellent in coatability to a substrate, and having a cured product with low roughness, and
  • An object of the present invention is to provide a resin composition which is excellent in adhesiveness to substrates, heat resistance and dielectric properties.
  • the present inventors have found that the above problems can be solved by using a polyimide resin having a specific structure, and completed the present invention. That is, the present invention (1) A linear aliphatic diamino compound (a1) having amino groups at both ends, having 1 to 4 methyl groups and/or ethyl groups in side chains, and having a main chain of 17 to 24 carbon atoms.
  • Y is C(CF 3 ) 2 , SO 2 , CO, an oxygen atom, a direct bond, or the following formula (10)
  • the isocyanate-modified polyimide resin according to the preceding item (1) or (2) containing a compound represented by at least one selected from the group consisting of (4) the aromatic diamino compound (a2) is represented by the following formulas (11) to (14)
  • R 2 independently represents a methyl group or a trifluoromethyl group; in formula (14), Z is C(CF 3 ) 2 , CH(CH 3 ), SO 2 , CH 2 , O—C 6 H 4 —O, oxygen atom, direct bond or formula (10) below
  • R3 independently represents a hydrogen atom, a methyl group, an ethyl group or a trifluoromethyl group.
  • the isocyanate-modified polyimide resin according to any one of the preceding items (1) to (4) has amino groups and/or acid anhydride groups at both ends, and reacts with the amino groups or the acid anhydride groups.
  • a terminal-modified isocyanate-modified polyimide resin which is a reaction product of the compound (D) having one functional group capable of (6)
  • the resin composition according to the preceding item (6) or (7), wherein the compound capable of reacting with the isocyanate-modified polyimide resin or the compound capable of reacting with the terminal-modified isocyanate-modified polyimide resin comprises a maleimide resin, (9) a cured product of the resin composition according to any one of the preceding items (6) to (8), and (
  • the isocyanate-modified polyimide resin having the specific structure of the present invention has a low melt viscosity, good embedding properties in the irregularities of the base material, and high adhesiveness. Moreover, by using the polyimide resin of the present invention, it is possible to provide printed wiring boards and the like which are excellent in heat resistance, low dielectric properties, and the like.
  • the isocyanate-modified polyimide resin of the present invention has amino groups at both ends, has 1 to 4 methyl groups and/or ethyl groups in side chains, and has a main chain of 17 to 24 carbon atoms.
  • the (A) component used for synthesizing the intermediate polyimide resin contains the (a1) component and the (a2) component as essential components.
  • Component (a1) is a linear aliphatic hydrocarbon compound having a main chain of 17 to 24 carbon atoms, having amino groups at both ends of the main chain, and methyl and/or ethyl groups in side chains. is not particularly limited as long as it is a compound having 1 to 4.
  • the linear aliphatic hydrocarbon having 17 to 24 carbon atoms and serving as the main chain of the component (a1) may be either a saturated aliphatic hydrocarbon or an unsaturated aliphatic hydrocarbon.
  • component (a1) examples include 7,12-dimethyloctadecanediamine, 8,13-dimethyloctadecanediamine, 8-methylnonadecanediamine, 9-methylnonadecanediamine, 7,12-dimethyloctadecanediamine-7, 11-ene and 8,13-dimethyloctadecanediamine-8,12-ene and the like. These may be used alone or in combination of two or more.
  • Diamine H20 manufactured by Okamura Oil Co., Ltd.
  • the main chain of component (a1) is preferably a saturated aliphatic hydrocarbon, that is, alkylene, and preferably has 17 to 22 carbon atoms, more preferably 17 to 20 carbon atoms.
  • the number of methyl groups and/or ethyl groups in the side chain is preferably 1 to 3, more preferably 1 or 2.
  • the amount of component (a1) used for the synthesis of the intermediate polyimide resin is not particularly limited, but from the total mass of the components (A), (B) and (C) used for synthesis, the intermediate polyimide resin synthesis
  • the amount is preferably in the range of 10 to 50% by mass of the mass obtained by subtracting the mass of water generated in the dehydration cyclization reaction step (substantially the same mass as the finally obtained isocyanate-modified polyimide resin). If the amount of component (a1) is less than the above range, the number of aliphatic chains derived from component (a1) in the intermediate polyimide resin is too small, and the dielectric constant and dielectric loss tangent of the cured product of the resin composition become high. If the above range is exceeded, the number of aliphatic chains derived from component (a1) in the polyimide resin is too large, and the heat resistance of the cured product may be lowered.
  • the component (a2) used for synthesizing the intermediate polyimide resin is not particularly limited as long as it is an aromatic compound having two amino groups in one molecule.
  • component (a2) include m-phenylenediamine, p-phenylenediamine, m-tolylenediamine, 4,4′-diaminodiphenyl ether, 3,3′-dimethyl-4,4′-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 4,4'-diaminodiphenylthioether, 3,3'-dimethyl-4,4'-diaminodiphenylthioether, 3,3'-diethoxy-4,4'-diaminodiphenylthioether, 3, 3'-diaminodiphenylthioether, 4,4'-diaminobenzophenone, 3,3'-dimethyl-4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4' -di
  • the component (a2) used to synthesize the intermediate polyimide resin preferably contains at least one compound selected from the group consisting of the following formulas (11) to (14).
  • R2 independently represents a methyl group or a trifluoromethyl group
  • Z is C( CF3 ) 2 , CH( CH3 ), SO2 , CH2 , O —C 6 H 4 —O, an oxygen atom, a direct bond or a divalent linking group represented by the above formula (10)
  • R 3 independently represents a hydrogen atom, a methyl group, an ethyl group or a trifluoromethyl group; show.
  • the amount of component (a2) used for the synthesis of the intermediate polyimide resin is not particularly limited, but from the total mass of the components (A), (B) and (C) used for synthesis, the intermediate polyimide resin synthesis
  • the amount is preferably in the range of 10 to 50% by mass of the mass obtained by subtracting the mass of water generated in the dehydration cyclization reaction step (substantially the same mass as the finally obtained isocyanate-modified polyimide resin). If the amount of component (a2) is below the above range, the heat resistance of the cured product may be lowered, and if below the above range, the dielectric properties of the cured product may be reduced.
  • the (A) component used for synthesizing the intermediate polyimide resin includes the (a1) component and the (a2) component, but the diamino compound (a3) other than the (a1) component and the (a2) component (hereinafter simply “(a3 ) component)).
  • Component (a3) is not particularly limited as long as it is a compound other than components (a1) and (a2) and has two amino groups in one molecule, but an aliphatic diamino compound other than component (a1) is Aliphatic diamino compounds having 6 to 36 carbon atoms other than the component (a1) are preferred, and dimer diamine is more preferred, since a polyimide resin having a low dielectric constant and low dielectric loss tangent can be obtained.
  • component (a3) examples include hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,3-bisaminomethylcyclohexane, norbornanediamine, isophoronediamine, and dimerdiamine, in addition to the dimerdiamine described above.
  • dimer diamine described in the specific examples of component (a3) is obtained by substituting primary amino groups for the two carboxyl groups of dimer acid, which is a dimer of unsaturated fatty acids such as oleic acid. See Japanese Laid-Open Patent Publication No. 9-12712, etc.).
  • Specific examples of commercially available dimer diamines include PRIAMINE 1074 and PRIAMINE 1075 (both manufactured by Croda Japan Co., Ltd.) and Versamin 551 (manufactured by Cognis Japan Co., Ltd.). These may be used alone or in combination of two or more.
  • the amount of component (a3) used in the synthesis of the intermediate polyimide resin is not particularly limited as long as it does not impair the effect of the invention, but it is usually 50% by mass or less, preferably 10 to 30% by mass of the mass of component (A). be.
  • the component (B) used for synthesizing the intermediate polyimide resin is not particularly limited as long as it has two acid anhydride groups in one molecule.
  • Specific examples of component (B) include pyromellitic anhydride, ethylene glycol-bis(anhydrotrimellitate), glycerin-bis(anhydrotrimellitate) monoacetate, 1,2,3,4-cyclobutanetetra carboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4, 4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methylcyclohexene- 1,2-dicarboxylic
  • 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride and 3,3′,4,4′-benzophenone are preferred in terms of solvent solubility, adhesion to substrates, and photosensitivity.
  • Tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride or 3,3′,4,4′-diphenylethertetracarboxylic dianhydride is preferred. These may be used alone or in combination of two or more.
  • the component (B) used for synthesizing the intermediate polyimide resin preferably contains a compound selected from the group consisting of the following formulas (1) to (9).
  • Y represents C(CF 3 ) 2 , SO 2 , CO, an oxygen atom, a direct bond, or a divalent linking group represented by formula (10) below.
  • the reaction between component (A) and component (B) comprises a step of copolymerizing amino groups in component (A) and acid anhydride groups in component (B) to obtain a polyamic acid, and dehydration of the polyamic acid. It includes a step of obtaining an intermediate polyimide resin by a cyclization reaction (imidization reaction).
  • the above two steps may be performed separately, but it is efficient to perform them continuously in batch.
  • the intermediate polyimide resin can be synthesized by a known method. For example, a solvent, a dehydrating agent, and a catalyst are added to the components (A) and (B) used in the synthesis, and the mixture is heated and stirred at 100 to 300°C in an atmosphere of an inert gas such as nitrogen to form an imidization reaction via a polyamic acid. (A ring closure reaction (cyclization reaction) accompanied by dehydration) occurs to obtain an intermediate polyimide resin solution. At this time, the water generated by imidization is distilled out of the system, and after the reaction is completed, the dehydrating agent and catalyst are also distilled out of the system to obtain an intermediate polyimide resin of high purity without washing. be able to.
  • dehydrating agents include toluene and xylene
  • catalysts include pyridine and triethylamine.
  • Solvents that can be used in synthesizing the intermediate polyimide resin include methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl n-hexyl ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclopentanone, Cyclohexanone, methylcyclohexanone, acetylacetone, ⁇ -butyrolactone, diacetone alcohol, cyclohexen-1-one, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, tetrahydropyran, ethyl isoamyl ether, ethyl-t-butyl ether, ethyl benzyl ether, cresyl methyl ether,
  • the reaction between the intermediate polyimide resin and the component (C) is a copolymerization reaction between the amino group or acid anhydride group at the end of the intermediate polyimide resin and the isocyanate group of the component (C), and the amino group and the isocyanate Reaction with groups forms urea bonds, and reaction of acid anhydrides with isocyanate groups forms imide bonds.
  • Component (C) used for synthesizing the isocyanate-modified polyimide resin can be used as long as it has two isocyanate groups in the molecule, and can react with a plurality of diisocyanate compounds at the same time.
  • Component (C) includes phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, allylene sulfone ether diisocyanate, and allyl cyan diisocyanate.
  • N-acyl diisocyanate trimethylhexamethylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane or norbornane-diisocyanatomethyl are preferred.
  • hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, or isophorone diisocyanate is more preferable because of its excellent balance of flexibility, adhesiveness, and the like.
  • the amount of the component (C) used in the copolymerization reaction between the intermediate polyimide resin and the component (C) is such that the isocyanate group of the component (C) is less than 1 equivalent with respect to 1 equivalent of the terminal functional group of the intermediate polyimide resin. Although it is not particularly limited as long as the amount is By setting the amount of component (C) used relative to the intermediate polyimide in the above range, the molecular weight of the isocyanate-modified polyimide resin is sufficiently large, and the residual rate of unreacted raw materials is reduced, resulting in isocyanate-modified polyimide resin, etc. Various properties such as heat resistance and flexibility of the resin composition to be contained after curing are improved.
  • the terminal functional group equivalent of the intermediate polyimide resin referred to herein means a value calculated from the amount of each raw material used when synthesizing the intermediate polyimide resin.
  • the reaction between the intermediate polyimide resin and component (C) may be carried out by a known synthesis method.
  • the isocyanate-modified polyimide resin of the present invention can be obtained by adding the component (C) to the intermediate polyimide resin solution obtained by the above synthesis method and heating and stirring at 80 to 150°C.
  • the reaction time during the synthesis reaction of the intermediate polyimide resin and the reaction between the intermediate polyimide resin and the component (C) is greatly affected by the reaction temperature, but the increase in viscosity accompanying the progress of the reaction reaches equilibrium.
  • the reaction is preferably carried out until the maximum molecular weight is obtained, usually for several tens of minutes to 20 hours.
  • the isocyanate-modified polyimide resin solution obtained above is poured into a poor solvent such as water, methanol and hexane to separate the produced polymer, and then the solid content of the isocyanate-modified polyimide resin of the present invention is obtained by a reprecipitation method.
  • a poor solvent such as water, methanol and hexane
  • Terminal-modified isocyanate-modified polyimide resin Since the isocyanate-modified polyimide resin of the present invention has amino groups and/or acid anhydride groups at both ends, it has one functional group that can react with these functional groups (i.e., amino groups or acid anhydride groups).
  • the terminal can be modified by reacting with the compound (D) (hereinafter simply referred to as "(D) component") to obtain the terminal-modified isocyanate-modified polyimide resin of the present invention.
  • component (D) examples include compounds having an acid anhydride group such as maleic anhydride, compounds having an alcoholic hydroxyl group such as hydroxyethyl acrylate, compounds having a phenolic hydroxyl group such as phenol, and 2-methacryloyloxyethyl isocyanate.
  • compounds having an isocyanate group such as and compounds having an epoxy group such as glycidyl methacrylate.
  • both terminals of the isocyanate-modified polyimide resin of the present invention can be changed to functional groups other than amino groups and acid anhydride groups (for example, when terminal modification is performed using hydroxyethyl acrylate, Terminals of the isocyanate-modified polyimide resin can be changed to acryloyl groups), and a composition can be prepared by combining with a compound capable of reacting with a functional group other than an amino group or an acid anhydride group.
  • the resin composition of the present invention contains the isocyanate-modified polyimide resin of the present invention and a compound capable of reacting with the isocyanate-modified polyimide resin.
  • the resin composition of the present invention in a mode different from the above contains the terminal-modified isocyanate-modified polyimide resin of the present invention and a compound capable of reacting with the terminal-modified isocyanate-modified polyimide resin.
  • a compound capable of reacting with an isocyanate-modified polyimide resin and a compound capable of reacting with a terminal-modified isocyanate-modified polyimide resin are simply referred to as "reactive compounds".
  • the reactive compound one or more kinds of compounds can be used, and as the reactive compound, not only low-molecular-weight compounds but also high-molecular-weight compounds such as resins can be used.
  • the reactive compound is a compound (resin) having a reactive group capable of reacting with an amino group, an acid anhydride group or a functional group (e.g., the acryloyl group described above) at the end of the terminal-modified isocyanate-modified polyimide resin.
  • a reactive group capable of reacting with an amino group, an acid anhydride group or a functional group (e.g., the acryloyl group described above) at the end of the terminal-modified isocyanate-modified polyimide resin.
  • reactive compounds include epoxy resins, maleimide resins, carbodiimide resins, benzoxazine compounds and compounds having ethylenically unsaturated groups. These resins or compounds can be used singly or in admixture of two or more depending on the physical properties and applications of the resulting cured product.
  • heat resistance and high adhesiveness can be imparted to the cured product of the resin composition by using a reactive compound in combination with the isocyanate-
  • a maleimide resin or a compound having an ethylenically unsaturated group is preferable because the heat resistance and adhesiveness of the cured product of the resin composition are particularly excellent.
  • the number of moles of component (A) used for synthesizing the isocyanate-modified polyimide resin of the present invention is MA
  • the number of moles of component (B) is MB
  • the number of moles of component (C) is MC
  • (MA + MC )/MB exceeds 1
  • the reactive compound preferably has a molecular weight of 100 to 50,000 from the viewpoint of suppressing an increase in the viscosity of the varnish (a varnish-like composition obtained by combining a resin composition with an organic solvent).
  • the molecular weight in the present specification means the weight average molecular weight of polystyrene standard by gel permeation chromatography (GPC) method.
  • the maleimide resin (maleimide compound) as the reactive compound is not particularly limited as long as it has a maleimide group, but preferably has two or more maleimide groups in one molecule.
  • maleimide resins having aromatic rings such as benzene, biphenyl and naphthalene rings are preferred because the cured product of the resin composition has excellent properties such as mechanical strength and flame retardancy. -3000 (manufactured by Nippon Kayaku Co., Ltd.), MIR-5000 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • the maleimide resin is a terminal amino group of an isocyanate-modified polyimide resin or a terminal ethylenically unsaturated double bond group of a terminally modified isocyanate-modified polyimide resin (the ethylenically unsaturated double bond group is sometimes simply referred to as an ethylenically unsaturated group. ), which increases the crosslink density of the cured product, improves resistance to polar solvents, and improves adhesion to substrates and heat resistance.
  • the curing temperature of the resin composition containing the maleimide resin is preferably 150 to 250°C. The curing time depends on the curing temperature, but is generally several minutes to several hours.
  • the content of the maleimide resin in the resin composition of the present invention containing a maleimide resin is 1 equivalent of the terminal amino group of the isocyanate-modified polyimide resin or 1 equivalent of the terminal ethylenically unsaturated double bond group of the terminal-modified isocyanate-modified polyimide resin.
  • the amount is preferably such that the maleimide group equivalent of the resin is 0.1 to 500 equivalents.
  • radical initiators can be added as curing agents to the resin composition of the present invention containing the maleimide resin, if necessary.
  • Radical initiators include peroxides such as dicumyl peroxide and dibutyl peroxide, 2,2'-azobis(isobutyronitrile) and 2,2'-azobis(2,4-dimethylvaleronitrile), and the like. azo compounds, and the like.
  • the amount of the radical initiator added to the resin composition of the present invention containing a maleimide resin is 0.1 to 10% by mass based on the maleimide resin.
  • Epoxy resins (epoxy compounds) as reactive compounds are not particularly limited as long as they have epoxy groups, but those having two or more epoxy groups in one molecule are preferred.
  • epoxy resins having aromatic rings such as benzene rings, biphenyl rings and naphthalene rings are preferable because the cured product of the resin composition has excellent properties such as mechanical strength and flame retardancy. (manufactured by Mitsubishi Chemical Corporation), NC-3000, XD-1000 (both of which are manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • the epoxy resin is added for the purpose of reacting with the terminal amino group or acid anhydride group of the isocyanate-modified polyimide resin, thereby increasing the crosslink density of the cured product, improving the resistance to polar solvents, and Adhesion to and heat resistance are improved.
  • the curing temperature of the resin composition containing the epoxy resin is preferably 150 to 250°C.
  • the curing time depends on the curing temperature, but is generally several minutes to several hours.
  • the content of the epoxy resin in the resin composition of the present invention containing an epoxy resin is such that the epoxy group equivalent of the epoxy resin per equivalent of the phenolic hydroxyl group and the active hydrogen of the terminal amino group of the isocyanate-modified polyimide resin and the acid anhydride is 0.00.
  • An amount of 1 to 500 equivalents is preferred.
  • the epoxy equivalent of the epoxy resin with respect to 1 equivalent of the terminal functional group of the isocyanate-modified polyimide resin is 0.1 to 500 equivalents. It is a preferred embodiment to add additional amounts of epoxy resin as needed.
  • a curing agent can be added to the resin composition of the present invention containing an epoxy resin for the purpose of promoting the curing reaction of the epoxy resin.
  • Curing agents include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • imidazoles, tertiary amines such as 2-(dimethylaminomethyl)phenol and 1,8-diaza-bicyclo(5,4,0)undecene-7, phosphines such as triphenylphosphine, octylic acid Metal compounds such as tin and the like are included.
  • the amount of the curing agent added to the resin composition of the present invention containing an epoxy resin is 0.1 to 10% by mass based on the epoxy resin.
  • the compound having an ethylenically unsaturated group as a reactive compound is not particularly limited as long as it has an ethylenically unsaturated group.
  • Specific examples of compounds having an ethylenically unsaturated group include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol (meth) Acrylate monomethyl ether, phenylethyl (meth)acrylate, isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate ) acrylate, neopentyl glycol di(meth)
  • urethane (meth)acrylates having multiple (meth)acryloyl groups and urethane bonds in the same molecule
  • polyester (meth)acrylates having multiple (meth)acryloyl groups and ester bonds in the same molecule Acrylates
  • Reactive oligomers having multiple (meth)acryloyl groups in which these bonds are used in combination
  • compounds having an ethylenically unsaturated group include:
  • Urethane (meth)acrylates include reaction products of hydroxyl group-containing (meth)acrylates, polyisocyanates, and other alcohols used as needed.
  • hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate;
  • sugar alcohol (meth)acrylates such as pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate; and toluene diisocyanate , hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, xylene diisocyanate, hydrogenated x
  • Polyester (meth)acrylates include, for example, caprolactone-modified 2-hydroxyethyl (meth)acrylate, ethylene oxide and/or propylene oxide-modified phthalic acid (meth)acrylate, ethylene oxide-modified succinic acid (meth)acrylate, caprolactone-modified tetrahydro Monofunctional (poly)ester (meth)acrylates such as furfuryl (meth)acrylate; hydroxypivalic acid ester neopentyl glycol di(meth)acrylate, caprolactone-modified hydroxypivalic acid ester neopentyl glycol di(meth)acrylate, epichlorohydrin-modified Di (poly) ester (meth) acrylates such as phthalic acid di (meth) acrylate; 1 mol or more of cyclic lactone compounds such as ⁇ -caprolactone, ⁇ -butyrolactone, and ⁇ -valerolactone per 1 mol of tri
  • a triol obtained by adding 1 mol or more of a cyclic lactone compound such as ⁇ -caprolactone, ⁇ -butyrolactone, or ⁇ -valerolactone to 1 mol of pentaerythritol, dimethylolpropane, trimethylolpropane, or tetramethylolpropane.
  • a cyclic lactone compound such as ⁇ -caprolactone, ⁇ -butyrolactone, or ⁇ -valerolactone
  • mono-, di-, tri-, or tetra-(meth)acrylates mono-triols obtained by adding 1 mol or more of cyclic lactone compounds such as ⁇ -caprolactone, ⁇ -butyrolactone, and ⁇ -valerolactone to 1 mol of dipentaerythritol, or Examples include mono(meth)acrylates or poly(meth)acrylates of polyhydric alcohols such as triols, tetraols, pentaols or hexaols of poly(meth)acrylates.
  • diol components such as (poly)ethylene glycol, (poly)propylene glycol, (poly)tetramethylene glycol, (poly)butylene glycol, 3-methyl-1,5-pentanediol, hexanediol, maleic acid, fumaric Polybasic acids such as acid, succinic acid, adipic acid, phthalic acid, isophthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, dimer acid, sebacic acid, azelaic acid, 5-sodium sulfoisophthalic acid, and anhydrides thereof (meth) acrylate of polyester polyol which is the reaction product of; (meth) of cyclic lactone-modified polyester diol consisting of diol component, polybasic acid and their anhydrides and ⁇ -caprolactone, ⁇ -butyrolactone, ⁇ -valerolactone, etc.
  • Examples include polyfunctional (pol
  • Epoxy (meth)acrylates are carboxylate compounds of a compound having an epoxy group and (meth)acrylic acid.
  • phenol novolak type epoxy (meth)acrylate cresol novolak type epoxy (meth)acrylate, trishydroxyphenylmethane type epoxy (meth)acrylate, dicyclopentadiene phenol type epoxy (meth)acrylate, bisphenol A type epoxy (meth)acrylate.
  • bisphenol F type epoxy (meth)acrylate bisphenol F type epoxy (meth)acrylate, biphenol type epoxy (meth)acrylate, bisphenol A novolac type epoxy (meth)acrylate, naphthalene skeleton-containing epoxy (meth)acrylate, glyoxal type epoxy (meth)acrylate, heterocyclic epoxy ( meth)acrylates, and acid anhydride-modified epoxy acrylates thereof.
  • vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, and ethylene glycol divinyl ether; styrenes such as styrene, methylstyrene, ethylstyrene, and divinylbenzene;
  • a compound having a vinyl group such as lunadiimide is also included as a specific example of the compound having an ethylenically unsaturated group.
  • the compound having an ethylenically unsaturated group commercially available products can be used.
  • Propylene glycol monomethyl ether acetate manufactured by Nippon Kayaku Co., Ltd., KAYARAD (registered trademark) ZCR-6007H (trade name), KAYARAD (registered trademark) ZCR-6001H (trade name), KAYARAD (registered trademark) ZCR-6002H (trade name) , and KAYARAD (registered trademark) ZCR-6006H (trade name), KAYARAD (registered trademark) ZXR-1889H (trade name)
  • These compounds having an ethylenically unsaturated group can be used alone or in combination of two or more It is also possible to use them by appropriately mixing them.
  • the content of the compound having an ethylenically unsaturated group in the resin composition of the present invention containing a compound having an ethylenically unsaturated group is based on 1 equivalent of the ethylenically unsaturated double bond group of the terminal-modified isocyanate-modified polyimide resin.
  • the amount is preferably such that the amount of double bond groups in the compound having an ethylenically unsaturated group is 0.1 to 500 equivalents.
  • the resin composition of the present invention containing a compound having an ethylenically unsaturated group, for the purpose of promoting the curing reaction of the terminal-modified isocyanate-modified polyimide resin and the compound having an ethylenically unsaturated group, radical initiation if necessary Curing agents such as curing agents can be added.
  • radical initiators include peroxides such as dicumyl peroxide and dibutyl peroxide, 2,2′-azobis(isobutyronitrile) and 2,2′-azobis(2,4-dimethylvalero nitrile) and other azo compounds.
  • the amount of the radical initiator added in the resin composition of the present invention containing a compound having an ethylenically unsaturated group is 0.1 to 10% by mass relative to the compound having an ethylenically unsaturated group in the entire composition. be.
  • varnish-like composition An organic solvent can be used together with the resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish).
  • Solvents that can be used include, for example, ⁇ -butyrolactones, amide solvents such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone, and tetramethylenesulfone.
  • Ether solvents such as sulfones, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate and propylene glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone Solvents include aromatic solvents such as toluene and xylene.
  • the organic solvent is used in such a range that the solid concentration of the varnish excluding the organic solvent is preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
  • a known additive may be used in combination with the resin composition of the present invention, if necessary.
  • additives that can be used in combination include curing agents for epoxy resins, polybutadiene or modified products thereof, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, maleimide compounds, cyanate esters.
  • silicone gel silicone oil
  • silica silica
  • alumina calcium carbonate
  • quartz powder aluminum powder
  • graphite talc
  • clay iron oxide
  • titanium oxide aluminum nitride
  • asbestos asbestos
  • inorganic fillers such as glass powder
  • silane Surface treatment agents for fillers such as coupling agents, release agents, coloring agents such as carbon black, phthalocyanine blue, and phthalocyanine green
  • thixotropic agents such as Aerosil, silicone-based and fluorine-based leveling agents and antifoaming agents, Hydroquinone, hydroquinone monomethyl ether, phenol-based polymerization inhibitors, stabilizers, antioxidants, photopolymerization initiators, photobase generators, photoacid generators, and the like.
  • the amount of these additives to be blended is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less per 100 parts by mass of the resin composition.
  • a silane coupling agent having an acrylic group or a methacrylic group is particularly preferable from the viewpoint of heat resistance.
  • the method of preparing the resin composition of the present invention is not particularly limited, but each component may be mixed uniformly or may be prepolymerized.
  • the isocyanate-modified polyimide resin or terminal-modified isocyanate-modified polyimide resin and the reactive compound of the present invention can be prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • a catalyst for example, an extruder, kneader, roll, etc. are used in the absence of a solvent, and a reactor equipped with a stirrer is used in the presence of a solvent.
  • the resin composition of the present invention can be cured by heating.
  • the curing temperature and curing time of the resin composition may be selected in consideration of the combination of the functional group possessed by the isocyanate-modified polyimide resin or terminal-modified isocyanate-modified polyimide resin of the present invention and the reactive group possessed by the reactive compound.
  • a resin composition containing a maleimide resin or a resin composition containing an epoxy resin preferably has a curing temperature of 120 to 250° C. and a curing time of approximately several tens of minutes to several hours.
  • a prepreg can be obtained by heating and melting the resin composition of the present invention, reducing the viscosity, and impregnating reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers with the resin composition.
  • a prepreg can also be obtained by impregnating reinforcing fibers with the varnish and heating and drying the varnish. After cutting the above prepreg into a desired shape and laminating it with copper foil or the like if necessary, the resin composition is heated and cured while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like.
  • Base materials (articles) comprising the cured product of the present invention, such as electronic laminates (printed wiring boards) and carbon fiber reinforcing materials, can be obtained.
  • a polyimide film or LCP liquid crystal polymer
  • a hot press to obtain a substrate provided with the cured product of the present invention.
  • a substrate provided with the cured product of the present invention can also be obtained by heat curing with a hot press.
  • the substrate provided with the cured product of the resin composition of the present invention can be used for a copper clad laminate (CCL), or a printed wiring board or multilayer wiring board having a circuit pattern on the copper foil of the CCL.
  • CCL copper clad laminate
  • Example 1 Synthesis of isocyanate-modified polyimide resin (A-1) of the present invention
  • a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd.
  • An isocyanate-modified polyimide resin (A-1) solution of the invention was obtained.
  • Molar ratio of the final raw material components of the isocyanate-modified polyimide resin (A-1) obtained above (moles of component (B) / (moles of component (A) + moles of component (C))) was 1.02.
  • Example 2 Synthesis of isocyanate-modified polyimide resin (A-2) of the present invention
  • a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd.
  • an isocyanate-modified polyimide resin (A-2) solution of the present invention was obtained.
  • Molar ratio of the final raw material components of the isocyanate-modified polyimide resin (A-2) obtained above (moles of component (B) / (moles of component (A) + moles of component (C))) was 1.02.
  • Example 3 Synthesis of isocyanate-modified polyimide resin (A-3) of the present invention
  • a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd.
  • the reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were subsequently removed at 140° C. to obtain an intermediate polyimide resin solution.
  • the molar ratio of the (A) component ((a1) component, (a2) component and (a3) component) and (B) component used in the synthesis of the intermediate polyimide resin (moles of component (B) / component (A) number of moles) was 1.05.
  • IPDI isophorone diisocyanate, manufactured by Degusahüls, molecular weight 222.29 g / mol
  • anisole 0.66 parts were added and heated at 130 ° C. for 3 hours.
  • An isocyanate-modified polyimide resin (A-3) solution of the invention was obtained.
  • the molar ratio of the final raw material components of the isocyanate-modified polyimide resin (A-3) obtained above (moles of component (B) / (moles of component (A) + moles of component (C))) was 1.02.
  • Example 4 (Synthesis of terminal-modified isocyanate-modified polyimide resin (A-4) of the present invention) BAPP(2,2-bis[4-(4-aminophenoxy)phenyl]propane, Wakayama Seika Kogyo Co., Ltd., molecular weight 410.52 g / mol) 9.13 parts, Diamine H20 (manufactured by Okamura Oil Co., Ltd., molecular weight 325.09 g / mol) 8.37 parts, BPDA (biphenyltetracarboxylic dianhydride , manufactured by Mitsubishi Chemical Corporation, molecular weight 294.22 g / mol) 11.77 parts, 77.15 parts of anisole, 0.81 parts of triethylamine and 20.14 parts of toluene were added and heated to 120 ° C.
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane, Wakayama Seika Kogyo
  • the reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were subsequently removed at 140° C. to obtain an intermediate polyimide resin solution.
  • the molar ratio of the (A) component ((a1) component and (a2) component) and the (B) component used in the synthesis of the intermediate polyimide resin (the number of moles of the component (B)/the number of moles of the component (A)) is was 1.20.
  • Comparative Example 1 Synthesis of comparative polyimide resin (A-5)
  • a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd.
  • Comparative Example 2 Synthesis of comparative polyimide resin (A-6)
  • a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd.
  • Comparative Example 3 Synthesis of comparative polyimide resin (A-7)
  • a 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 9.05 parts, 1,10-decanediamine (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 172.32 g / mol) 3.96 parts, ODPA (oxydiphthalic anhydride, manufactured by Manac Co., Ltd.
  • each component in Table 1 is as follows.
  • A-1 The isocyanate-modified polyimide resin of the present invention obtained in Example 1
  • A-2 The isocyanate-modified polyimide resin of the present invention obtained in Example 2
  • A-3 In Example 3 Obtained isocyanate-modified polyimide resin of the present invention
  • A-4 Terminal-modified isocyanate-modified polyimide resin of the present invention obtained in Example 4
  • A-5) Comparative polyimide resin obtained in Comparative Example 1
  • A-6) Comparative polyimide resin obtained in Comparative Example 2
  • A-7) Comparative polyimide resin obtained in Comparative Example 3 ⁇ reactive compound (thermosetting resin)> MIR-3000-70MT; Maleimide resin, Nippon Kayaku Co., Ltd.
  • test piece was cut into a width of 10 mm, and using Autograph AGS-X-500N (manufactured by Shimadzu Corporation), the 90° peeling strength (pull The peeling speed was 50 mm/min), and the adhesiveness (adhesive strength) was evaluated according to the following evaluation criteria.
  • Table 1 shows the results. ⁇ (excellent) ... 6.6 N / cm or more ⁇ (good) ... 5.0 N / cm or more and less than 6.6 N / cm ⁇ (improper) ... less than 5.0 N / cm
  • Voids bubbles contained in concave portions of the rough surface of the copper foil were confirmed using an optical microscope for the test piece prepared by the same method as in the above "Evaluation of Adhesiveness (Adhesive Strength)".
  • the ratio of depressions in which voids were observed was used to evaluate the coatability on the uneven surface according to the following criteria.
  • Good: The ratio of concave portions where voids are observed is 0% or more and less than 1%
  • Air
  • the ratio of concave portions where voids are observed is 1% or more and less than 2% ⁇ (Unacceptable) ... ⁇ The percentage of recesses where voids are observed is 2% or more
  • the resin composition containing the isocyanate-modified polyimide resin of the present invention is excellent in all of adhesiveness (adhesive strength), heat resistance, dielectric properties and coatability, whereas comparative examples The resin composition was poor in adhesiveness, heat resistance and coatability.
  • the isocyanate-modified polyimide resin having the specific structure of the present invention it is possible to provide a printed wiring board or the like having excellent properties such as heat resistance, coatability, low dielectric properties and adhesiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The purpose of the present invention is to provide: a resin material that has a novel structure and can be suitably used in a printed wiring board; and a resin composition that contains the resin material, has excellent coatability onto a base material, and can be cured into a cured article having excellent adhesiveness to a metal foil and a base material each having low roughness and also having excellent heat resistance and dielectric properties. The present disclosure discloses an isocyanate-modified polyimide resin which is a reaction product of an amino group and/or an acid anhydride group located at each end of a polyimide resin with an isocyanate group in a diisocyanate compound (C) and has an amino group and/or an acid anhydride group at each end thereof, in which the polyimide resin is a reaction product of (A) a diamino compound comprising (a1) a linear aliphatic diamino compound having an amino group at each end, having 1 to 4 methyl groups and/or ethyl groups in a side chain thereof and having 17 to 24 carbon atoms in a main chain thereof and (a2) an aromatic diamino compound with (B) a tetrabasic acid dianhydride (B).

Description

イソシアネート変性ポリイミド樹脂、該イソシアネート変性ポリイミド樹脂を含有する樹脂組成物及びその硬化物Isocyanate-modified polyimide resin, resin composition containing said isocyanate-modified polyimide resin, and cured product thereof
 本発明は、新規構造のイソシアネート変性ポリイミド樹脂、該イソシアネート変性ポリイミド樹脂を含有する樹脂組成物及び該樹脂組成物の硬化物に関する。 The present invention relates to an isocyanate-modified polyimide resin with a novel structure, a resin composition containing the isocyanate-modified polyimide resin, and a cured product of the resin composition.
 スマートフォンやタブレット等のモバイル型通信機器や通信基地局装置、コンピュータやカーナビゲーション等の電子機器に不可欠な部材としてプリント配線板が挙げられる。プリント配線板には金属箔との密着性、耐熱性及び柔軟性等の特性に優れた各種の樹脂材料が用いられている。
 また、近年では高速で大容量の次世代高周波無線用のプリント配線板の開発が行われており、上記の諸特性に加え、樹脂材料には低伝送損失であること、即ち低誘電・低誘電正接であることが求められている。
BACKGROUND ART Printed wiring boards are indispensable members for electronic devices such as mobile communication devices such as smartphones and tablets, communication base station devices, computers and car navigation systems. 2. Description of the Related Art Various resin materials having excellent properties such as adhesion to metal foil, heat resistance and flexibility are used for printed wiring boards.
In recent years, high-speed, large-capacity printed wiring boards for next-generation high-frequency radio have been developed. It is required to be tangent.
 耐熱性、難燃性、柔軟性、電気特性及び耐薬品性等の特性に優れたポリイミド樹脂は、電気・電子部品、半導体、通信機器及びその回路部品、周辺機器等に広く使用されている。その一方で、石油や天然油等の炭化水素系化合物が高い絶縁性と低い誘電率を示すことが知られている。特許文献1および特許文献2にはポリイミド樹脂中に長鎖アルキル鎖を導入した例が、特許文献3にはポリイミド樹脂中により炭素鎖の長いアルキルであるダイマージアミン骨格を導入した例が記載されている。しかしながら、これらのポリイミド樹脂は低誘電正接の点で優れるものの、溶融粘度が高く基材の凹凸に対する埋め込み性(埋め込み性とは樹脂が適切に充填される事を指す)が低いため、気泡が混入したり基材との接着性が低下したりするケースがみられるのに加え、耐熱性が不充分である。 Polyimide resin, which has excellent properties such as heat resistance, flame retardancy, flexibility, electrical properties, and chemical resistance, is widely used in electric and electronic parts, semiconductors, communication equipment and its circuit parts, peripheral equipment, etc. On the other hand, it is known that hydrocarbon compounds such as petroleum and natural oils exhibit high insulating properties and low dielectric constants. Patent Documents 1 and 2 describe examples in which a long alkyl chain is introduced into a polyimide resin, and Patent Document 3 describes an example in which a dimer diamine skeleton, which is an alkyl having a longer carbon chain, is introduced into a polyimide resin. there is However, although these polyimide resins are excellent in terms of low dielectric loss tangent, they have high melt viscosities and low filling properties (filling properties means that the resin is properly filled) into the unevenness of the base material, so air bubbles are mixed in. In addition, the heat resistance is insufficient in addition to the cases where the adhesiveness to the base material is lowered.
特開2008-308551号公報JP 2008-308551 A WO2021/049503A1WO2021/049503A1 特開2017-119361号公報JP 2017-119361 A
 本発明の目的は、プリント配線板に好適に用い得る新規構造の樹脂材料、及び該樹脂材料を含有し、基材への塗工性に優れると共に、その硬化物は粗度の低い金属箔並びに基材に対する接着性、耐熱性及び誘電特性に優れる樹脂組成物を提供することにある。 An object of the present invention is to provide a resin material having a novel structure that can be suitably used for printed wiring boards, a metal foil containing the resin material, excellent in coatability to a substrate, and having a cured product with low roughness, and An object of the present invention is to provide a resin composition which is excellent in adhesiveness to substrates, heat resistance and dielectric properties.
 本発明者らは鋭意検討を行った結果、特定構造のポリイミド樹脂を用いることにより上記の課題が解決することを見出し、本発明を完成させた。
 即ち本発明は、
(1)両末端にアミノ基を有し、かつ側鎖にメチル基及び/又はエチル基を1乃至4個有し、主鎖の炭素数が17乃至24の直鎖脂肪族ジアミノ化合物(a1)及び芳香族ジアミノ化合物(a2)を含むジアミノ化合物(A)と、四塩基酸二無水物(B)との反応生成物であるポリイミド樹脂が両末端に有するアミノ基及び/又は酸無水物基と、ジイソシアネート化合物(C)が有するイソシアネート基との反応生成物であるイソシアネート変性ポリイミド樹脂であって、両末端にアミノ基及び/又は酸無水物基を有するイソシアネート変性ポリイミド樹脂、
(2)ジイソシアネート化合物(C)が、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びイソホロンジイソシアネートからなる群より選択される少なくとも一種の化合物を含む前項[1]に記載のイソシアネート変性ポリイミド樹脂、
(3)四塩基酸二無水物(B)が、下記式(1)乃至(9)
As a result of intensive studies, the present inventors have found that the above problems can be solved by using a polyimide resin having a specific structure, and completed the present invention.
That is, the present invention
(1) A linear aliphatic diamino compound (a1) having amino groups at both ends, having 1 to 4 methyl groups and/or ethyl groups in side chains, and having a main chain of 17 to 24 carbon atoms. and the diamino compound (A) containing the aromatic diamino compound (a2) and the amino groups and/or acid anhydride groups at both ends of the polyimide resin which is the reaction product of the tetrabasic acid dianhydride (B) and , an isocyanate-modified polyimide resin which is a reaction product with an isocyanate group of a diisocyanate compound (C), wherein the isocyanate-modified polyimide resin has an amino group and/or an acid anhydride group at both ends,
(2) The isocyanate-modified polyimide resin according to the preceding item [1], wherein the diisocyanate compound (C) contains at least one compound selected from the group consisting of hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and isophorone diisocyanate,
(3) Tetrabasic dianhydride (B) is represented by the following formulas (1) to (9)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(4)中、YはC(CF、SO、CO、酸素原子、直接結合又は下記式(10) (In formula (4), Y is C(CF 3 ) 2 , SO 2 , CO, an oxygen atom, a direct bond, or the following formula (10)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表される二価の連結基を表す。)
からなる群より選択される少なくとも一種で表される化合物を含む前項(1)又は(2)に記載のイソシアネート変性ポリイミド樹脂、
(4)芳香族ジアミノ化合物(a2)が、下記式(11)乃至(14)
Represents a divalent linking group represented by )
The isocyanate-modified polyimide resin according to the preceding item (1) or (2) containing a compound represented by at least one selected from the group consisting of
(4) the aromatic diamino compound (a2) is represented by the following formulas (11) to (14)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(13)中、Rは独立してメチル基又はトリフルオロメチル基を表し、式(14)中、ZはC(CF、CH(CH)、SO、CH、O-C-O、酸素原子、直接結合又は下記式(10) (In formula (13), R 2 independently represents a methyl group or a trifluoromethyl group; in formula (14), Z is C(CF 3 ) 2 , CH(CH 3 ), SO 2 , CH 2 , O—C 6 H 4 —O, oxygen atom, direct bond or formula (10) below
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表される二価の連結基を、Rは独立して水素原子、メチル基、エチル基又はトリフルオロメチル基を表す。)
からなる群より選択される少なくとも一種で表される化合物を含む請求項1乃至3のいずれか一項に記載のイソシアネート変性ポリイミド樹脂、
(5)前項(1)乃至(4)のいずれか一項に記載のイソシアネート変性ポリイミド樹脂が両末端に有するアミノ基及び/又は酸無水物基と、前記アミノ基又は前記酸無水物基と反応し得る官能基を一つ有する化合物(D)の前記官能基との反応生成物である末端変性イソシアネート変性ポリイミド樹脂、
(6)前項(1)乃至(4)のいずれか一項に記載のイソシアネート変性ポリイミド樹脂、及び前記イソシアネート変性ポリイミド樹脂と反応し得る官能基を有する化合物を含有する樹脂組成物、
(7)前項(5)に記載の末端変性イソシアネート変性ポリイミド樹脂、及び前記末端変性イソシアネート変性ポリイミド樹脂と反応し得る官能基を有する化合物を含有する樹脂組成物、
(8)前記イソシアネート変性ポリイミド樹脂と反応し得る化合物又は末端変性イソシアネート変性ポリイミド樹脂と反応し得る化合物が、マレイミド樹脂を含む前項(6)又は(7)に記載の樹脂組成物、
(9)前項(6)乃至(8)のいずれか一項に記載の樹脂組成物の硬化物、及び
(10)前項(9)に記載の硬化物を有する基材、
に関する。
R3 independently represents a hydrogen atom, a methyl group, an ethyl group or a trifluoromethyl group. )
The isocyanate-modified polyimide resin according to any one of claims 1 to 3, comprising a compound represented by at least one selected from the group consisting of
(5) The isocyanate-modified polyimide resin according to any one of the preceding items (1) to (4) has amino groups and/or acid anhydride groups at both ends, and reacts with the amino groups or the acid anhydride groups. A terminal-modified isocyanate-modified polyimide resin which is a reaction product of the compound (D) having one functional group capable of
(6) The isocyanate-modified polyimide resin according to any one of (1) to (4) above, and a resin composition containing a compound having a functional group capable of reacting with the isocyanate-modified polyimide resin,
(7) A resin composition containing a terminal-modified isocyanate-modified polyimide resin according to (5) above and a compound having a functional group capable of reacting with the terminal-modified isocyanate-modified polyimide resin,
(8) The resin composition according to the preceding item (6) or (7), wherein the compound capable of reacting with the isocyanate-modified polyimide resin or the compound capable of reacting with the terminal-modified isocyanate-modified polyimide resin comprises a maleimide resin,
(9) a cured product of the resin composition according to any one of the preceding items (6) to (8), and (10) a substrate having the cured product according to the preceding item (9),
Regarding.
 本発明の特定構造のイソシアネート変性ポリイミド樹脂は溶融粘度が低く、基材の凹凸に対する埋め込み性が良好であり接着性が高い。また本発明のポリイミド樹脂を用いることにより、耐熱性、低誘電性等に優れたプリント配線板等を提供することができる。 The isocyanate-modified polyimide resin having the specific structure of the present invention has a low melt viscosity, good embedding properties in the irregularities of the base material, and high adhesiveness. Moreover, by using the polyimide resin of the present invention, it is possible to provide printed wiring boards and the like which are excellent in heat resistance, low dielectric properties, and the like.
 本発明のイソシアネート変性ポリイミド樹脂は、両末端にアミノ基を有し、かつ側鎖にメチル基及び/又はエチル基を1乃至4個有し、主鎖の炭素数が17乃至24の直鎖脂肪族ジアミノ化合物(a1)(以下、単に「(a1)成分」と記載する)及び芳香族ジアミノ化合物(a2)(以下、単に「(a2)成分」と記載する)を含むジアミノ化合物(A)(以下、単に「(A)成分」と記載する)と四塩基酸二無水物(B)(以下、単に「(B)成分」と記載する)との反応生成物(重合及び脱水環化反応生成物)であるポリイミド樹脂(以下、単に「中間体ポリイミド樹脂」と記載する)が両末端に有するアミノ基及び/又は酸無水物基と、ジイソシアネート化合物(C)(以下、単に「(C)成分」と記載する)が有するイソシアネート基との反応生成物であるイソシアネート変性ポリイミド樹脂であって、両末端にアミノ基及び/又は酸無水物基を有するイソシアネート変性ポリイミド樹脂である。 The isocyanate-modified polyimide resin of the present invention has amino groups at both ends, has 1 to 4 methyl groups and/or ethyl groups in side chains, and has a main chain of 17 to 24 carbon atoms. A diamino compound (A) containing a family diamino compound (a1) (hereinafter simply referred to as "(a1) component") and an aromatic diamino compound (a2) (hereinafter simply referred to as "(a2) component") ( hereinafter simply referred to as "(A) component") and tetrabasic dianhydride (B) (hereinafter simply referred to as "(B) component") reaction product (polymerization and dehydration cyclization reaction product substance) polyimide resin (hereinafter simply referred to as "intermediate polyimide resin") has amino groups and / or acid anhydride groups at both ends and a diisocyanate compound (C) (hereinafter simply "(C) component ”) is a reaction product with an isocyanate group, and is an isocyanate-modified polyimide resin having amino groups and/or acid anhydride groups at both ends.
[中間体ポリイミド樹脂]
 先ず中間体ポリイミド樹脂について説明する。
 中間体ポリイミド樹脂の合成に用いられる(A)成分は、(a1)成分及び(a2)成分を必須成分として含有する。
 (a1)成分は、主鎖の炭素数が17乃至24の直鎖脂肪族炭化水素化合物であって、主鎖の両末端にアミノ基を有し、かつ側鎖にメチル基及び/又はエチル基を1乃至4個有する化合物であれば特に限定されない。(a1)成分の主鎖となる炭素数17乃至24の直鎖脂肪族炭化水素は、飽和脂肪族炭化水素でもよいし、不飽和脂肪族炭化水素でもよい。
 (a1)成分の具体例としては、7,12-ジメチルオクタデカンジアミン、8,13-ジメチルオクタデカンジアミン、8-メチルノナデカンジアミン、9-メチルノナデカンジアミン、7,12-ジメチルオクタデカンジアミン-7,11-エン及び8,13-ジメチルオクタデカンジアミン-8,12-エンなどが挙げられる。これらは1種を用いてもよく、2種以上を混合して用いてもよい。市販としてはダイアミンH20(岡村製油株式会社製)を好適に用いることができる。
 (a1)成分の主鎖は飽和の脂肪族炭化水素、即ち、アルキレンであることが好ましく、その炭素数は、17乃至22が好ましく、17乃至20がより好ましい。また、側鎖に有するメチル基及び/又はエチル基の数は1乃至3個が好ましく1又は2個がより好ましい。
[Intermediate polyimide resin]
First, the intermediate polyimide resin will be described.
The (A) component used for synthesizing the intermediate polyimide resin contains the (a1) component and the (a2) component as essential components.
Component (a1) is a linear aliphatic hydrocarbon compound having a main chain of 17 to 24 carbon atoms, having amino groups at both ends of the main chain, and methyl and/or ethyl groups in side chains. is not particularly limited as long as it is a compound having 1 to 4. The linear aliphatic hydrocarbon having 17 to 24 carbon atoms and serving as the main chain of the component (a1) may be either a saturated aliphatic hydrocarbon or an unsaturated aliphatic hydrocarbon.
Specific examples of component (a1) include 7,12-dimethyloctadecanediamine, 8,13-dimethyloctadecanediamine, 8-methylnonadecanediamine, 9-methylnonadecanediamine, 7,12-dimethyloctadecanediamine-7, 11-ene and 8,13-dimethyloctadecanediamine-8,12-ene and the like. These may be used alone or in combination of two or more. As a commercial product, Diamine H20 (manufactured by Okamura Oil Co., Ltd.) can be suitably used.
The main chain of component (a1) is preferably a saturated aliphatic hydrocarbon, that is, alkylene, and preferably has 17 to 22 carbon atoms, more preferably 17 to 20 carbon atoms. The number of methyl groups and/or ethyl groups in the side chain is preferably 1 to 3, more preferably 1 or 2.
 中間体ポリイミド樹脂の合成に用いる(a1)成分の使用量に特に制限はないが、合成に用いる(A)成分、(B)成分及び(C)成分の質量の合計から、中間体ポリイミド樹脂合成時の脱水環化反応工程で生成した水の質量を減じた質量(最終的に得られたイソシアネート変性ポリイミド樹脂の質量とほぼ同じ質量)の10乃至50質量%の範囲となる量が好ましい。(a1)成分の量が前記の範囲を下回ると、中間体ポリイミド樹脂中の(a1)成分に由来する脂肪族鎖が少な過ぎて樹脂組成物の硬化物の誘電率及び誘電正接が高くなってしまうおそれがあり、前記の範囲を上回ると、ポリイミド樹脂中の(a1)成分に由来する脂肪族鎖が多過ぎて硬化物の耐熱性が低下するおそれがある。 The amount of component (a1) used for the synthesis of the intermediate polyimide resin is not particularly limited, but from the total mass of the components (A), (B) and (C) used for synthesis, the intermediate polyimide resin synthesis The amount is preferably in the range of 10 to 50% by mass of the mass obtained by subtracting the mass of water generated in the dehydration cyclization reaction step (substantially the same mass as the finally obtained isocyanate-modified polyimide resin). If the amount of component (a1) is less than the above range, the number of aliphatic chains derived from component (a1) in the intermediate polyimide resin is too small, and the dielectric constant and dielectric loss tangent of the cured product of the resin composition become high. If the above range is exceeded, the number of aliphatic chains derived from component (a1) in the polyimide resin is too large, and the heat resistance of the cured product may be lowered.
 中間体ポリイミド樹脂の合成に用いられる(a2)成分は、一分子中に二個のアミノ基を有する芳香族系の化合物であれば特に限定されない。なお、(a2)成分は、アミノ基が直接芳香環に結合していることが好ましい。
 (a2)成分の具体例としては、m-フェニレンジアミン、p-フェニレンジアミン、m-トリレンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルチオエーテル、3,3’-ジメチル-4,4’-ジアミノジフェニルチオエーテル、3,3’-ジエトキシ-4,4’-ジアミノジフェニルチオエーテル、3,3’-ジアミノジフェニルチオエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジメトキシ-4,4’-ジアミノジフェニルチオエーテル、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルスルフォキサイド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、ベンチジン、3,3’-ジメチルベンチジン、3,3’-ジメトキシベンチジン、3,3’-ジアミノビフェニル、p-キシリレンジアミン、m-キシリレンジアミン、o-キシリレンジアミン、2,2’-ビス(3-アミノフェノキシフェニル)プロパン、2,2’-ビス(4-アミノフェノキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシフェニル)ベンゼン、1,3’-ビス(3-アミノフェノキシフェニル)プロパン、ビス(4-アミノ-3-メチルフェニル)メタン、ビス(4-アミノ-3,5-ジメチルフェニル)メタン、ビス(4-アミノ-3-エチルフェニル)メタン、ビス(4-アミノ-3,5-ジエチルフェニル)メタン、ビス(4-アミノ-3-プロピルフェニル)メタン及びビス(4-アミノ-3,5-ジプロピルフェニル)メタン等が挙げられる。これらは1種を用いてもよく、2種以上を混合して用いてもよい。
The component (a2) used for synthesizing the intermediate polyimide resin is not particularly limited as long as it is an aromatic compound having two amino groups in one molecule. In addition, it is preferable that the amino group of the component (a2) is directly bonded to the aromatic ring.
Specific examples of component (a2) include m-phenylenediamine, p-phenylenediamine, m-tolylenediamine, 4,4′-diaminodiphenyl ether, 3,3′-dimethyl-4,4′-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 4,4'-diaminodiphenylthioether, 3,3'-dimethyl-4,4'-diaminodiphenylthioether, 3,3'-diethoxy-4,4'-diaminodiphenylthioether, 3, 3'-diaminodiphenylthioether, 4,4'-diaminobenzophenone, 3,3'-dimethyl-4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4' -diaminodiphenylmethane, 3,3′-dimethoxy-4,4′-diaminodiphenylthioether, 2,2′-bis(3-aminophenyl)propane, 2,2′-bis(4-aminophenyl)propane, 4, 4'-diaminodiphenylsulfoxide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, benzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 3, 3'-diaminobiphenyl, p-xylylenediamine, m-xylylenediamine, o-xylylenediamine, 2,2'-bis(3-aminophenoxyphenyl)propane, 2,2'-bis(4-aminophenoxy phenyl)propane, 1,3-bis(4-aminophenoxyphenyl)benzene, 1,3′-bis(3-aminophenoxyphenyl)propane, bis(4-amino-3-methylphenyl)methane, bis(4- amino-3,5-dimethylphenyl)methane, bis(4-amino-3-ethylphenyl)methane, bis(4-amino-3,5-diethylphenyl)methane, bis(4-amino-3-propylphenyl) methane and bis(4-amino-3,5-dipropylphenyl)methane, and the like. These may be used alone or in combination of two or more.
 中間体ポリイミド樹脂の合成に用いられる(a2)成分は、下記式(11)乃至(14)からなる群より選択される少なくとも一種で表される化合物を含有することが好ましい。 The component (a2) used to synthesize the intermediate polyimide resin preferably contains at least one compound selected from the group consisting of the following formulas (11) to (14).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(13)中、Rは独立してメチル基又はトリフルオロメチル基を表し、式(14)中、ZはC(CF、CH(CH)、SO、CH、O-C-O、酸素原子、直接結合又は上記式(10)で表される二価の連結基を、Rは独立して水素原子、メチル基、エチル基又はトリフルオロメチル基を表す。 In formula (13), R2 independently represents a methyl group or a trifluoromethyl group, and in formula (14), Z is C( CF3 ) 2 , CH( CH3 ), SO2 , CH2 , O —C 6 H 4 —O, an oxygen atom, a direct bond or a divalent linking group represented by the above formula (10), R 3 independently represents a hydrogen atom, a methyl group, an ethyl group or a trifluoromethyl group; show.
 中間体ポリイミド樹脂の合成に用いる(a2)成分の使用量に特に制限はないが、合成に用いる(A)成分、(B)成分及び(C)成分の質量の合計から、中間体ポリイミド樹脂合成時の脱水環化反応工程で生成した水の質量を減じた質量(最終的に得られたイソシアネート変性ポリイミド樹脂の質量とほぼ同じ質量)の10乃至50質量%の範囲となる量が好ましい。(a2)成分の量が前記の範囲を下回ると、硬化物の耐熱性が低くなってしまうおそれがあり、前記の範囲を下回ると、硬化物の誘電特性が低下するおそれがある。 The amount of component (a2) used for the synthesis of the intermediate polyimide resin is not particularly limited, but from the total mass of the components (A), (B) and (C) used for synthesis, the intermediate polyimide resin synthesis The amount is preferably in the range of 10 to 50% by mass of the mass obtained by subtracting the mass of water generated in the dehydration cyclization reaction step (substantially the same mass as the finally obtained isocyanate-modified polyimide resin). If the amount of component (a2) is below the above range, the heat resistance of the cured product may be lowered, and if below the above range, the dielectric properties of the cured product may be reduced.
 中間体ポリイミド樹脂の合成に用いられる(A)成分は、(a1)成分及び(a2)成分を含むが、(a1)成分及び(a2)成分以外のジアミノ化合物(a3)(以下単に「(a3)成分」と記載する)をさらに含んでもよい。
 (a3)成分は、(a1)成分及び(a2)成分以外であって一分子中に二個のアミノ基を有する化合物であれば特に限定されないが、(a1)成分以外の脂肪族ジアミノ化合物が好ましく、誘電率や誘電正接の低いポリイミド樹脂が得られることから(a1)成分以外の炭素数6乃至36の脂肪族ジアミノ化合物が好ましく、ダイマージアミンがより好ましい。(a3)成分の具体例としては、上記したダイマージアミンの他に、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、ノルボルナンジアミン、イソホロンジアミン、ダイマージアミン、2-メチル-1,5-ジアミノペンタン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-メチレンビスシクロヘキシルアミン及び炭素数6乃至36のジアミノポリシロキサン等が挙げられる。(a3)成分として、これらは単独で使用してもよく、2種以上を混合して使用してもよい。
The (A) component used for synthesizing the intermediate polyimide resin includes the (a1) component and the (a2) component, but the diamino compound (a3) other than the (a1) component and the (a2) component (hereinafter simply “(a3 ) component)).
Component (a3) is not particularly limited as long as it is a compound other than components (a1) and (a2) and has two amino groups in one molecule, but an aliphatic diamino compound other than component (a1) is Aliphatic diamino compounds having 6 to 36 carbon atoms other than the component (a1) are preferred, and dimer diamine is more preferred, since a polyimide resin having a low dielectric constant and low dielectric loss tangent can be obtained. Specific examples of the component (a3) include hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,3-bisaminomethylcyclohexane, norbornanediamine, isophoronediamine, and dimerdiamine, in addition to the dimerdiamine described above. , 2-methyl-1,5-diaminopentane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12- diaminododecane, 1,4-bis(aminomethyl)cyclohexane, 4,4'-methylenebiscyclohexylamine, diaminopolysiloxane having 6 to 36 carbon atoms, and the like. As the component (a3), these may be used alone or in combination of two or more.
 (a3)成分の具体例の項に記載したダイマージアミンとは、オレイン酸等の不飽和脂肪酸の二量体であるダイマー酸の有する二つのカルボキシル基を一級アミノ基に置換したものである(特開平9-12712号公報等参照)。ダイマージアミンの市販品の具体例としては、PRIAMINE1074並びにPRIAMINE1075(いずれもクローダジャパン株式会社製)、及びバーサミン551(コグニスジャパン株式会社製)等が挙げられる。これらは1種を用いてもよく、2種以上を混合して用いてもよい。以下、ダイマージアミンの非限定的な一般式を示す(各式において、m+n=6乃至17が好ましく、p+q=8乃至19が好ましく、破線部は炭素-炭素単結合又は炭素-炭素二重結合を意味する)。 The dimer diamine described in the specific examples of component (a3) is obtained by substituting primary amino groups for the two carboxyl groups of dimer acid, which is a dimer of unsaturated fatty acids such as oleic acid. See Japanese Laid-Open Patent Publication No. 9-12712, etc.). Specific examples of commercially available dimer diamines include PRIAMINE 1074 and PRIAMINE 1075 (both manufactured by Croda Japan Co., Ltd.) and Versamin 551 (manufactured by Cognis Japan Co., Ltd.). These may be used alone or in combination of two or more. Hereinafter, non-limiting general formulas of dimer diamines are shown (in each formula, m + n = 6 to 17 is preferable, p + q = 8 to 19 is preferable, and the broken line indicates a carbon-carbon single bond or a carbon-carbon double bond. means).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 中間体ポリイミド樹脂の合成に用いる(a3)成分の使用量は発明の効果を損なわない限り特に制限はないが、(A)成分の質量の通常50質量%以下、好ましくは10乃至30質量%である。 The amount of component (a3) used in the synthesis of the intermediate polyimide resin is not particularly limited as long as it does not impair the effect of the invention, but it is usually 50% by mass or less, preferably 10 to 30% by mass of the mass of component (A). be.
 中間体ポリイミド樹脂の合成に用いられる(B)成分は、一分子中に2個の酸無水物基を有するものであれば特に限定されない。
 (B)成分の具体例としては、無水ピロメリット酸、エチレングリコール-ビス(アンヒドロトリメリテート)、グリセリン-ビス(アンヒドロトリメリテート)モノアセテート、1,2,3,4-シクロブタンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチルシクロヘキセン-1,2-ジカルボン酸無水物、3a,4,5,9b-テトラヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ(2,2,2)-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物及びビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、5,5’-((プロパン-2,2-ジイルビス(4,1-フェニレン))ビス(オキシ))ビス(イソベンゾフラン-1,3-ジオン)等が挙げられる。なかでも、溶剤溶解性、基材への密着性及び感光性の面から、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物又は3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物が好ましい。これらは1種を用いてもよく、2種以上を混合して用いてもよい。
The component (B) used for synthesizing the intermediate polyimide resin is not particularly limited as long as it has two acid anhydride groups in one molecule.
Specific examples of component (B) include pyromellitic anhydride, ethylene glycol-bis(anhydrotrimellitate), glycerin-bis(anhydrotrimellitate) monoacetate, 1,2,3,4-cyclobutanetetra carboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4, 4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methylcyclohexene- 1,2-dicarboxylic anhydride, 3a,4,5,9b-tetrahydro-5-(tetrahydro-2,5-dioxo-3-furanyl)-naphtho[1,2-c]furan-1,3-dione , 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo(2,2,2)-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and bicyclo[2 .2.2]octane-2,3,5,6-tetracarboxylic dianhydride, 5,5′-((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis (isobenzofuran-1,3-dione) and the like. Among them, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride and 3,3′,4,4′-benzophenone are preferred in terms of solvent solubility, adhesion to substrates, and photosensitivity. Tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride or 3,3′,4,4′-diphenylethertetracarboxylic dianhydride is preferred. These may be used alone or in combination of two or more.
 中間体ポリイミド樹脂の合成に用いられる(B)成分は、下記式(1)乃至(9)からなる群より選択される化合物を含有することが好ましい。 The component (B) used for synthesizing the intermediate polyimide resin preferably contains a compound selected from the group consisting of the following formulas (1) to (9).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(4)中、YはC(CF、SO、CO、酸素原子、直接結合又は下記式(10)で表される二価の連結基を表す。 In formula (4), Y represents C(CF 3 ) 2 , SO 2 , CO, an oxygen atom, a direct bond, or a divalent linking group represented by formula (10) below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (A)成分と(B)成分の反応は、(A)成分中のアミノ基と(B)成分中の酸無水物基との共重合反応でポリアミック酸を得る工程と、該ポリアミック酸の脱水環化反応(イミド化反応)で中間体ポリイミド樹脂を得る工程を含む。前記の2つの工程は、別々に行ってもよいが、連続的に一括で行うことが効率的である。
 共重合反応に用いる(A)成分のモル数MAと(B)成分のモル数MBがMA>MBの関係を満たす場合には得られる中間体ポリイミド樹脂の両末端はアミノ基となり、MA<MBの関係を満たす場合には得られる中間体ポリイミド樹脂の両末端は酸無水物基となる。また、MA=MBの関係を満たす場合には、得られる中間体ポリイミド樹脂は理論上分子量が無限大となり、両末端にアミノ基と酸無水物基を一つずつ有するものとなる。
The reaction between component (A) and component (B) comprises a step of copolymerizing amino groups in component (A) and acid anhydride groups in component (B) to obtain a polyamic acid, and dehydration of the polyamic acid. It includes a step of obtaining an intermediate polyimide resin by a cyclization reaction (imidization reaction). The above two steps may be performed separately, but it is efficient to perform them continuously in batch.
When the number of moles MA of component (A) and the number of moles MB of component (B) used in the copolymerization reaction satisfy the relationship MA>MB, both ends of the intermediate polyimide resin obtained are amino groups, and MA<MB When the relationship is satisfied, both ends of the obtained intermediate polyimide resin are acid anhydride groups. Further, when the relationship MA=MB is satisfied, the theoretically obtained intermediate polyimide resin has an infinite molecular weight and has one amino group and one acid anhydride group at each end.
 中間体ポリイミド樹脂は公知の方法で合成することができる。
 例えば、合成に用いる(A)成分及び(B)成分に溶剤、脱水剤、触媒を加え、窒素などの不活性ガス雰囲気下で100乃至300℃で加熱撹拌することによってポリアミック酸を経てイミド化反応(脱水を伴う閉環反応(環化反応))が起こり、中間体ポリイミド樹脂溶液が得られる。この時、イミド化に伴い発生する水は系外に留去し、反応終了後には脱水剤、触媒も系外に留去することで、洗浄を必要とせず純度の高い中間体ポリイミド樹脂を得ることができる。脱水剤としてはトルエン及びキシレン等が、触媒としてはピリジン及びトリエチルアミン等が挙げられる。
The intermediate polyimide resin can be synthesized by a known method.
For example, a solvent, a dehydrating agent, and a catalyst are added to the components (A) and (B) used in the synthesis, and the mixture is heated and stirred at 100 to 300°C in an atmosphere of an inert gas such as nitrogen to form an imidization reaction via a polyamic acid. (A ring closure reaction (cyclization reaction) accompanied by dehydration) occurs to obtain an intermediate polyimide resin solution. At this time, the water generated by imidization is distilled out of the system, and after the reaction is completed, the dehydrating agent and catalyst are also distilled out of the system to obtain an intermediate polyimide resin of high purity without washing. be able to. Examples of dehydrating agents include toluene and xylene, and examples of catalysts include pyridine and triethylamine.
 中間体ポリイミド樹脂の合成時に用い得る溶剤としては、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルn-ヘキシルケトン、ジエチルケトン、ジイソプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、アセチルアセトン、γ-ブチロラクトン、ジアセトンアルコール、シクロヘキセン-1-オン、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、エチルイソアミルエーテル、エチル-t-ブチルエーテル、エチルベンジルエーテル、クレジルメチルエーテル、アニソール、フェネトール、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸イソアミル、酢酸2-エチルヘキシル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ベンジル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸ベンジル、酪酸メチル、酪酸エチル、酪酸イソプロピル、酪酸ブチル、酪酸イソアミル、乳酸メチル、乳酸エチル、乳酸ブチル、イソ吉草酸エチル、イソ吉草酸イソアミル、シュウ酸ジエチル、シュウ酸ジブチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、サリチル酸メチル、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等が挙げられるが、これらに限定されるものではない。これらは1種を用いてもよく、2種以上を混合して用いてもよい。 Solvents that can be used in synthesizing the intermediate polyimide resin include methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl n-hexyl ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclopentanone, Cyclohexanone, methylcyclohexanone, acetylacetone, γ-butyrolactone, diacetone alcohol, cyclohexen-1-one, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, tetrahydropyran, ethyl isoamyl ether, ethyl-t-butyl ether, ethyl benzyl ether, cresyl methyl ether, anisole, phenetole, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, amyl acetate, isoamyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, benzyl acetate, acetoacetic acid Methyl, ethyl acetoacetate, methyl propionate, ethyl propionate, butyl propionate, benzyl propionate, methyl butyrate, ethyl butyrate, isopropyl butyrate, butyl butyrate, isoamyl butyrate, methyl lactate, ethyl lactate, butyl lactate, ethyl isovalerate , isoamyl isovalerate, diethyl oxalate, dibutyl oxalate, methyl benzoate, ethyl benzoate, propyl benzoate, methyl salicylate, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide etc., but not limited to these. These may be used alone or in combination of two or more.
[イソシアネート変性ポリイミド樹脂]
 次に本発明のイソシアネート変性ポリイミド樹脂について説明する。
 中間体ポリイミド樹脂と(C)成分との反応は、中間体ポリイミド樹脂が末端に有するアミノ基又は酸無水物基と(C)成分の有するイソシアネート基との共重合反応であり、アミノ基とイソシアネート基との反応によりウレア結合が、また酸無水物とイソシアネート基との反応によりイミド結合が形成される。
[Isocyanate-modified polyimide resin]
Next, the isocyanate-modified polyimide resin of the present invention will be described.
The reaction between the intermediate polyimide resin and the component (C) is a copolymerization reaction between the amino group or acid anhydride group at the end of the intermediate polyimide resin and the isocyanate group of the component (C), and the amino group and the isocyanate Reaction with groups forms urea bonds, and reaction of acid anhydrides with isocyanate groups forms imide bonds.
 イソシアネート変性ポリイミド樹脂の合成に用いられる(C)成分は、分子中に2個のイソシアネート基を有するものであればすべて用いることが可能であり、また同時に複数のジイソシアネート化合物を反応させることができる。
 (C)成分としては、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、アリレンスルホンエーテルジイソシアネート、アリルシアンジイソシアネート、N-アシルジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサンまたはノルボルナン-ジイソシアネートメチルが好ましい。なかでも、柔軟性、接着性等のバランスに優れる、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートまたはイソホロンジイソシアネートがより好ましい。
Component (C) used for synthesizing the isocyanate-modified polyimide resin can be used as long as it has two isocyanate groups in the molecule, and can react with a plurality of diisocyanate compounds at the same time.
Component (C) includes phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, allylene sulfone ether diisocyanate, and allyl cyan diisocyanate. , N-acyl diisocyanate, trimethylhexamethylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane or norbornane-diisocyanatomethyl are preferred. Among them, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, or isophorone diisocyanate is more preferable because of its excellent balance of flexibility, adhesiveness, and the like.
 中間体ポリイミド樹脂と(C)成分との共重合反応に用いる(C)成分の使用量は、中間体ポリイミド樹脂の末端官能基1当量に対して(C)成分のイソシアネート基が1当量未満になる量であれば特に限定されないが、0.50乃至0.99当量が好ましく、0.67乃至0.98当量がより好ましい。中間体ポリイミドに対する(C)成分の使用量を前記の範囲とすることにより、イソシアネート変性ポリイミド樹脂の分子量が十分大きくなるのに加え、未反応原料の残存率が低くなり、イソシアネート変性ポリイミド樹脂等を含有する樹脂組成物の硬化後の耐熱性やフレキシブル性等の諸特性が向上する。
 尚、ここでいう中間体ポリイミド樹脂の末端官能基当量は、中間体ポリイミド樹脂を合成する際の各原料の使用量から算出した値を意味する。
The amount of the component (C) used in the copolymerization reaction between the intermediate polyimide resin and the component (C) is such that the isocyanate group of the component (C) is less than 1 equivalent with respect to 1 equivalent of the terminal functional group of the intermediate polyimide resin. Although it is not particularly limited as long as the amount is By setting the amount of component (C) used relative to the intermediate polyimide in the above range, the molecular weight of the isocyanate-modified polyimide resin is sufficiently large, and the residual rate of unreacted raw materials is reduced, resulting in isocyanate-modified polyimide resin, etc. Various properties such as heat resistance and flexibility of the resin composition to be contained after curing are improved.
The terminal functional group equivalent of the intermediate polyimide resin referred to herein means a value calculated from the amount of each raw material used when synthesizing the intermediate polyimide resin.
 中間体ポリイミド樹脂と(C)成分との反応は、公知の合成方法で行えばよい。
 具体的には、上記の合成方法で得られた中間体ポリイミド樹脂溶液に(C)成分を加え、80乃至150℃で加熱攪拌することにより、本発明のイソシアネート変性ポリイミド樹脂を得ることができる。尚、中間体ポリイミド樹脂の合成反応、及び中間体ポリイミド樹脂と(C)成分との反応の際の反応時間は、反応温度により大きく影響されるが、反応の進行に伴う粘度上昇が平衡に達し、最大の分子量が得られるまで反応を行うことが好ましく、通常数十分間乃至20時間である。
The reaction between the intermediate polyimide resin and component (C) may be carried out by a known synthesis method.
Specifically, the isocyanate-modified polyimide resin of the present invention can be obtained by adding the component (C) to the intermediate polyimide resin solution obtained by the above synthesis method and heating and stirring at 80 to 150°C. The reaction time during the synthesis reaction of the intermediate polyimide resin and the reaction between the intermediate polyimide resin and the component (C) is greatly affected by the reaction temperature, but the increase in viscosity accompanying the progress of the reaction reaches equilibrium. , the reaction is preferably carried out until the maximum molecular weight is obtained, usually for several tens of minutes to 20 hours.
 上記で得られたイソシアネート変性ポリイミド樹脂溶液を、水、メタノール及びヘキサン等の貧溶媒中に投じて生成重合体を分離した後、再沈殿法によって本発明のイソシアネート変性ポリイミド樹脂の固形分を得ることもできる。 The isocyanate-modified polyimide resin solution obtained above is poured into a poor solvent such as water, methanol and hexane to separate the produced polymer, and then the solid content of the isocyanate-modified polyimide resin of the present invention is obtained by a reprecipitation method. can also
[末端変性イソシアネート変性ポリイミド樹脂]
 本発明のイソシアネート変性ポリイミド樹脂は、両末端にアミノ基及び/又は酸無水物基を有するため、これらの官能基(すなわち、アミノ基又は酸無水物基)と反応し得る官能基を一つ有する化合物(D)(以下、単に「(D)成分」と記載する)と反応させることにより末端を変性して、本発明の末端変性イソシアネート変性ポリイミド樹脂とすることができる。
 (D)成分としては、例えば、無水マレイン酸等の酸無水物基を有する化合物、ヒドロキシエチルアクリレート等のアルコール性水酸基を有する化合物、フェノール等のフェノール性水酸基を有する化合物、2-メタクリロイルオキシエチルイソシアネート等のイソシアネート基を有する化合物及びグリシジルメタクリレート等のエポキシ基を有する化合物等が挙げられる。
 末端を変性することによって本発明のイソシアネート変性ポリイミド樹脂の両末端をアミノ基及び酸無水物基以外の官能基に変えることができるため(例えば、ヒドロキシエチルアクリレートを用いて末端変性を行った場合、イソシアネート変性ポリイミド樹脂の末端をアクリロイル基に変えることができる)、アミノ基又は酸無水物基以外の官能基と反応し得る化合物と組み合わせた組成物とすることも可能である。
[Terminal-modified isocyanate-modified polyimide resin]
Since the isocyanate-modified polyimide resin of the present invention has amino groups and/or acid anhydride groups at both ends, it has one functional group that can react with these functional groups (i.e., amino groups or acid anhydride groups). The terminal can be modified by reacting with the compound (D) (hereinafter simply referred to as "(D) component") to obtain the terminal-modified isocyanate-modified polyimide resin of the present invention.
Examples of component (D) include compounds having an acid anhydride group such as maleic anhydride, compounds having an alcoholic hydroxyl group such as hydroxyethyl acrylate, compounds having a phenolic hydroxyl group such as phenol, and 2-methacryloyloxyethyl isocyanate. compounds having an isocyanate group such as and compounds having an epoxy group such as glycidyl methacrylate.
By modifying the terminals, both terminals of the isocyanate-modified polyimide resin of the present invention can be changed to functional groups other than amino groups and acid anhydride groups (for example, when terminal modification is performed using hydroxyethyl acrylate, Terminals of the isocyanate-modified polyimide resin can be changed to acryloyl groups), and a composition can be prepared by combining with a compound capable of reacting with a functional group other than an amino group or an acid anhydride group.
[樹脂組成物]
 本発明の樹脂組成物は、本発明のイソシアネート変性ポリイミド樹脂及び該イソシアネート変性ポリイミド樹脂と反応し得る化合物を含む。また、前記とは別の態様の本発明の樹脂組成物は、本発明の末端変性イソシアネート変性ポリイミド樹脂及び該末端変性イソシアネート変性ポリイミド樹脂と反応し得る化合物を含有する。以下、イソシアネート変性ポリイミド樹脂と反応し得る化合物、及び末端変性イソシアネート変性ポリイミド樹脂と反応し得る化合物を、単に「反応性化合物」と記載する。なお、反応性化合物として、1種又は複数種の化合物を使用することができ、また、反応性化合物として、低分子化合物だけでなく、樹脂のような高分化合物も使用できる。
[Resin composition]
The resin composition of the present invention contains the isocyanate-modified polyimide resin of the present invention and a compound capable of reacting with the isocyanate-modified polyimide resin. In addition, the resin composition of the present invention in a mode different from the above contains the terminal-modified isocyanate-modified polyimide resin of the present invention and a compound capable of reacting with the terminal-modified isocyanate-modified polyimide resin. Hereinafter, a compound capable of reacting with an isocyanate-modified polyimide resin and a compound capable of reacting with a terminal-modified isocyanate-modified polyimide resin are simply referred to as "reactive compounds". As the reactive compound, one or more kinds of compounds can be used, and as the reactive compound, not only low-molecular-weight compounds but also high-molecular-weight compounds such as resins can be used.
 反応性化合物は、アミノ基、酸無水物基または末端変性イソシアネート変性ポリイミド樹脂が末端に有する官能基(例えば、上記したアクリロイル基)と反応し得る反応性基を有する化合物(樹脂)であれば特に限定されない。
 反応性化合物の具体例としては、エポキシ樹脂、マレイミド樹脂、カルボジイミド樹脂、ベンゾオキサジ
ン化合物及びエチレン性不飽和基を有する化合物等が挙げられる。これらの樹脂または化合物は、得られる硬化物の物性および用途に応じて、1種類単独または2種類以上を適宜混合して使用することができる。
 本発明の樹脂組成物においては、イソシアネート変性ポリイミド樹脂に反応性化合物を併用することにより、樹脂組成物の硬化物に耐熱性と高い接着性を付与することができる。
The reactive compound is a compound (resin) having a reactive group capable of reacting with an amino group, an acid anhydride group or a functional group (e.g., the acryloyl group described above) at the end of the terminal-modified isocyanate-modified polyimide resin. Not limited.
Specific examples of reactive compounds include epoxy resins, maleimide resins, carbodiimide resins, benzoxazine compounds and compounds having ethylenically unsaturated groups. These resins or compounds can be used singly or in admixture of two or more depending on the physical properties and applications of the resulting cured product.
In the resin composition of the present invention, heat resistance and high adhesiveness can be imparted to the cured product of the resin composition by using a reactive compound in combination with the isocyanate-modified polyimide resin.
 本発明の樹脂組成物が含有する反応性化合物としては、樹脂組成物の硬化物の耐熱性や接着性が特に優れる点から、マレイミド樹脂又はエチレン性不飽和基を有する化合物が好ましい。
 尚、本発明のイソシアネート変性ポリイミド樹脂の合成に用いられる(A)成分のモル数をMA、(B)成分のモル数をMB、(C)成分のモル数をMCとした場合に、(MA+MC)/MBの値が1を超えるイソシアネート変性ポリイミド樹脂に関しては、反応性化合物として、エポキシ樹脂等の熱硬化性樹脂を使用することも好ましい。
As the reactive compound contained in the resin composition of the present invention, a maleimide resin or a compound having an ethylenically unsaturated group is preferable because the heat resistance and adhesiveness of the cured product of the resin composition are particularly excellent.
In addition, when the number of moles of component (A) used for synthesizing the isocyanate-modified polyimide resin of the present invention is MA, the number of moles of component (B) is MB, and the number of moles of component (C) is MC, (MA + MC )/MB exceeds 1, it is also preferable to use a thermosetting resin such as an epoxy resin as the reactive compound.
 また、反応性化合物は、ワニス(樹脂組成物に有機溶剤を併用したワニス状の組成物)の粘度上昇が抑制できる観点から、分子量が100乃至50,000であることが好ましい。尚、本明細書における分子量とは、ゲル浸透クロマトグラフィー(GPC)法による、ポリスチレンスタンダードの質量平均分子量を意味する In addition, the reactive compound preferably has a molecular weight of 100 to 50,000 from the viewpoint of suppressing an increase in the viscosity of the varnish (a varnish-like composition obtained by combining a resin composition with an organic solvent). In addition, the molecular weight in the present specification means the weight average molecular weight of polystyrene standard by gel permeation chromatography (GPC) method.
 反応性化合物としてのマレイミド樹脂(マレイミド化合物)は、マレイミド基を有するものであれば特に限定されないが、一分子中にマレイミド基を二つ以上有するものが好ましい。また、樹脂組成物の硬化物が機械強度や難燃性等の特性に優れることから、ベンゼン環、ビフェニル環及びナフタレン環等の芳香族環を有するマレイミド樹脂が好ましく、その具体例としては、MIR-3000(日本化薬株式会社製)、MIR-5000(日本化薬株式会社製)等が挙げられる。
 マレイミド樹脂は、イソシアネート変性ポリイミド樹脂の末端アミノ基又は末端変性イソシアネート変性ポリイミド樹脂の末端エチレン性不飽和二重結合基(エチレン性不飽和二重結基は、単にエチレン性不飽和基と称する場合もある。)と反応させることを目的に加えられ、これにより硬化物の架橋密度が増加し、極性溶剤への耐性が向上すると共に、基材への密着性や耐熱性が向上する。
 マレイミド樹脂を含有する樹脂組成物の硬化温度は、150乃至250℃が好ましい。硬化時間は硬化温度に依存するが、概ね数分間乃至数時間程度である。
 マレイミド樹脂を含有する本発明の樹脂組成物におけるマレイミド樹脂の含有量は、イソシアネート変性ポリイミド樹脂の末端アミノ基1当量又は末端変性イソシアネート変性ポリイミド樹脂の末端エチレン性不飽和二重結合基1当量に対するマレイミド樹脂のマレイミド基当量が0.1乃至500当量となる量が好ましい。
The maleimide resin (maleimide compound) as the reactive compound is not particularly limited as long as it has a maleimide group, but preferably has two or more maleimide groups in one molecule. In addition, maleimide resins having aromatic rings such as benzene, biphenyl and naphthalene rings are preferred because the cured product of the resin composition has excellent properties such as mechanical strength and flame retardancy. -3000 (manufactured by Nippon Kayaku Co., Ltd.), MIR-5000 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
The maleimide resin is a terminal amino group of an isocyanate-modified polyimide resin or a terminal ethylenically unsaturated double bond group of a terminally modified isocyanate-modified polyimide resin (the ethylenically unsaturated double bond group is sometimes simply referred to as an ethylenically unsaturated group. ), which increases the crosslink density of the cured product, improves resistance to polar solvents, and improves adhesion to substrates and heat resistance.
The curing temperature of the resin composition containing the maleimide resin is preferably 150 to 250°C. The curing time depends on the curing temperature, but is generally several minutes to several hours.
The content of the maleimide resin in the resin composition of the present invention containing a maleimide resin is 1 equivalent of the terminal amino group of the isocyanate-modified polyimide resin or 1 equivalent of the terminal ethylenically unsaturated double bond group of the terminal-modified isocyanate-modified polyimide resin. The amount is preferably such that the maleimide group equivalent of the resin is 0.1 to 500 equivalents.
 マレイミド樹脂を含有する本発明の樹脂組成物には、マレイミド樹脂の硬化反応を促進する目的で、必要に応じて各種ラジカル開始剤を硬化剤として添加することができる。ラジカル開始剤としては、ジクミルパーオキサイド及びジブチルパーオキサイド等の過酸化物類、2,2’-アゾビス(イソブチロニトリル)及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物類等が挙げられる。
 マレイミド樹脂を含有する本発明の樹脂組成物におけるラジカル開始剤の添加量は、マレイミド樹脂に対して0.1乃至10質量%である。
For the purpose of promoting the curing reaction of the maleimide resin, various radical initiators can be added as curing agents to the resin composition of the present invention containing the maleimide resin, if necessary. Radical initiators include peroxides such as dicumyl peroxide and dibutyl peroxide, 2,2'-azobis(isobutyronitrile) and 2,2'-azobis(2,4-dimethylvaleronitrile), and the like. azo compounds, and the like.
The amount of the radical initiator added to the resin composition of the present invention containing a maleimide resin is 0.1 to 10% by mass based on the maleimide resin.
 反応性化合物としてのエポキシ樹脂(エポキシ化合物)は、エポキシ基を有するものであれば特に限定されないが、一分子中にエポキシ基を二つ以上有するものが好ましい。また、樹脂組成物の硬化物が機械強度や難燃性等の特性に優れることから、ベンゼン環、ビフェニル環及びナフタレン環等の芳香族環を有するエポキシ樹脂が好ましく、その具体例としては、jER828(三菱ケミカル株式会社製)、NC-3000、XD-1000(いずれも日本化薬株式会社製)等が挙げられる。
 エポキシ樹脂は、イソシアネート変性ポリイミド樹脂の末端アミノ基若しくは酸無水物基と反応させることを目的に加えられ、これにより硬化物の架橋密度が増加し、極性溶剤への耐性が向上すると共に、基材への密着性や耐熱性が向上する。
 エポキシ樹脂を含有する樹脂組成物の硬化温度は、150乃至250℃が好ましい。硬化時間は硬化温度に依存するが、概ね数分間乃至数時間程度である。
Epoxy resins (epoxy compounds) as reactive compounds are not particularly limited as long as they have epoxy groups, but those having two or more epoxy groups in one molecule are preferred. In addition, epoxy resins having aromatic rings such as benzene rings, biphenyl rings and naphthalene rings are preferable because the cured product of the resin composition has excellent properties such as mechanical strength and flame retardancy. (manufactured by Mitsubishi Chemical Corporation), NC-3000, XD-1000 (both of which are manufactured by Nippon Kayaku Co., Ltd.), and the like.
The epoxy resin is added for the purpose of reacting with the terminal amino group or acid anhydride group of the isocyanate-modified polyimide resin, thereby increasing the crosslink density of the cured product, improving the resistance to polar solvents, and Adhesion to and heat resistance are improved.
The curing temperature of the resin composition containing the epoxy resin is preferably 150 to 250°C. The curing time depends on the curing temperature, but is generally several minutes to several hours.
 エポキシ樹脂を含有する本発明の樹脂組成物におけるエポキシ樹脂の含有量は、イソシアネート変性ポリイミド樹脂のフェノール性水酸基及び末端アミノ基の活性水素並びに酸無水物1当量に対するエポキシ樹脂のエポキシ基当量が0.1乃至500当量となる量が好ましい。尚、エポキシ樹脂の有するエポキシ基はイソシアネート変性ポリイミド樹脂の末端官能基との反応性を有するため、イソシアネート変性ポリイミド樹脂の末端官能基1当量に対するエポキシ樹脂のエポキシ当量が0.1乃至500当量となる量のエポキシ樹脂を必要に応じて追加するのは好ましい態様である。 The content of the epoxy resin in the resin composition of the present invention containing an epoxy resin is such that the epoxy group equivalent of the epoxy resin per equivalent of the phenolic hydroxyl group and the active hydrogen of the terminal amino group of the isocyanate-modified polyimide resin and the acid anhydride is 0.00. An amount of 1 to 500 equivalents is preferred. In addition, since the epoxy group of the epoxy resin has reactivity with the terminal functional group of the isocyanate-modified polyimide resin, the epoxy equivalent of the epoxy resin with respect to 1 equivalent of the terminal functional group of the isocyanate-modified polyimide resin is 0.1 to 500 equivalents. It is a preferred embodiment to add additional amounts of epoxy resin as needed.
 エポキシ樹脂を含有する本発明の樹脂組成物には、エポキシ樹脂の硬化反応を促進する目的で、必要に応じて硬化剤を添加することができる。硬化剤としては、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール及び1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。
 エポキシ樹脂を含有する本発明の樹脂組成物における硬化剤の添加量は、エポキシ樹脂に対して0.1乃至10質量%である。
If necessary, a curing agent can be added to the resin composition of the present invention containing an epoxy resin for the purpose of promoting the curing reaction of the epoxy resin. Curing agents include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. imidazoles, tertiary amines such as 2-(dimethylaminomethyl)phenol and 1,8-diaza-bicyclo(5,4,0)undecene-7, phosphines such as triphenylphosphine, octylic acid Metal compounds such as tin and the like are included.
The amount of the curing agent added to the resin composition of the present invention containing an epoxy resin is 0.1 to 10% by mass based on the epoxy resin.
 反応性化合物としてのエチレン性不飽和基を有する化合物は、エチレン性不飽和基を有するものであれば特に限定されない。
 エチレン性不飽和基を有する化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートモノメチルエーテル、フェニルエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリコールジ(メタ)アクリレート、ジエチレンジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルイソシアヌレート、ポリプロピレングリコールジ(メタ)アクリレート、アジピン酸エポキシジ(メタ)アクリレート、ビスフェノールエチレンオキサイドジ(メタ)アクリレート、水素化ビスフェノールエチレンオキサイド(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ε-カプロラクトン変性ヒドロキシピバリン酸ネオペングリコールジ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリエチロールプロパントリ(メタ)アクリレート、及びそのエチレンオキサイド付加物;ペンタエリスリトールトリ(メタ)アクリレート、及びそのエチレンオキサイド付加物;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びそのエチレンオキサイド付加物等が挙げられる。
The compound having an ethylenically unsaturated group as a reactive compound is not particularly limited as long as it has an ethylenically unsaturated group.
Specific examples of compounds having an ethylenically unsaturated group include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol (meth) Acrylate monomethyl ether, phenylethyl (meth)acrylate, isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate ) acrylate, neopentyl glycol di(meth)acrylate, nonanediol di(meth)acrylate, glycol di(meth)acrylate, diethylene di(meth)acrylate, polyethylene glycol di(meth)acrylate, tris(meth)acryloyloxyethyl isocyanurate , polypropylene glycol di(meth)acrylate, adipate epoxy di(meth)acrylate, bisphenol ethylene oxide di(meth)acrylate, hydrogenated bisphenol ethylene oxide (meth)acrylate, bisphenol di(meth)acrylate, ε-caprolactone-modified hydroxypivalic acid Neopen glycol di(meth)acrylate, ε-caprolactone-modified dipentaerythritol hexa(meth)acrylate, ε-caprolactone-modified dipentaerythritol poly(meth)acrylate, dipentaerythritol poly(meth)acrylate, trimethylolpropane tri(meth)acrylate ) acrylate, triethylolpropane tri(meth)acrylate and its ethylene oxide adduct; pentaerythritol tri(meth)acrylate and its ethylene oxide adduct; pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate , and ethylene oxide adducts thereof.
 また、この他にも、複数の(メタ)アクリロイル基とウレタン結合を同一分子内に併せ持つウレタン(メタ)アクリレート類;複数の(メタ)アクリロイル基とエステル結合を同一分子内に併せ持つポリエステル(メタ)アクリレート類;エポキシ樹脂から誘導され、複数の(メタ)アクリロイル基を併せ持つエポキシ(メタ)アクリレート類;これらの結合が複合的に用いられている複数の(メタ)アクリロイル基を有する反応性オリゴマー等もエチレン性不飽和基を有する化合物の具体例として挙げられる。 In addition, urethane (meth)acrylates having multiple (meth)acryloyl groups and urethane bonds in the same molecule; polyester (meth)acrylates having multiple (meth)acryloyl groups and ester bonds in the same molecule Acrylates; Epoxy (meth)acrylates derived from epoxy resins and having multiple (meth)acryloyl groups; Reactive oligomers having multiple (meth)acryloyl groups in which these bonds are used in combination Specific examples of compounds having an ethylenically unsaturated group include:
 ウレタン(メタ)アクリレート類としては、水酸基含有(メタ)アクリレートとポリイソシアネートと、必要に応じて用いられるその他アルコール類との反応生成物が挙げられる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等のグリセリン(メタ)アクリレート類;ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の糖アルコール(メタ)アクリレート類と、トルエンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、キシレンジイソシアネート、水添キシレンジイソシアネート、ジシクロヘキサンメチレンジイソシアネート、及びそれらのイソシアヌレート、ビュレット反応生成物等のポリイソシアネート等を反応させた、ウレタン(メタ)アクリレート類が挙げられる。 Urethane (meth)acrylates include reaction products of hydroxyl group-containing (meth)acrylates, polyisocyanates, and other alcohols used as needed. For example, hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate; ) acrylates; sugar alcohol (meth)acrylates such as pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate; and toluene diisocyanate , hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate, dicyclohexanemethylene diisocyanate, and polyisocyanates such as their isocyanurates and burette reaction products, etc., reacted with urethane (Meth)acrylates are mentioned.
 ポリエステル(メタ)アクリレート類としては、例えば、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、エチレンオキサイド及び/又はプロピレンオキサイド変性フタル酸(メタ)アクリレート、エチレンオキサイド変性コハク酸(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート等の単官能(ポリ)エステル(メタ)アクリレート類;ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、エピクロルヒドリン変性フタル酸ジ(メタ)アクリレート等のジ(ポリ)エステル(メタ)アクリレート類;トリメチロールプロパン又はグリセリン1モルに1モル以上のε-カプロラクトン、γ-ブチロラクトン、δ-バレロラクトン等の環状ラクトン化合物を付加して得たトリオールのモノ、ジ又はトリ(メタ)アクリレートが挙げられる。 Polyester (meth)acrylates include, for example, caprolactone-modified 2-hydroxyethyl (meth)acrylate, ethylene oxide and/or propylene oxide-modified phthalic acid (meth)acrylate, ethylene oxide-modified succinic acid (meth)acrylate, caprolactone-modified tetrahydro Monofunctional (poly)ester (meth)acrylates such as furfuryl (meth)acrylate; hydroxypivalic acid ester neopentyl glycol di(meth)acrylate, caprolactone-modified hydroxypivalic acid ester neopentyl glycol di(meth)acrylate, epichlorohydrin-modified Di (poly) ester (meth) acrylates such as phthalic acid di (meth) acrylate; 1 mol or more of cyclic lactone compounds such as ε-caprolactone, γ-butyrolactone, and δ-valerolactone per 1 mol of trimethylolpropane or glycerin Mono-, di- or tri(meth)acrylates of adducted triols may be mentioned.
 また、ペンタエリスリトール、ジメチロールプロパン、トリメチロールプロパン、又はテトラメチロールプロパン1モルに、1モル以上のε-カプロラクトン、γ-ブチロラクトン、δ-バレロラクトン等の環状ラクトン化合物を付加して得たトリオールのモノ、ジ、トリ又はテトラ(メタ)アクリレート;ジペンタエリスリトール1モルに1モル以上のε-カプロラクトン、γ-ブチロラクトン、δ-バレロラクトン等の環状ラクトン化合物を付加して得たトリオールのモノ、若しくはポリ(メタ)アクリレートのトリオール、テトラオール、ペンタオール又はヘキサオール等の多価アルコールのモノ(メタ)アクリレート又はポリ(メタ)アクリレートが挙げられる。 Also, a triol obtained by adding 1 mol or more of a cyclic lactone compound such as ε-caprolactone, γ-butyrolactone, or δ-valerolactone to 1 mol of pentaerythritol, dimethylolpropane, trimethylolpropane, or tetramethylolpropane. mono-, di-, tri-, or tetra-(meth)acrylates; mono-triols obtained by adding 1 mol or more of cyclic lactone compounds such as ε-caprolactone, γ-butyrolactone, and δ-valerolactone to 1 mol of dipentaerythritol, or Examples include mono(meth)acrylates or poly(meth)acrylates of polyhydric alcohols such as triols, tetraols, pentaols or hexaols of poly(meth)acrylates.
 更に、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)テトラメチレングリコール、(ポリ)ブチレングリコール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール等のジオール成分と、マレイン酸、フマル酸、コハク酸、アジピン酸、フタル酸、イソフタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ダイマー酸、セバチン酸、アゼライン酸、5-ナトリウムスルホイソフタル酸等の多塩基酸、及びこれらの無水物との反応生成物であるポリエステルポリオールの(メタ)アクリレート;ジオール成分と多塩基酸及びこれらの無水物とε-カプロラクトン、γ-ブチロラクトン、δ-バレロラクトン等からなる環状ラクトン変性ポリエステルジオールの(メタ)アクリレート等の多官能(ポリ)エステル(メタ)アクリレート類等を挙げることができる。 Furthermore, diol components such as (poly)ethylene glycol, (poly)propylene glycol, (poly)tetramethylene glycol, (poly)butylene glycol, 3-methyl-1,5-pentanediol, hexanediol, maleic acid, fumaric Polybasic acids such as acid, succinic acid, adipic acid, phthalic acid, isophthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, dimer acid, sebacic acid, azelaic acid, 5-sodium sulfoisophthalic acid, and anhydrides thereof (meth) acrylate of polyester polyol which is the reaction product of; (meth) of cyclic lactone-modified polyester diol consisting of diol component, polybasic acid and their anhydrides and ε-caprolactone, γ-butyrolactone, δ-valerolactone, etc. Examples include polyfunctional (poly)ester (meth)acrylates such as acrylates.
 エポキシ(メタ)アクリレート類とは、エポキシ基を有する化合物と(メタ)アクリル酸とのカルボキシレート化合物である。例えば、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、トリスヒドロキシフェニルメタン型エポキシ(メタ)アクリレート、ジシクロペンタジエンフェノール型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビフェノール型エポキシ(メタ)アクリレート、ビスフェノールAノボラック型エポキシ(メタ)アクリレート、ナフタレン骨格含有エポキシ(メタ)アクリレート、グリオキサール型エポキシ(メタ)アクリレート、複素環式エポキシ(メタ)アクリレート等、及びこれらの酸無水物変性エポキシアクリレート等が挙げられる。 Epoxy (meth)acrylates are carboxylate compounds of a compound having an epoxy group and (meth)acrylic acid. For example, phenol novolak type epoxy (meth)acrylate, cresol novolak type epoxy (meth)acrylate, trishydroxyphenylmethane type epoxy (meth)acrylate, dicyclopentadiene phenol type epoxy (meth)acrylate, bisphenol A type epoxy (meth)acrylate. , bisphenol F type epoxy (meth)acrylate, biphenol type epoxy (meth)acrylate, bisphenol A novolac type epoxy (meth)acrylate, naphthalene skeleton-containing epoxy (meth)acrylate, glyoxal type epoxy (meth)acrylate, heterocyclic epoxy ( meth)acrylates, and acid anhydride-modified epoxy acrylates thereof.
 例えば、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル等のビニルエーテル類;スチレン、メチルスチレン、エチルスチレン、ジビニルベンゼン等のスチレン類やトリアリルイソシアヌレート、トリメタアリルイソシアヌレート、及びビスアリルナジイミド等のビニル基を有する化合物も、エチレン性不飽和基を有する化合物の具体例として挙げられる。 For example, vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, and ethylene glycol divinyl ether; styrenes such as styrene, methylstyrene, ethylstyrene, and divinylbenzene; A compound having a vinyl group such as lunadiimide is also included as a specific example of the compound having an ethylenically unsaturated group.
 エチレン性不飽和基を有する化合物としては、市販品を利用することができ、例えば、KAYARAD(登録商標)ZCA-601H(商品名、日本化薬(株)製)、TrisP-PAエポキシアクリレート化合物のプロピレングリコールモノメチルエーテルアセテート(日本化薬(株)製KAYARAD(登録商標)ZCR-6007H(商品名)KAYARAD(登録商標)ZCR-6001H(商品名)、KAYARAD(登録商標)ZCR-6002H(商品名)、及びKAYARAD(登録商標)ZCR-6006H(商品名)、KAYARAD(登録商標)ZXR-1889H(商品名)が挙げられる。これらのエチレン性不飽和基を有する化合物は、1種単独又は2種以上を適宜混合して使用することも可能である。 As the compound having an ethylenically unsaturated group, commercially available products can be used. Propylene glycol monomethyl ether acetate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD (registered trademark) ZCR-6007H (trade name), KAYARAD (registered trademark) ZCR-6001H (trade name), KAYARAD (registered trademark) ZCR-6002H (trade name) , and KAYARAD (registered trademark) ZCR-6006H (trade name), KAYARAD (registered trademark) ZXR-1889H (trade name) These compounds having an ethylenically unsaturated group can be used alone or in combination of two or more It is also possible to use them by appropriately mixing them.
 エチレン性不飽和基を有する化合物を含有する本発明の樹脂組成物におけるエチレン性不飽和基を有する化合物の含有量は、末端変性イソシアネート変性ポリイミド樹脂のエチレン性不飽和二重結合基1当量に対してエチレン性不飽和基を有する化合物中の二重結合基が0.1乃至500当量となる量が好ましい。 The content of the compound having an ethylenically unsaturated group in the resin composition of the present invention containing a compound having an ethylenically unsaturated group is based on 1 equivalent of the ethylenically unsaturated double bond group of the terminal-modified isocyanate-modified polyimide resin. The amount is preferably such that the amount of double bond groups in the compound having an ethylenically unsaturated group is 0.1 to 500 equivalents.
 エチレン性不飽和基を有する化合物を含有する本発明の樹脂組成物には、末端変性イソシアネート変性ポリイミド樹脂とエチレン性不飽和基を有する化合物の硬化反応を促進する目的で、必要に応じてラジカル開始剤等の硬化剤を添加することができる。ラジカル開始剤の具体例としては、ジクミルパーオキサイド及びジブチルパーオキサイド等の過酸化物類、2,2’-アゾビス(イソブチロニトリル)及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物類等が挙げられる。
 エチレン性不飽和基を有する化合物を含有する本発明の樹脂組成物におけるラジカル開始剤の添加量は、全組成物中のエチレン性不飽和基を有する化合物に対して0.1乃至10質量%である。
The resin composition of the present invention containing a compound having an ethylenically unsaturated group, for the purpose of promoting the curing reaction of the terminal-modified isocyanate-modified polyimide resin and the compound having an ethylenically unsaturated group, radical initiation if necessary Curing agents such as curing agents can be added. Specific examples of radical initiators include peroxides such as dicumyl peroxide and dibutyl peroxide, 2,2′-azobis(isobutyronitrile) and 2,2′-azobis(2,4-dimethylvalero nitrile) and other azo compounds.
The amount of the radical initiator added in the resin composition of the present invention containing a compound having an ethylenically unsaturated group is 0.1 to 10% by mass relative to the compound having an ethylenically unsaturated group in the entire composition. be.
 本発明の樹脂組成物に有機溶剤を併用してワニス状の組成物(以下、単にワニスという)とすることができる。用い得る溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート及びプロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン及びシクロヘキサノン等のケトン系溶剤、トルエン及びキシレンなどの芳香族系溶剤が挙げられる。
 有機溶剤は、ワニス中の有機溶剤を除く固形分濃度が好ましくは10乃至80質量%、より好ましくは20乃至70質量%となる範囲で使用する。
An organic solvent can be used together with the resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish). Solvents that can be used include, for example, γ-butyrolactones, amide solvents such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone, and tetramethylenesulfone. Ether solvents such as sulfones, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate and propylene glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone Solvents include aromatic solvents such as toluene and xylene.
The organic solvent is used in such a range that the solid concentration of the varnish excluding the organic solvent is preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
 本発明の樹脂組成物には、必要に応じて公知の添加剤を併用してもよい。併用し得る添加剤の具体例としては、エポキシ樹脂用硬化剤、ポリブタジエン又はこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤、アエロジル等のチキソトロピー付与剤、シリコーン系、フッ素系のレベリング剤や消泡剤、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノール系重合禁止剤、安定剤、酸化防止剤、光重合開始剤、光塩基発生材、光酸発生剤等が挙げられる。これら添加剤の配合量は、樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。添加剤としては特にアクリル基もしくはメタクリル基を有するシランカップリング剤が耐熱性の観点から好ましい。 A known additive may be used in combination with the resin composition of the present invention, if necessary. Specific examples of additives that can be used in combination include curing agents for epoxy resins, polybutadiene or modified products thereof, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, maleimide compounds, cyanate esters. compound, silicone gel, silicone oil, silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, inorganic fillers such as glass powder, silane Surface treatment agents for fillers such as coupling agents, release agents, coloring agents such as carbon black, phthalocyanine blue, and phthalocyanine green, thixotropic agents such as Aerosil, silicone-based and fluorine-based leveling agents and antifoaming agents, Hydroquinone, hydroquinone monomethyl ether, phenol-based polymerization inhibitors, stabilizers, antioxidants, photopolymerization initiators, photobase generators, photoacid generators, and the like. The amount of these additives to be blended is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less per 100 parts by mass of the resin composition. As the additive, a silane coupling agent having an acrylic group or a methacrylic group is particularly preferable from the viewpoint of heat resistance.
 本発明の樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えば本発明のイソシアネート変性ポリイミド樹脂若しくは末端変性イソシアネート変性ポリイミド樹脂及び反応性化合物を、触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化することができる。各成分の混合またはプレポリマー化には溶剤の不存在下では例えば押出機、ニーダ、ロールなどを使用し、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method of preparing the resin composition of the present invention is not particularly limited, but each component may be mixed uniformly or may be prepolymerized. For example, the isocyanate-modified polyimide resin or terminal-modified isocyanate-modified polyimide resin and the reactive compound of the present invention can be prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. . For mixing or prepolymerizing each component, for example, an extruder, kneader, roll, etc. are used in the absence of a solvent, and a reactor equipped with a stirrer is used in the presence of a solvent.
 本発明の樹脂組成物は、加熱により硬化物とすることができる。
 樹脂組成物の硬化温度及び硬化時間は、本発明のイソシアネート変性ポリイミド樹脂又は末端変性イソシアネート変性ポリイミド樹脂が有する官能基と反応性化合物が有する反応性基との組合せ等を考慮し選択すればよいが、例えば、マレイミド樹脂を含有する樹脂組成物やエポキシ樹脂を含有する樹脂組成物の硬化温度は、120乃至250℃が好ましく、硬化時間は概ね数十分間乃至数時間程度である。
The resin composition of the present invention can be cured by heating.
The curing temperature and curing time of the resin composition may be selected in consideration of the combination of the functional group possessed by the isocyanate-modified polyimide resin or terminal-modified isocyanate-modified polyimide resin of the present invention and the reactive group possessed by the reactive compound. For example, a resin composition containing a maleimide resin or a resin composition containing an epoxy resin preferably has a curing temperature of 120 to 250° C. and a curing time of approximately several tens of minutes to several hours.
 本発明の樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や炭素繊維強化材等の本発明の硬化物を備えた基材(物品)を得ることができる。
 また、樹脂組成物を銅箔に塗布し溶剤を乾燥させた後、ポリイミドフィルムもしくはLCP(液晶ポリマー)を積層させ、熱プレスで加熱硬化することにより本発明の硬化物を備えた基材を得ることもできる。場合によりポリイミドフィルムもしくはLCP側に塗布し、銅箔と積層させ、熱プレスで加熱硬化することにより本発明の硬化物を備えた基材を得ることもできる。
 さらに、本発明の樹脂組成物を銅箔に塗布し溶剤を乾燥させた後、樹脂をガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させたプリプレグを積層させ、熱プレスで加熱硬化することにより本発明の硬化物を備えた基材を得ることもできる。
A prepreg can be obtained by heating and melting the resin composition of the present invention, reducing the viscosity, and impregnating reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers with the resin composition. A prepreg can also be obtained by impregnating reinforcing fibers with the varnish and heating and drying the varnish.
After cutting the above prepreg into a desired shape and laminating it with copper foil or the like if necessary, the resin composition is heated and cured while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like. Base materials (articles) comprising the cured product of the present invention, such as electronic laminates (printed wiring boards) and carbon fiber reinforcing materials, can be obtained.
Alternatively, after the resin composition is applied to a copper foil and the solvent is dried, a polyimide film or LCP (liquid crystal polymer) is laminated and heat-cured by a hot press to obtain a substrate provided with the cured product of the present invention. can also In some cases, it is also possible to obtain a substrate provided with the cured product of the present invention by coating it on the polyimide film or LCP side, laminating it with a copper foil, and heat-curing it with a hot press.
Furthermore, after applying the resin composition of the present invention to a copper foil and drying the solvent, a prepreg in which reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber are impregnated with the resin is laminated, A substrate provided with the cured product of the present invention can also be obtained by heat curing with a hot press.
 上記の本発明の樹脂組成物の硬化物を備えた基材は銅張積層板(CCL)、またはCCLの銅箔に回路パターンを有するプリント配線板や多層配線板に使用できる。 The substrate provided with the cured product of the resin composition of the present invention can be used for a copper clad laminate (CCL), or a printed wiring board or multilayer wiring board having a circuit pattern on the copper foil of the CCL.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例における「部」は質量部を、「%」は質量%を意味する。尚、実施例におけるGPCの測定条件は以下の通りである。
 機種:TOSOH ECOSEC Elite HLC-8420GPC
 カラム:TSKgel Super AWM-H
 溶離液:NMP(N-メチルピロリドン);0.5ml/分、40℃
 検出器:UV(示差屈折計)
 分子量標準:ポリスチレン
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. "Parts" in the examples means parts by mass, and "%" means % by mass. The GPC measurement conditions in the examples are as follows.
Model: TOSOH ECOSEC Elite HLC-8420GPC
Column: TSKgel Super AWM-H
Eluent: NMP (N-methylpyrrolidone); 0.5 ml/min, 40°C
Detector: UV (differential refractometer)
Molecular weight standard: Polystyrene
実施例1(本発明のイソシアネート変性ポリイミド樹脂(A-1)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9-ビス(4-アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol) 5.52部、ダイアミンH20(岡村製油株式会社製、分子量325.09g/mol) 10.21部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol) 13.96部、アニソール 66.09部、トリエチルアミン 0.91部及びトルエン 14.83部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより中間体ポリイミド樹脂溶液を得た。中間体ポリイミド樹脂の合成に用いた(A)成分((a1)成分及び(a2)成分)と(B)成分のモル比((B)成分のモル数/(A)成分のモル数)は1.05であった。
 上記で得られた中間体ポリイミド樹脂溶液に、IPDI(イソホロンジイソシアネート、デグサヒュルス製、分子量222.29g/mol) 0.29部及びアニソール 0.66部を加えて130℃で3時間加熱することにより本発明のイソシアネート変性ポリイミド樹脂(A-1)溶液を得た。前記で得られたイソシアネート変性ポリイミド樹脂(A-1)の最終的な原料成分のモル比((B)成分のモル数/((A)成分のモル数+(C)成分のモル数))は1.02であった。
Example 1 (Synthesis of isocyanate-modified polyimide resin (A-1) of the present invention)
A 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 5.52 parts, Diamine H20 (manufactured by Okamura Oil Co., Ltd., molecular weight 325.09 g / mol) 10.21 parts, ODPA (oxydiphthalic anhydride, Manac Co., Ltd., molecular weight 310.22 g /mol) 13.96 parts of anisole, 66.09 parts of anisole, 0.91 parts of triethylamine and 14.83 parts of toluene were added and heated to 120°C to dissolve the raw materials. The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were subsequently removed at 140° C. to obtain an intermediate polyimide resin solution. The molar ratio of the (A) component ((a1) component and (a2) component) and the (B) component used in the synthesis of the intermediate polyimide resin (the number of moles of the component (B)/the number of moles of the component (A)) is was 1.05.
To the intermediate polyimide resin solution obtained above, IPDI (isophorone diisocyanate, manufactured by Degusahüls, molecular weight 222.29 g / mol) 0.29 parts and anisole 0.66 parts were added and heated at 130 ° C. for 3 hours. An isocyanate-modified polyimide resin (A-1) solution of the invention was obtained. Molar ratio of the final raw material components of the isocyanate-modified polyimide resin (A-1) obtained above (moles of component (B) / (moles of component (A) + moles of component (C))) was 1.02.
実施例2(本発明のイソシアネート変性ポリイミド樹脂(A-2)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9-ビス(4-アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol) 5.52部、ダイアミンH20(岡村製油株式会社製、分子量325.09g/mol) 10.21部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol) 13.96部、アニソール 66.09部、トリエチルアミン 0.91部及びトルエン 14.83部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより中間体ポリイミド樹脂溶液を得た。中間体ポリイミド樹脂の合成に用いた(A)成分((a1)成分及び(a2)成分)と(B)成分のモル比((B)成分のモル数/(A)成分のモル数)は1.05であった。
 上記で得られた中間体ポリイミド樹脂溶液に、HDI(ヘキサメチレンジイソシアネート、旭化成株式会社製、分子量168.20g/mol) 0.22部及びアニソール 0.50部を加えて130℃で3時間加熱することにより本発明のイソシアネート変性ポリイミド樹脂(A-2)溶液を得た。前記で得られたイソシアネート変性ポリイミド樹脂(A-2)の最終的な原料成分のモル比((B)成分のモル数/((A)成分のモル数+(C)成分のモル数))は1.02であった。
Example 2 (Synthesis of isocyanate-modified polyimide resin (A-2) of the present invention)
A 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 5.52 parts, Diamine H20 (manufactured by Okamura Oil Co., Ltd., molecular weight 325.09 g / mol) 10.21 parts, ODPA (oxydiphthalic anhydride, Manac Co., Ltd., molecular weight 310.22 g /mol) 13.96 parts of anisole, 66.09 parts of anisole, 0.91 parts of triethylamine and 14.83 parts of toluene were added and heated to 120°C to dissolve the raw materials. The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were subsequently removed at 140° C. to obtain an intermediate polyimide resin solution. The molar ratio of the (A) component ((a1) component and (a2) component) and the (B) component used in the synthesis of the intermediate polyimide resin (the number of moles of the component (B)/the number of moles of the component (A)) is was 1.05.
To the intermediate polyimide resin solution obtained above, HDI (hexamethylene diisocyanate, manufactured by Asahi Kasei Corporation, molecular weight 168.20 g / mol) 0.22 parts and anisole 0.50 parts are added and heated at 130 ° C. for 3 hours. Thus, an isocyanate-modified polyimide resin (A-2) solution of the present invention was obtained. Molar ratio of the final raw material components of the isocyanate-modified polyimide resin (A-2) obtained above (moles of component (B) / (moles of component (A) + moles of component (C))) was 1.02.
実施例3(本発明のイソシアネート変性ポリイミド樹脂(A-3)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9-ビス(4-アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol) 5.52部、ダイアミンH20(岡村製油株式会社製、分子量325.09g/mol) 7.31部、PRIAMINE1075(クローダジャパン株式会社製、分子量534.38g/mol) 4.80部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol) 13.96部、アニソール 66.09部、トリエチルアミン 0.91部及びトルエン 14.83部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより中間体ポリイミド樹脂溶液を得た。中間体ポリイミド樹脂の合成に用いた(A)成分((a1)成分、(a2)成分及び(a3)成分)と(B)成分のモル比((B)成分のモル数/(A)成分のモル数)は1.05であった。
 上記で得られた中間体ポリイミド樹脂溶液に、IPDI(イソホロンジイソシアネート、デグサヒュルス製、分子量222.29g/mol) 0.29部及びアニソール 0.66部を加えて130℃で3時間加熱することにより本発明のイソシアネート変性ポリイミド樹脂(A-3)溶液を得た。前記で得られたイソシアネート変性ポリイミド樹脂(A-3)の最終的な原料成分のモル比((B)成分のモル数/((A)成分のモル数+(C)成分のモル数))は1.02であった。
Example 3 (Synthesis of isocyanate-modified polyimide resin (A-3) of the present invention)
A 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 5.52 parts, Diamine H20 (manufactured by Okamura Oil Co., Ltd., molecular weight 325.09 g / mol) 7.31 parts, PRIAMINE 1075 (manufactured by Croda Japan Co., Ltd., molecular weight 534.38 g / mol) 4 .80 parts, 13.96 parts of ODPA (oxydiphthalic anhydride, manufactured by Manac Co., Ltd., molecular weight 310.22 g/mol), 66.09 parts of anisole, 0.91 parts of triethylamine and 14.83 parts of toluene were added to obtain 120 parts. ℃ to dissolve the raw materials. The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were subsequently removed at 140° C. to obtain an intermediate polyimide resin solution. The molar ratio of the (A) component ((a1) component, (a2) component and (a3) component) and (B) component used in the synthesis of the intermediate polyimide resin (moles of component (B) / component (A) number of moles) was 1.05.
To the intermediate polyimide resin solution obtained above, IPDI (isophorone diisocyanate, manufactured by Degusahüls, molecular weight 222.29 g / mol) 0.29 parts and anisole 0.66 parts were added and heated at 130 ° C. for 3 hours. An isocyanate-modified polyimide resin (A-3) solution of the invention was obtained. The molar ratio of the final raw material components of the isocyanate-modified polyimide resin (A-3) obtained above (moles of component (B) / (moles of component (A) + moles of component (C))) was 1.02.
実施例4(本発明の末端変性イソシアネート変性ポリイミド樹脂(A-4)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAPP(2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、和歌山精化工業株式会社製、分子量410.52g/mol) 9.13部、ダイアミンH20(岡村製油株式会社製、分子量325.09g/mol) 8.37部、BPDA(ビフェニルテトラカルボン酸二無水物、三菱ケミカル株式会社製、分子量294.22g/mol) 11.77部、アニソール 77.15部、トリエチルアミン 0.81部及びトルエン 20.14部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより中間体ポリイミド樹脂溶液を得た。中間体ポリイミド樹脂の合成に用いた(A)成分((a1)成分及び(a2)成分)と(B)成分のモル比((B)成分のモル数/(A)成分のモル数)は1.20であった。
 次いで、前記で得られた中間体ポリイミド樹脂溶液に、HDI(ヘキサメチレンジイソシアネート、旭化成株式会社製、分子量168.20g/mol) 1.19部及びアニソール 2.64部を入れて130℃で3時間加熱することによりイソシアネート変性ポリイミド樹脂溶液を得た。前記で得られたイソシアネート変性ポリイミド樹脂の最終的な原料成分のモル比((B)成分のモル数/((A)成分のモル数+(C)成分のモル数))は1.02であった。
 次に、イソシアネート変性ポリイミド樹脂溶液に、更に無水マレイン酸(分子量98.06g/mol) 0.08部、トリエチルアミン 0.3部及びトルエン 5.2部を加え、135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを140℃で除去することによりイソシアネート変性ポリイミド樹脂の両末端が無水マレイン酸で変性された末端変性イソシアネート変性ポリイミド樹脂(A-4)溶液を得た。
Example 4 (Synthesis of terminal-modified isocyanate-modified polyimide resin (A-4) of the present invention)
BAPP(2,2-bis[4-(4-aminophenoxy)phenyl]propane, Wakayama Seika Kogyo Co., Ltd., molecular weight 410.52 g / mol) 9.13 parts, Diamine H20 (manufactured by Okamura Oil Co., Ltd., molecular weight 325.09 g / mol) 8.37 parts, BPDA (biphenyltetracarboxylic dianhydride , manufactured by Mitsubishi Chemical Corporation, molecular weight 294.22 g / mol) 11.77 parts, 77.15 parts of anisole, 0.81 parts of triethylamine and 20.14 parts of toluene were added and heated to 120 ° C. to dissolve the raw materials. . The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were subsequently removed at 140° C. to obtain an intermediate polyimide resin solution. The molar ratio of the (A) component ((a1) component and (a2) component) and the (B) component used in the synthesis of the intermediate polyimide resin (the number of moles of the component (B)/the number of moles of the component (A)) is was 1.20.
Next, 1.19 parts of HDI (hexamethylene diisocyanate, manufactured by Asahi Kasei Corporation, molecular weight 168.20 g / mol) and 2.64 parts of anisole are added to the intermediate polyimide resin solution obtained above, and the mixture is heated at 130 ° C. for 3 hours. An isocyanate-modified polyimide resin solution was obtained by heating. The molar ratio of the final raw material components of the isocyanate-modified polyimide resin obtained above (the number of moles of component (B)/(the number of moles of component (A) + the number of moles of component (C))) is 1.02. there were.
Next, 0.08 parts of maleic anhydride (molecular weight: 98.06 g/mol), 0.3 parts of triethylamine and 5.2 parts of toluene were further added to the isocyanate-modified polyimide resin solution and reacted at 135° C. for 4 hours. After water generation stopped, residual triethylamine and toluene were removed at 140° C. to obtain a terminal-modified isocyanate-modified polyimide resin (A-4) solution in which both ends of the isocyanate-modified polyimide resin were modified with maleic anhydride. rice field.
比較例1(比較用ポリイミド樹脂(A-5)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9-ビス(4-アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol) 9.05部、ダイアミンH20(岡村製油株式会社製、分子量325.09g/mol) 12.41部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol) 14.89部、アニソール 80.90部、トリエチルアミン 0.97部及びトルエン 15.91部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより比較用のポリイミド樹脂(A-5)溶液を得た。前記で得られた比較用のポリイミド樹脂(A-5)の最終的な原料成分のモル比((B)成分のモル数/(A)成分のモル数)は1.02であった。
Comparative Example 1 (Synthesis of comparative polyimide resin (A-5))
A 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 9.05 parts, Diamine H20 (manufactured by Okamura Oil Co., Ltd., molecular weight 325.09 g / mol) 12.41 parts, ODPA (oxydiphthalic anhydride, Manac Co., Ltd., molecular weight 310.22 g /mol) 14.89 parts of anisole, 80.90 parts of anisole, 0.97 parts of triethylamine and 15.91 parts of toluene were added and heated to 120°C to dissolve the raw materials. The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were continuously removed at 140° C. to obtain a polyimide resin (A-5) solution for comparison. The final molar ratio of the raw material components (the number of moles of component (B)/the number of moles of component (A)) in the comparative polyimide resin (A-5) obtained above was 1.02.
比較例2(比較用ポリイミド樹脂(A-6)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9-ビス(4-アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol) 9.05部、PRIAMINE1075(クローダジャパン株式会社製、分子量534.38g/mol) 12.29部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol) 14.89部、アニソール 80.63部、トリエチルアミン 0.97部及びトルエン 15.89部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより比較用のポリイミド樹脂(A-6)溶液を得た。前記で得られた比較用のポリイミド樹脂(A-6)の最終的な原料成分のモル比((B)成分のモル数/(A)成分のモル数)は1.02であった。
Comparative Example 2 (Synthesis of comparative polyimide resin (A-6))
A 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 9.05 parts, PRIAMINE 1075 (manufactured by Croda Japan Co., Ltd., molecular weight 534.38 g / mol) 12.29 parts, ODPA (oxydiphthalic anhydride, Manac Co., Ltd., molecular weight 310.22 g / mol), 80.63 parts of anisole, 0.97 parts of triethylamine and 15.89 parts of toluene were added and heated to 120° C. to dissolve the raw materials. The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were continuously removed at 140° C. to obtain a polyimide resin (A-6) solution for comparison. The final molar ratio of the raw material components (the number of moles of component (B)/the number of moles of component (A)) in the comparative polyimide resin (A-6) obtained above was 1.02.
比較例3(比較用ポリイミド樹脂(A-7)の合成)
 温度計、還流冷却器、ディーンスターク装置、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9-ビス(4-アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol) 9.05部、1,10-デカンジアミン(東京化成工業株式会社製、分子量172.32g/mol) 3.96部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol) 14.89部、アニソール 62.10部、トリエチルアミン 0.97部及びトルエン 14.54部を入れて、120℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することにより比較用のポリイミド樹脂(A-7)溶液を得た。前記で得られた比較用のポリイミド樹脂(A-7)の最終的な原料成分のモル比((B)成分のモル数/(A)成分のモル数)は1.02であった。
Comparative Example 3 (Synthesis of comparative polyimide resin (A-7))
A 300 ml reactor equipped with a thermometer, a reflux condenser, a Dean-Stark device, a raw material inlet, a nitrogen introduction device and a stirring device was charged with BAFL (9,9-bis (4-aminophenyl) fluorene, manufactured by JFE Chemical Co., Ltd. , molecular weight 348.45 g / mol) 9.05 parts, 1,10-decanediamine (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 172.32 g / mol) 3.96 parts, ODPA (oxydiphthalic anhydride, manufactured by Manac Co., Ltd. , molecular weight 310.22 g/mol), 62.10 parts of anisole, 0.97 parts of triethylamine and 14.54 parts of toluene were added and heated to 120°C to dissolve the raw materials. The reaction was carried out at 135° C. for 4 hours while removing water produced by ring closure of the amic acid by azeotropic distillation with toluene. After the generation of water stopped, residual triethylamine and toluene were continuously removed at 140° C. to obtain a polyimide resin (A-7) solution for comparison. The final molar ratio of the raw material components (the number of moles of component (B)/the number of moles of component (A)) in the comparative polyimide resin (A-7) obtained above was 1.02.
実施例5乃至11、比較例4乃至6(本発明及び比較用の樹脂組成物の調整)
 表1に示した配合量(単位は「部」、表中の部数は、溶剤を含まない固形分換算の部数である)で各成分を配合した後、固形分濃度が20質量%となる量のアニソールを溶剤として追加して均一に混合することにより、本発明及び比較用の樹脂組成物をそれぞれ調整した。
Examples 5 to 11, Comparative Examples 4 to 6 (Preparation of the present invention and comparative resin compositions)
After blending each component in the blending amount shown in Table 1 (unit is "part", the number of parts in the table is the number of parts in terms of solid content without solvent), the solid content concentration is 20% by mass. anisole was added as a solvent and uniformly mixed to prepare resin compositions of the present invention and comparison.
 尚、表1における各成分は以下の通りである。
<ポリイミド樹脂>
 (A-1):実施例1で得られた本発明のイソシアネート変性ポリイミド樹脂
 (A-2):実施例2で得られた本発明のイソシアネート変性ポリイミド樹脂
 (A-3):実施例3で得られた本発明のイソシアネート変性ポリイミド樹脂
 (A-4):実施例4で得られた本発明の末端変性イソシアネート変性ポリイミド樹脂
 (A-5):比較例1で得られた比較用のポリイミド樹脂
 (A-6):比較例2で得られた比較用のポリイミド樹脂
 (A-7):比較例3で得られた比較用のポリイミド樹脂
<反応性化合物(熱硬化性樹脂)>
 MIR-3000-70MT;マレイミド樹脂、日本化薬(株)製
 XD-1000;エポキシ樹脂、日本化薬(株)製
 ZXR-1889H;エポキシアクリレート樹脂、日本化薬(株)製
<硬化剤>
 DCP;ジクミルパーオキシド、化薬ヌーリオン(株)製
<添加剤>
 KR-513;シランカップリング剤、信越化学(株)製
In addition, each component in Table 1 is as follows.
<Polyimide resin>
(A-1): The isocyanate-modified polyimide resin of the present invention obtained in Example 1 (A-2): The isocyanate-modified polyimide resin of the present invention obtained in Example 2 (A-3): In Example 3 Obtained isocyanate-modified polyimide resin of the present invention (A-4): Terminal-modified isocyanate-modified polyimide resin of the present invention obtained in Example 4 (A-5): Comparative polyimide resin obtained in Comparative Example 1 (A-6): Comparative polyimide resin obtained in Comparative Example 2 (A-7): Comparative polyimide resin obtained in Comparative Example 3 <reactive compound (thermosetting resin)>
MIR-3000-70MT; Maleimide resin, Nippon Kayaku Co., Ltd. XD-1000; Epoxy resin, Nippon Kayaku Co., Ltd. ZXR-1889H; Epoxy acrylate resin, Nippon Kayaku Co., Ltd. <Hardener>
DCP; dicumyl peroxide, manufactured by Kayaku Nourion Co., Ltd. <Additive>
KR-513; silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.
 実施例5乃至11、比較例4乃至6で得られた各樹脂組成物を用いて、下記の方法で樹脂組成物の硬化物の銅箔に対する接着性(接着強度)、耐熱性、誘電特性(誘電率及び誘電正接)、塗工性を評価した。 Using the resin compositions obtained in Examples 5 to 11 and Comparative Examples 4 to 6, the adhesiveness (adhesive strength) to copper foil, heat resistance, dielectric properties ( dielectric constant and dielectric loss tangent) and coatability were evaluated.
(接着性(接着強度)の評価)
 福田金属箔粉工業株式会社製の超低粗度無粗化処理電解銅箔CF-T49A-DS-HD(以下、「T49A」と記載する)の粗面に、オートマチックアプリケータを用いて、塗布及び乾燥後の樹脂組成物層の膜厚が30μmとなる量の実施例5乃至11、比較例4乃至6の樹脂組成物をそれぞれ塗布し、120℃で10分間加熱乾燥した。前記で得られた銅箔上の樹脂組成物層にカプトン20EN(東レ・デュポン株式会社製)を重ね合わせ、200℃で60分間、3MPaの条件で真空プレスした。得られた試験片を10mm幅に切り出し、オートグラフAGS-X-500N(株式会社島津製作所製)を用いて、銅箔と樹脂組成物の硬化物層の間の90°引きはがし強さ(引き剥がし速度は50mm/min)を測定し、下記の評価基準で接着性(接着強度)を評価した。結果を表1に示した。
 ◎(優)・・・6.6N/cm以上
 〇(良)・・・5.0N/cm以上6.6N/cm未満
 ×(不可)・・・5.0N/cm未満
(Evaluation of adhesiveness (adhesive strength))
Apply using an automatic applicator to the rough surface of ultra-low roughness non-roughening treated electrolytic copper foil CF-T49A-DS-HD (hereinafter referred to as "T49A") manufactured by Fukuda Metal Foil & Powder Co., Ltd. Then, the resin compositions of Examples 5 to 11 and Comparative Examples 4 to 6 were applied in an amount such that the film thickness of the resin composition layer after drying was 30 μm, and dried by heating at 120° C. for 10 minutes. Kapton 20EN (manufactured by DuPont-Toray Co., Ltd.) was overlaid on the resin composition layer on the copper foil obtained above, and vacuum-pressed at 200° C. for 60 minutes at 3 MPa. The obtained test piece was cut into a width of 10 mm, and using Autograph AGS-X-500N (manufactured by Shimadzu Corporation), the 90° peeling strength (pull The peeling speed was 50 mm/min), and the adhesiveness (adhesive strength) was evaluated according to the following evaluation criteria. Table 1 shows the results.
◎ (excellent) ... 6.6 N / cm or more ○ (good) ... 5.0 N / cm or more and less than 6.6 N / cm × (improper) ... less than 5.0 N / cm
(耐熱性の評価)
 上記「接着性(接着強度)の評価」と同じ方法で作製した試験片を、POT-200C(太洋電機産業株式会社製)で288℃に熱したハンダ浴にフロートさせ、フクレが出るまでの時間を測定し、下記の評価基準で耐熱性を評価した。結果を表1に示した。
 ◎(優)・・・1000秒以上膨れなし
 〇(良)・・・10秒以上1000秒未満で膨れ発生
 ×(不可)・・・10秒未満で膨れ発生
(Evaluation of heat resistance)
A test piece prepared by the same method as the above "Evaluation of adhesiveness (adhesive strength)" is floated in a solder bath heated to 288 ° C. with POT-200C (manufactured by Taiyo Denki Sangyo Co., Ltd.) until blisters appear. The time was measured, and the heat resistance was evaluated according to the following evaluation criteria. Table 1 shows the results.
◎ (excellent): no swelling for 1000 seconds or longer ○ (good): swelling occurs for 10 seconds or more and less than 1000 seconds × (improper): swelling occurs for less than 10 seconds
(誘電率および誘電正接の評価)
 樹脂組成物の塗布量を乾燥後の樹脂組成物層の膜厚が100μmとなる量に変更した以外は上記の「接着性(接着強度)の評価」と同じ方法でT49Aの粗面上に樹脂組成物の塗膜をそれぞれ形成し、200℃で60分間加熱硬化した。前記で得られた樹脂組成物の硬化物層と銅箔の積層体から、液比重45ボーメ度の塩化鉄(III)溶液で銅箔をエッチング除去し、イオン交換水で洗浄後、105℃で10分間乾燥することでフィルム状の樹脂組成物の硬化物をそれぞれ得た。フィルム状の硬化物について、ネットワークアナライザー8719ET(アジレントテクノロジー製)を用いて空洞共振法によって10GHzにおける誘電率及び誘電正接を測定した。結果を表1に示した。
(Evaluation of dielectric constant and dielectric loss tangent)
Resin was applied onto the rough surface of T49A in the same manner as in the above “Evaluation of Adhesion (Adhesion Strength)” except that the coating amount of the resin composition was changed so that the film thickness of the resin composition layer after drying was 100 μm. A coating film of each composition was formed and cured by heating at 200° C. for 60 minutes. From the laminate of the cured product layer of the resin composition and the copper foil obtained above, the copper foil is etched away with an iron (III) chloride solution having a liquid specific gravity of 45 Baume degrees, washed with ion-exchanged water, and then heated at 105 ° C. By drying for 10 minutes, a film-like cured product of the resin composition was obtained. For the film-like cured product, the dielectric constant and dielectric loss tangent at 10 GHz were measured by the cavity resonance method using a network analyzer 8719ET (manufactured by Agilent Technologies). Table 1 shows the results.
(塗工性の評価)
 上記の「接着性(接着強度)の評価」と同じ方法で作製した試験片について、光学顕微鏡を用いて銅箔の粗面の凹部に含まれるボイド(気泡)を確認した。ボイドが観察された窪みの割合によって、凹凸表面に対する塗工性を下記の基準で評価した。
 〇(良)・・・ボイドが観察された凹部の割合が0%以上1%未満
 △(可)・・・ボイドが観察された凹部の割合が1%以上2%未満
 ×(不可)・・・ボイドが観察された凹部の割合が2%以上
(Evaluation of coatability)
Voids (bubbles) contained in concave portions of the rough surface of the copper foil were confirmed using an optical microscope for the test piece prepared by the same method as in the above "Evaluation of Adhesiveness (Adhesive Strength)". The ratio of depressions in which voids were observed was used to evaluate the coatability on the uneven surface according to the following criteria.
○ (Good): The ratio of concave portions where voids are observed is 0% or more and less than 1% △ (Fair): The ratio of concave portions where voids are observed is 1% or more and less than 2% × (Unacceptable) …・The percentage of recesses where voids are observed is 2% or more
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1の結果より、本発明のイソシアネート変性ポリイミド樹脂を含む樹脂組成物は、接着性(接着強度)、耐熱性、誘電特性及び塗工性の全てにおいて優れているのに対して、比較例の樹脂組成物は、接着性、耐熱性、塗工性が劣る結果であった。 From the results of Table 1, the resin composition containing the isocyanate-modified polyimide resin of the present invention is excellent in all of adhesiveness (adhesive strength), heat resistance, dielectric properties and coatability, whereas comparative examples The resin composition was poor in adhesiveness, heat resistance and coatability.
 本発明の特定構造のイソシアネート変性ポリイミド樹脂を用いることにより、耐熱性、塗工性、低誘電性及び接着性等の特性に優れたプリント配線板等を提供することができる。

 
By using the isocyanate-modified polyimide resin having the specific structure of the present invention, it is possible to provide a printed wiring board or the like having excellent properties such as heat resistance, coatability, low dielectric properties and adhesiveness.

Claims (10)

  1.  両末端にアミノ基を有し、かつ側鎖にメチル基及び/又はエチル基を1乃至4個有し、主鎖の炭素数が17乃至24の直鎖脂肪族ジアミノ化合物(a1)及び芳香族ジアミノ化合物(a2)を含むジアミノ化合物(A)と、四塩基酸二無水物(B)との反応生成物であるポリイミド樹脂が両末端に有するアミノ基及び/又は酸無水物基と、ジイソシアネート化合物(C)が有するイソシアネート基との反応生成物であるイソシアネート変性ポリイミド樹脂であって、両末端にアミノ基及び/又は酸無水物基を有するイソシアネート変性ポリイミド樹脂。 A linear aliphatic diamino compound (a1) having amino groups at both ends, having 1 to 4 methyl groups and/or ethyl groups in side chains, and having a main chain of 17 to 24 carbon atoms and an aromatic A diamino compound (A) containing a diamino compound (a2) and a polyimide resin that is a reaction product of a tetrabasic dianhydride (B) having amino groups and/or acid anhydride groups at both ends, and a diisocyanate compound An isocyanate-modified polyimide resin which is a reaction product with an isocyanate group of (C) and has amino groups and/or acid anhydride groups at both ends.
  2.  前記ジイソシアネート化合物(C)が、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びイソホロンジイソシアネートからなる群より選択される少なくとも一種の化合物を含む請求項1に記載のイソシアネート変性ポリイミド樹脂。 The isocyanate-modified polyimide resin according to claim 1, wherein the diisocyanate compound (C) contains at least one compound selected from the group consisting of hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and isophorone diisocyanate.
  3.  前記四塩基酸二無水物(B)が、下記式(1)乃至(9)
    Figure JPOXMLDOC01-appb-C000001
    (式(4)中、YはC(CF、SO、CO、酸素原子、直接結合又は下記式(10)
    Figure JPOXMLDOC01-appb-C000002
    で表される二価の連結基を表す。)
    からなる群より選択される少なくとも一種で表される化合物を含む請求項1又は2に記載のイソシアネート変性ポリイミド樹脂。
    The tetrabasic dianhydride (B) is represented by the following formulas (1) to (9)
    Figure JPOXMLDOC01-appb-C000001
    (In formula (4), Y is C(CF 3 ) 2 , SO 2 , CO, an oxygen atom, a direct bond, or the following formula (10)
    Figure JPOXMLDOC01-appb-C000002
    Represents a divalent linking group represented by )
    The isocyanate-modified polyimide resin according to claim 1 or 2, comprising a compound represented by at least one selected from the group consisting of.
  4.  前記芳香族ジアミノ化合物(a2)が、下記式(11)乃至(14)
    Figure JPOXMLDOC01-appb-C000003
    (式(13)中、Rは独立してメチル基又はトリフルオロメチル基を表し、式(14)中、ZはC(CF、CH(CH)、SO、CH、O-C-O、酸素原子、直接結合又は下記式(10)
    Figure JPOXMLDOC01-appb-C000004
    で表される二価の連結基を、Rは独立して水素原子、メチル基、エチル基又はトリフルオロメチル基を表す。)
    からなる群より選択される少なくとも一種で表される化合物を含む請求項1乃至3のいずれか一項に記載のイソシアネート変性ポリイミド樹脂。
    The aromatic diamino compound (a2) is represented by the following formulas (11) to (14)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (13), R 2 independently represents a methyl group or a trifluoromethyl group; in formula (14), Z is C(CF 3 ) 2 , CH(CH 3 ), SO 2 , CH 2 , O—C 6 H 4 —O, oxygen atom, direct bond or formula (10) below
    Figure JPOXMLDOC01-appb-C000004
    R3 independently represents a hydrogen atom, a methyl group, an ethyl group or a trifluoromethyl group. )
    The isocyanate-modified polyimide resin according to any one of claims 1 to 3, comprising a compound represented by at least one selected from the group consisting of.
  5.  請求項1乃至4のいずれか一項に記載のイソシアネート変性ポリイミド樹脂が両末端に有するアミノ基及び/又は酸無水物基と、前記アミノ基又は前記酸無水物基と反応し得る官能基を一つ有する化合物(D)の前記官能基との反応生成物である末端変性イソシアネート変性ポリイミド樹脂。 5. The isocyanate-modified polyimide resin according to any one of claims 1 to 4 has amino groups and / or acid anhydride groups at both ends, and a functional group capable of reacting with the amino group or the acid anhydride group. A terminal-modified isocyanate-modified polyimide resin which is a reaction product of the compound (D) having the above-mentioned functional groups.
  6.  請求項1乃至4のいずれか一項に記載のイソシアネート変性ポリイミド樹脂、及び前記イソシアネート変性ポリイミド樹脂と反応し得る官能基を有する化合物を含有する樹脂組成物。 A resin composition containing the isocyanate-modified polyimide resin according to any one of claims 1 to 4 and a compound having a functional group capable of reacting with the isocyanate-modified polyimide resin.
  7.  請求項5に記載の末端変性イソシアネート変性ポリイミド樹脂、及び前記末端変性イソシアネート変性ポリイミド樹脂と反応し得る官能基を有する化合物を含有する樹脂組成物。 A resin composition containing the terminal-modified isocyanate-modified polyimide resin according to claim 5 and a compound having a functional group capable of reacting with the terminal-modified isocyanate-modified polyimide resin.
  8.  前記イソシアネート変性ポリイミド樹脂と反応し得る化合物又は前記末端変性イソシアネート変性ポリイミド樹脂と反応し得る化合物が、マレイミド樹脂を含む、請求項6又は7に記載の樹脂組成物。 The resin composition according to claim 6 or 7, wherein the compound capable of reacting with the isocyanate-modified polyimide resin or the compound capable of reacting with the terminal-modified isocyanate-modified polyimide resin contains a maleimide resin.
  9.  請求項6乃至8のいずれか一項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 6 to 8.
  10.  請求項9に記載の硬化物を有する基材。

     
    A substrate having the cured product according to claim 9 .

PCT/JP2022/045423 2021-12-13 2022-12-09 Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same WO2023112849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201371A JP2023087152A (en) 2021-12-13 2021-12-13 Polyimide resin, resin composition comprising polyimide resin and cured product thereof
JP2021-201371 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112849A1 true WO2023112849A1 (en) 2023-06-22

Family

ID=86774733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045423 WO2023112849A1 (en) 2021-12-13 2022-12-09 Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same

Country Status (3)

Country Link
JP (1) JP2023087152A (en)
TW (1) TW202340321A (en)
WO (1) WO2023112849A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270121A (en) * 2006-03-09 2007-10-18 Chisso Corp Composition for forming insulating layer and insulated film
JP2016199678A (en) * 2015-04-10 2016-12-01 日本化薬株式会社 Polyamide resin and polyimide resin
JP2017008312A (en) * 2015-06-22 2017-01-12 味の素株式会社 Resin composition for mold underfill
WO2018105126A1 (en) * 2016-12-09 2018-06-14 日立化成株式会社 Composition, adhesive, sintered body, joined body, and method for producing joined body
JP2018135513A (en) * 2017-02-22 2018-08-30 三星電子株式会社Samsung Electronics Co., Ltd. Poly(amide-imide) copolymer, method of manufacturing the same, poly(amide-imide) copolymer film, window for display device, and display device
JP2020033421A (en) * 2018-08-28 2020-03-05 株式会社カネカ Polyimide resin and method for producing the same, polyimide solution, polyimide film and method for producing the same and method for producing tetracarboxylic acid dianhydride
JP2021505430A (en) * 2018-09-11 2021-02-18 エルジー・ケム・リミテッド A laminate for manufacturing a flexible display and a method for manufacturing a flexible display using the same
WO2021049503A1 (en) * 2019-09-13 2021-03-18 岡村製油株式会社 Diamine compound and method for producing same
TWI740535B (en) * 2020-06-11 2021-09-21 國立臺灣大學 Polyimide-based copolymer and electronic component and field-effect transistor comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270121A (en) * 2006-03-09 2007-10-18 Chisso Corp Composition for forming insulating layer and insulated film
JP2016199678A (en) * 2015-04-10 2016-12-01 日本化薬株式会社 Polyamide resin and polyimide resin
JP2017008312A (en) * 2015-06-22 2017-01-12 味の素株式会社 Resin composition for mold underfill
WO2018105126A1 (en) * 2016-12-09 2018-06-14 日立化成株式会社 Composition, adhesive, sintered body, joined body, and method for producing joined body
JP2018135513A (en) * 2017-02-22 2018-08-30 三星電子株式会社Samsung Electronics Co., Ltd. Poly(amide-imide) copolymer, method of manufacturing the same, poly(amide-imide) copolymer film, window for display device, and display device
JP2020033421A (en) * 2018-08-28 2020-03-05 株式会社カネカ Polyimide resin and method for producing the same, polyimide solution, polyimide film and method for producing the same and method for producing tetracarboxylic acid dianhydride
JP2021505430A (en) * 2018-09-11 2021-02-18 エルジー・ケム・リミテッド A laminate for manufacturing a flexible display and a method for manufacturing a flexible display using the same
WO2021049503A1 (en) * 2019-09-13 2021-03-18 岡村製油株式会社 Diamine compound and method for producing same
TWI740535B (en) * 2020-06-11 2021-09-21 國立臺灣大學 Polyimide-based copolymer and electronic component and field-effect transistor comprising the same

Also Published As

Publication number Publication date
TW202340321A (en) 2023-10-16
JP2023087152A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
JP6872081B2 (en) Polyamic acid resin, polyimide resin and resin composition containing these
TWI690578B (en) Adhesive composition, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate, flexible copper-clad laminate, printed circuit board, flexible printed circuit board, multilayer circuit board , Printed circuit boards and flexible printed circuit boards
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
JP6429342B2 (en) Thermosetting resin and its composition, application
CN108690552B (en) Adhesive, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
JPWO2010053185A1 (en) Resin composition for printed wiring board
WO2022004583A1 (en) Isocyanate-modified polyimide resin, resin composition and cured product of same
JP2020072198A (en) Metal-clad laminate, circuit board, multilayer circuit board, and manufacturing method thereof
CN112980385A (en) Adhesive composition, related article of adhesive composition and method of making the same
JP2021025053A (en) Resin material and multilayer printed wiring board
WO2023013224A1 (en) Polyimide resin, resin composition comprising polyimide resin and cured product thereof
JP2023039241A (en) Polyimide resin, resin composition containing the polyimide resin and cured product of the same
JP2009007531A (en) Resin/filler composite material and printed wiring board using the same
JP2005314562A (en) Thermosetting resin composition and its application
JP4202509B2 (en) Laminate for circuit
WO2023112849A1 (en) Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same
TW202233416A (en) Polyimide resin composition, adhesive composition, film adhesive material, adhesive sheet, copper foil with resin, copper clad laminate, printed wiring board and polyimide film a polyimide resin layer with low dielectric constant, low dielectric loss tangent and excellent solder heat resistance
JP2006117848A (en) Thermosetting resin composition and its use
WO2023090348A1 (en) Polyimide resin, resin composition containing said polyimide resin, and cured product thereof
JP2021054920A (en) Polyamic acid composition and polyimide molded body
JP2023108082A (en) Polyimide resin, resin composition comprising the polyimide resin and cured product thereof
JP2023068801A (en) Polyimide resin composition and cured product of the same
JP2023179860A (en) Polyimide resin composition and cured product thereof
JP2023075383A (en) Polyimide resin composition and cured body thereof
JP2023157103A (en) Modified styrenic elastomer, resin composition containing the same, and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907376

Country of ref document: EP

Kind code of ref document: A1