JP2018065957A - Curable resin composition, and method for producing semiconductor device - Google Patents

Curable resin composition, and method for producing semiconductor device Download PDF

Info

Publication number
JP2018065957A
JP2018065957A JP2016206689A JP2016206689A JP2018065957A JP 2018065957 A JP2018065957 A JP 2018065957A JP 2016206689 A JP2016206689 A JP 2016206689A JP 2016206689 A JP2016206689 A JP 2016206689A JP 2018065957 A JP2018065957 A JP 2018065957A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
semiconductor chip
semiconductor device
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016206689A
Other languages
Japanese (ja)
Inventor
博之 熊倉
Hiroyuki Kumakura
博之 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2016206689A priority Critical patent/JP2018065957A/en
Priority to TW106134306A priority patent/TW201827514A/en
Publication of JP2018065957A publication Critical patent/JP2018065957A/en
Priority to JP2022104545A priority patent/JP7392925B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a curable resin composition that can improve the reliability of a semiconductor device.SOLUTION: A curable resin composition is applied by the inkjet system, and can be cured with light or heat. The curable resin composition contains (a) a cationic polymerizable monomer, (b) a photocationic polymerization initiator, and (c) an acrylonitrile copolymer that is liquid at room temperature, and has a 25°C viscosity of 10 mPa s or more and 100 mPa s or less.SELECTED DRAWING: Figure 1

Description

本発明は、インクジェット方式により塗工され、かつ光硬化および熱硬化可能である硬化性樹脂組成物、およびそれを用いる半導体装置の製造方法に関する。   The present invention relates to a curable resin composition that is applied by an inkjet method and that can be photocured and thermally cured, and a method for manufacturing a semiconductor device using the same.

基板上に単独または複数の半導体チップが硬化性樹脂組成物層を介して積層された半導体装置が知られている。この半導体装置は、半導体チップの下面に硬化性樹脂組成物層を積層した状態で、その硬化性樹脂組成物層を硬化させることにより製造される。   2. Description of the Related Art There is known a semiconductor device in which a single or a plurality of semiconductor chips are stacked on a substrate via a curable resin composition layer. This semiconductor device is manufactured by curing the curable resin composition layer with the curable resin composition layer laminated on the lower surface of the semiconductor chip.

上記半導体装置の製造方法としては、基板または半導体チップ上にディスペンサーやスクリーン印刷によりペースト状の硬化性樹脂組成物(ダイアタッチペースト(DAP))を塗布し、硬化性樹脂組成物層を形成した後、その上に半導体チップを積層し、硬化性樹脂組成物層を硬化させるものがある。しかしながら、このDAPを用いる製造方法では、タクトタイムが長いことや、均一な厚みで硬化性樹脂組成物を塗布するのが困難であるために、接続部の厚み精度が低いという問題がある。   As a method for manufacturing the semiconductor device, a paste-like curable resin composition (die attach paste (DAP)) is applied on a substrate or a semiconductor chip by a dispenser or screen printing to form a curable resin composition layer. Some semiconductor chips are stacked thereon to cure the curable resin composition layer. However, this manufacturing method using DAP has a problem that the tact time is long and it is difficult to apply the curable resin composition with a uniform thickness, so that the thickness accuracy of the connecting portion is low.

そこで、特許文献1、2では、タクトタイムの短縮と接続部の厚み精度を高めるために、DAPを用いる製造方法として、インクジェット装置により硬化性樹脂組成物を塗工する方法が提案されている。具体的には、光硬化および熱硬化可能である硬化性樹脂組成物を、インクジェット装置から吐出して硬化性樹脂組成物層を形成し、これを光硬化させてBステージ化層を形成する工程と、その上に半導体チップを積層してBステージ化層を熱硬化させる工程とを備える半導体装置の製造方法が提案されている。   Therefore, Patent Documents 1 and 2 propose a method of applying a curable resin composition by an inkjet apparatus as a manufacturing method using DAP in order to shorten the tact time and increase the thickness accuracy of the connection portion. Specifically, a step of discharging a curable resin composition that is photocurable and heat curable from an inkjet apparatus to form a curable resin composition layer, and photocuring this to form a B-staged layer And a method of manufacturing a semiconductor device including a step of stacking a semiconductor chip thereon and thermosetting the B-staged layer.

また、特許文献1、2には、インクジェット用の硬化性樹脂組成物として、硬化性化合物と、光重合開始剤と、熱硬化剤とを含むものを用い、上記硬化性化合物としては、ラジカル重合性モノマーなどの光硬化性化合物と、エポキシ化合物およびオキセタン化合物などの熱硬化性化合物とを含むものを用いることが開示されている。   In Patent Documents 1 and 2, as a curable resin composition for inkjet, a curable compound, a photopolymerization initiator, and a thermosetting agent are used. As the curable compound, radical polymerization is used. It is disclosed to use a compound containing a photocurable compound such as a curable monomer and a thermosetting compound such as an epoxy compound and an oxetane compound.

特開2014−220372号公報JP 2014-220372 A

特開2014−237814号公報JP 2014-237814 A

しかしながら、特許文献1、2に開示されている硬化性樹脂組成物では、高い接合強度が得られず、半導体装置の信頼性が低下する虞がある。信頼性のうちでも特に耐リフロー性が低下し、後工程において剥離が発生する虞がある。   However, in the curable resin compositions disclosed in Patent Documents 1 and 2, high bonding strength cannot be obtained, and the reliability of the semiconductor device may be reduced. Among the reliability, the reflow resistance is particularly deteriorated, and there is a possibility that peeling occurs in a subsequent process.

本発明の目的は、半導体装置の信頼性を向上できる硬化性樹脂組成物、およびそれを用いる半導体装置の製造方法を提供することにある。   The objective of this invention is providing the curable resin composition which can improve the reliability of a semiconductor device, and the manufacturing method of a semiconductor device using the same.

上述の課題を解決するために、第1の発明は、インクジェット方式により塗工され、かつ光硬化および熱硬化可能である硬化性樹脂組成物であって、以下の成分(a)〜(c):
(a)カチオン重合性モノマー;
(b)光カチオン重合開始剤;および
(c)室温で液状のアクリロニトリル共重合体
を含み、
25℃粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物である。
In order to solve the above-described problems, the first invention is a curable resin composition that is applied by an ink jet method and is photocurable and heat curable, and includes the following components (a) to (c): :
(A) a cationically polymerizable monomer;
(B) a photocationic polymerization initiator; and (c) an acrylonitrile copolymer that is liquid at room temperature,
The curable resin composition has a viscosity at 25 ° C. of 10 mPa · s or more and 100 mPa · s or less.

第2の発明は、第1の半導体チップと、配線基板または第2の半導体チップとを樹脂硬化物層により固着する半導体装置の製造方法であって、以下の工程(A)〜(D):
(A)配線基板または第2の半導体チップの電極形成面に、光硬化性および熱硬化性を有し、25℃における粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物を、インクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する工程;
(B)硬化性樹脂組成物層に光を照射して、Bステージ化された半硬化樹脂層を形成する工程;
(C)半硬化樹脂層上に、第1の半導体チップの電極形成面を押圧して、第1の半導体チップと配線基板または第2の半導体チップとを積層する工程;および
(D)半硬化樹脂層を加熱処理して、樹脂硬化物層を形成する工程
を備え、
硬化性樹脂組成物が、以下の成分(a)〜(c):
(a)カチオン重合性モノマー;
(b)光カチオン重合開始剤;および
(c)室温で液状のアクリロニトリル共重合ポリマー
を含む半導体装置の製造方法である。
A second invention is a method of manufacturing a semiconductor device in which a first semiconductor chip and a wiring board or a second semiconductor chip are fixed by a cured resin layer, and the following steps (A) to (D):
(A) A curable resin composition having photocurability and thermosetting on the electrode formation surface of the wiring board or the second semiconductor chip and having a viscosity at 25 ° C. of 10 mPa · s to 100 mPa · s, Discharging from an inkjet nozzle to form a curable resin composition layer;
(B) irradiating light to the curable resin composition layer to form a B-staged semi-cured resin layer;
(C) pressing the electrode forming surface of the first semiconductor chip on the semi-cured resin layer and laminating the first semiconductor chip and the wiring substrate or the second semiconductor chip; and (D) semi-cured A step of heat-treating the resin layer to form a cured resin layer,
The curable resin composition has the following components (a) to (c):
(A) a cationically polymerizable monomer;
(B) a cationic photopolymerization initiator; and (c) a method for producing a semiconductor device comprising an acrylonitrile copolymer polymer that is liquid at room temperature.

本発明によれば、硬化性樹脂組成物が、(a)カチオン重合性モノマー、(b)光カチオン重合開始剤および(c)室温で液状のアクリロニトリル共重合体を含むので、第1の半導体チップと配線基板または第2の半導体チップとの間の接合強度をより高めて、半導体装置の信頼性を向上できる。   According to the present invention, the curable resin composition contains (a) a cationic polymerizable monomer, (b) a photocationic polymerization initiator, and (c) an acrylonitrile copolymer that is liquid at room temperature. And the reliability of the semiconductor device can be improved by further increasing the bonding strength between the wiring board and the second semiconductor chip.

図1は、本発明の第1の実施形態に係る半導体装置の製造方法により得られる半導体装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a semiconductor device obtained by the method for manufacturing a semiconductor device according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る半導体装置の製造方法により得られる半導体装置の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a semiconductor device obtained by the method for manufacturing a semiconductor device according to the second embodiment of the present invention.

<第1の実施形態>
[半導体装置の構成]
まず、図1を参照して、本発明の第1の実施形態に係る半導体装置の製造方法により得られる半導体装置10の構成について説明する。この半導体装置10は、配線基板11と、樹脂硬化物層12により配線基板11上に固着された半導体チップ13とを備えている。半導体チップ13は、ボンディングワイヤ13aにより配線基板11に電気的に接続されている。配線基板11上に設けられた樹脂硬化物層12、半導体チップ13およびボンディングワイヤ13aが、図示しない封止樹脂により封止されていてもよい。
<First Embodiment>
[Configuration of semiconductor device]
First, the configuration of a semiconductor device 10 obtained by the method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described with reference to FIG. The semiconductor device 10 includes a wiring board 11 and a semiconductor chip 13 fixed on the wiring board 11 with a cured resin layer 12. The semiconductor chip 13 is electrically connected to the wiring board 11 by bonding wires 13a. The cured resin layer 12, the semiconductor chip 13, and the bonding wire 13a provided on the wiring substrate 11 may be sealed with a sealing resin (not shown).

[硬化性樹脂組成物の組成]
樹脂硬化物層12は、本発明の第1の実施形態に係る硬化性樹脂組成物を硬化することにより形成されている。この硬化性樹脂組成物は、インクジェット方式により塗工され、かつ光硬化および熱硬化可能であり、以下の成分(a)〜(c)を含んでいる。硬化性樹脂組成物は、上記の成分(a)〜(c)に加えて、以下の成分(d)をさらに含んでいてもよい。
[Composition of curable resin composition]
The cured resin layer 12 is formed by curing the curable resin composition according to the first embodiment of the present invention. This curable resin composition is applied by an ink jet method and can be photocured and thermally cured, and includes the following components (a) to (c). The curable resin composition may further include the following component (d) in addition to the components (a) to (c).

<成分(a)>
成分(a)は、カチオン重合性モノマーである。このモノマーは、硬化性樹脂組成物の硬化速度を向上する観点から、脂環式エポキシ化合物であることが好ましい。脂環式エポキシ化合物は、単官能または2官能のものが好ましい。3官能以上の脂環式エポキシ化合物では、硬化性樹脂組成物の粘度が高くなりすぎて、塗布性が悪化する虞があるからである。単官能の脂環式エポキシ化合物または2官能の脂環式エポキシ化合物を単独で用いてもよいし、単官能の脂環式エポキシ化合物と2官能の脂環式エポキシ化合物とを組み合わせて用いてもよい。
<Component (a)>
Component (a) is a cationically polymerizable monomer. This monomer is preferably an alicyclic epoxy compound from the viewpoint of improving the curing rate of the curable resin composition. The alicyclic epoxy compound is preferably monofunctional or bifunctional. This is because the trifunctional or higher alicyclic epoxy compound has a possibility that the viscosity of the curable resin composition becomes too high and the applicability is deteriorated. A monofunctional alicyclic epoxy compound or a bifunctional alicyclic epoxy compound may be used alone, or a monofunctional alicyclic epoxy compound and a bifunctional alicyclic epoxy compound may be used in combination. Good.

単官能の脂環式エポキシ化合物としては、例えば、1,2−エポキシ−4−ビニルシクロヘキサン(株式会社ダイセル製、セロキサイド2000)、4−ビニルエポキシシクロヘキサン、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ−2−エチルヘキシルなどが挙げられる。これらを単独で用いても、複数を組み合わせて用いてもよい。2官能の脂環式エポキシ化合物としては、例えば、(3,3’,4,4’−ジエポキシ)ビシクロヘキシル(株式会社ダイセル製、セロキサイド8000)、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製、セロキサイド2021P)、3,4−エポキシシクロヘキシルオクチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイド、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、3,4−エポキシ−6−メチルシクロヘキシル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、メチレンビス(3,4−エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4−エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、1,2,8,9−ジエポキシリモネンなどが挙げられる。これらを単独で用いても、複数を組み合わせて用いてもよい。   Examples of the monofunctional alicyclic epoxy compound include 1,2-epoxy-4-vinylcyclohexane (Daicel Corporation, Celoxide 2000), 4-vinyl epoxycyclohexane, dioctyl epoxyhexahydrophthalate, and epoxyhexahydrophthalate. Examples include di-2-ethylhexyl acid. These may be used alone or in combination. Examples of the bifunctional alicyclic epoxy compound include (3,3 ′, 4,4′-diepoxy) bicyclohexyl (manufactured by Daicel Corporation, Celoxide 8000), and 3,4-epoxycyclohexylmethyl-3,4- Epoxycyclohexanecarboxylate (Daicel Corporation, Celoxide 2021P), 3,4-epoxycyclohexyloctyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4 -Epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene dioxide, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6- Methylcyclohexyl -3,4-epoxy-6-methylcyclohexanecarboxylate, methylene bis (3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol di (3,4-epoxycyclohexylmethyl) ether, ethylene bis (3,4 -Epoxycyclohexanecarboxylate), 1,2,8,9-diepoxy limonene and the like. These may be used alone or in combination.

<成分(b)>
成分(b)は、光カチオン重合開始剤である。光カチオン重合開始剤は、スルホニウムボレート錯体であることが好ましい。光源としてUV−LEDを用いる場合には、スルホニウムボレート錯体は、以下の式(1)で表されるトリス(4−(4−アセチルフェニル)チオフェニル)スルホニウムテトラキス−(ペンタフルオロフェニル)ボレートであることが好ましい。

Figure 2018065957
<Component (b)>
Component (b) is a photocationic polymerization initiator. The cationic photopolymerization initiator is preferably a sulfonium borate complex. When UV-LED is used as the light source, the sulfonium borate complex is tris (4- (4-acetylphenyl) thiophenyl) sulfonium tetrakis- (pentafluorophenyl) borate represented by the following formula (1). Is preferred.
Figure 2018065957

スルホニウムボレート錯体などの光カチオン重合開始剤は、UV光の照射後に熱硬化剤として作用する。このため、硬化性樹脂組成物に対して成分(d)である熱カチオン重合開始剤が添加されていなくても、UV光の照射によって半硬化した硬化性樹脂組成物を熱硬化させることができる。   Photocationic polymerization initiators such as sulfonium borate complexes act as thermosetting agents after UV light irradiation. For this reason, even if the thermal cationic polymerization initiator which is a component (d) is not added with respect to curable resin composition, the curable resin composition semi-hardened by irradiation of UV light can be thermoset. .

<成分(c)>
成分(c)は、室温で液状のアクリロニトリル共重合体である。アクリロニトリル共重合体は、例えば、以下の式(4)で表されるアクリロニトリル・ブタジエンゴム(NBR)、それを変性させて得られるもの、およびCTBN変性エポキシ樹脂などの少なくとも1種である。

Figure 2018065957
<Component (c)>
Component (c) is an acrylonitrile copolymer that is liquid at room temperature. The acrylonitrile copolymer is, for example, at least one of acrylonitrile-butadiene rubber (NBR) represented by the following formula (4), a product obtained by modifying it, and a CTBN-modified epoxy resin.
Figure 2018065957

アクリロニトリル共重合体のアクリロニトリル部分は弱塩基性を示すため、カチオン重合硬化系に添加すると、硬化反応時に弱い硬化阻害を引き起こす。この硬化阻害が、UV光によるBステージ化の際に、UV照射後の暗反応による硬化の進行を抑制する。したがって、半硬化樹脂層の表面タックのコントロールが可能となる。なお、半硬化樹脂層については、後述の“半導体装置の製造方法”にて説明する。   Since the acrylonitrile portion of the acrylonitrile copolymer is weakly basic, when added to a cationic polymerization curing system, it causes weak curing inhibition during the curing reaction. This curing inhibition suppresses the progress of curing due to a dark reaction after UV irradiation during B-stage formation with UV light. Therefore, the surface tack of the semi-cured resin layer can be controlled. The semi-cured resin layer will be described in “Method of manufacturing semiconductor device” described later.

アクリロニトリル共重合体が、カチオン重合性モノマー100質量部に対して、0.5質量部以上25質量部以下添加されていることが好ましい。アクリロニトリル共重合体が0.5質量部未満であると、UV光照射後に、半硬化樹脂層の硬化が進行してしまい、半硬化樹脂層の表面タック感が低下する虞がある。一方、アクリロニトリル共重合体が25質量部を超えると、硬化阻害が強すぎてUV光照射後の硬化が十分に進行せず、均一なチップ搭載ができなくなる虞がある。また、25℃における硬化性樹脂組成物の粘度が高くなりすぎ、インクジェットによる塗布性が悪化する虞もある。   It is preferable that the acrylonitrile copolymer is added in an amount of 0.5 to 25 parts by mass with respect to 100 parts by mass of the cationic polymerizable monomer. If the acrylonitrile copolymer is less than 0.5 parts by mass, the curing of the semi-cured resin layer proceeds after UV light irradiation, and the surface tackiness of the semi-cured resin layer may be reduced. On the other hand, if the acrylonitrile copolymer exceeds 25 parts by mass, the inhibition of curing is too strong, and curing after UV light irradiation does not proceed sufficiently, and there is a possibility that uniform chip mounting cannot be performed. In addition, the viscosity of the curable resin composition at 25 ° C. becomes too high, and the applicability by inkjet may be deteriorated.

アクリロニトリル共重合体におけるアクリロニトリル量が、1分子中に10モル%以上30モル%以下であることが好ましい。アクリロニトリル量が1分子中に10モル%未満であると、UV光照射後に、半硬化樹脂層の硬化が進行してしまい、半硬化樹脂層の表面タック感が低下する虞がある。一方、アクリロニトリル量が1分子中に30モル%を超えると、硬化阻害が強すぎてUV光照射後の硬化が十分に進行せず、均一なチップ搭載ができなくなる虞がある。また、25℃における硬化性樹脂組成物の粘度が高くなりすぎ、インクジェットによる塗布性が悪化する虞もある。   The amount of acrylonitrile in the acrylonitrile copolymer is preferably 10 mol% or more and 30 mol% or less per molecule. When the amount of acrylonitrile is less than 10 mol% per molecule, the curing of the semi-cured resin layer proceeds after UV light irradiation, and the surface tackiness of the semi-cured resin layer may be reduced. On the other hand, if the amount of acrylonitrile exceeds 30 mol% in one molecule, curing inhibition is too strong and curing after UV light irradiation does not proceed sufficiently, and there is a possibility that uniform chip mounting cannot be performed. In addition, the viscosity of the curable resin composition at 25 ° C. becomes too high, and the applicability by inkjet may be deteriorated.

<成分(d)>
成分(d)は、熱カチオン重合開始剤である。上述したように成分(d)は必須成分ではないが、硬化性樹脂組成物をより確実に熱硬化させる観点からすると、硬化性樹脂組成物が成分(d)を含んでいることが好ましい。但し、硬化性樹脂組成物の保存安定性の観点からすると、硬化性樹脂組成物が成分(d)を含んでいないことが好ましい。熱カチオン重合開始剤は、スルホニウムボレート錯体であることが好ましい。スルホニウムボレート錯体が、以下の式(2)で表されるトリアリルスルホニウムテトラキス−(ペンタフルオロフェニル)ボレート、および以下の式(3)で表される(4−ヒドロキシフェニル)ジメチルスルホニウム=テトラキス(ペンタフルオロフェニル)ボレートの少なくとも1種であることが好ましい。

Figure 2018065957
(但し、式(2)中、R1は、アラルキル基であり、R2は低吸アルキル基であり、R3は水素原子または低吸アルコキシカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。)
Figure 2018065957
<Component (d)>
Component (d) is a thermal cationic polymerization initiator. As described above, the component (d) is not an essential component, but from the viewpoint of more reliably thermosetting the curable resin composition, the curable resin composition preferably includes the component (d). However, from the viewpoint of storage stability of the curable resin composition, it is preferable that the curable resin composition does not contain the component (d). The thermal cationic polymerization initiator is preferably a sulfonium borate complex. The sulfonium borate complex includes triallylsulfonium tetrakis- (pentafluorophenyl) borate represented by the following formula (2), and (4-hydroxyphenyl) dimethylsulfonium = tetrakis (penta) represented by the following formula (3). It is preferably at least one of (fluorophenyl) borate.
Figure 2018065957
(In the formula (2), R1 is an aralkyl group, R2 is a low-absorbing alkyl group, R3 is a hydrogen atom or a low-absorbing alkoxycarbonyl group, X is a halogen atom, and n is 1 to 1) It is an integer of 3.)
Figure 2018065957

<その他の成分>
硬化性樹脂組成物が、必要に応じて、カップリング剤などの接着助剤、導電性粒子、顔料、染料、レベリング剤、消泡剤、および重合禁止剤などのうちの少なくとも1種を含んでいてもよい。
<Other ingredients>
The curable resin composition contains at least one of an adhesion aid such as a coupling agent, conductive particles, a pigment, a dye, a leveling agent, an antifoaming agent, and a polymerization inhibitor, if necessary. May be.

[半導体装置の製造方法]
次に、本発明の第1の実施形態に係る半導体装置の製造方法について説明する。この半導体装置の製造方法は、半導体チップ13と配線基板11とを樹脂硬化物層12により固着する半導体装置の製造方法であって、以下の工程(A1)〜(D1)を備えている。
[Method for Manufacturing Semiconductor Device]
Next, a method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described. This method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which the semiconductor chip 13 and the wiring substrate 11 are fixed by the cured resin layer 12, and includes the following steps (A1) to (D1).

(工程(A1))
配線基板11の電極形成面に上記の硬化性樹脂組成物をインクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する。上記の硬化性樹脂組成物は、25℃において10mPa・s以上100mPa・s以下の範囲の粘度を有している。25℃における粘度が上記の範囲外であると、インクジェット装置による硬化性樹脂組成物の塗布性が低下する。
(Process (A1))
The curable resin composition is discharged from an inkjet nozzle onto the electrode forming surface of the wiring substrate 11 to form a curable resin composition layer. Said curable resin composition has the viscosity of the range of 10 mPa * s or more and 100 mPa * s or less in 25 degreeC. When the viscosity at 25 ° C. is outside the above range, the applicability of the curable resin composition by the ink jet apparatus is lowered.

(工程(B1))
次に、硬化性樹脂組成物層に光を照射して、Bステージ化された半硬化樹脂層を形成する。ここで、Bステージ化とは、膜粘度が1000Pa・s以上15000Pa・s以下の範囲内の状態をいう。半硬化樹脂層がBステージ化状態にあることで、良好な表面タック感が得られるため、均一なチップ搭載ができ、ダイシェア強度(配線基板11と半導体チップ13とが破断される強度)が向上する。
(Process (B1))
Next, the curable resin composition layer is irradiated with light to form a B-staged semi-cured resin layer. Here, the B-stage is a state where the film viscosity is in the range of 1000 Pa · s to 15000 Pa · s. Since the semi-cured resin layer is in a B-stage state, a good surface tack feeling can be obtained, so that even chip mounting can be achieved and die shear strength (strength at which the wiring substrate 11 and the semiconductor chip 13 are broken) is improved. To do.

(工程(C1))
次に、半硬化樹脂層上に、半導体チップ13の電極形成面を押圧して、半導体チップ13と配線基板11とを積層し、半導体チップ13と配線基板11とが電気的に接続された積層体を形成する。
(Process (C1))
Next, on the semi-cured resin layer, the electrode forming surface of the semiconductor chip 13 is pressed to laminate the semiconductor chip 13 and the wiring board 11, and the semiconductor chip 13 and the wiring board 11 are electrically connected. Form the body.

(工程(D1))
次に、積層体の半硬化樹脂層を加熱処理して、樹脂硬化物層12を形成する。次に、半導体チップ13をボンディングワイヤ13aにより配線基板11に電気的に接続する。
(Process (D1))
Next, the semi-cured resin layer of the laminate is heat-treated to form the cured resin layer 12. Next, the semiconductor chip 13 is electrically connected to the wiring board 11 by bonding wires 13a.

[効果]
第1の実施形態に係る硬化性樹脂組成物は、成分(a)としてのカチオン重合性モノマー、成分(b)として光カチオン重合開始剤、および成分(c)としてアクリロニトリル共重合ポリマーを含んでいる。この硬化性樹脂組成物を上記の工程(A1)〜(D1)を備える半導体の製造方法に適用することで、半導体チップ13と配線基板11との接合強度を高めることができる。したがって、半導体装置の信頼性を向上できる。また、タクトタイムを短くし、半導体装置を効率的に製造することができる。更に、半導体装置の接続部の厚み精度を高めることも可能である。
[effect]
The curable resin composition according to the first embodiment includes a cationic polymerizable monomer as the component (a), a photocationic polymerization initiator as the component (b), and an acrylonitrile copolymer as the component (c). . By applying this curable resin composition to a semiconductor manufacturing method including the above steps (A1) to (D1), the bonding strength between the semiconductor chip 13 and the wiring substrate 11 can be increased. Therefore, the reliability of the semiconductor device can be improved. Further, the tact time can be shortened and the semiconductor device can be manufactured efficiently. Furthermore, it is possible to increase the thickness accuracy of the connection portion of the semiconductor device.

<第2の実施形態>
[半導体装置の構成]
まず、図2を参照して、本発明の第2の実施形態に係る半導体装置の製造方法により得られる半導体装置10Aの構成について説明する。この半導体装置10Aは、樹脂硬化物層14により半導体チップ13上に固着された半導体チップ15をさらに備えている。なお、第2の実施形態において第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
<Second Embodiment>
[Configuration of semiconductor device]
First, the configuration of a semiconductor device 10A obtained by the method for manufacturing a semiconductor device according to the second embodiment of the present invention will be described with reference to FIG. The semiconductor device 10 </ b> A further includes a semiconductor chip 15 fixed on the semiconductor chip 13 with a cured resin layer 14. Note that in the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

半導体チップ15は、ボンディングワイヤ15aにより配線基板11に電気的に接続されている。配線基板11上に設けられた樹脂硬化物層12、14、半導体チップ13、15およびボンディングワイヤ13a、15aが、図示しない封止樹脂により封止されていてもよい。   The semiconductor chip 15 is electrically connected to the wiring board 11 by bonding wires 15a. The cured resin layers 12 and 14, the semiconductor chips 13 and 15, and the bonding wires 13 a and 15 a provided on the wiring substrate 11 may be sealed with a sealing resin (not shown).

[半導体装置の製造方法]
次に、本発明の第2の実施形態に係る半導体装置の製造方法について説明する。この半導体装置の製造方法は、半導体チップ13と配線基板11とを樹脂硬化物層12により固着し、かつ半導体チップ15と半導体チップ13とを樹脂硬化物層14により固着する半導体装置の製造方法であって、第1の実施形態の工程(A1)〜(D1)に加えて、以下の工程(A2)〜(D2)をさらに備えている。
[Method for Manufacturing Semiconductor Device]
Next, a method for manufacturing a semiconductor device according to the second embodiment of the present invention will be described. This method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which the semiconductor chip 13 and the wiring substrate 11 are fixed by the cured resin layer 12 and the semiconductor chip 15 and the semiconductor chip 13 are fixed by the cured resin layer 14. In addition to the steps (A1) to (D1) of the first embodiment, the following steps (A2) to (D2) are further provided.

(工程(A2))
上記の工程(A1)〜(D1)の後に、半導体チップ13の電極形成面に硬化性樹脂組成物をインクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する。硬化性樹脂組成物は、第1の実施形態に係る硬化性樹脂組成物と同様である。
(Process (A2))
After said process (A1)-(D1), a curable resin composition is discharged from the inkjet nozzle to the electrode formation surface of the semiconductor chip 13, and a curable resin composition layer is formed. The curable resin composition is the same as the curable resin composition according to the first embodiment.

(工程(B2))
次に、硬化性樹脂組成物層に光を照射して、Bステージ化された半硬化樹脂層を形成する。ここで、Bステージ化とは、膜粘度が1000Pa・s以上15000Pa・s以下の範囲内の状態をいう。半硬化樹脂層がBステージ化状態にあることで、良好な表面タック感が得られるため、均一なチップ搭載ができ、ダイシェア強度(半導体チップ13、15が破断される強度)が向上する。
(Process (B2))
Next, the curable resin composition layer is irradiated with light to form a B-staged semi-cured resin layer. Here, the B-stage is a state where the film viscosity is in the range of 1000 Pa · s to 15000 Pa · s. When the semi-cured resin layer is in the B-staged state, a good surface tack feeling can be obtained, so that uniform chip mounting can be achieved and the die shear strength (strength at which the semiconductor chips 13 and 15 are broken) is improved.

(工程(C2))
次に、半硬化樹脂層上に、半導体チップ15の電極形成面を押圧して、半導体チップ13、15を積層し、半導体チップ13、15が電気的に接続された積層体を形成する。
(Process (C2))
Next, the electrode forming surface of the semiconductor chip 15 is pressed on the semi-cured resin layer to stack the semiconductor chips 13 and 15, thereby forming a stacked body in which the semiconductor chips 13 and 15 are electrically connected.

(工程(D2))
次に、積層体の半硬化樹脂層を加熱処理して、樹脂硬化物層14を形成する。次に、半導体チップ15をボンディングワイヤ15aにより配線基板11に電気的に接続する。
(Process (D2))
Next, the semi-cured resin layer of the laminate is heat-treated to form the cured resin layer 14. Next, the semiconductor chip 15 is electrically connected to the wiring board 11 by bonding wires 15a.

[効果]
第2の実施形態に係る半導体装置の製造方法では、硬化性樹脂組成物を上記の工程(A1)〜(D1)および工程(A2)〜(D2)を備える半導体の製造方法に適用することで、半導体チップ13と配線基板11との間、および半導体チップ13と半導体チップ15との間の接合強度をより高めて、半導体装置10Aの信頼性を向上できる。
[effect]
In the method for manufacturing a semiconductor device according to the second embodiment, the curable resin composition is applied to a method for manufacturing a semiconductor including the steps (A1) to (D1) and the steps (A2) to (D2). Further, the bonding strength between the semiconductor chip 13 and the wiring substrate 11 and between the semiconductor chip 13 and the semiconductor chip 15 can be further increased, and the reliability of the semiconductor device 10A can be improved.

[変形例]
上述の第2の実施形態では配線基板11上に2つの半導体チップ13、15が積層された構成を例として説明したが、配線基板上に3つ以上の複数の半導体チップが積層された構成としてもよい。この場合、各半導体チップの間に樹脂硬化物層が設けられる。この樹脂硬化物層は上述の第2の実施形態における樹脂硬化物層14と同様にして形成される。
[Modification]
In the second embodiment described above, the configuration in which the two semiconductor chips 13 and 15 are stacked on the wiring substrate 11 has been described as an example. However, the configuration in which three or more semiconductor chips are stacked on the wiring substrate is described. Also good. In this case, a cured resin layer is provided between the semiconductor chips. This cured resin layer is formed in the same manner as the cured resin layer 14 in the second embodiment described above.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

表1に本実施例および比較例にて用いた材料を示す。

Figure 2018065957
Table 1 shows materials used in this example and comparative examples.
Figure 2018065957

[実施例1〜10、比較例1〜3]
(工程(A1))
まず、表2、表3に示す配合になるように各材料を秤量しポリ容器中に入れて、自転公転ミキサーにて均一に混合した後、5μmフィルターにて濾過を行うことにより、硬化性樹脂組成物(接着剤)を調製した。次に、FR4ガラスエポキシ基板(厚み1mm)上の、半導体チップを置く位置に10×10mmの大きさになるようにインクジェット装置(50℃に加温、東芝テック社製ヘッドを使用、ヘッド直近にUV−LED(365nm)光源を設置)を用いて、硬化性樹脂組成物を厚み20μmに塗布し、硬化性樹脂組成物層を形成した。
[Examples 1 to 10, Comparative Examples 1 to 3]
(Process (A1))
First, each material is weighed so as to have the composition shown in Table 2 and Table 3, put in a plastic container, mixed uniformly with a rotating and rotating mixer, and then filtered with a 5 μm filter, thereby curable resin. A composition (adhesive) was prepared. Next, on an FR4 glass epoxy substrate (thickness 1 mm), an inkjet apparatus (heated to 50 ° C., using a head manufactured by TOSHIBA TEC Co., Ltd.) Using a UV-LED (365 nm) light source), the curable resin composition was applied to a thickness of 20 μm to form a curable resin composition layer.

(工程(B1))
次に、表2、表3に示すように積算光量が50〜3000mJ/cm2の範囲となるように、塗布直後の硬化性樹脂組成物層にUV−LED光を照射して光硬化を行うことより、Bステージ化された半硬化樹脂層を形成した。
(Process (B1))
Next, as shown in Tables 2 and 3, UV-LED light is applied to the curable resin composition layer immediately after coating so that the integrated light quantity is in the range of 50 to 3000 mJ / cm 2 , and photocuring is performed. Thus, a B-staged semi-cured resin layer was formed.

(工程(C1))
次に、ダイボンディング装置を用いて、半硬化樹脂層上に半導体チップ(3.3×3.3mm、厚み0.4mm)に見立てたシリコンベアチップを積層して、積層体を得た。
(Process (C1))
Next, using a die bonding apparatus, a silicon bare chip as a semiconductor chip (3.3 × 3.3 mm, thickness 0.4 mm) was stacked on the semi-cured resin layer to obtain a stacked body.

(工程(D1))
次に、得られた積層体を160℃のオーブン内に1時間入れて、Bステージ化された半硬化樹脂層を熱硬化させることにより、樹脂硬化物層を形成した。以上により、目的とする半導体装置(積層構造体)が作製された。
(Process (D1))
Next, the obtained laminate was placed in an oven at 160 ° C. for 1 hour, and the B-staged semi-cured resin layer was thermally cured to form a cured resin layer. Thus, the intended semiconductor device (laminated structure) was produced.

[評価]
実施例1〜10、比較例1〜3にて調製した硬化性樹脂組成物および作製した半導体装置に以下の評価を行った。
[Evaluation]
The following evaluation was performed on the curable resin compositions prepared in Examples 1 to 10 and Comparative Examples 1 to 3 and the fabricated semiconductor devices.

(粘度)
レオメーター(HAAKE社製)にて25℃における硬化性樹脂組成物の初期粘度、および50℃加熱時における硬化性樹脂組成物の粘度を測定した。ローターとしてはC35/1を用い、シアレート100(1/s)の条件にて粘度測定を行った。
(viscosity)
The initial viscosity of the curable resin composition at 25 ° C. and the viscosity of the curable resin composition when heated at 50 ° C. were measured with a rheometer (manufactured by HAAKE). As a rotor, C35 / 1 was used, and the viscosity was measured under the condition of shear rate 100 (1 / s).

(加熱後の粘度安定性)
硬化性樹脂組成物の加熱後の粘度安定性を以下のようにして判定した。まず、レオメーター(HAAKE社製)を用いて硬化性樹脂組成物の25℃の初期粘度を測定した。次に、硬化性樹脂組成物を50℃オーブン内に24h放置した後に、レオメーター(HAAKE社製)を用いて再度粘度を測定した。次に、加熱前後の測定粘度に基づき、以下の基準にて加熱後の粘度安定性を判定した。なお、ローターとしてはC35/1を用い、シアレート100(1/s)の条件にて粘度測定を行った。
○:加熱後の粘度が、初期粘度の1.1倍未満である
△:加熱後の粘度が、初期粘度の1.1倍以上、1.5倍未満である
×:加熱後の粘度が、初期粘度の1.5倍以上である
(Viscosity stability after heating)
The viscosity stability after heating of the curable resin composition was determined as follows. First, the initial viscosity at 25 ° C. of the curable resin composition was measured using a rheometer (manufactured by HAAKE). Next, after leaving the curable resin composition in an oven at 50 ° C. for 24 hours, the viscosity was measured again using a rheometer (manufactured by HAAKE). Next, based on the measured viscosity before and after heating, the viscosity stability after heating was determined according to the following criteria. Note that C35 / 1 was used as the rotor, and the viscosity was measured under the condition of shear rate 100 (1 / s).
○: The viscosity after heating is less than 1.1 times the initial viscosity Δ: The viscosity after heating is 1.1 times or more and less than 1.5 times the initial viscosity ×: The viscosity after heating is More than 1.5 times the initial viscosity

(インクジェット装置の塗布性)
東芝テック社製のヘッド(オンデマンドピエゾ方式、636chヘッド、300dpi)にて硬化性樹脂組成物を吐出して硬化性樹脂組成物層を形成した後、硬化性樹脂組成物層の表面状態を観察し、下記基準にてインクジェット装置の塗布性(吐出安定性)を判定した。
○:塗布ムラや欠けなく、均一な表面状態である
△:塗膜の一部にムラや欠けが存在する
×:塗膜の全面にムラや欠けが存在する
(Applicability of inkjet device)
After forming the curable resin composition layer by discharging the curable resin composition with a head manufactured by TOSHIBA TEC (on-demand piezo method, 636ch head, 300 dpi), the surface state of the curable resin composition layer is observed. And the applicability | paintability (ejection stability) of the inkjet apparatus was determined on the following reference | standard.
○: Uniform surface state with no coating unevenness or chipping △: There are unevenness or chipping in a part of the coating film ×: There is unevenness or chipping over the entire surface of the coating film

(Bステージ化された半硬化樹脂層の膜粘度)
Bステージ化された半硬化樹脂層の膜粘度を、レオメーターMARS(HAAKE社製)を用いて、以下のようにして擬似的に測定した。まず、φ8mm径の測定センサーPP8とプレートTMP8をレオメーターに取り付け、ゼロ点調整を行った。次に、プレートを取り外し、プレート上の測定部分に実施例1、9、10、比較例1〜3にて用いた硬化性樹脂組成物をスポイトで1滴滴下した。次に、滴下した硬化性樹脂組成物に対して実施例1、9、10、比較例1〜3にて照射したのと同一の積算光量のUV−LED光を照射することにより、Bステージ化された半硬化樹脂層を形成した。次に、半硬化樹脂層が形成されたプレートをレオメーターに取り付け、ギャップ0.2mm、温度25℃、オシレーションモード(圧力1000Pa、周波数1Hz)の条件にて、半硬化樹脂層の粘度を測定した。なお、比較例1、3にて用いた硬化性樹脂組成物では、UV−LED光の照射により硬化性樹脂組成物が硬化してしまったため、膜粘度を測定することができなかった。
(Viscosity of B-staged semi-cured resin layer)
The film viscosity of the B-staged semi-cured resin layer was measured in a pseudo manner using a rheometer MARS (manufactured by HAAKE) as follows. First, a measuring sensor PP8 having a diameter of 8 mm and a plate TMP8 were attached to a rheometer, and zero point adjustment was performed. Next, the plate was removed, and one drop of the curable resin composition used in Examples 1, 9, 10 and Comparative Examples 1 to 3 was dropped onto the measurement portion on the plate. Next, the curable resin composition dropped is irradiated with UV-LED light having the same integrated light amount as that irradiated in Examples 1, 9, 10 and Comparative Examples 1 to 3, thereby forming a B stage. A semi-cured resin layer was formed. Next, the plate on which the semi-cured resin layer is formed is attached to a rheometer, and the viscosity of the semi-cured resin layer is measured under the conditions of a gap of 0.2 mm, a temperature of 25 ° C., and an oscillation mode (pressure 1000 Pa, frequency 1 Hz). did. In addition, in the curable resin composition used in Comparative Examples 1 and 3, since the curable resin composition was cured by irradiation with UV-LED light, the film viscosity could not be measured.

(UV硬化後のBステージ化状態)
インクジェット装置にて塗布した硬化性樹脂組成物にUV−LED光を照射後、その表面状態を下記基準にて判定した。
●:表面にタック感が無く、シリコンベアチップの貼り付け困難である
○:シリコンベアチップを貼り付けられる程度のタック感がある
△:ヌメリ成分(低粘度成分)が存在し、シリコンベアチップを貼り付けると硬化組成物層が流れてしまう
×:ほとんど硬化していない
(B-stage after UV curing)
After irradiating UV-LED light to the curable resin composition apply | coated with the inkjet apparatus, the surface state was determined on the following reference | standard.
●: There is no tackiness on the surface and it is difficult to attach the silicon bare chip. ○: There is a tack feeling enough to attach the silicon bare chip. △: There is a slime component (low viscosity component) and the silicon bare chip is pasted Cured composition layer flows x: Almost not cured

(ダイシェア強度/初期)
ダイシェアテスター4000(DAGE社製)により室温にて、作製した半導体装置の初期のダイシェア強度を測定した。この測定を5つの半導体装置に実施して、ダイシェア強度の平均値を求めた。
(Die shear strength / initial)
The initial die shear strength of the manufactured semiconductor device was measured at room temperature using a die shear tester 4000 (manufactured by DAGE). This measurement was performed on five semiconductor devices, and the average value of die shear strength was obtained.

(耐リフロー性(ダイシェア強度/リフロー後))
半導体装置の耐リフロー性を以下のようにして判定した。ダイシェアテスター4000(DAGE社製)により室温にて、作製した半導体装置の初期のダイシェア強度を測定した。また、作製した半導体装置をIRリフロー炉(Max260℃)にて3回通した後に、ダイシェアテスター4000(DAGE社製)によりダイシェア強度を再度測定した。上述のようにして測定したリフロー試験前後のダイシェア強度に基づき、以下の基準にて耐リフロー性を判定した。
○:リフロー処理後のダイシェア強度が、初期のダイシェア強度の90%以上である
△:リフロー処理後のダイシェア強度が、初期のダイシェア強度の70%以上、90%未満である
×:リフロー処理後のダイシェア強度が、初期のダイシェア強度の70%未満である
(Reflow resistance (die shear strength / after reflow))
The reflow resistance of the semiconductor device was determined as follows. The initial die shear strength of the manufactured semiconductor device was measured at room temperature using a die shear tester 4000 (manufactured by DAGE). Further, after passing the produced semiconductor device three times in an IR reflow furnace (Max 260 ° C.), the die shear strength was measured again with a die shear tester 4000 (manufactured by DAGE). Based on the die shear strength before and after the reflow test measured as described above, the reflow resistance was determined according to the following criteria.
○: The die shear strength after the reflow treatment is 90% or more of the initial die shear strength. Δ: The die shear strength after the reflow treatment is 70% or more and less than 90% of the initial die shear strength. The die shear strength is less than 70% of the initial die shear strength.

表2、表3は、実施例1〜10、比較例1〜3の硬化性樹脂組成物の配合および評価結果を示す。

Figure 2018065957
Tables 2 and 3 show the blending and evaluation results of the curable resin compositions of Examples 1 to 10 and Comparative Examples 1 to 3.
Figure 2018065957

Figure 2018065957
Figure 2018065957

上記評価から以下のことがわかる。
アクリロニトリル共重合ポリマーを適度に含有した実施例1〜10では、UV照射後に適度な表面タックを残すことが可能となり、チップ搭載が良好となり、初期およびリフロー後のダイシェア強度が高くなる。また、膜粘度が安定で、インクジェット塗布が可能な低粘度の硬化性樹脂組成物が得られる。
アクリロニトリル共重合ポリマーを含まない比較例1、およびアクリロニトリルを含まない共重合ポリマーを添加した比較例3では、UV照射後に硬化が進行してしまい、表面タックが無くなり、均一なチップ搭載ができず、ダイシェア強度も低くなる。アクリロニトリル共重合ポリマーの添加量が多すぎる比較例2では、硬化阻害が強すぎてUV照射後の硬化が十分に進行せず、均一なチップ搭載ができない。また、硬化性樹脂組成物の粘度が高くなり、インクジェット塗布性も悪化する。
The following can be understood from the above evaluation.
In Examples 1 to 10 which appropriately contain an acrylonitrile copolymer, it is possible to leave an appropriate surface tack after UV irradiation, the chip mounting is good, and the die shear strength at the initial stage and after reflow is increased. Further, a low viscosity curable resin composition having a stable film viscosity and capable of being applied by ink jetting is obtained.
In Comparative Example 1 that does not include an acrylonitrile copolymer, and Comparative Example 3 that includes a copolymer that does not include acrylonitrile, curing proceeds after UV irradiation, surface tack is eliminated, and uniform chip mounting is not possible. Die shear strength is also reduced. In Comparative Example 2 in which the amount of the acrylonitrile copolymer added is too large, the inhibition of curing is too strong, and the curing after UV irradiation does not proceed sufficiently, so that uniform chip mounting cannot be performed. Moreover, the viscosity of the curable resin composition is increased, and the ink jet coating property is also deteriorated.

以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態および実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention are possible. It is.

例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。   For example, the configurations, methods, steps, shapes, materials, numerical values, and the like given in the above-described embodiments and examples are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, and the like are necessary as necessary. May be used.

また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値などは、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。   The configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other without departing from the gist of the present invention.

10、10A 半導体装置
11 配線基板
12、14 樹脂硬化物層
13、15 半導体チップ
13a、15a ボンディングワイヤ
10, 10A Semiconductor device 11 Wiring board 12, 14 Resin cured product layer 13, 15 Semiconductor chip 13a, 15a Bonding wire

Claims (10)

インクジェット方式により塗工され、かつ光硬化および熱硬化可能である硬化性樹脂組成物であって、以下の成分(a)〜(c):
(a)カチオン重合性モノマー;
(b)光カチオン重合開始剤;および
(c)室温で液状のアクリロニトリル共重合体
を含み、
25℃粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物。
A curable resin composition that is applied by an inkjet method and is photocurable and heat curable, and includes the following components (a) to (c):
(A) a cationically polymerizable monomer;
(B) a photocationic polymerization initiator; and (c) an acrylonitrile copolymer that is liquid at room temperature,
Curable resin composition whose 25 degreeC viscosity is 10 mPa * s or more and 100 mPa * s or less.
以下の成分(d):
(d)熱カチオン重合開始剤
をさらに含む請求項1に記載の硬化性樹脂組成物。
The following component (d):
The curable resin composition according to claim 1, further comprising (d) a thermal cationic polymerization initiator.
前記カチオン重合性モノマーが、脂環式エポキシ化合物である請求項1または2に記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, wherein the cationic polymerizable monomer is an alicyclic epoxy compound. 前記光カチオン重合開始剤が、スルホニウムボレート錯体である請求項1〜3のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 3, wherein the cationic photopolymerization initiator is a sulfonium borate complex. 前記スルホニウムボレート錯体が、以下の式(1)で表されるトリス(4−(4−アセチルフェニル)チオフェニル)スルホニウムテトラキス−(ペンタフルオロフェニル)ボレートである請求項4に記載の硬化性樹脂組成物。
Figure 2018065957
The curable resin composition according to claim 4, wherein the sulfonium borate complex is tris (4- (4-acetylphenyl) thiophenyl) sulfonium tetrakis- (pentafluorophenyl) borate represented by the following formula (1). .
Figure 2018065957
前記熱カチオン重合開始剤が、スルホニウムボレート錯体である請求項2に記載の硬化性樹脂組成物。   The curable resin composition according to claim 2, wherein the thermal cationic polymerization initiator is a sulfonium borate complex. 前記スルホニウムボレート錯体が、以下の式(2)で表されるトリアリルスルホニウムテトラキス−(ペンタフルオロフェニル)ボレート、および以下の式(3)で表される(4−ヒドロキシフェニル)ジメチルスルホニウム=テトラキス(ペンタフルオロフェニル)ボレートの少なくとも1種である請求項6に記載の硬化性樹脂組成物。
Figure 2018065957
(但し、式(2)中、R1は、アラルキル基であり、R2は低吸アルキル基であり、R3は水素原子または低吸アルコキシカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。)
Figure 2018065957
The sulfonium borate complex includes triallylsulfonium tetrakis- (pentafluorophenyl) borate represented by the following formula (2), and (4-hydroxyphenyl) dimethylsulfonium = tetrakis represented by the following formula (3). The curable resin composition according to claim 6, which is at least one of pentafluorophenyl) borate.
Figure 2018065957
(In the formula (2), R1 is an aralkyl group, R2 is a low-absorbing alkyl group, R3 is a hydrogen atom or a low-absorbing alkoxycarbonyl group, X is a halogen atom, and n is 1 to 1) It is an integer of 3.)
Figure 2018065957
前記アクリロニトリル共重合体が、前記カチオン重合性モノマー100質量部に対して、0.5質量部以上25質量部以下添加されている請求項1〜7のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 7, wherein the acrylonitrile copolymer is added in an amount of 0.5 to 25 parts by mass with respect to 100 parts by mass of the cationic polymerizable monomer. 前記アクリロニトリル共重合体におけるアクリロニトリル量が、1分子中に10モル%以上30モル%以下である請求項1〜8のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 8, wherein an amount of acrylonitrile in the acrylonitrile copolymer is 10 mol% or more and 30 mol% or less per molecule. 第1の半導体チップと、配線基板または第2の半導体チップとを樹脂硬化物層により固着する半導体装置の製造方法であって、以下の工程(A)〜(D):
(A)前記配線基板または第2の半導体チップの電極形成面に、光硬化性および熱硬化性を有し、25℃における粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物を、インクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する工程;
(B)前記硬化性樹脂組成物層に光を照射して、Bステージ化された半硬化樹脂層を形成する工程;
(C)前記半硬化樹脂層上に、前記第1の半導体チップの電極形成面を押圧して、前記第1の半導体チップと前記配線基板または第2の半導体チップとを積層する工程;および
(D)前記半硬化樹脂層を加熱処理して、樹脂硬化物層を形成する工程
を備え、
前記硬化性樹脂組成物が、以下の成分(a)〜(c):
(a)カチオン重合性モノマー;
(b)光カチオン重合開始剤;および
(c)室温で液状のアクリロニトリル共重合ポリマー
を含む半導体装置の製造方法。
A method for manufacturing a semiconductor device in which a first semiconductor chip and a wiring board or a second semiconductor chip are fixed by a cured resin layer, and the following steps (A) to (D):
(A) A curable resin composition having photocurability and thermosetting properties on the electrode formation surface of the wiring board or the second semiconductor chip and having a viscosity at 25 ° C. of 10 mPa · s to 100 mPa · s. Discharging the ink jet nozzle to form a curable resin composition layer;
(B) irradiating the curable resin composition layer with light to form a B-staged semi-cured resin layer;
(C) pressing the electrode forming surface of the first semiconductor chip on the semi-cured resin layer and laminating the first semiconductor chip and the wiring substrate or the second semiconductor chip; and D) heat-treating the semi-cured resin layer to form a cured resin layer,
The curable resin composition comprises the following components (a) to (c):
(A) a cationically polymerizable monomer;
(B) a cationic photopolymerization initiator; and (c) a method for producing a semiconductor device comprising an acrylonitrile copolymer polymer which is liquid at room temperature.
JP2016206689A 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device Pending JP2018065957A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016206689A JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device
TW106134306A TW201827514A (en) 2016-10-21 2017-10-05 Curable resin composition and method manufacturing semiconductor device
JP2022104545A JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206689A JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022104545A Division JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2018065957A true JP2018065957A (en) 2018-04-26

Family

ID=62085771

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016206689A Pending JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device
JP2022104545A Active JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022104545A Active JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Country Status (2)

Country Link
JP (2) JP2018065957A (en)
TW (1) TW201827514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187529A1 (en) 2018-03-29 2019-10-03 日本精工株式会社 Motor control device and failure detection method for motor control device
WO2023242807A1 (en) 2022-06-17 2023-12-21 Ricoh Company, Ltd. Curable composition for forming adhesive structure, adhesive structure, method of manufacturing adhesive structure, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172378A (en) * 1989-11-20 1991-07-25 Minnesota Mining & Mfg Co <3M> Photocuring epoxy resin adhesive compound
JP2004099649A (en) * 2002-09-05 2004-04-02 Konica Minolta Holdings Inc Actinic-radiation-curing non-water-based inkjet ink composition, method for producing the composition, and inkjet recording method
KR20090077590A (en) * 2008-01-11 2009-07-15 도레이새한 주식회사 Liquid adhesive for electronic parts and method for applying to a lead-frame using the same
JP2012190846A (en) * 2011-03-08 2012-10-04 Hitachi Chem Co Ltd Adhesive agent composition for semiconductors, semiconductor device, and method of manufacturing semiconductor device
JP2012188463A (en) * 2011-03-08 2012-10-04 Hitachi Chemical Co Ltd Adhesive composition for semiconductor, semiconductor device and method for manufacturing semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037879A (en) 2006-08-01 2008-02-21 Konica Minolta Medical & Graphic Inc Active beam curable type composition, adhesive, printing ink and inkjet ink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172378A (en) * 1989-11-20 1991-07-25 Minnesota Mining & Mfg Co <3M> Photocuring epoxy resin adhesive compound
JP2004099649A (en) * 2002-09-05 2004-04-02 Konica Minolta Holdings Inc Actinic-radiation-curing non-water-based inkjet ink composition, method for producing the composition, and inkjet recording method
KR20090077590A (en) * 2008-01-11 2009-07-15 도레이새한 주식회사 Liquid adhesive for electronic parts and method for applying to a lead-frame using the same
JP2012190846A (en) * 2011-03-08 2012-10-04 Hitachi Chem Co Ltd Adhesive agent composition for semiconductors, semiconductor device, and method of manufacturing semiconductor device
JP2012188463A (en) * 2011-03-08 2012-10-04 Hitachi Chemical Co Ltd Adhesive composition for semiconductor, semiconductor device and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187529A1 (en) 2018-03-29 2019-10-03 日本精工株式会社 Motor control device and failure detection method for motor control device
WO2023242807A1 (en) 2022-06-17 2023-12-21 Ricoh Company, Ltd. Curable composition for forming adhesive structure, adhesive structure, method of manufacturing adhesive structure, and semiconductor device

Also Published As

Publication number Publication date
JP7392925B2 (en) 2023-12-06
TW201827514A (en) 2018-08-01
JP2022125142A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7392925B2 (en) Manufacturing method of semiconductor device
JP7173250B2 (en) Adhesive composition and film adhesive composition
JP5892192B2 (en) Thermal polymerization initiator system and adhesive composition
JP6247148B2 (en) Curable composition for inkjet and inkjet coating apparatus
US20070196612A1 (en) Liquid epoxy resin composition
JP6672837B2 (en) Anisotropic conductive adhesive composition, film adhesive, connection structure, and semiconductor device
CN113302222B (en) Cationically curable compositions and methods of joining, casting and coating substrates using the same
JP6735652B2 (en) Method of manufacturing semiconductor device
JP6044261B2 (en) Anisotropic conductive adhesive composition
JP2010174077A (en) Adhesive for electronic component
JP2007153933A (en) Bonding method and adhesive
JP6411184B2 (en) INK JET LIGHT AND THERMOSETTING ADHESIVE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ELECTRONIC COMPONENT MANUFACTURING METHOD
JP6415574B2 (en) Die bonding process in electronic products
JP2016216725A (en) Curable composition for inkjet and method of manufacturing electronic component
JP2002235065A (en) Electrically conductive adhesive composition
JP6325905B2 (en) Ink-jet light and thermosetting adhesive, method for producing electronic component, and electronic component
JP4836325B2 (en) Composition for sealing resin
JP2017066242A (en) Liquid composition for sealing, sealing material, and electronic component device
JP6355422B2 (en) Ink-jet light and thermosetting adhesive, method for producing electronic component, and electronic component
JP4042463B2 (en) Active energy ray-curable resin composition
JPWO2018181536A1 (en) Adhesive composition and structure
JP2014220372A (en) Method of manufacturing semiconductor device
JP7226636B2 (en) Adhesive composition and film adhesive composition
JP2002356607A (en) Cationically polymerizable liquid composition and tacky polymerization product
WO2022215577A1 (en) Resin composition for side filling, semiconductor device, method for removing side filling material, and method for producing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220329