JP2018062700A - Hearth roll for continuous annealing furnace and manufacturing method of hearth roll for continuous annealing furnace - Google Patents

Hearth roll for continuous annealing furnace and manufacturing method of hearth roll for continuous annealing furnace Download PDF

Info

Publication number
JP2018062700A
JP2018062700A JP2016202681A JP2016202681A JP2018062700A JP 2018062700 A JP2018062700 A JP 2018062700A JP 2016202681 A JP2016202681 A JP 2016202681A JP 2016202681 A JP2016202681 A JP 2016202681A JP 2018062700 A JP2018062700 A JP 2018062700A
Authority
JP
Japan
Prior art keywords
sleeve
layer sleeve
outer layer
hearth roll
continuous annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202681A
Other languages
Japanese (ja)
Other versions
JP6730907B2 (en
Inventor
植野 雅康
Masayasu Ueno
雅康 植野
三宅 勝
Masaru Miyake
勝 三宅
健太郎 石井
Kentaro Ishii
健太郎 石井
岡田 圭司
Keiji Okada
圭司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Daido Castings Co Ltd
Original Assignee
JFE Steel Corp
Daido Castings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Daido Castings Co Ltd filed Critical JFE Steel Corp
Priority to JP2016202681A priority Critical patent/JP6730907B2/en
Publication of JP2018062700A publication Critical patent/JP2018062700A/en
Application granted granted Critical
Publication of JP6730907B2 publication Critical patent/JP6730907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hearth roll for a continuous annealing furnace capable of providing stable transportation of a metallic strip and making service life longer, and a manufacturing method of the hearth roll for the continuous annealing furnace.SOLUTION: A hearth roll for a continuous annealing furnace comprises: a cylindrical outer layer sleeve 2 made of heat resistant steel; and a cylindrical inner layer sleeve 3 which is made of a metal having thermal conductivity higher than that of the outer layer sleeve 2 and containing copper, and of which the outer peripheral surface is joined to an inner peripheral surface of the outer layer sleeve 2. An angle θformed by a free edge of an axial direction end part of the outer layer sleeve 2 and a joint boundary 6 between the outer layer sleeve 2 and the inner layer sleeve 3, and an angle θformed by a free edge of an axial direction end part of the inner layer sleeve 3 and the joint boundary 6, satisfy formula (1) and one of formula (2) and formula (3). θ+θ=180° ±10° ...(1), 55°≤θ≤80° ...(2), 125°≤θ<180° ...(3).SELECTED DRAWING: Figure 3

Description

本発明は、連続焼鈍炉用のハースロール及び連続焼鈍炉用のハースロールの製造方法に関する。   The present invention relates to a hearth roll for a continuous annealing furnace and a method for manufacturing a hearth roll for a continuous annealing furnace.

冷間圧延にて加工硬化した金属帯は、通常、熱処理による焼きなまし(焼鈍)処理が行われている。このような焼鈍処理は、金属帯をプレス等で成形する際、加工硬化した状態では曲げや絞りといった加工性に劣ることから、熱処理により転位を取り除いて、金属帯の加工性を向上させる為に行われる。近年、金属帯の焼鈍処理には、生産性の高い連続焼鈍炉が多用されている。連続焼鈍炉では、金属帯コイルから払い出されたコイル長手方向の尾端部と次コイルの先端部とを順次接合しながら、複数の金属帯を連続して焼鈍処理することで、長時間にわたって連続した熱処理を行うことができる。通常、連続焼鈍炉は、金属帯の入口側より順番に加熱帯、均熱帯及び冷却帯から構成されており、所望の焼鈍処理をするための熱処理パターンにしたがって各帯での温度設定がなされている。金属帯は、炉内各帯の上部及び下部に設置されている複数の搬送ロールにより、加熱帯から冷却帯までを上下に順番に通板方向を変えながら搬送されていく。   A metal strip work hardened by cold rolling is usually subjected to an annealing (annealing) treatment by heat treatment. In order to improve the workability of the metal strip by removing dislocations by heat treatment, the annealing treatment is inferior in workability such as bending and drawing in the work-hardened state when forming the metal strip with a press or the like. Done. In recent years, high-productivity continuous annealing furnaces are frequently used for annealing metal strips. In a continuous annealing furnace, a plurality of metal strips are annealed continuously while sequentially joining the tail end portion of the coil longitudinal direction and the tip end portion of the next coil delivered from the metal strip coil for a long time. Continuous heat treatment can be performed. Usually, a continuous annealing furnace is composed of a heating zone, a soaking zone and a cooling zone in order from the entrance side of the metal zone, and the temperature is set in each zone according to the heat treatment pattern for the desired annealing treatment. Yes. The metal strip is transported from the heating zone to the cooling zone while changing the plate passing direction in order from the heating zone to the cooling zone by a plurality of conveyance rolls installed at the upper and lower portions of each zone in the furnace.

ここで、薄鋼板の連続焼鈍処理を例にとると、加熱帯では、薄鋼板を常温の状態から搬送中に最高温度が600℃〜800℃程度にまでに加熱する加熱処理が実施される。次いで、均熱帯では、加熱帯で加熱された温度近辺での均熱処理が実施される。さらに、冷却帯では、段階的な温度パターン設定により、薄鋼板の温度が100℃以下となるまで、冷却処理が実施される。   Here, taking the continuous annealing treatment of a thin steel plate as an example, in the heating zone, a heat treatment is performed in which the thin steel plate is heated from a normal temperature state to a maximum temperature of about 600 ° C. to 800 ° C. during conveyance. Next, in the soaking zone, soaking is performed near the temperature heated in the heating zone. Further, in the cooling zone, the cooling process is performed until the temperature of the thin steel plate becomes 100 ° C. or less by stepwise temperature pattern setting.

この際、薄鋼板を搬送するために炉内に設けられる搬送ロール(以下、「ハースロール」とよぶ。)は、炉内各帯の雰囲気温度で加熱されるのみならず、薄鋼板とロール温度(概ね雰囲気温度と一致する)との温度差に応じて、接触による入熱や抜熱によって加熱又は冷却される。このため、ハースロールは、ロール軸方向に温度分布が生じ、ロール表面が凹形状あるいは凸形状に変化する。このようなロール表面の形状変化が生じると、ロール表面が凹形状では薄鋼板の蛇行現象、凸形状では薄鋼板のバックリング現象(皺状の疵が発生する現象であり、以後、絞りとよぶ)が発生しやすくなる。これらの現象に対して、実操業では経験的に通板速度を低下させることでロール形状の変化を低減させる対策がとられており、生産性を低下させる大きな要因となっている。また、近年、飲料缶などに使用されるブリキ材等では薄ゲージ化が進んでおり、低コスト化のために高速化による連続焼鈍炉での熱処理生産性の向上が重要となっている。   At this time, the transport roll (hereinafter referred to as “hearth roll”) provided in the furnace for transporting the thin steel sheet is not only heated at the atmospheric temperature of each zone in the furnace, but also the thin steel sheet and the roll temperature. Depending on the temperature difference (generally coincides with the ambient temperature), it is heated or cooled by heat input or heat removal by contact. For this reason, the hearth roll has a temperature distribution in the roll axis direction, and the roll surface changes to a concave shape or a convex shape. When such a roll surface shape change occurs, if the roll surface is concave, the meandering phenomenon of the thin steel sheet, and if the roll surface is convex, the buckling phenomenon of the thin steel sheet (this is a phenomenon in which wrinkle-like wrinkles occur, hereinafter referred to as squeezing). ) Is likely to occur. In response to these phenomena, in actual operations, measures have been taken to reduce changes in roll shape by empirically reducing the sheet feeding speed, which is a major factor in reducing productivity. In recent years, tin gauges used in beverage cans and the like are becoming thinner, and it is important to improve the heat treatment productivity in a continuous annealing furnace by increasing the speed in order to reduce the cost.

ハースロールの熱膨張によるプロフィル変化を抑制する方法としては、連続焼鈍炉用ハースロールを複層構造としてロール軸方向の温度分布を緩和する技術が提案されている(例えば、特許文献1)。特許文献1の技術は、耐熱鋼からなる外層スリーブに、外層スリーブよりも熱伝導性の高い金属材料からなる内層スリーブを結合させるものであり、軸方向の熱伝導を促進させ、ロール全体の温度分布、延いてはロールの熱膨張プロフィル変化を緩和することができる。このような機能を有するハースロールの製造方法としては、高熱伝導材を溶融して結合する技術(例えば、特許文献2)が提案されている。また、遠心鋳造技術により耐熱鋼からなる外層スリーブを製造した後、その内面に高熱伝導性の金属材料を遠心鋳造にて鋳込んで内層スリーブを形成する技術(例えば、特許文献3)が提案されている。   As a method for suppressing the profile change due to the thermal expansion of the hearth roll, a technique for relaxing the temperature distribution in the roll axis direction using a hearth roll for a continuous annealing furnace as a multilayer structure has been proposed (for example, Patent Document 1). The technique of Patent Document 1 is to join an outer layer sleeve made of heat-resistant steel to an inner layer sleeve made of a metal material having higher thermal conductivity than the outer layer sleeve, promote axial heat conduction, and increase the temperature of the entire roll. Distribution, and hence the change in roll thermal expansion profile, can be mitigated. As a method of manufacturing a hearth roll having such a function, a technique (for example, Patent Document 2) in which a high thermal conductive material is melted and bonded has been proposed. Further, a technique (for example, Patent Document 3) is proposed in which an outer layer sleeve made of heat-resistant steel is manufactured by centrifugal casting technology, and then an inner layer sleeve is formed by casting a metal material having high thermal conductivity on the inner surface by centrifugal casting. ing.

特開昭62−127428号公報Japanese Patent Laid-Open No. 62-127428 特開平4−247821号公報Japanese Patent Laid-Open No. 4-247821 特開平6−615号公報JP-A-6-615

ところで、特許文献1〜3の複層構造のハースロールは、ロール軸方向に生じる大きな温度分布を改善することのみに主眼が置かれており、物性の異なる金属を結合して使用することによって生ずる結合界面の寿命に関しては、一切言及がされていない。
異なる材料が接合した異材接合体では、界面上における材料の不連続により、外力や温度変化が作用すると、接合界面が自由縁と交差する接合端部(異材界面端)近傍において応力場が弾性論上無限大となる特異性を示す場合がある。このような特異性を示す場合、接合体の強度が著しく低下することとなる。
By the way, the multi-layered hearth rolls of Patent Documents 1 to 3 are mainly focused on improving a large temperature distribution that occurs in the roll axis direction, and are produced by combining and using metals having different physical properties. No mention is made of the lifetime of the bonding interface.
In a dissimilar material joint in which different materials are joined, when the external force or temperature changes due to material discontinuity on the interface, the stress field is elastic in the vicinity of the joint end (dissimilar material interface end) where the joint interface intersects the free edge. It may show peculiarities that are infinite. When such specificity is exhibited, the strength of the joined body is significantly reduced.

つまり、特許文献1〜3の複層構造のハースロールでは、異材界面端の応力特異性を考慮したものとはなっておらず、実機操業における昇降温過程で繰返し作用する熱応力によって、異材界面端に極めて大きな応力が作用する場合があった。そして、このような場合には、接合界面の剥離が生じ、所望の均熱効果が得られないために、搬送中の金属帯の蛇行や絞り現象が生じ、安定的な搬送ができなくなるという問題があった。また、ハースロールの寿命が短くなるという問題があった。   In other words, the multi-layered hearth rolls of Patent Documents 1 to 3 do not take into account the stress singularity at the edge of the different material interface. In some cases, extremely large stress acts on the edge. In such a case, the bonding interface is peeled off, and the desired soaking effect cannot be obtained. This causes the meandering and squeezing phenomenon of the metal band being transported, which makes stable transport impossible. was there. There is also a problem that the life of the hearth roll is shortened.

そこで、本発明は上述した事情に鑑みてなしえたものであり、金属帯の安定的な搬送を可能とし、かつ長寿命化を可能とする連続焼鈍炉用のハースロール及び連続焼鈍炉用のハースロールの製造方法を提供することを目的としている。   Accordingly, the present invention has been made in view of the above-described circumstances, and enables the continuous conveyance of the metal strip and the extension of the life of the continuous hearth furnace and the hearth for the continuous annealing furnace. It aims at providing the manufacturing method of a roll.

本発明の一態様によれば、耐熱鋼からなる円筒状の外層スリーブと、この外層スリーブよりも熱伝導性が高く、銅を含む金属からなり、上記外層スリーブの内周面に外周面が接合する円筒状の内層スリーブと、を備え、上記外層スリーブと上記内層スリーブとの接合界面に対して上記外層スリーブの軸方向端部の自由縁がなす角度θ、及び上記接合界面に対して上記内層スリーブの軸方向端部の自由縁がなす角度θは、(1)式を満たし、且つ(2)式または(3)式のいずれか一方を満たすことを特徴とする連続焼鈍炉用のハースロールが提供される。
θ+θ=180°±10° ・・・(1)
55°≦θ≦80° ・・・(2)
125°≦θ<180° ・・・(3)
According to one aspect of the present invention, a cylindrical outer layer sleeve made of heat-resistant steel and a metal having a higher thermal conductivity than that of the outer layer sleeve and made of copper, the outer peripheral surface is joined to the inner peripheral surface of the outer layer sleeve. A cylindrical inner layer sleeve, and an angle θ 1 formed by a free edge of an axial end portion of the outer layer sleeve with respect to the joint interface between the outer layer sleeve and the inner layer sleeve, and the above with respect to the joint interface. The angle θ 2 formed by the free edge at the axial end of the inner sleeve satisfies the formula (1) and satisfies either the formula (2) or the formula (3). Hearth rolls are provided.
θ 1 + θ 2 = 180 ° ± 10 ° (1)
55 ° ≦ θ 1 ≦ 80 ° (2)
125 ° ≦ θ 1 <180 ° (3)

本発明の一態様によれば、耐熱鋼からなる円筒状の外層スリーブと、この外層スリーブよりも熱伝導性が高く、上記外層スリーブの内周面に外周面が接合する円筒状の内層スリーブとを有する複層構造の円筒スリーブの軸方向の端部を機械加工するスリーブ加工工程と、上記スリーブ加工工程の後、上記外層スリーブの軸方向の端とアスクルとを接合させるアスクル接合工程とを備え、上記スリーブ加工工程では、上記外層スリーブと上記内層スリーブとの接合界面に対して上記外層スリーブの軸方向端部の自由縁がなす角度θ、及び上記接合界面に対して上記内層スリーブの軸方向端部の自由縁がなす角度θが、(1)式を満たし、且つ(2)式または(3)式のいずれか一方を満たすように、上記外層スリーブ及び上記内層スリーブの軸方向の端部を成形することを特徴とする連続焼鈍炉用のハースロールの製造方法が提供される。 According to one aspect of the present invention, a cylindrical outer layer sleeve made of heat-resistant steel, a cylindrical inner layer sleeve having higher thermal conductivity than the outer layer sleeve, and an outer peripheral surface joined to the inner peripheral surface of the outer layer sleeve; A sleeve processing step of machining an axial end portion of a cylindrical sleeve having a multi-layer structure, and an ASKUL joining step of joining the axial end of the outer sleeve to the ASKUL after the sleeve processing step. In the sleeve processing step, an angle θ 1 formed by a free edge of an axial end portion of the outer layer sleeve with respect to a joining interface between the outer layer sleeve and the inner layer sleeve, and an axis of the inner layer sleeve with respect to the joining interface The outer sleeve and the inner sleeve so that the angle θ 2 formed by the free edge at the direction end satisfies the formula (1) and satisfies either the formula (2) or the formula (3). The manufacturing method of the hearth roll for continuous annealing furnaces characterized by shape | molding the edge part of the axial direction of this is provided.

本発明の一態様によれば、金属帯の安定的な搬送を可能とし、かつ長寿命化を可能とする連続焼鈍炉用のハースロール及び連続焼鈍炉用のハースロールの製造方法が提供される。   According to one aspect of the present invention, there is provided a hearth roll for a continuous annealing furnace and a method for manufacturing a hearth roll for a continuous annealing furnace that enable stable conveyance of a metal strip and increase the life. .

本発明の一実施形態に係るハースロールを示す断面図である。It is sectional drawing which shows the hearth roll which concerns on one Embodiment of this invention. 図1のI−I線断面図である。It is the II sectional view taken on the line of FIG. ハースロールを示す部分断面図である。It is a fragmentary sectional view showing a hearth roll. ハースロールを示す部分断面図である。It is a fragmentary sectional view showing a hearth roll. 異材接合体における異材界面端を示す模式図である。It is a schematic diagram which shows the dissimilar-material interface edge in a dissimilar-material joined body. 異材接合体における応力特異性の出現及び消失条件を示すグラフである。It is a graph which shows the appearance and disappearance conditions of stress specificity in a dissimilar material joined body. ハースロールの外層スリーブに用いられる耐熱鋼及び内層スリーブに用いられる銅の横弾性係数の温度に対する変化を示すグラフである。It is a graph which shows the change with respect to the temperature of the transverse elastic modulus of the heat resistant steel used for the outer layer sleeve of a hearth roll, and the copper used for an inner layer sleeve.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。   In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.

<ハースロールの構成>
まず、図1〜図4を参照して、本発明の一実施形態に係るハースロール1の構成について説明する。ハースロール1は、回転中心軸を通る断面である図1に示すように、外層スリーブ2と、内層スリーブ3と、アスクル4と、軸部5とを備える。また、ハースロール1は、熱処理される金属帯が薄鋼板である、連続焼鈍炉に用いられる。このような連続焼鈍炉では、通板時にハースロール1には大きな力が加わらないために過度の剛性が不要である。また、金属帯毎の機械的特性や板寸法に合わせた通板速度の変更に対応するため、回転慣性を小さくする必要がある。このため、ハースロール1の内部は空洞になっている。
<Configuration of Hearth Roll>
First, with reference to FIGS. 1-4, the structure of the hearth roll 1 which concerns on one Embodiment of this invention is demonstrated. As shown in FIG. 1, which is a cross section passing through the rotation center axis, the hearth roll 1 includes an outer layer sleeve 2, an inner layer sleeve 3, an axle 4, and a shaft portion 5. Further, the hearth roll 1 is used in a continuous annealing furnace in which a metal strip to be heat-treated is a thin steel plate. In such a continuous annealing furnace, excessive force is not required because a large force is not applied to the hearth roll 1 during sheet passing. Further, it is necessary to reduce the rotational inertia in order to cope with the change in the plate passing speed in accordance with the mechanical characteristics and the plate dimensions for each metal band. For this reason, the inside of the hearth roll 1 is hollow.

外層スリーブ2は、中空の円筒状の形状を有し、耐熱鋼からなる。外層スリーブ2に用いられる耐熱鋼は、25Cr−24Ni鋼であり、縦弾性係数が214GPaで、ポアソン比が0.3である。外層スリーブ2の厚みは、例えば15mm〜30mm程度であり、用いられる温度条件や強度条件、設備条件(例えばモータの出力)等に応じて適宜設定される。また、外層スリーブ2の表面は、通板中の金属帯の蛇行を抑制するため、軸方向(図1における左右方向)の中央側の外径が軸方向の端部側の外径に比べて大きな凸クラウン形状を有する。凸クラウン形状は、焼鈍を行う金属帯の寸法やハースロール1が設けられる炉内の位置に応じて、適切なクラウン形状が採用される。   The outer layer sleeve 2 has a hollow cylindrical shape and is made of heat resistant steel. The heat resistant steel used for the outer layer sleeve 2 is 25Cr-24Ni steel, has a longitudinal elastic modulus of 214 GPa and a Poisson's ratio of 0.3. The thickness of the outer layer sleeve 2 is, for example, about 15 mm to 30 mm, and is appropriately set according to the temperature conditions, strength conditions, equipment conditions (for example, motor output), and the like. Also, the outer sleeve 2 has a surface whose outer diameter on the center side in the axial direction (left-right direction in FIG. 1) is smaller than the outer diameter on the end side in the axial direction in order to suppress the meandering of the metal strip in the through plate. It has a large convex crown shape. As the convex crown shape, an appropriate crown shape is adopted according to the size of the metal band to be annealed and the position in the furnace where the hearth roll 1 is provided.

内層スリーブ3は、外層スリーブ2よりも径の小さな中空の円筒状の形状を有し、タフピッチ銅や脱酸銅、無酸素銅等の純銅からなる。内層スリーブ3に用いられる純銅は、縦弾性係数が118GPaで、ポアソン比が0.34である。内層スリーブ3の厚みは、例えば10mm〜20mm程度であり、ハースロール1の強度条件や設備条件等に応じて適宜設定される。なお、内層スリーブ3の厚みが、10mm未満と薄い場合、外層スリーブ2の均熱効果が十分に得られないことがある。また、内層スリーブ3の厚みが20mm超と厚くなる場合、ハースロール1の重量が重くなりすぎるため、設備の導入やメンテナンスに掛かるコストが増大する。内層スリーブ3は、外層スリーブ2の中空内に配され、外周面が外層スリーブ2の内周面に金属結合によって接合されている。なお、外層スリーブ2と内層スリーブ3との界面を、接合界面6ともいう。また、外層スリーブ2と、外層スリーブ2に接合された内層スリーブ3とからなる接合体を、複層構造の円筒スリーブともいう。   The inner layer sleeve 3 has a hollow cylindrical shape whose diameter is smaller than that of the outer layer sleeve 2, and is made of pure copper such as tough pitch copper, deoxidized copper, oxygen-free copper, or the like. Pure copper used for the inner layer sleeve 3 has a longitudinal elastic modulus of 118 GPa and a Poisson's ratio of 0.34. The thickness of the inner layer sleeve 3 is, for example, about 10 mm to 20 mm, and is appropriately set according to the strength condition, facility condition, etc. of the hearth roll 1. In addition, when the thickness of the inner layer sleeve 3 is as thin as less than 10 mm, the soaking effect of the outer layer sleeve 2 may not be sufficiently obtained. Further, when the thickness of the inner layer sleeve 3 is greater than 20 mm, the weight of the hearth roll 1 becomes too heavy, so that the cost for introducing and maintaining the equipment increases. The inner layer sleeve 3 is disposed in the hollow of the outer layer sleeve 2, and the outer peripheral surface is joined to the inner peripheral surface of the outer layer sleeve 2 by metal bonding. The interface between the outer layer sleeve 2 and the inner layer sleeve 3 is also referred to as a bonding interface 6. The joined body composed of the outer layer sleeve 2 and the inner layer sleeve 3 joined to the outer layer sleeve 2 is also referred to as a multi-layered cylindrical sleeve.

図3は、図1の破線で囲った領域であり、外層スリーブ2及び内層スリーブ3の軸方向の端部を示す部分断面図である。
外層スリーブ2の軸方向の端部は、合界面6に対して外層スリーブ2の軸方向端部の端面である自由縁がなす角度θで傾斜するように形成される。つまり、図3に示す例の場合、外層スリーブ2は、軸方向の中央側の厚みが一定であり、軸方向端部における接合界面6の端からなす角度θで傾斜する傾斜領域が形成される。そして、外層スリーブ2は、傾斜領域から軸方向端側に中央側よりも薄い一定厚みの領域が形成され、アスクル4に接続される。
FIG. 3 is a partial cross-sectional view showing the end portions in the axial direction of the outer layer sleeve 2 and the inner layer sleeve 3, which are regions surrounded by a broken line in FIG. 1.
An end portion in the axial direction of the outer layer sleeve 2 is formed to be inclined with respect to the joint interface 6 at an angle θ 1 formed by a free edge that is an end surface of the end portion in the axial direction of the outer layer sleeve 2. That is, in the example shown in FIG. 3, the outer layer sleeve 2 has a constant thickness on the center side in the axial direction, and an inclined region inclined at an angle θ 1 formed from the end of the joining interface 6 at the axial end is formed. The The outer layer sleeve 2 is formed with a region having a constant thickness thinner than the center side on the axial end side from the inclined region, and is connected to the axle 4.

一方、内層スリーブ3の軸方向の端部は、合界面6に対して内層スリーブ3の軸方向端部の端面である自由縁がなす角度θで傾斜するように形成される。つまり、内層スリーブ3は、軸方向の中央側の厚みが一定であり、軸方向端部に、接合界面6の端に向かって端面がなす角度θで傾斜する傾斜領域が形成される。
さらに、本実施形態では、なす角度θ,θが、下記の(1)式を満たし、且つ(2)式及び(3)式を満たす。
θ+θ=180°±10° ・・・(1)
55°≦θ≦80° ・・・(2)
125°≦θ<180° ・・・(3)
On the other hand, the end portion in the axial direction of the inner layer sleeve 3 is formed so as to be inclined with respect to the joint interface 6 at an angle θ 2 formed by a free edge that is an end surface of the end portion in the axial direction of the inner layer sleeve 3. That is, the inner sleeve 3 has a constant thickness on the center side in the axial direction, and an inclined region inclined at an angle θ 2 formed by the end face toward the end of the bonding interface 6 is formed at the end in the axial direction.
Further, in the present embodiment, the angles θ 1 and θ 2 formed satisfy the following expression (1), and also satisfy the expressions (2) and (3).
θ 1 + θ 2 = 180 ° ± 10 ° (1)
55 ° ≦ θ 1 ≦ 80 ° (2)
125 ° ≦ θ 1 <180 ° (3)

なお、図3に図示した例は、上記の条件において、なす角度θ,θが、(1)式及び(3)式を満たす場合である。一方、なす角度θ,θが(1)式及び(2)式を満たす場合、層スリーブ2及び内層スリーブ3の軸方向の端部の断面形状は、図4に図示した例のようになる。図4に示すように、なす角度θ,θが(1)式及び(2)式を満たす場合、外層スリーブ2及び内層スリーブ3の傾斜領域における傾斜方向が変わる。 The example illustrated in FIG. 3 is a case where the angles θ 1 and θ 2 formed under the above conditions satisfy the expressions (1) and (3). On the other hand, when the angles θ 1 and θ 2 formed satisfy the expressions (1) and (2), the sectional shapes of the axial end portions of the layer sleeve 2 and the inner layer sleeve 3 are as in the example illustrated in FIG. Become. As shown in FIG. 4, when the angles θ 1 and θ 2 formed satisfy the expressions (1) and (2), the inclination directions in the inclination regions of the outer sleeve 2 and the inner sleeve 3 are changed.

ここで、本発明者らは、物性の異なる外層スリーブ2及び内層スリーブ3について、接合端部における特異性の観点から、外層スリーブ2及び内層スリーブ3の軸方向の端部の形状を上述のように規定することで、ハースロール1を長寿命化できることを見出した。
異材界面端における応力特異性の出現及び消失の条件については、久保等の報告(久保、「自由縁応力特異性を消失させるための異種材料接合端の幾何学的条件」、日本機械学会論文集(A編)、日本機械学会、1991年、57巻、535号、p.632−636)がある。この知見によれば、図5に示すような点Tでθの開き角を持つ材料7Aと、θの開き角を持つ材料7Bとが、θ=0の線上で接合しているとした場合、異材界面端部の応力特異性の出現及び消失の遷移条件は(4)式で表される。なお、(4)式中の、Jは(5)式、Jは(6)式、s及びsは(7)式、並びにt及びtは(8)式で定義される(j=1,2)。また、(2)式及び(3)式中のαは(9)式、βは(10)式で定義される。さらに、(9)式及び(10)式中のκ,κは、平面ひずみ条件において(11)式で定義される(j=1,2)。さらに、(9)式及び(10)式中のμ,μは、材料7A,7Bの横弾性係数であり、材料7A,7Bの縦弾性係数E,Eとポアソン比ν,νを用いた(12)式で定義される(j=1,2)。
Here, with respect to the outer layer sleeve 2 and the inner layer sleeve 3 having different physical properties, the shape of the end portions in the axial direction of the outer layer sleeve 2 and the inner layer sleeve 3 is as described above from the viewpoint of peculiarities at the joining end portions. It was found that the lifespan of the hearth roll 1 can be extended by prescribing.
Regarding the conditions for the appearance and disappearance of stress singularities at the dissimilar material interface edge, Kubo et al. (Kubo, “Geometric conditions of dissimilar material joint ends to eliminate free edge stress singularity”, JSME Proceedings (A), Japan Society of Mechanical Engineers, 1991, 57, 535, p. 632-636). According to this finding, a material 7A having an opening angle of θ 1 and a material 7B having an opening angle of θ 2 at a point T as shown in FIG. 5 are joined on a line of θ = 0. In this case, the transition condition of the appearance and disappearance of the stress singularity at the edge portion of the dissimilar material interface is expressed by equation (4). In Equation (4), J is defined by Equation (5), J 0 is defined by Equation (6), s 1 and s 2 are defined by Equation (7), and t 1 and t 2 are defined by Equation (8). (J = 1, 2). Moreover, (alpha) in (2) Formula and (3) Formula is defined by (9) Formula, (beta) is defined by (10) Formula. Furthermore, κ 1 and κ 2 in the equations (9) and (10) are defined by the equation (11) under the plane strain condition (j = 1, 2). Further, μ 1 and μ 2 in the equations (9) and (10) are transverse elastic coefficients of the materials 7A and 7B, and the longitudinal elastic coefficients E 1 and E 2 of the materials 7A and 7B and the Poisson's ratio ν 1 , It is defined by equation (12) using ν 2 (j = 1, 2).

Figure 2018062700
Figure 2018062700

つまり、異材界面端における応力場は、接合端部の形状及び材料の弾性定数(縦弾性係数、ポアソン比)によって特異性が変化し、応力の分布形態や大きさが変化することとなる。そして、適切な材料特性の組合せ及び端部形状を選択することで、特異性を消失させることが可能となる。
このような知見に基づき、本発明者らは、外層スリーブ2及び内層スリーブ3の異材界面端における応力の特異性について検討を行った。本検討では、図3または図4に示す形状の外層スリーブ2と内層スリーブ3とについて、異材界面端の形状であるなす角度θ,θの値、及び材料の横弾性係数μ,μの値をそれぞれ変化させて、特異性の出現及び消失を検証した。なお、本検討では、マクロな応力集中を防ぐことを目的として、異材界面端が直線で滑らかに連続した形状とするため、なす角度θ,θは、(13)式を満たすこととした。
θ+θ=180° ・・・(13)
That is, the stress field at the dissimilar material interface end changes in specificity depending on the shape of the joint end and the elastic constant (longitudinal elastic modulus, Poisson's ratio) of the material, and the distribution form and magnitude of the stress change. Then, by selecting an appropriate combination of material characteristics and end shape, the specificity can be lost.
Based on such knowledge, the present inventors examined the peculiarity of stress at the dissimilar material interface ends of the outer sleeve 2 and the inner sleeve 3. In this study, for the outer layer sleeve 2 and the inner layer sleeve 3 having the shape shown in FIG. 3 or FIG. 4, the values of the angles θ 1 and θ 2 that are the shapes of the dissimilar material interface ends, and the lateral elastic modulus μ 1 , μ of the material The value of 2 was changed to verify the appearance and disappearance of specificity. In the present study, in order to prevent macro stress concentration, the dissimilar material interface ends are formed in a straight and smoothly continuous shape, and thus the angles θ 1 and θ 2 formed satisfy the equation (13). .
θ 1 + θ 2 = 180 ° (13)

本検討の結果を、図6のグラフに示す。図6において、横軸は外層スリーブ2の横弾性係数μに対する内層スリーブ3の横弾性係数μの比である横弾性比率μ/μ、縦軸はなす角度θの値をそれぞれ示す。図6において、網掛けが施された領域は、異材界面端において応力の特異性が出現する条件であり、この領域の条件では、接合界面6の端部近傍に非常に大きな応力が作用することとなる。一方、網掛けが施されていない領域は、異材界面端において応力の特異性が消失する条件であり、この領域の条件では、接合界面6の端部近傍に大きな応力が作用しないこととなる。つまり、図6のグラフにおいて、網掛けか施されていない領域の条件となるように、異材界面端の形状を制御することで、ハースロール1の長寿命化を実現することができる。 The result of this study is shown in the graph of FIG. In FIG. 6, the horizontal axis indicates the value of the transverse elastic ratio μ 2 / μ 1 , which is the ratio of the lateral elastic modulus μ 2 of the inner layer sleeve 3 to the lateral elastic coefficient μ 1 of the outer layer sleeve 2, and the vertical axis indicates the value of the angle θ 1 formed. . In FIG. 6, the shaded area is a condition in which stress singularity appears at the dissimilar material interface edge. Under this area condition, a very large stress acts near the end of the bonding interface 6. It becomes. On the other hand, the region not shaded is a condition in which the peculiarity of stress disappears at the edge of the dissimilar material interface. Under the condition of this region, a large stress does not act near the end of the joint interface 6. That is, in the graph of FIG. 6, the life of the hearth roll 1 can be extended by controlling the shape of the dissimilar material interface edge so as to satisfy the condition of the region that is not shaded.

図7に、本実施形態において外層スリーブ2に用いられる耐熱鋼、及び内層スリーブ3に用いられる銅の横弾性係数μ,μの温度依存性を示す。また、図7には、銅の横弾性係数μを耐熱鋼の横弾性係数μで除して算出される横弾性比率μ/μの温度依存性を示す。連続焼鈍炉で使用される室温から800℃までの温度範囲における、横弾性比率μ/μは、0.6以上0.8以下の範囲となることが確認できる。 FIG. 7 shows the temperature dependence of the transverse elastic coefficients μ 1 and μ 2 of the heat-resistant steel used for the outer layer sleeve 2 and the copper used for the inner layer sleeve 3 in the present embodiment. Further, in FIG. 7 shows the transverse elasticity ratio μ 2 / μ 1 of the temperature dependence, which is calculated by dividing the modulus of transverse elasticity mu 2 of copper modulus of transverse elasticity mu 1 of heat-resistant steel. It can be confirmed that the transverse elastic ratio μ 2 / μ 1 in the temperature range from room temperature to 800 ° C. used in the continuous annealing furnace is in the range of 0.6 to 0.8.

さらに、この横弾性比率の範囲と図6に示す検討結果から、本実施形態の外層スリーブ2及び内層スリーブ3において異材界面端の応力の特異性を消失する条件としては、(13)式の条件に加え、なす角度θが(2)式又は(3)式のいずれか一方の条件を満たすことが必要となる。この条件を満たすことで、外層スリーブ2と内層スリーブ3との異材界面端に作用する応力を大きく低減することができるため、軸方向端部における外層スリーブ2と内層スリーブ3との剥離の発生を抑制することができ、ハースロール1の長寿命化を実現することができる。なお、なす角度θとなす角度θとの和の条件については、(13)式の条件を(1)式の条件の範囲に広げたとしても、(13)式の場合と同程度の応力抑制効果を得ることができる。また、(13)式の代わりに(1)式の条件とすることで、後述する外層スリーブ2及び内層スリーブ3の端部の加工が容易になる。 Furthermore, from the range of the transverse elastic ratio and the examination result shown in FIG. 6, the condition for eliminating the peculiarity of stress at the interface between different materials in the outer sleeve 2 and the inner sleeve 3 of the present embodiment is the condition of the equation (13). In addition to the above, it is necessary that the angle θ 1 formed satisfies the condition of either the expression (2) or the expression (3). By satisfying this condition, the stress acting on the dissimilar material interface end between the outer sleeve 2 and the inner sleeve 3 can be greatly reduced, so that the outer sleeve 2 and the inner sleeve 3 are separated from each other at the axial end. The life of the hearth roll 1 can be extended. As for the condition of the sum of the angle θ 1 and the angle θ 2 formed, even if the condition of the expression (13) is expanded to the range of the condition of the expression (1), it is the same as the case of the expression (13). A stress suppressing effect can be obtained. Further, by setting the condition of the expression (1) instead of the expression (13), the processing of the end portions of the outer layer sleeve 2 and the inner layer sleeve 3 described later becomes easy.

そして、アスクル4は、略円錐台状の部材であり、耐火鋼等の金属からなる。アスクル4は、外層スリーブ2の軸方向両端側にそれぞれ配され、軸方向の一端が外層スリーブ2の端部に溶接によって接合され、他端が軸部5に溶接によって接合される。なお、図1では、外層スリーブ2とアスクル4との接合位置を破線aで示し、アスクル4と軸部5との接合位置を破線bで示す。
軸部5は、外層スリーブ2の軸方向に延在する部材であり、耐火鋼等の金属からなる。軸部5は、外層スリーブ2の両端側にそれぞれ配され、延在方向の一端がアスクル4に接合される。
And the ASKUL 4 is a substantially frustoconical member and is made of a metal such as refractory steel. The ASKUL 4 is disposed on both axial sides of the outer layer sleeve 2, one end in the axial direction is joined to the end portion of the outer layer sleeve 2 by welding, and the other end is joined to the shaft portion 5 by welding. In FIG. 1, the joining position between the outer sleeve 2 and the axle 4 is indicated by a broken line a, and the joining position between the axle 4 and the shaft portion 5 is indicated by a broken line b.
The shaft portion 5 is a member extending in the axial direction of the outer layer sleeve 2 and is made of a metal such as refractory steel. The shaft portions 5 are respectively arranged on both end sides of the outer layer sleeve 2, and one end in the extending direction is joined to the axle 4.

<ハースロールの製造方法>
次に、本実施形態に係るハースロール1の製造方法について説明する。まず、遠心鋳造等の手段により、粗形状の外層スリーブ2を製造し、削り出し等の機械加工によって所定の寸法に仕上げる(スリーブ製造工程)。また、スリーブ製造工程では、外層スリーブ2と同様な方法で内層スリーブ3が製造される。
次いで、外層スリーブ2の内側に内層スリーブ3を配し、熱間静水圧プレス処 理(HIP処理)を施すことで、外層スリーブ2と内層スリーブ3とを接合させ、複層構造の円筒スリーブを製造する(スリーブ接合工程)。HIP処理では、高圧容器内に外層スリーブ2及び外層スリーブ2の内側に配された内層スリーブ3を入れ、高温高圧処理を施すことで、外層スリーブ2と内層スリーブ3とを接合界面6にて金属結合させる。
<Manufacturing method of hearth roll>
Next, the manufacturing method of the hearth roll 1 which concerns on this embodiment is demonstrated. First, the outer sleeve 2 having a rough shape is manufactured by means such as centrifugal casting, and finished to a predetermined dimension by machining such as cutting (sleeve manufacturing process). In the sleeve manufacturing process, the inner layer sleeve 3 is manufactured by the same method as the outer layer sleeve 2.
Next, the inner layer sleeve 3 is arranged inside the outer layer sleeve 2 and subjected to hot isostatic pressing (HIP process), thereby joining the outer layer sleeve 2 and the inner layer sleeve 3 to form a multi-layered cylindrical sleeve. Manufacture (sleeve joining process). In the HIP process, the outer layer sleeve 2 and the inner layer sleeve 3 arranged inside the outer layer sleeve 2 are placed in a high-pressure container, and the high-temperature and high-pressure process is performed to connect the outer layer sleeve 2 and the inner layer sleeve 3 to each other at the bonding interface 6. Combine.

さらに、外層スリーブ2と内層スリーブ3とが接合された、複層構造の円筒スリーブの軸方向の端部を、上述の条件を満たす所望の形状に機械加工する(スリーブ加工工程)。
その後、機械加工された外層スリーブ2の軸方向の端と、予め軸部5が溶接により接合されたアスクル4とを、レーザー溶接等の手段により接合する(アスクル接合工程)。
次いで、アスクル4が接合された外層スリーブ2の表面を、真円度を確保するために円筒研削する(研削工程)。なお、研削工程では、外層スリーブ2の表面が、上述した凸クラウン形状となるように研削が施される。
以上の工程を経ることにより、本実施形態に係るハースロール1を製造することができる。
Furthermore, the axial end portion of the cylindrical sleeve having a multilayer structure in which the outer sleeve 2 and the inner sleeve 3 are joined is machined into a desired shape that satisfies the above-described conditions (sleeve processing step).
After that, the axial end of the machined outer layer sleeve 2 and the ASKUL 4 in which the shaft portion 5 is previously bonded by welding are bonded by means such as laser welding (ASKUL bonding process).
Next, the surface of the outer layer sleeve 2 to which the ASKUL 4 is joined is cylindrically ground to ensure roundness (grinding process). In the grinding process, the outer sleeve 2 is ground so that the surface of the outer sleeve 2 has the above-described convex crown shape.
Through the above steps, the hearth roll 1 according to this embodiment can be manufactured.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the scope and spirit of the present invention.

例えば、上記実施形態では、外層スリーブ2に用いられる耐熱鋼は25Cr−24Ni鋼としたが、本発明はかかる例に限定されない。耐熱鋼は、一般的に用いられる他の成分系のものであってもよい。また、内層スリーブ3には純銅が用いられるとしたが、本発明はかかる例に限定されない。内層スリーブ3は、外層スリーブ2に比べて熱伝導性が高ければ、銅合金等の銅を含む他の金属であってもよい。なお、異材界面端部の形状が(2)式または(3)式で規定される場合、連続焼鈍炉で用いられる温度域において、外層スリーブ2の材質と内層スリーブ3の材質との横弾性比率μ/μが0.6以上0.8以下となるように、各材質が選択される。 For example, in the above embodiment, the heat resistant steel used for the outer sleeve 2 is 25Cr-24Ni steel, but the present invention is not limited to such an example. The heat resistant steel may be of other commonly used component systems. Although pure copper is used for the inner layer sleeve 3, the present invention is not limited to such an example. The inner layer sleeve 3 may be another metal containing copper such as a copper alloy as long as the thermal conductivity is higher than that of the outer layer sleeve 2. In addition, when the shape of the dissimilar material interface end is defined by the formula (2) or (3), the transverse elastic ratio between the material of the outer sleeve 2 and the material of the inner sleeve 3 in the temperature range used in the continuous annealing furnace Each material is selected so that μ 2 / μ 1 is 0.6 or more and 0.8 or less.

また、上記実施形態では、HIP処理を用いて外層スリーブ2と内層スリーブ3とを接合する構成としたが、本発明はかかる例に限定されない。外層スリーブ2及び内層スリーブは、遠心鋳造法を用いた多段鋳込みや嵌合加工による複層化といった他の手法を用いて形成されてもよい。
さらに、上記実施形態では、金属帯が薄鋼板であるとしたが、本発明はかかる例に限定されない。金属帯は、連続焼鈍炉で処理されるものであれば、薄鋼板と材質や厚みの異なるものであってもよい。
Moreover, in the said embodiment, although it was set as the structure which joins the outer-layer sleeve 2 and the inner-layer sleeve 3 using a HIP process, this invention is not limited to this example. The outer layer sleeve 2 and the inner layer sleeve may be formed using other methods such as multi-stage casting using a centrifugal casting method or multi-layering by fitting.
Furthermore, in the said embodiment, although the metal strip was a thin steel plate, this invention is not limited to this example. As long as the metal strip is processed in a continuous annealing furnace, the metal strip may be different in material and thickness.

<実施形態の効果>
(1)本発明の一態様に係る連続焼鈍炉用のハースロール1は、耐熱鋼からなる円筒状の外層スリーブ2と、外層スリーブ2よりも熱伝導性が高く、銅を含む金属からなり、外層スリーブ2の内周面に外周面が接合する円筒状の内層スリーブ3と、を備え、外層スリーブ2と内層スリーブ3との接合界面6に対して、外層スリーブ2の軸方向端部の自由縁がなす角度θ、及び接合界面6に対して内層スリーブ3の軸方向端部の自由縁がなす角度θは、(1)式を満たし、且つ(2)式または(3)式のいずれか一方を満たす。
<Effect of embodiment>
(1) A hearth roll 1 for a continuous annealing furnace according to an aspect of the present invention is a cylindrical outer layer sleeve 2 made of heat-resistant steel, and has a higher thermal conductivity than the outer layer sleeve 2 and is made of a metal containing copper, A cylindrical inner layer sleeve 3 whose outer peripheral surface is joined to the inner peripheral surface of the outer layer sleeve 2, and the axial end portion of the outer layer sleeve 2 is free from the joining interface 6 between the outer layer sleeve 2 and the inner layer sleeve 3. The angle θ 1 formed by the edge and the angle θ 2 formed by the free edge at the axial end portion of the inner sleeve 3 with respect to the joining interface 6 satisfy the expression (1) and satisfy the expression (2) or (3). Satisfy either one.

上記(1)の構成によれば、外層スリーブ2と内層スリーブ3との異材界面端(接合界面6の軸方向端)の近傍において、応力場が弾性論上無限大となる特異性を消失させることができるため、熱応力等によって異材界面端の近傍に生じる応力を低減することができる。このため、接合界面6の剥離を防止でき、複層化による均熱効果を長期間にわたって得ることができることから、金属帯を安定的に搬送することが可能になる。また、接合界面6の剥離が防止できることから、ハースロール1の長寿命化が可能となる。   According to the configuration of (1) above, the peculiarity that the stress field becomes infinite in terms of elasticity disappears in the vicinity of the dissimilar material interface end (the axial end of the bonding interface 6) between the outer sleeve 2 and the inner sleeve 3. Therefore, the stress generated in the vicinity of the dissimilar material interface end due to thermal stress or the like can be reduced. For this reason, peeling of the bonding interface 6 can be prevented, and a soaking effect due to multilayering can be obtained over a long period of time, so that the metal strip can be stably conveyed. In addition, since the peeling of the bonding interface 6 can be prevented, the life of the hearth roll 1 can be extended.

(2)上記(1)の構成において、内層スリーブ3は、純銅からなる。
上記(2)の構成によれば、内層スリーブ3の熱伝導性が高くなることから、より高い均熱効果を得ることができ、さらに、内層スリーブ3の重量を低減することができる。
(3)本発明の一態様に係る連続焼鈍炉用のハースロール1の製造方法は、耐熱鋼からなる円筒状の外層スリーブ2と、外層スリーブ2よりも熱伝導性が高く、外層スリーブ2の内周面に外周面が接合する円筒状の内層スリーブ3とを有する複層構造の円筒スリーブの軸方向の端部を機械加工するスリーブ加工工程と、スリーブ加工工程の後、外層スリーブ2の軸方向の端とアスクル4とを接合させるアスクル接合工程とを備え、スリーブ加工工程では、外層スリーブ2と内層スリーブ3との接合界面6に対して外層スリーブ2の軸方向端部の自由縁がなす角度θ、及び接合界面6に対して内層スリーブ3の軸方向端部の自由縁がなす角度θが、(1)式を満たし、且つ(2)式または(3)式のいずれか一方を満たすように、外層スリーブ2及び内層スリーブ3の軸方向の端部を成形する。
上記(3)の構成によれば、上記(1)と同様な効果を得ることができる。
(2) In the configuration of (1), the inner layer sleeve 3 is made of pure copper.
According to the configuration of (2) above, since the thermal conductivity of the inner sleeve 3 is increased, a higher soaking effect can be obtained and the weight of the inner sleeve 3 can be reduced.
(3) The manufacturing method of the hearth roll 1 for a continuous annealing furnace according to one aspect of the present invention has a cylindrical outer layer sleeve 2 made of heat-resistant steel and a higher thermal conductivity than the outer layer sleeve 2. A sleeve processing step for machining an axial end portion of a cylindrical sleeve having a multilayer structure having a cylindrical inner layer sleeve 3 whose outer peripheral surface is joined to the inner peripheral surface, and a shaft of the outer sleeve 2 after the sleeve processing step And an askle joining step for joining the end in the direction and the askle 4. In the sleeve processing step, the free edge at the axial end of the outer sleeve 2 forms the joining interface 6 between the outer sleeve 2 and the inner sleeve 3. The angle θ 1 and the angle θ 2 formed by the free edge at the axial end of the inner sleeve 3 with respect to the joining interface 6 satisfy the expression (1) and either the expression (2) or the expression (3) Meet the outer layer The end portions in the axial direction of the tube 2 and the inner layer sleeve 3 are formed.
According to the configuration of the above (3), the same effect as the above (1) can be obtained.

(4)上記(3)の構成において、スリーブ加工工程の前に、熱間静水圧プレス処理を用いて、外層スリーブ2の内周面に内層スリーブ3の外周面を接合させるスリーブ接合工程をさらに備える。
上記(4)の構成によれば、熱間静水圧プレス処理を用いることで、接合界面6において、空隙や熱伝導性の低い合金層等を生じることなく、外層スリーブ2と内層スリーブ3とを接合することができる。このため、複層構造の円筒スリーブを製造する際に用いられる他の方法に比べ、高い均熱効果を得ることができる。
(4) In the configuration of (3), a sleeve joining step of joining the outer peripheral surface of the inner sleeve 3 to the inner peripheral surface of the outer sleeve 2 using a hot isostatic pressing process is further performed before the sleeve processing step. Prepare.
According to the configuration of (4) above, the outer layer sleeve 2 and the inner layer sleeve 3 can be formed by using hot isostatic pressing without causing voids or an alloy layer having low thermal conductivity at the bonding interface 6. Can be joined. For this reason, compared with the other method used when manufacturing the cylindrical sleeve of a multilayer structure, a high soaking | uniform-heating effect can be acquired.

次に、本発明者らが行った実施例について説明する。実施例では、鋼帯の焼鈍処理を行う連続焼鈍炉の加熱帯に導入することを想定した上記実施形態に係るハースロール1を製造し、効果の検証を行った。
実施例では、まず、ハースロール1の胴部を模擬するため、円筒状の耐熱鋼(25Cr−20Ni鋼)の外層スリーブ2の内側に、円筒状の銅(純銅)の内層スリーブ3を配し、真空中にて1000℃の条件でHIP処理を行うことで複層構造の円筒スリーブを作成した。耐熱鋼の外層スリーブ2の寸法は、胴長400mm、外径φ350mm、肉厚15mmである。また、銅の内層スリーブ3の寸法は、胴長400mm、外径φ320mm、肉厚10mmである。次いで、作成した複層構造の円筒スリーブを、軸方向に50mmの長さに切断し、耐熱鋼と銅との接合端面を機械加工することによって、異材界面端の角度を調整した試験片を作成した。
Next, examples performed by the present inventors will be described. In the examples, the hearth roll 1 according to the above embodiment, which was assumed to be introduced into the heating zone of a continuous annealing furnace that performs the annealing treatment of the steel strip, was manufactured, and the effect was verified.
In the embodiment, first, in order to simulate the body portion of the hearth roll 1, an inner layer sleeve 3 made of cylindrical copper (pure copper) is arranged inside the outer layer sleeve 2 made of cylindrical heat resistant steel (25Cr-20Ni steel). A cylindrical sleeve having a multilayer structure was prepared by performing the HIP process in a vacuum at 1000 ° C. The outer layer sleeve 2 of heat resistant steel has a body length of 400 mm, an outer diameter of 350 mm, and a wall thickness of 15 mm. The copper inner layer sleeve 3 has a body length of 400 mm, an outer diameter of 320 mm, and a wall thickness of 10 mm. Next, the multi-layered cylindrical sleeve was cut to a length of 50 mm in the axial direction, and the test piece with the angle of the interface between the dissimilar materials adjusted was created by machining the end face of the heat-resistant steel and copper. did.

そして、作成した試験片について熱処理を施す試験を実施した。熱処理の試験では、試験片を、窒素雰囲気の電気加熱炉で常温から800℃まで昇温した後、加熱した試験片について1時間の均熱処理を行った。次いで、加熱炉の電源を停止することで、試験片を炉冷した。さらに、冷却後のサンプルについて、異材界面端の亀裂の有無を確認した。確認の結果、亀裂が有る場合には、試験を終了とした。一方、確認の結果、亀裂が無い場合には、再度、加熱から冷却までの熱サイクル(熱処理)を付与した後、異材界面端の亀裂の有無を確認した。そして、このような熱サイクルの付与及び亀裂の確認を、最大10回の熱サイクルの範囲で、亀裂が確認されるまで繰り返し行った。   And the test which heat-processes about the created test piece was implemented. In the heat treatment test, the test piece was heated from room temperature to 800 ° C. in an electric heating furnace in a nitrogen atmosphere, and then the heated test piece was subjected to soaking for 1 hour. Subsequently, the power source of the heating furnace was stopped to cool the test piece. Furthermore, about the sample after cooling, the presence or absence of the crack of a dissimilar material interface edge was confirmed. As a result of confirmation, when there was a crack, the test was terminated. On the other hand, as a result of confirmation, when there was no crack, after again applying a heat cycle (heat treatment) from heating to cooling, it was confirmed whether there was a crack at the interface edge of the dissimilar material. The application of the thermal cycle and the confirmation of the crack were repeated in the range of a maximum of 10 thermal cycles until the crack was confirmed.

表1に、試験に用いた試験片の端部形状及び試験の結果を示す。実施例としては、なす角度θ,θが、(1)式及び(3)式を満たす条件を実施例1とし、(1)式及び(2)式を満たす条件を実施例2とした。また、実施例では、端部形状におけるなす角度θ,θが上記実施形態の条件を満たさない条件についても、比較例として試験を行った。比較例としては、なす角度θ,θが、(1)式、(2)式及び(3)式を満たさない条件を比較例1とし、(1)式を満たし、且つ(2)式及び(3)式のいずれも満たさない条件を比較例2〜4とした。 Table 1 shows the end shape of the test piece used in the test and the result of the test. As an example, a condition in which the formed angles θ 1 and θ 2 satisfy the expressions (1) and (3) is defined as example 1, and a condition that satisfies the expressions (1) and (2) is defined as example 2. . Moreover, in the Example, it tested as a comparative example also about the conditions which angle (theta) 1 and (theta) 2 made in an edge part shape do not satisfy | fill the conditions of the said embodiment. As a comparative example, a condition in which the angles θ 1 and θ 2 formed do not satisfy the expressions (1), (2), and (3) is set as the comparative example 1, the expression (1) is satisfied, and the expression (2) And the conditions which do not satisfy | fill either of (3) Formula were made into Comparative Examples 2-4.

Figure 2018062700
Figure 2018062700

試験の結果、(1)式の条件を満たさない比較例1では、1回の熱処理で異材界面端に亀裂が発生することを確認した。また、比較例2〜4の条件では、(1)式の条件を満たすことで比較例1よりは亀裂が発生するまでの熱処理回数は増加したが、いずれの条件においても6回以内の熱処理回数で亀裂が発生することを確認した。
一方、上記実施形態におけるなす角度θ,θの条件を満たす、実施例1,2の条件では、10回の熱処理を施しても、亀裂が発生しないことを確認した。
As a result of the test, it was confirmed in Comparative Example 1 that did not satisfy the condition of the expression (1) that a crack occurred at the interface edge of the dissimilar material after one heat treatment. Moreover, in the conditions of Comparative Examples 2 to 4, the number of heat treatments until the cracks were generated increased compared with Comparative Example 1 by satisfying the condition of the expression (1), but the number of heat treatments within 6 times in any condition. It was confirmed that cracks occurred.
On the other hand, in the conditions of Examples 1 and 2 that satisfy the conditions of the angles θ 1 and θ 2 formed in the above embodiment, it was confirmed that cracks did not occur even when heat treatment was performed 10 times.

つまり、本発明に係るハースロール1によれば、異材界面端に生じる応力ができることから、接合界面6の剥離を防止でき、複層化による均熱効果を長期間にわたって得ることができることが確認された。このため、金属帯の安定的な搬送及びハースロール1の長寿命化が可能となる。   That is, according to the hearth roll 1 according to the present invention, it is confirmed that the stress generated at the interface between the different materials can be prevented, so that the bonding interface 6 can be prevented from being peeled off and the soaking effect due to the multi-layering can be obtained over a long period of time. It was. For this reason, the metal belt can be stably conveyed and the life of the hearth roll 1 can be extended.

1 ハースロール
2 外層スリーブ
21 第1領域
22 第2領域
3 内層スリーブ
4 アスクル
5 軸部
6 接合界面
DESCRIPTION OF SYMBOLS 1 Hearth roll 2 Outer layer sleeve 21 1st area | region 22 2nd area | region 3 Inner layer sleeve 4 ASKUL 5 Shaft part 6 Joining interface

Claims (4)

耐熱鋼からなる円筒状の外層スリーブと、
該外層スリーブよりも熱伝導性が高く、銅を含む金属からなり、前記外層スリーブの内周面に外周面が接合する円筒状の内層スリーブと、
を備え、
前記外層スリーブと前記内層スリーブとの接合界面に対して前記外層スリーブの軸方向端部の自由縁がなす角度θ、及び前記接合界面に対して前記内層スリーブの軸方向端部の自由縁がなす角度θは、(1)式を満たし、且つ(2)式または(3)式のいずれか一方を満たすことを特徴とする連続焼鈍炉用のハースロール。
θ+θ=180°±10° ・・・(1)
55°≦θ≦80° ・・・(2)
125°≦θ<180° ・・・(3)
A cylindrical outer sleeve made of heat-resistant steel;
A cylindrical inner layer sleeve having higher thermal conductivity than the outer layer sleeve, made of a metal containing copper, and having an outer peripheral surface joined to an inner peripheral surface of the outer layer sleeve;
With
An angle θ 1 formed by the free edge of the axial end of the outer sleeve with respect to the joining interface between the outer sleeve and the inner sleeve, and a free edge of the axial end of the inner sleeve with respect to the joining interface The hearth roll for a continuous annealing furnace characterized in that the formed angle θ 2 satisfies the formula (1) and satisfies either the formula (2) or the formula (3).
θ 1 + θ 2 = 180 ° ± 10 ° (1)
55 ° ≦ θ 1 ≦ 80 ° (2)
125 ° ≦ θ 1 <180 ° (3)
前記内層スリーブは、純銅からなることを特徴とする請求項1に記載の連続焼鈍炉用のハースロール。   The hearth roll for a continuous annealing furnace according to claim 1, wherein the inner layer sleeve is made of pure copper. 耐熱鋼からなる円筒状の外層スリーブと、該外層スリーブよりも熱伝導性が高く、前記外層スリーブの内周面に外周面が接合する円筒状の内層スリーブとを有する複層構造の円筒スリーブの軸方向の端部を機械加工するスリーブ加工工程と、
前記スリーブ加工工程の後、前記外層スリーブの軸方向の端とアスクルとを接合させるアスクル接合工程と
を備え、
前記スリーブ加工工程では、前記外層スリーブと前記内層スリーブとの接合界面に対して前記外層スリーブの軸方向端部の自由縁がなす角度θ、及び前記接合界面に対して前記内層スリーブの軸方向端部の自由縁がなす角度θが、(1)式を満たし、且つ(2)式または(3)式のいずれか一方を満たすように、前記外層スリーブ及び前記内層スリーブの軸方向の端部を成形することを特徴とする連続焼鈍炉用のハースロールの製造方法。
θ+θ=180°±10° ・・・(1)
55°≦θ≦80° ・・・(2)
125°≦θ<180° ・・・(3)
A multi-layered cylindrical sleeve comprising: a cylindrical outer layer sleeve made of heat-resistant steel; and a cylindrical inner layer sleeve having higher thermal conductivity than the outer layer sleeve and having an outer peripheral surface joined to the inner peripheral surface of the outer layer sleeve. A sleeve machining process for machining the axial end;
After the sleeve processing step, an ASKUL joining step of joining the axial end of the outer layer sleeve and the ASKUL, and
In the sleeve processing step, an angle θ 1 formed by a free edge of an axial end of the outer layer sleeve with respect to a joining interface between the outer layer sleeve and the inner layer sleeve, and an axial direction of the inner layer sleeve with respect to the joining interface angle theta 2 formed by the free edge of the end portion, satisfies the equation (1), and (2) or (3) so as to satisfy any one of expressions, the outer sleeve and the axial end of the inner sleeve A method for producing a hearth roll for a continuous annealing furnace, characterized by forming a part.
θ 1 + θ 2 = 180 ° ± 10 ° (1)
55 ° ≦ θ 1 ≦ 80 ° (2)
125 ° ≦ θ 1 <180 ° (3)
前記スリーブ加工工程の前に、熱間静水圧プレス処理を用いて、前記外層スリーブの内周面に前記内層スリーブの外周面を接合させるスリーブ接合工程をさらに備えることを特徴とする請求項3に記載の連続焼鈍炉用のハースロールの製造方法。   4. The sleeve joining step of joining the outer peripheral surface of the inner layer sleeve to the inner peripheral surface of the outer layer sleeve using a hot isostatic pressing process before the sleeve processing step. The manufacturing method of the hearth roll for continuous annealing furnaces of description.
JP2016202681A 2016-10-14 2016-10-14 Hearth roll for continuous annealing furnace and method for manufacturing hearth roll for continuous annealing furnace Active JP6730907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202681A JP6730907B2 (en) 2016-10-14 2016-10-14 Hearth roll for continuous annealing furnace and method for manufacturing hearth roll for continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202681A JP6730907B2 (en) 2016-10-14 2016-10-14 Hearth roll for continuous annealing furnace and method for manufacturing hearth roll for continuous annealing furnace

Publications (2)

Publication Number Publication Date
JP2018062700A true JP2018062700A (en) 2018-04-19
JP6730907B2 JP6730907B2 (en) 2020-07-29

Family

ID=61966526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202681A Active JP6730907B2 (en) 2016-10-14 2016-10-14 Hearth roll for continuous annealing furnace and method for manufacturing hearth roll for continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP6730907B2 (en)

Also Published As

Publication number Publication date
JP6730907B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
EP2659993B1 (en) Closed-die forging method and method of manufacturing forged article
JP6558588B2 (en) Method for producing multilayer pipes with metaradical bonds by drawing and multilayer pipes produced by the process
JP6446011B2 (en) Copper alloy plate for heat dissipation parts and heat dissipation parts
JP2009006379A (en) Center defect prevention method for large-sized hard-to-work product
KR20170109061A (en) Scale type fine electrode wire material, its manufacturing method and application
US20220126355A1 (en) Method for forging niobium-tungsten alloy forged ring
WO2017169992A1 (en) Method and device for friction stir bonding of structural steel
CN102011076B (en) Processing technique of niobium alloy plate
WO2016052474A1 (en) Hearth roll and continuous annealing facility
JP2018062700A (en) Hearth roll for continuous annealing furnace and manufacturing method of hearth roll for continuous annealing furnace
JP5403945B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
KR20100095779A (en) Manufacturing method for cemented carbide to steel dissimilar joint rolling dies and cemented carbide to steel dissimilar joint rolling dies using the same
EP2562281A1 (en) Ni-base alloy large member, Ni-base alloy welded structure made of same, and method for manufacturing structure thereof
CN101954539A (en) Friction welding process for copper material and aluminum alloy material
JP4988093B2 (en) Phosphor bronze composite sintered material
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
JP6730906B2 (en) Hearth roll for continuous annealing furnace and method for manufacturing hearth roll for continuous annealing furnace
EP2620250A1 (en) Heat treatment method for branch pipe welded portion
JP6625420B2 (en) Method for producing steel for machine parts with excellent rolling fatigue life
JP4179080B2 (en) Hot working method of high Nb alloy
JP6437415B2 (en) Method of hot bending steel pipe
JPH0551643B2 (en)
JP2017106076A (en) Manufacturing method of steel for machine component excellent in rolling motion fatigue life
JPS63242408A (en) Composite roll for rolling
JP2014184478A (en) Manufacturing method of endless metal belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6730907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250