JP7392925B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP7392925B2
JP7392925B2 JP2022104545A JP2022104545A JP7392925B2 JP 7392925 B2 JP7392925 B2 JP 7392925B2 JP 2022104545 A JP2022104545 A JP 2022104545A JP 2022104545 A JP2022104545 A JP 2022104545A JP 7392925 B2 JP7392925 B2 JP 7392925B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
resin composition
curable resin
resin layer
cured resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022104545A
Other languages
Japanese (ja)
Other versions
JP2022125142A (en
Inventor
博之 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2022104545A priority Critical patent/JP7392925B2/en
Publication of JP2022125142A publication Critical patent/JP2022125142A/en
Application granted granted Critical
Publication of JP7392925B2 publication Critical patent/JP7392925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、インクジェット方式により塗工され、かつ光硬化および熱硬化可能である硬化性樹脂組成物用いる半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device using a curable resin composition that is applied by an inkjet method and is photocurable and thermocurable.

基板上に単独または複数の半導体チップが硬化性樹脂組成物層を介して積層された半導体装置が知られている。この半導体装置は、半導体チップの下面に硬化性樹脂組成物層を積層した状態で、その硬化性樹脂組成物層を硬化させることにより製造される。 2. Description of the Related Art Semiconductor devices are known in which one or more semiconductor chips are stacked on a substrate with a curable resin composition layer interposed therebetween. This semiconductor device is manufactured by laminating a curable resin composition layer on the lower surface of a semiconductor chip and curing the curable resin composition layer.

上記半導体装置の製造方法としては、基板または半導体チップ上にディスペンサーやスクリーン印刷によりペースト状の硬化性樹脂組成物(ダイアタッチペースト(DAP))を塗布し、硬化性樹脂組成物層を形成した後、その上に半導体チップを積層し、硬化性樹脂組成物層を硬化させるものがある。しかしながら、このDAPを用いる製造方法では、タクトタイムが長いことや、均一な厚みで硬化性樹脂組成物を塗布するのが困難であるために、接続部の厚み精度が低いという問題がある。 The method for manufacturing the semiconductor device includes applying a paste-like curable resin composition (die attach paste (DAP)) onto a substrate or semiconductor chip using a dispenser or screen printing to form a curable resin composition layer. There is one in which a semiconductor chip is laminated thereon and a curable resin composition layer is cured. However, this manufacturing method using DAP has a problem in that the takt time is long and the thickness accuracy of the connection portion is low because it is difficult to apply the curable resin composition with a uniform thickness.

そこで、特許文献1、2では、タクトタイムの短縮と接続部の厚み精度を高めるために、DAPを用いる製造方法として、インクジェット装置により硬化性樹脂組成物を塗工する方法が提案されている。具体的には、光硬化および熱硬化可能である硬化性樹脂組成物を、インクジェット装置から吐出して硬化性樹脂組成物層を形成し、これを光硬化させてBステージ化層を形成する工程と、その上に半導体チップを積層してBステージ化層を熱硬化させる工程とを備える半導体装置の製造方法が提案されている。 Therefore, in Patent Documents 1 and 2, in order to shorten the takt time and improve the thickness accuracy of the connection portion, a method of applying a curable resin composition using an inkjet device is proposed as a manufacturing method using DAP. Specifically, a step of discharging a curable resin composition that can be photocured and thermocured from an inkjet device to form a curable resin composition layer, and photocuring this to form a B-staged layer. A method for manufacturing a semiconductor device has been proposed, which includes the steps of: stacking a semiconductor chip thereon and thermally curing the B-staged layer.

また、特許文献1、2には、インクジェット用の硬化性樹脂組成物として、硬化性化合物と、光重合開始剤と、熱硬化剤とを含むものを用い、上記硬化性化合物としては、ラジカル重合性モノマーなどの光硬化性化合物と、エポキシ化合物およびオキセタン化合物などの熱硬化性化合物とを含むものを用いることが開示されている。 Further, in Patent Documents 1 and 2, as a curable resin composition for inkjet, one containing a curable compound, a photopolymerization initiator, and a thermosetting agent is used, and as the curable compound, a radical polymerization The use of photocurable compounds such as thermosetting monomers and thermosetting compounds such as epoxy compounds and oxetane compounds is disclosed.

特開2014-220372号公報Japanese Patent Application Publication No. 2014-220372

特開2014-237814号公報Japanese Patent Application Publication No. 2014-237814

しかしながら、特許文献1、2に開示されている硬化性樹脂組成物では、高い接合強度が得られず、半導体装置の信頼性が低下する虞がある。信頼性のうちでも特に耐リフロー性が低下し、後工程において剥離が発生する虞がある。 However, with the curable resin compositions disclosed in Patent Documents 1 and 2, high bonding strength cannot be obtained, and there is a possibility that the reliability of the semiconductor device may be reduced. Among reliability, reflow resistance in particular deteriorates, and there is a risk that peeling may occur in a subsequent process.

本発明の目的は、半導体装置の信頼性を向上でき半導体装置の製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a semiconductor device that can improve the reliability of the semiconductor device.

上述の課題を解決するために、第1の発明は、第1の半導体チップと、配線基板または第2の半導体チップとを樹脂硬化物層により固着する半導体装置の製造方法であって、以下の工程(A)~(D):
(A)前記配線基板または第2の半導体チップの電極形成面に、光硬化性および熱硬化性を有し、25℃における粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物を、インクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する工程;
(B)前記硬化性樹脂組成物層に光源としてUV-LED光を照射して、Bステージ化された半硬化樹脂層を形成する工程;
(C)前記半硬化樹脂層上に、前記第1の半導体チップの電極形成面を押圧して、前記第1の半導体チップと前記配線基板または第2の半導体チップとを積層する工程;および
(D)前記半硬化樹脂層を加熱処理して、樹脂硬化物層を形成する工程
を備え、
前記硬化性樹脂組成物が、以下の成分(a)~(d):
(a)脂環式エポキシ化合物
(b)(a)を硬化させるために、スルホニウムボレート錯体であり、下記式(1)で示すチオン重合開始剤;
(c)室温で液状のカルボキシル基末端ブタジエンニトリルゴム;および
(d)(a)を更に硬化させるために、スルホニウムボレート錯体であり、下記式(3)で示す熱カチオン重合開始剤
を含み、
前記成分(c)が、前記成分(a)100質量部に対して0.5質量部以上25質量部以下含まれている半導体装置の製造方法である。

Figure 0007392925000001
Figure 0007392925000002
In order to solve the above-mentioned problems, a first invention is a method for manufacturing a semiconductor device in which a first semiconductor chip and a wiring board or a second semiconductor chip are fixed by a cured resin layer, the method comprising: Steps (A) to (D):
(A) A curable resin composition having photocurability and thermosetting properties and a viscosity of 10 mPa·s or more and 100 mPa·s or less at 25° C. is applied to the electrode forming surface of the wiring board or the second semiconductor chip. , a step of discharging from an inkjet nozzle to form a curable resin composition layer;
(B) irradiating the curable resin composition layer with UV-LED light as a light source to form a B-staged semi-cured resin layer;
(C) laminating the first semiconductor chip and the wiring board or the second semiconductor chip by pressing the electrode formation surface of the first semiconductor chip onto the semi-cured resin layer; and ( D) a step of heat-treating the semi-cured resin layer to form a cured resin layer;
The curable resin composition contains the following components (a) to (d):
(a) Alicyclic epoxy compound ;
(b) In order to cure (a), a cationic polymerization initiator which is a sulfonium borate complex and is represented by the following formula (1);
(c) a carboxyl group-terminated butadiene nitrile rubber that is liquid at room temperature; and (d) in order to further cure (a), it is a sulfonium borate complex and contains a thermal cationic polymerization initiator represented by the following formula (3),
The method for manufacturing a semiconductor device includes the component (c) contained in an amount of 0.5 parts by mass or more and 25 parts by mass or less based on 100 parts by mass of the component (a).
Figure 0007392925000001
Figure 0007392925000002

第2の発明は、第1の半導体チップと、配線基板または第2の半導体チップとを樹脂硬化物層により固着する半導体装置の製造方法であって、以下の工程(A)~(D):
(A)前記配線基板または第2の半導体チップの電極形成面に、光硬化性および熱硬化性を有し、25℃における粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物を、インクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する工程;
(B)前記硬化性樹脂組成物層に光源としてUV-LED光を照射して、Bステージ化された半硬化樹脂層を形成する工程;
(C)前記半硬化樹脂層上に、前記第1の半導体チップの電極形成面を押圧して、前記第1の半導体チップと前記配線基板または第2の半導体チップとを積層する工程;および
(D)前記半硬化樹脂層を加熱処理して、樹脂硬化物層を形成する工程
を備え、
前記硬化性樹脂組成物が、以下の成分(a)~(d):
(a)脂環式エポキシ化合物
(b)(a)を硬化させるために、スルホニウムボレート錯体であり、下記式(1)で示すチオン重合開始剤;
(c)室温で液状のカルボキシル基末端ブタジエンニトリルゴム;および
(d)(a)を更に硬化させるために、スルホニウムボレート錯体であり、下記式(3)で示す熱カチオン重合開始剤
を含む半導体装置の製造方法である。

Figure 0007392925000003
Figure 0007392925000004
A second invention is a method for manufacturing a semiconductor device in which a first semiconductor chip and a wiring board or a second semiconductor chip are fixed together using a cured resin layer, the method comprising the following steps (A) to (D):
(A) A curable resin composition having photocurability and thermosetting properties and a viscosity of 10 mPa·s or more and 100 mPa·s or less at 25° C. is applied to the electrode forming surface of the wiring board or the second semiconductor chip. , a step of discharging from an inkjet nozzle to form a curable resin composition layer;
(B) irradiating the curable resin composition layer with UV-LED light as a light source to form a B-staged semi-cured resin layer;
(C) laminating the first semiconductor chip and the wiring board or the second semiconductor chip by pressing the electrode formation surface of the first semiconductor chip onto the semi-cured resin layer; and ( D) a step of heat-treating the semi-cured resin layer to form a cured resin layer;
The curable resin composition contains the following components (a) to (d):
(a) Alicyclic epoxy compound ;
(b) In order to cure (a), a cationic polymerization initiator which is a sulfonium borate complex and is represented by the following formula (1);
(c) Carboxyl-terminated butadiene nitrile rubber that is liquid at room temperature; and (d) A semiconductor device containing a thermal cationic polymerization initiator that is a sulfonium borate complex and is represented by the following formula (3) in order to further harden (a). This is a manufacturing method.
Figure 0007392925000003
Figure 0007392925000004

本発明によれば、硬化性樹脂組成物が、(a)カチオン重合性モノマー、(b)光カチオン重合開始剤および(c)室温で液状のアクリロニトリル共重合体を含むので、第1の半導体チップと配線基板または第2の半導体チップとの間の接合強度をより高めて、半導体装置の信頼性を向上できる。 According to the present invention, since the curable resin composition includes (a) a cationically polymerizable monomer, (b) a photocationic polymerization initiator, and (c) an acrylonitrile copolymer that is liquid at room temperature, the first semiconductor chip The reliability of the semiconductor device can be improved by further increasing the bonding strength between the wiring board and the wiring board or the second semiconductor chip.

図1は、本発明の第1の実施形態に係る半導体装置の製造方法により得られる半導体装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device obtained by the method for manufacturing a semiconductor device according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る半導体装置の製造方法により得られる半導体装置の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a semiconductor device obtained by the method for manufacturing a semiconductor device according to the second embodiment of the present invention.

<第1の実施形態>
[半導体装置の構成]
まず、図1を参照して、本発明の第1の実施形態に係る半導体装置の製造方法により得られる半導体装置10の構成について説明する。この半導体装置10は、配線基板11と、樹脂硬化物層12により配線基板11上に固着された半導体チップ13とを備えている。半導体チップ13は、ボンディングワイヤ13aにより配線基板11に電気的に接続されている。配線基板11上に設けられた樹脂硬化物層12、半導体チップ13およびボンディングワイヤ13aが、図示しない封止樹脂により封止されていてもよい。
<First embodiment>
[Semiconductor device configuration]
First, with reference to FIG. 1, the configuration of a semiconductor device 10 obtained by the method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described. This semiconductor device 10 includes a wiring board 11 and a semiconductor chip 13 fixed onto the wiring board 11 with a cured resin layer 12. The semiconductor chip 13 is electrically connected to the wiring board 11 by bonding wires 13a. The cured resin layer 12, the semiconductor chip 13, and the bonding wires 13a provided on the wiring board 11 may be sealed with a sealing resin (not shown).

[硬化性樹脂組成物の組成]
樹脂硬化物層12は、本発明の第1の実施形態に係る硬化性樹脂組成物を硬化することにより形成されている。この硬化性樹脂組成物は、インクジェット方式により塗工され、かつ光硬化および熱硬化可能であり、以下の成分(a)~(c)を含んでいる。硬化性樹脂組成物は、上記の成分(a)~(c)に加えて、以下の成分(d)をさらに含んでいてもよい。
[Composition of curable resin composition]
The cured resin layer 12 is formed by curing the curable resin composition according to the first embodiment of the present invention. This curable resin composition is coated by an inkjet method, is photocurable and thermocurable, and contains the following components (a) to (c). In addition to the above components (a) to (c), the curable resin composition may further contain the following component (d).

<成分(a)>
成分(a)は、カチオン重合性モノマーである。このモノマーは、硬化性樹脂組成物の硬化速度を向上する観点から、脂環式エポキシ化合物であることが好ましい。脂環式エポキシ化合物は、単官能または2官能のものが好ましい。3官能以上の脂環式エポキシ化合物では、硬化性樹脂組成物の粘度が高くなりすぎて、塗布性が悪化する虞があるからである。単官能の脂環式エポキシ化合物または2官能の脂環式エポキシ化合物を単独で用いてもよいし、単官能の脂環式エポキシ化合物と2官能の脂環式エポキシ化合物とを組み合わせて用いてもよい。
<Component (a)>
Component (a) is a cationically polymerizable monomer. This monomer is preferably an alicyclic epoxy compound from the viewpoint of improving the curing speed of the curable resin composition. The alicyclic epoxy compound is preferably monofunctional or difunctional. This is because trifunctional or higher functional alicyclic epoxy compounds may cause the viscosity of the curable resin composition to become too high, resulting in poor applicability. A monofunctional alicyclic epoxy compound or a bifunctional alicyclic epoxy compound may be used alone, or a monofunctional alicyclic epoxy compound and a bifunctional alicyclic epoxy compound may be used in combination. good.

単官能の脂環式エポキシ化合物としては、例えば、1,2-エポキシ-4-ビニルシクロヘキサン(株式会社ダイセル製、セロキサイド2000)、4-ビニルエポキシシクロヘキサン、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシルなどが挙げられる。これらを単独で用いても、複数を組み合わせて用いてもよい。2官能の脂環式エポキシ化合物としては、例えば、(3,3’,4,4’-ジエポキシ)ビシクロヘキシル(株式会社ダイセル製、セロキサイド8000)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製、セロキサイド2021P)、3,4-エポキシシクロヘキシルオクチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイド、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、1,2,8,9-ジエポキシリモネンなどが挙げられる。これらを単独で用いても、複数を組み合わせて用いてもよい。 Examples of monofunctional alicyclic epoxy compounds include 1,2-epoxy-4-vinylcyclohexane (manufactured by Daicel Corporation, Celloxide 2000), 4-vinylepoxycyclohexane, dioctyl epoxyhexahydrophthalate, and epoxyhexahydrophthalate. Examples include di-2-ethylhexyl acid. These may be used alone or in combination. Examples of the bifunctional alicyclic epoxy compound include (3,3',4,4'-diepoxy)bicyclohexyl (Celoxide 8000, manufactured by Daicel Corporation), 3,4-epoxycyclohexylmethyl-3,4- Epoxycyclohexane carboxylate (manufactured by Daicel Corporation, Celloxide 2021P), 3,4-epoxycyclohexyl octyl-3,4-epoxycyclohexane carboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4) -epoxy)cyclohexane-meta-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, vinylcyclohexene dioxide, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6- Methylcyclohexyl-3,4-epoxy-6-methylcyclohexanecarboxylate, methylenebis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol di(3,4-epoxycyclohexylmethyl)ether, ethylenebis(3,4-epoxycyclohexylmethyl)ether , 4-epoxycyclohexanecarboxylate), 1,2,8,9-diepoxylimonene, and the like. These may be used alone or in combination.

<成分(b)>
成分(b)は、光カチオン重合開始剤である。光カチオン重合開始剤は、スルホニウムボレート錯体であることが好ましい。光源としてUV-LEDを用いる場合には、スルホニウムボレート錯体は、以下の式(1)で表されるトリス(4-(4-アセチルフェニル)チオフェニル)スルホニウムテトラキス-(ペンタフルオロフェニル)ボレートであることが好ましい。

Figure 0007392925000005
<Component (b)>
Component (b) is a photocationic polymerization initiator. The photocationic polymerization initiator is preferably a sulfonium borate complex. When using a UV-LED as a light source, the sulfonium borate complex should be tris(4-(4-acetylphenyl)thiophenyl)sulfonium tetrakis-(pentafluorophenyl)borate represented by the following formula (1). is preferred.
Figure 0007392925000005

スルホニウムボレート錯体などの光カチオン重合開始剤は、UV光の照射後に熱硬化剤として作用する。このため、硬化性樹脂組成物に対して成分(d)である熱カチオン重合開始剤が添加されていなくても、UV光の照射によって半硬化した硬化性樹脂組成物を熱硬化させることができる。 Photocationic polymerization initiators, such as sulfonium borate complexes, act as thermosetting agents after irradiation with UV light. Therefore, even if the thermal cationic polymerization initiator as component (d) is not added to the curable resin composition, the semi-cured curable resin composition can be thermally cured by irradiation with UV light. .

<成分(c)>
成分(c)は、室温で液状のアクリロニトリル共重合体である。アクリロニトリル共重合体は、例えば、以下の式(4)で表されるアクリロニトリル・ブタジエンゴム(NBR)、それを変性させて得られるもの、およびCTBN変性エポキシ樹脂などの少なくとも1種である。

Figure 0007392925000006
<Component (c)>
Component (c) is an acrylonitrile copolymer that is liquid at room temperature. The acrylonitrile copolymer is, for example, at least one of acrylonitrile-butadiene rubber (NBR) represented by the following formula (4), a product obtained by modifying it, and a CTBN-modified epoxy resin.
Figure 0007392925000006

アクリロニトリル共重合体のアクリロニトリル部分は弱塩基性を示すため、カチオン重合硬化系に添加すると、硬化反応時に弱い硬化阻害を引き起こす。この硬化阻害が、UV光によるBステージ化の際に、UV照射後の暗反応による硬化の進行を抑制する。したがって、半硬化樹脂層の表面タックのコントロールが可能となる。なお、半硬化樹脂層については、後述の“半導体装置の製造方法”にて説明する。 Since the acrylonitrile moiety of the acrylonitrile copolymer exhibits weak basicity, when added to a cationic polymerization curing system, it causes weak curing inhibition during the curing reaction. This curing inhibition suppresses the progress of curing due to dark reaction after UV irradiation during B-staging by UV light. Therefore, it is possible to control the surface tack of the semi-cured resin layer. Note that the semi-cured resin layer will be explained in "Method for manufacturing a semiconductor device" below.

アクリロニトリル共重合体が、カチオン重合性モノマー100質量部に対して、0.5質量部以上25質量部以下添加されていることが好ましい。アクリロニトリル共重合体が0.5質量部未満であると、UV光照射後に、半硬化樹脂層の硬化が進行してしまい、半硬化樹脂層の表面タック感が低下する虞がある。一方、アクリロニトリル共重合体が25質量部を超えると、硬化阻害が強すぎてUV光照射後の硬化が十分に進行せず、均一なチップ搭載ができなくなる虞がある。また、25℃における硬化性樹脂組成物の粘度が高くなりすぎ、インクジェットによる塗布性が悪化する虞もある。 It is preferable that the acrylonitrile copolymer is added in an amount of 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the cationically polymerizable monomer. If the amount of the acrylonitrile copolymer is less than 0.5 parts by mass, curing of the semi-cured resin layer may proceed after UV light irradiation, and the surface tackiness of the semi-cured resin layer may deteriorate. On the other hand, if the acrylonitrile copolymer exceeds 25 parts by mass, curing inhibition will be so strong that curing will not proceed sufficiently after UV light irradiation, and there is a risk that uniform chip mounting will not be possible. Moreover, the viscosity of the curable resin composition at 25° C. becomes too high, and there is also a possibility that the coatability by inkjet printing may deteriorate.

アクリロニトリル共重合体におけるアクリロニトリル量が、1分子中に10モル%以上30モル%以下であることが好ましい。アクリロニトリル量が1分子中に10モル%未満であると、UV光照射後に、半硬化樹脂層の硬化が進行してしまい、半硬化樹脂層の表面タック感が低下する虞がある。一方、アクリロニトリル量が1分子中に30モル%を超えると、硬化阻害が強すぎてUV光照射後の硬化が十分に進行せず、均一なチップ搭載ができなくなる虞がある。また、25℃における硬化性樹脂組成物の粘度が高くなりすぎ、インクジェットによる塗布性が悪化する虞もある。 The amount of acrylonitrile in the acrylonitrile copolymer is preferably 10 mol% or more and 30 mol% or less in one molecule. If the amount of acrylonitrile in one molecule is less than 10 mol %, curing of the semi-cured resin layer will proceed after UV light irradiation, and there is a possibility that the surface tackiness of the semi-cured resin layer may deteriorate. On the other hand, if the amount of acrylonitrile exceeds 30 mol % in one molecule, curing inhibition will be so strong that curing will not proceed sufficiently after UV light irradiation, and there is a possibility that uniform chip mounting will not be possible. Moreover, the viscosity of the curable resin composition at 25° C. becomes too high, and there is also a possibility that the coatability by inkjet printing may deteriorate.

<成分(d)>
成分(d)は、熱カチオン重合開始剤である。上述したように成分(d)は必須成分ではないが、硬化性樹脂組成物をより確実に熱硬化させる観点からすると、硬化性樹脂組成物が成分(d)を含んでいることが好ましい。但し、硬化性樹脂組成物の保存安定性の観点からすると、硬化性樹脂組成物が成分(d)を含んでいないことが好ましい。熱カチオン重合開始剤は、スルホニウムボレート錯体であることが好ましい。スルホニウムボレート錯体が、以下の式(2)で表されるトリアリルスルホニウムテトラキス-(ペンタフルオロフェニル)ボレート、および以下の式(3)で表される(4-ヒドロキシフェニル)ジメチルスルホニウム=テトラキス(ペンタフルオロフェニル)ボレートの少なくとも1種であることが好ましい。

Figure 0007392925000007
(但し、式(2)中、R1は、アラルキル基であり、R2は低吸アルキル基であり、R3は水素原子または低吸アルコキシカルボニル基である。Xはハロゲン原子であり、nは1~3の整数である。)
Figure 0007392925000008
<Component (d)>
Component (d) is a thermal cationic polymerization initiator. As mentioned above, component (d) is not an essential component, but from the viewpoint of more reliably thermosetting the curable resin composition, it is preferable that the curable resin composition contains component (d). However, from the viewpoint of storage stability of the curable resin composition, it is preferable that the curable resin composition does not contain component (d). Preferably, the thermal cationic polymerization initiator is a sulfonium borate complex. The sulfonium borate complex is triallylsulfonium tetrakis-(pentafluorophenyl)borate represented by the following formula (2), and (4-hydroxyphenyl)dimethylsulfonium=tetrakis(pentafluorophenyl) represented by the following formula (3). Preferably, it is at least one type of fluorophenyl) borate.
Figure 0007392925000007
(However, in formula (2), R1 is an aralkyl group, R2 is a low alkyl group, and R3 is a hydrogen atom or a low alkoxycarbonyl group. X is a halogen atom, and n is 1 to It is an integer of 3.)
Figure 0007392925000008

<その他の成分>
硬化性樹脂組成物が、必要に応じて、カップリング剤などの接着助剤、導電性粒子、顔料、染料、レベリング剤、消泡剤、および重合禁止剤などのうちの少なくとも1種を含んでいてもよい。
<Other ingredients>
The curable resin composition optionally contains at least one of an adhesion aid such as a coupling agent, conductive particles, a pigment, a dye, a leveling agent, an antifoaming agent, a polymerization inhibitor, and the like. You can stay there.

[半導体装置の製造方法]
次に、本発明の第1の実施形態に係る半導体装置の製造方法について説明する。この半導体装置の製造方法は、半導体チップ13と配線基板11とを樹脂硬化物層12により固着する半導体装置の製造方法であって、以下の工程(A1)~(D1)を備えている。
[Method for manufacturing semiconductor device]
Next, a method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described. This method of manufacturing a semiconductor device is a method of manufacturing a semiconductor device in which a semiconductor chip 13 and a wiring board 11 are fixed together using a cured resin layer 12, and includes the following steps (A1) to (D1).

(工程(A1))
配線基板11の電極形成面に上記の硬化性樹脂組成物をインクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する。上記の硬化性樹脂組成物は、25℃において10mPa・s以上100mPa・s以下の範囲の粘度を有している。25℃における粘度が上記の範囲外であると、インクジェット装置による硬化性樹脂組成物の塗布性が低下する。
(Step (A1))
The above curable resin composition is discharged from an inkjet nozzle onto the electrode forming surface of the wiring board 11 to form a curable resin composition layer. The above-mentioned curable resin composition has a viscosity in the range of 10 mPa·s to 100 mPa·s at 25°C. If the viscosity at 25° C. is outside the above range, the coatability of the curable resin composition with an inkjet device will decrease.

(工程(B1))
次に、硬化性樹脂組成物層に光を照射して、Bステージ化された半硬化樹脂層を形成する。ここで、Bステージ化とは、膜粘度が1000Pa・s以上15000Pa・s以下の範囲内の状態をいう。半硬化樹脂層がBステージ化状態にあることで、良好な表面タック感が得られるため、均一なチップ搭載ができ、ダイシェア強度(配線基板11と半導体チップ13とが破断される強度)が向上する。
(Step (B1))
Next, the curable resin composition layer is irradiated with light to form a B-staged semi-cured resin layer. Here, B-staging refers to a state in which the film viscosity is within the range of 1000 Pa·s or more and 15000 Pa·s or less. Since the semi-cured resin layer is in a B-stage state, a good surface tackiness can be obtained, allowing uniform chip mounting and improving die shear strength (strength at which the wiring board 11 and the semiconductor chip 13 are broken). do.

(工程(C1))
次に、半硬化樹脂層上に、半導体チップ13の電極形成面を押圧して、半導体チップ13と配線基板11とを積層し、半導体チップ13と配線基板11とが電気的に接続された積層体を形成する。
(Step (C1))
Next, the electrode forming surface of the semiconductor chip 13 is pressed onto the semi-cured resin layer, and the semiconductor chip 13 and the wiring board 11 are laminated, and the semiconductor chip 13 and the wiring board 11 are electrically connected. form the body.

(工程(D1))
次に、積層体の半硬化樹脂層を加熱処理して、樹脂硬化物層12を形成する。次に、半導体チップ13をボンディングワイヤ13aにより配線基板11に電気的に接続する。
(Step (D1))
Next, the semi-cured resin layer of the laminate is heat-treated to form a cured resin layer 12. Next, the semiconductor chip 13 is electrically connected to the wiring board 11 by bonding wires 13a.

[効果]
第1の実施形態に係る硬化性樹脂組成物は、成分(a)としてのカチオン重合性モノマー、成分(b)として光カチオン重合開始剤、および成分(c)としてアクリロニトリル共重合ポリマーを含んでいる。この硬化性樹脂組成物を上記の工程(A1)~(D1)を備える半導体の製造方法に適用することで、半導体チップ13と配線基板11との接合強度を高めることができる。したがって、半導体装置の信頼性を向上できる。また、タクトタイムを短くし、半導体装置を効率的に製造することができる。更に、半導体装置の接続部の厚み精度を高めることも可能である。
[effect]
The curable resin composition according to the first embodiment contains a cationically polymerizable monomer as component (a), a photocationic polymerization initiator as component (b), and an acrylonitrile copolymer as component (c). . By applying this curable resin composition to the semiconductor manufacturing method comprising the above steps (A1) to (D1), the bonding strength between the semiconductor chip 13 and the wiring board 11 can be increased. Therefore, reliability of the semiconductor device can be improved. Furthermore, takt time can be shortened and semiconductor devices can be manufactured efficiently. Furthermore, it is also possible to improve the thickness accuracy of the connection portion of the semiconductor device.

<第2の実施形態>
[半導体装置の構成]
まず、図2を参照して、本発明の第2の実施形態に係る半導体装置の製造方法により得られる半導体装置10Aの構成について説明する。この半導体装置10Aは、樹脂硬化物層14により半導体チップ13上に固着された半導体チップ15をさらに備えている。なお、第2の実施形態において第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
<Second embodiment>
[Semiconductor device configuration]
First, with reference to FIG. 2, the configuration of a semiconductor device 10A obtained by a method for manufacturing a semiconductor device according to a second embodiment of the present invention will be described. This semiconductor device 10A further includes a semiconductor chip 15 fixed onto the semiconductor chip 13 by a cured resin layer 14. Note that in the second embodiment, the same parts as in the first embodiment are given the same reference numerals, and the description thereof will be omitted.

半導体チップ15は、ボンディングワイヤ15aにより配線基板11に電気的に接続されている。配線基板11上に設けられた樹脂硬化物層12、14、半導体チップ13、15およびボンディングワイヤ13a、15aが、図示しない封止樹脂により封止されていてもよい。 The semiconductor chip 15 is electrically connected to the wiring board 11 by bonding wires 15a. The cured resin layers 12 and 14, the semiconductor chips 13 and 15, and the bonding wires 13a and 15a provided on the wiring board 11 may be sealed with a sealing resin (not shown).

[半導体装置の製造方法]
次に、本発明の第2の実施形態に係る半導体装置の製造方法について説明する。この半導体装置の製造方法は、半導体チップ13と配線基板11とを樹脂硬化物層12により固着し、かつ半導体チップ15と半導体チップ13とを樹脂硬化物層14により固着する半導体装置の製造方法であって、第1の実施形態の工程(A1)~(D1)に加えて、以下の工程(A2)~(D2)をさらに備えている。
[Method for manufacturing semiconductor device]
Next, a method for manufacturing a semiconductor device according to a second embodiment of the present invention will be described. This method of manufacturing a semiconductor device is a method of manufacturing a semiconductor device in which a semiconductor chip 13 and a wiring board 11 are fixed together using a cured resin layer 12, and a semiconductor chip 15 and a semiconductor chip 13 are fixed together using a cured resin layer 14. In addition to the steps (A1) to (D1) of the first embodiment, the following steps (A2) to (D2) are further provided.

(工程(A2))
上記の工程(A1)~(D1)の後に、半導体チップ13の電極形成面に硬化性樹脂組成物をインクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する。硬化性樹脂組成物は、第1の実施形態に係る硬化性樹脂組成物と同様である。
(Step (A2))
After the above steps (A1) to (D1), a curable resin composition is discharged from an inkjet nozzle onto the electrode forming surface of the semiconductor chip 13 to form a curable resin composition layer. The curable resin composition is the same as the curable resin composition according to the first embodiment.

(工程(B2))
次に、硬化性樹脂組成物層に光を照射して、Bステージ化された半硬化樹脂層を形成する。ここで、Bステージ化とは、膜粘度が1000Pa・s以上15000Pa・s以下の範囲内の状態をいう。半硬化樹脂層がBステージ化状態にあることで、良好な表面タック感が得られるため、均一なチップ搭載ができ、ダイシェア強度(半導体チップ13、15が破断される強度)が向上する。
(Step (B2))
Next, the curable resin composition layer is irradiated with light to form a B-staged semi-cured resin layer. Here, B-staging refers to a state in which the film viscosity is within the range of 1000 Pa·s or more and 15000 Pa·s or less. Since the semi-cured resin layer is in a B-staged state, a good surface tackiness can be obtained, allowing uniform chip mounting and improving die shear strength (strength at which the semiconductor chips 13 and 15 are broken).

(工程(C2))
次に、半硬化樹脂層上に、半導体チップ15の電極形成面を押圧して、半導体チップ13、15を積層し、半導体チップ13、15が電気的に接続された積層体を形成する。
(Step (C2))
Next, the semiconductor chips 13 and 15 are stacked by pressing the electrode forming surface of the semiconductor chip 15 onto the semi-cured resin layer, thereby forming a stack in which the semiconductor chips 13 and 15 are electrically connected.

(工程(D2))
次に、積層体の半硬化樹脂層を加熱処理して、樹脂硬化物層14を形成する。次に、半導体チップ15をボンディングワイヤ15aにより配線基板11に電気的に接続する。
(Step (D2))
Next, the semi-cured resin layer of the laminate is heat-treated to form a cured resin layer 14. Next, the semiconductor chip 15 is electrically connected to the wiring board 11 by bonding wires 15a.

[効果]
第2の実施形態に係る半導体装置の製造方法では、硬化性樹脂組成物を上記の工程(A1)~(D1)および工程(A2)~(D2)を備える半導体の製造方法に適用することで、半導体チップ13と配線基板11との間、および半導体チップ13と半導体チップ15との間の接合強度をより高めて、半導体装置10Aの信頼性を向上できる。
[effect]
In the method for manufacturing a semiconductor device according to the second embodiment, a curable resin composition is applied to a method for manufacturing a semiconductor comprising the above steps (A1) to (D1) and steps (A2) to (D2). , the reliability of the semiconductor device 10A can be improved by further increasing the bonding strength between the semiconductor chip 13 and the wiring board 11 and between the semiconductor chip 13 and the semiconductor chip 15.

[変形例]
上述の第2の実施形態では配線基板11上に2つの半導体チップ13、15が積層された構成を例として説明したが、配線基板上に3つ以上の複数の半導体チップが積層された構成としてもよい。この場合、各半導体チップの間に樹脂硬化物層が設けられる。この樹脂硬化物層は上述の第2の実施形態における樹脂硬化物層14と同様にして形成される。
[Modified example]
In the second embodiment described above, the configuration in which two semiconductor chips 13 and 15 are stacked on the wiring board 11 was explained as an example, but the configuration in which three or more semiconductor chips are stacked on the wiring board is also described. Good too. In this case, a cured resin layer is provided between each semiconductor chip. This cured resin layer is formed in the same manner as the cured resin layer 14 in the second embodiment described above.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

表1に本実施例および比較例にて用いた材料を示す。

Figure 0007392925000009
Table 1 shows the materials used in this example and comparative example.
Figure 0007392925000009

[実施例4~6、参考例1~3、7~10、比較例1~3]
(工程(A1))
まず、表2、表3に示す配合になるように各材料を秤量しポリ容器中に入れて、自転公転ミキサーにて均一に混合した後、5μmフィルターにて濾過を行うことにより、硬化性樹脂組成物(接着剤)を調製した。次に、FR4ガラスエポキシ基板(厚み1mm)上の、半導体チップを置く位置に10×10mmの大きさになるようにインクジェット装置(50℃に加温、東芝テック社製ヘッドを使用、ヘッド直近にUV-LED(365nm)光源を設置)を用いて、硬化性樹脂組成物を厚み20μmに塗布し、硬化性樹脂組成物層を形成した。
[Examples 4 to 6, Reference Examples 1 to 3, 7 to 10, Comparative Examples 1 to 3]
(Step (A1))
First, each material was weighed and put into a plastic container so as to have the composition shown in Tables 2 and 3. After uniformly mixing in a rotation and revolution mixer, the curable resin was filtered through a 5 μm filter. A composition (adhesive) was prepared. Next, place the semiconductor chip on the FR4 glass epoxy substrate (thickness 1 mm) using an inkjet device (heated to 50°C, use a Toshiba Tec head manufactured by Toshiba Tec Co., Ltd.) so that the size of the semiconductor chip is 10 x 10 mm. A curable resin composition was applied to a thickness of 20 μm using a UV-LED (365 nm) light source (a UV-LED (365 nm) light source was installed) to form a curable resin composition layer.

(工程(B1))
次に、表2、表3に示すように積算光量が50~3000mJ/cmの範囲となるように、塗布直後の硬化性樹脂組成物層にUV-LED光を照射して光硬化を行うことより、Bステージ化された半硬化樹脂層を形成した。
(Step (B1))
Next, as shown in Tables 2 and 3, the curable resin composition layer immediately after application is photocured by irradiating UV-LED light so that the cumulative light amount is in the range of 50 to 3000 mJ/ cm2 . As a result, a B-staged semi-cured resin layer was formed.

(工程(C1))
次に、ダイボンディング装置を用いて、半硬化樹脂層上に半導体チップ(3.3×3.3mm、厚み0.4mm)に見立てたシリコンベアチップを積層して、積層体を得た。
(Step (C1))
Next, a silicon bare chip shaped like a semiconductor chip (3.3 x 3.3 mm, thickness 0.4 mm) was laminated on the semi-cured resin layer using a die bonding device to obtain a laminate.

(工程(D1))
次に、得られた積層体を160℃のオーブン内に1時間入れて、Bステージ化された半硬化樹脂層を熱硬化させることにより、樹脂硬化物層を形成した。以上により、目的とする半導体装置(積層構造体)が作製された。
(Step (D1))
Next, the obtained laminate was placed in an oven at 160° C. for 1 hour to thermally cure the B-staged semi-cured resin layer, thereby forming a cured resin layer. Through the above steps, the desired semiconductor device (layered structure) was manufactured.

[評価]
実施例4~6、参考例1~3、7~10、比較例1~3にて調製した硬化性樹脂組成物および作製した半導体装置に以下の評価を行った。
[evaluation]
The following evaluations were performed on the curable resin compositions prepared in Examples 4 to 6, Reference Examples 1 to 3, 7 to 10, and Comparative Examples 1 to 3, and the semiconductor devices produced.

(粘度)
レオメーター(HAAKE社製)にて25℃における硬化性樹脂組成物の初期粘度、および50℃加熱時における硬化性樹脂組成物の粘度を測定した。ローターとしてはC35/1を用い、シアレート100(1/s)の条件にて粘度測定を行った。
(viscosity)
The initial viscosity of the curable resin composition at 25°C and the viscosity of the curable resin composition upon heating at 50°C were measured using a rheometer (manufactured by HAAKE). C35/1 was used as the rotor, and the viscosity was measured at a shear rate of 100 (1/s).

(加熱後の粘度安定性)
硬化性樹脂組成物の加熱後の粘度安定性を以下のようにして判定した。まず、レオメーター(HAAKE社製)を用いて硬化性樹脂組成物の25℃の初期粘度を測定した。次に、硬化性樹脂組成物を50℃オーブン内に24h放置した後に、レオメーター(HAAKE社製)を用いて再度粘度を測定した。次に、加熱前後の測定粘度に基づき、以下の基準にて加熱後の粘度安定性を判定した。なお、ローターとしてはC35/1を用い、シアレート100(1/s)の条件にて粘度測定を行った。
○:加熱後の粘度が、初期粘度の1.1倍未満である
△:加熱後の粘度が、初期粘度の1.1倍以上、1.5倍未満である
×:加熱後の粘度が、初期粘度の1.5倍以上である
(Viscosity stability after heating)
The viscosity stability of the curable resin composition after heating was determined as follows. First, the initial viscosity of the curable resin composition at 25° C. was measured using a rheometer (manufactured by HAAKE). Next, after leaving the curable resin composition in an oven at 50° C. for 24 hours, the viscosity was measured again using a rheometer (manufactured by HAAKE). Next, based on the measured viscosity before and after heating, the viscosity stability after heating was determined based on the following criteria. Note that C35/1 was used as the rotor, and the viscosity was measured under the condition of a shear rate of 100 (1/s).
○: The viscosity after heating is less than 1.1 times the initial viscosity. △: The viscosity after heating is 1.1 times or more and less than 1.5 times the initial viscosity. ×: The viscosity after heating is 1.5 times or more of the initial viscosity

(インクジェット装置の塗布性)
東芝テック社製のヘッド(オンデマンドピエゾ方式、636chヘッド、300dpi)にて硬化性樹脂組成物を吐出して硬化性樹脂組成物層を形成した後、硬化性樹脂組成物層の表面状態を観察し、下記基準にてインクジェット装置の塗布性(吐出安定性)を判定した。
○:塗布ムラや欠けなく、均一な表面状態である
△:塗膜の一部にムラや欠けが存在する
×:塗膜の全面にムラや欠けが存在する
(Applicability of inkjet device)
After discharging the curable resin composition using a Toshiba Tec head (on-demand piezo system, 636ch head, 300 dpi) to form a curable resin composition layer, observe the surface condition of the curable resin composition layer. The coating properties (ejection stability) of the inkjet device were evaluated based on the following criteria.
○: Uniform surface condition with no uneven coating or chipping △: Unevenness or chipping exists in a part of the coating film ×: Unevenness or chipping exists on the entire surface of the coating film

(Bステージ化された半硬化樹脂層の膜粘度)
Bステージ化された半硬化樹脂層の膜粘度を、レオメーターMARS(HAAKE社製)を用いて、以下のようにして擬似的に測定した。まず、φ8mm径の測定センサーPP8とプレートTMP8をレオメーターに取り付け、ゼロ点調整を行った。次に、プレートを取り外し、プレート上の測定部分に参考例1、9、10、比較例1~3にて用いた硬化性樹脂組成物をスポイトで1滴滴下した。次に、滴下した硬化性樹脂組成物に対して参考例1、9、10、比較例1~3にて照射したのと同一の積算光量のUV-LED光を照射することにより、Bステージ化された半硬化樹脂層を形成した。次に、半硬化樹脂層が形成されたプレートをレオメーターに取り付け、ギャップ0.2mm、温度25℃、オシレーションモード(圧力1000Pa、周波数1Hz)の条件にて、半硬化樹脂層の粘度を測定した。なお、比較例1、3にて用いた硬化性樹脂組成物では、UV-LED光の照射により硬化性樹脂組成物が硬化してしまったため、膜粘度を測定することができなかった。
(Film viscosity of B-staged semi-cured resin layer)
The film viscosity of the B-staged semi-cured resin layer was measured in a pseudo manner as follows using a rheometer MARS (manufactured by HAAKE). First, a measurement sensor PP8 with a diameter of φ8 mm and a plate TMP8 were attached to a rheometer, and zero point adjustment was performed. Next, the plate was removed, and one drop of the curable resin composition used in Reference Examples 1, 9, and 10 and Comparative Examples 1 to 3 was dropped onto the measurement area on the plate using a dropper. Next, by irradiating the dropped curable resin composition with UV-LED light of the same cumulative light intensity as that irradiated in Reference Examples 1, 9, 10, and Comparative Examples 1 to 3, the B-stage was obtained. A semi-cured resin layer was formed. Next, the plate on which the semi-cured resin layer was formed was attached to a rheometer, and the viscosity of the semi-cured resin layer was measured under the conditions of a gap of 0.2 mm, a temperature of 25°C, and an oscillation mode (pressure of 1000 Pa, frequency of 1 Hz). did. Note that in the curable resin compositions used in Comparative Examples 1 and 3, the film viscosity could not be measured because the curable resin compositions were cured by irradiation with UV-LED light.

(UV硬化後のBステージ化状態)
インクジェット装置にて塗布した硬化性樹脂組成物にUV-LED光を照射後、その表面状態を下記基準にて判定した。
●:表面にタック感が無く、シリコンベアチップの貼り付け困難である
○:シリコンベアチップを貼り付けられる程度のタック感がある
△:ヌメリ成分(低粘度成分)が存在し、シリコンベアチップを貼り付けると硬化組成物層が流れてしまう
×:ほとんど硬化していない
(B stage state after UV curing)
After irradiating the curable resin composition coated with an inkjet device with UV-LED light, its surface condition was evaluated based on the following criteria.
●: There is no tackiness on the surface, making it difficult to attach silicone bare chips. ○: There is enough tackiness to attach silicone bare chips. △: There is a slimy component (low viscosity component), making it difficult to attach silicone bare chips. Cured composition layer flows ×: Hardly cured

(ダイシェア強度/初期)
ダイシェアテスター4000(DAGE社製)により室温にて、作製した半導体装置の初期のダイシェア強度を測定した。この測定を5つの半導体装置に実施して、ダイシェア強度の平均値を求めた。
(Die shear strength/initial)
The initial die shear strength of the fabricated semiconductor device was measured at room temperature using Die Shear Tester 4000 (manufactured by DAGE). This measurement was performed on five semiconductor devices, and the average value of die shear strength was determined.

(耐リフロー性(ダイシェア強度/リフロー後))
半導体装置の耐リフロー性を以下のようにして判定した。ダイシェアテスター4000(DAGE社製)により室温にて、作製した半導体装置の初期のダイシェア強度を測定した。また、作製した半導体装置をIRリフロー炉(Max260℃)にて3回通した後に、ダイシェアテスター4000(DAGE社製)によりダイシェア強度を再度測定した。上述のようにして測定したリフロー試験前後のダイシェア強度に基づき、以下の基準にて耐リフロー性を判定した。
○:リフロー処理後のダイシェア強度が、初期のダイシェア強度の90%以上である
△:リフロー処理後のダイシェア強度が、初期のダイシェア強度の70%以上、90%未満である
×:リフロー処理後のダイシェア強度が、初期のダイシェア強度の70%未満である
(Reflow resistance (die shear strength/after reflow))
The reflow resistance of the semiconductor device was determined as follows. The initial die shear strength of the fabricated semiconductor device was measured at room temperature using Die Shear Tester 4000 (manufactured by DAGE). Further, after passing the manufactured semiconductor device through an IR reflow oven (Max 260° C.) three times, the die shear strength was measured again using a die shear tester 4000 (manufactured by DAGE). Based on the die shear strength before and after the reflow test measured as described above, reflow resistance was determined based on the following criteria.
○: The die shear strength after reflow treatment is 90% or more of the initial die shear strength. △: The die shear strength after reflow treatment is 70% or more and less than 90% of the initial die shear strength. ×: After the reflow treatment. The die shear strength is less than 70% of the initial die shear strength

表2、表3は、実施例4~6、参考例1~3、7~10、比較例1~3の硬化性樹脂組成物の配合および評価結果を示す。

Figure 0007392925000010
Tables 2 and 3 show the formulation and evaluation results of the curable resin compositions of Examples 4 to 6, Reference Examples 1 to 3, 7 to 10, and Comparative Examples 1 to 3.
Figure 0007392925000010

Figure 0007392925000011
Figure 0007392925000011

上記評価から以下のことがわかる。
アクリロニトリル共重合ポリマーを適度に含有した実施例4~6、参考例1~3、7~10では、UV照射後に適度な表面タックを残すことが可能となり、チップ搭載が良好となり、初期およびリフロー後のダイシェア強度が高くなる。また、膜粘度が安定で、インクジェット塗布が可能な低粘度の硬化性樹脂組成物が得られる。
アクリロニトリル共重合ポリマーを含まない比較例1、およびアクリロニトリルを含まない共重合ポリマーを添加した比較例3では、UV照射後に硬化が進行してしまい、表面タックが無くなり、均一なチップ搭載ができず、ダイシェア強度も低くなる。アクリロニトリル共重合ポリマーの添加量が多すぎる比較例2では、硬化阻害が強すぎてUV照射後の硬化が十分に進行せず、均一なチップ搭載ができない。また、硬化性樹脂組成物の粘度が高くなり、インクジェット塗布性も悪化する。
The above evaluation reveals the following.
In Examples 4 to 6, Reference Examples 1 to 3, and 7 to 10, which contained an appropriate amount of acrylonitrile copolymer, it was possible to leave an appropriate surface tack after UV irradiation, resulting in good chip mounting, both at the initial stage and after reflow. The die shear strength of is increased. In addition, a low-viscosity curable resin composition with stable film viscosity and capable of inkjet coating can be obtained.
In Comparative Example 1 which did not contain an acrylonitrile copolymer and Comparative Example 3 which added a copolymer which did not contain acrylonitrile, curing progressed after UV irradiation, surface tack disappeared, and uniform chip mounting was not possible. Die shear strength also decreases. In Comparative Example 2, in which the amount of acrylonitrile copolymer added is too large, the curing inhibition is so strong that the curing after UV irradiation does not proceed sufficiently, making it impossible to uniformly mount the chip. Furthermore, the viscosity of the curable resin composition increases, and inkjet applicability also deteriorates.

以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態および実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention are possible. It is.

例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. mentioned in the above-mentioned embodiments and examples are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, etc. may be used as necessary. may also be used.

また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値などは、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。 Moreover, the configurations, methods, processes, shapes, materials, numerical values, etc. of the above-described embodiments and examples can be combined with each other without departing from the gist of the present invention.

10、10A 半導体装置
11 配線基板
12、14 樹脂硬化物層
13、15 半導体チップ
13a、15a ボンディングワイヤ
10, 10A semiconductor device 11 wiring board 12, 14 cured resin layer 13, 15 semiconductor chip 13a, 15a bonding wire

Claims (3)

第1の半導体チップと、配線基板または第2の半導体チップとを樹脂硬化物層により固着する半導体装置の製造方法であって、以下の工程(A)~(D):
(A)前記配線基板または第2の半導体チップの電極形成面に、光硬化性および熱硬化性を有し、25℃における粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物を、インクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する工程;
(B)前記硬化性樹脂組成物層に光源としてUV-LED光を照射して、Bステージ化された半硬化樹脂層を形成する工程;
(C)前記半硬化樹脂層上に、前記第1の半導体チップの電極形成面を押圧して、前記第1の半導体チップと前記配線基板または第2の半導体チップとを積層する工程;および
(D)前記半硬化樹脂層を加熱処理して、樹脂硬化物層を形成する工程
を備え、
前記硬化性樹脂組成物が、以下の成分(a)~(d):
(a)脂環式エポキシ化合物
(b)上記(a)を硬化させるために、スルホニウムボレート錯体であり、下記式(1)で示すチオン重合開始剤;
(c)室温で液状のカルボキシル基末端ブタジエンニトリルゴム;および
(d)上記(a)を更に硬化させるために、スルホニウムボレート錯体であり、下記式(3)で示す熱カチオン重合開始剤
を含み、
前記成分(c)が、前記成分(a)100質量部に対して0.5質量部以上25質量部以下含まれている半導体装置の製造方法。
Figure 0007392925000012
Figure 0007392925000013
A method for manufacturing a semiconductor device in which a first semiconductor chip and a wiring board or a second semiconductor chip are fixed together using a cured resin layer, the method comprising the following steps (A) to (D):
(A) A curable resin composition having photocurability and thermosetting properties and a viscosity of 10 mPa·s or more and 100 mPa·s or less at 25° C. is applied to the electrode forming surface of the wiring board or the second semiconductor chip. , a step of discharging from an inkjet nozzle to form a curable resin composition layer;
(B) irradiating the curable resin composition layer with UV-LED light as a light source to form a B-staged semi-cured resin layer;
(C) laminating the first semiconductor chip and the wiring board or the second semiconductor chip by pressing the electrode formation surface of the first semiconductor chip onto the semi-cured resin layer; and ( D) a step of heat-treating the semi-cured resin layer to form a cured resin layer;
The curable resin composition contains the following components (a) to (d):
(a) Alicyclic epoxy compound ;
(b) A cationic polymerization initiator which is a sulfonium borate complex and is represented by the following formula (1) in order to cure the above (a);
(c) a carboxyl group-terminated butadiene nitrile rubber that is liquid at room temperature; and (d) in order to further cure the above (a), it is a sulfonium borate complex and contains a thermal cationic polymerization initiator represented by the following formula (3),
A method for manufacturing a semiconductor device, wherein the component (c) is contained in an amount of 0.5 parts by mass or more and 25 parts by mass or less based on 100 parts by mass of the component (a).
Figure 0007392925000012
Figure 0007392925000013
前記カルボキシル基末端ブタジエンニトリルゴムにおけるアクリロニトリル量が、1分子中に10モル%以上30モル%以下である請求項に記載の半導体装置の製造方法。 2. The method for manufacturing a semiconductor device according to claim 1 , wherein the amount of acrylonitrile in the carboxyl group-terminated butadiene nitrile rubber is 10 mol% or more and 30 mol% or less in one molecule. 第1の半導体チップと、配線基板または第2の半導体チップとを樹脂硬化物層により固着する半導体装置の製造方法であって、以下の工程(A)~(D):
(A)前記配線基板または第2の半導体チップの電極形成面に、光硬化性および熱硬化性を有し、25℃における粘度が10mPa・s以上100mPa・s以下である硬化性樹脂組成物を、インクジェット式ノズルから吐出して、硬化性樹脂組成物層を形成する工程;
(B)前記硬化性樹脂組成物層に光源としてUV-LED光を照射して、Bステージ化された半硬化樹脂層を形成する工程;
(C)前記半硬化樹脂層上に、前記第1の半導体チップの電極形成面を押圧して、前記第1の半導体チップと前記配線基板または第2の半導体チップとを積層する工程;および
(D)前記半硬化樹脂層を加熱処理して、樹脂硬化物層を形成する工程
を備え、
前記硬化性樹脂組成物が、以下の成分(a)~(d):
(a)脂環式エポキシ化合物
(b)上記(a)を硬化させるために、スルホニウムボレート錯体であり、下記式(1)で示すチオン重合開始剤;
(c)室温で液状のカルボキシル基末端ブタジエンニトリルゴム;および
(d)上記(a)を更に硬化させるために、スルホニウムボレート錯体であり、下記式(3)で示す熱カチオン重合開始剤
を含む半導体装置の製造方法。
Figure 0007392925000014
Figure 0007392925000015
A method for manufacturing a semiconductor device in which a first semiconductor chip and a wiring board or a second semiconductor chip are fixed together using a cured resin layer, the method comprising the following steps (A) to (D):
(A) A curable resin composition having photocurability and thermosetting properties and a viscosity of 10 mPa·s or more and 100 mPa·s or less at 25° C. is applied to the electrode forming surface of the wiring board or the second semiconductor chip. , a step of discharging from an inkjet nozzle to form a curable resin composition layer;
(B) irradiating the curable resin composition layer with UV-LED light as a light source to form a B-staged semi-cured resin layer;
(C) laminating the first semiconductor chip and the wiring board or the second semiconductor chip by pressing the electrode formation surface of the first semiconductor chip onto the semi-cured resin layer; and ( D) a step of heat-treating the semi-cured resin layer to form a cured resin layer;
The curable resin composition contains the following components (a) to (d):
(a) Alicyclic epoxy compound ;
(b) A cationic polymerization initiator which is a sulfonium borate complex and is represented by the following formula (1) in order to cure the above (a);
(c) a carboxyl group-terminated butadiene nitrile rubber that is liquid at room temperature; and (d) a semiconductor containing a thermal cationic polymerization initiator that is a sulfonium borate complex and is represented by the following formula (3) in order to further cure the above (a). Method of manufacturing the device.
Figure 0007392925000014
Figure 0007392925000015
JP2022104545A 2016-10-21 2022-06-29 Manufacturing method of semiconductor device Active JP7392925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022104545A JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016206689A JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device
JP2022104545A JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016206689A Division JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device

Publications (2)

Publication Number Publication Date
JP2022125142A JP2022125142A (en) 2022-08-26
JP7392925B2 true JP7392925B2 (en) 2023-12-06

Family

ID=62085771

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016206689A Pending JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device
JP2022104545A Active JP7392925B2 (en) 2016-10-21 2022-06-29 Manufacturing method of semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016206689A Pending JP2018065957A (en) 2016-10-21 2016-10-21 Curable resin composition, and method for producing semiconductor device

Country Status (2)

Country Link
JP (2) JP2018065957A (en)
TW (1) TW201827514A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947292B2 (en) 2018-03-29 2021-10-13 日本精工株式会社 Motor control device
WO2023242807A1 (en) 2022-06-17 2023-12-21 Ricoh Company, Ltd. Curable composition for forming adhesive structure, adhesive structure, method of manufacturing adhesive structure, and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099649A (en) 2002-09-05 2004-04-02 Konica Minolta Holdings Inc Actinic-radiation-curing non-water-based inkjet ink composition, method for producing the composition, and inkjet recording method
JP2008037879A (en) 2006-08-01 2008-02-21 Konica Minolta Medical & Graphic Inc Active beam curable type composition, adhesive, printing ink and inkjet ink
JP2012190846A (en) 2011-03-08 2012-10-04 Hitachi Chem Co Ltd Adhesive agent composition for semiconductors, semiconductor device, and method of manufacturing semiconductor device
JP2012188463A (en) 2011-03-08 2012-10-04 Hitachi Chemical Co Ltd Adhesive composition for semiconductor, semiconductor device and method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2028259A1 (en) * 1989-11-20 1991-05-21 Stefan Weigl Tacky photopolymerizable adhesive compositions
KR101392442B1 (en) * 2008-01-11 2014-05-07 도레이첨단소재 주식회사 Liquid adhesive for electronic parts and method for applying to a lead-frame using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099649A (en) 2002-09-05 2004-04-02 Konica Minolta Holdings Inc Actinic-radiation-curing non-water-based inkjet ink composition, method for producing the composition, and inkjet recording method
JP2008037879A (en) 2006-08-01 2008-02-21 Konica Minolta Medical & Graphic Inc Active beam curable type composition, adhesive, printing ink and inkjet ink
JP2012190846A (en) 2011-03-08 2012-10-04 Hitachi Chem Co Ltd Adhesive agent composition for semiconductors, semiconductor device, and method of manufacturing semiconductor device
JP2012188463A (en) 2011-03-08 2012-10-04 Hitachi Chemical Co Ltd Adhesive composition for semiconductor, semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2022125142A (en) 2022-08-26
JP2018065957A (en) 2018-04-26
TW201827514A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP7392925B2 (en) Manufacturing method of semiconductor device
TWI312363B (en)
JP5651421B2 (en) Sealing composition and sealing sheet using the same
JP2017214472A (en) Adhesive composition and film-like adhesive composition
JP5180162B2 (en) Sheet-like epoxy resin composition for electronic component sealing, electronic component device assembly and electronic component device obtained thereby
JP6672837B2 (en) Anisotropic conductive adhesive composition, film adhesive, connection structure, and semiconductor device
JP6735652B2 (en) Method of manufacturing semiconductor device
WO2015025867A1 (en) Semiconductor adhesive
JP6044261B2 (en) Anisotropic conductive adhesive composition
JP6415574B2 (en) Die bonding process in electronic products
JP2007153933A (en) Bonding method and adhesive
JP2010174077A (en) Adhesive for electronic component
WO2015083809A1 (en) Method for producing connection structure, and anisotropic conductive film
WO2007083397A1 (en) Liquid epoxy resin composition and adhesive using the same
JP7172990B2 (en) Adhesive composition and structure
JP6355422B2 (en) Ink-jet light and thermosetting adhesive, method for producing electronic component, and electronic component
JP7039391B2 (en) Sealant for display element, sealant for organic EL element and its cured product
JP6482748B2 (en) Adhesive member and method for manufacturing electronic component
TWI775798B (en) Inkjet resin composition, electronic component, and method for producing electronic component
JPH09291267A (en) Ultraviolet curing adhesive composition
JP4042463B2 (en) Active energy ray-curable resin composition
TWI833812B (en) Photocurable resin composition for electronic devices
JP2014220372A (en) Method of manufacturing semiconductor device
JP6265242B2 (en) Anisotropic conductive adhesive composition
CN116004168A (en) Light-or heat-triggered front-end polymerization cure-on-demand adhesive kit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7392925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150