JP2009006379A - Center defect prevention method for large-sized hard-to-work product - Google Patents

Center defect prevention method for large-sized hard-to-work product Download PDF

Info

Publication number
JP2009006379A
JP2009006379A JP2007171402A JP2007171402A JP2009006379A JP 2009006379 A JP2009006379 A JP 2009006379A JP 2007171402 A JP2007171402 A JP 2007171402A JP 2007171402 A JP2007171402 A JP 2007171402A JP 2009006379 A JP2009006379 A JP 2009006379A
Authority
JP
Japan
Prior art keywords
sectional area
cross
forging
forged
anvil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007171402A
Other languages
Japanese (ja)
Inventor
Tomonori Kanai
智則 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2007171402A priority Critical patent/JP2009006379A/en
Publication of JP2009006379A publication Critical patent/JP2009006379A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a center defect prevention method for preventing a center defect attributed to an anvil used when a large-sized product is manufactured by cogging. <P>SOLUTION: A center defect prevention method for a large-sized hard-to-work product is characterized in that when an upper anvil is reduced toward a lower anvil in a direction perpendicular to an axial direction of material to be forged comprising a large-sized hard-to-work steel ingot, and the material is subjected to cogging while being intermittently fed in the longitudinal direction, a reduction of area per one pass to the material to be forged is set to be in the range of 10-20% and also, W/H of the anvil used for the cogging is set to be 0.3-0.7 until the cross sectional area of the material to be forged becomes 100-50% of a blank material cross sectional area, and W/H of the anvil is set to be 0.8-1.2 until the cross sectional area becomes <50%-15% of the blank material cross sectional area. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鍛伸にて大型製品を製造する際に使用する金敷による中心欠陥防止方法に関するものである。   The present invention relates to a central defect prevention method using an anvil used when manufacturing a large product by forging.

従来、大径である丸棒鋼の製造方法として、鍛伸が用いられている。この鍛伸は、自由鍛造法の一種である。鍛伸では、鋼塊が長手方向に間欠的に送られつつ、この鋼塊が上金敷及び下金敷で押圧される。押圧では、上金敷が下金敷に向かって圧下する。圧下により鋼塊の断面寸法が減少し、かつ鋼塊が長尺化する。一方、圧下により、鋼塊の断面形状が整えられる。この複数段の鍛伸により、鍛造製品である丸棒鋼が得られる。この場合、難加工性の大型製品では空隙の残存、および、オーバーヒートという2種類の不良発生となる大きな要因がある。   Conventionally, forging is used as a method for producing a large diameter round steel bar. This forging is a kind of free forging method. In forging, the steel ingot is pressed by the upper and lower anvils while being intermittently fed in the longitudinal direction. In pressing, the upper anvil is rolled down toward the lower anvil. The cross-sectional dimension of the steel ingot is reduced by the reduction, and the steel ingot is elongated. On the other hand, the cross-sectional shape of the steel ingot is adjusted by the reduction. By this multi-stage forging, a round bar steel which is a forged product is obtained. In this case, there are two major factors that cause the occurrence of two types of defects, that is, residual voids and overheating in difficult-to-process large products.

これら不良を解決する方法として、例えば特開昭58−167045号公報(特許文献1)に開示されているように、上金敷及び下金敷間において軸対称形状の鋼材を鍛伸する鋼材の熱間鍛造方法において、鍛伸を開始して鍛伸を終了するまでの間に、鋼材の鍛伸する方向に垂直な断面形状を長辺の長さと短辺の長さとの比が少なくとも1.4である長方形又は略長方形にする工程を設けた鋼材の熱間鍛造方法が提案されている。   As a method for solving these defects, as disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 58-167045 (Patent Document 1), a hot steel material that forges an axially symmetrical steel material between an upper anvil and a lower anvil. In the forging method, the ratio of the length of the long side to the length of the short side is at least 1.4 in the cross-sectional shape perpendicular to the forging direction of the steel material between the start of forging and the end of forging. There has been proposed a hot forging method of a steel material provided with a process of making a certain rectangular shape or a substantially rectangular shape.

また、特開平1−309745号公報(特許文献2)に開示されているように、軸線方向に直角な円形断面または矩形断面を有する大型鋼材を所定の温度に加熱し、プレスの対向する平金敷のうち少なくとも一方の平金敷に、押圧面が、鋼材の断面の直径又は幅よりも短い辺の正方形をなす平金敷を用いて熱間鍛錬する大形鋼材の熱間鍛錬方法が提案されている。   In addition, as disclosed in JP-A-1-309745 (Patent Document 2), a large steel material having a circular cross section or a rectangular cross section perpendicular to the axial direction is heated to a predetermined temperature, and a flat metal mat facing the press A hot forging method for large steel materials is proposed in which at least one flat anvil is hot-forged using a flat anvil with a pressing surface having a square with sides shorter than the diameter or width of the cross section of the steel material. .

さらに、特開平1−284447号公報(特許文献3)に開示されているように、冷間工具鋼からなる被鍛造材をその軸方向に対し直角方向の複数方向から金敷により同時に圧下して被鍛造材をスエージングにより鍛伸するに際し、冷間工具鋼からなる被鍛造材に対する1パス当たりの減面率を20〜30%の範囲にすると共に被鍛造材の送り速度を7〜10m/分の範囲にする工具鋼の鍛造方法が提案されている。
特開昭58−167045公報 特開平1−309745公報 特開平1−284447公報
Further, as disclosed in Japanese Patent Laid-Open No. 1-284447 (Patent Document 3), a forged material made of cold tool steel is simultaneously pressed down by a metal lay from a plurality of directions perpendicular to the axial direction. When forging a forging material by swaging, the area reduction rate per pass for the forging material made of cold tool steel is set in the range of 20 to 30% and the feed speed of the forging material is 7 to 10 m / min. There has been proposed a forging method for tool steels in the range described above.
JP 58-167045 A JP-A-1-309745 JP-A-1-284447

しかしながら、上記した特許文献は、いずれも難加工性の大型製品での空隙の残存、および、オーバーヒートという2つの問題を解決したものではない。例えば特許文献1または2については、空隙を圧着するという記述のみであって、オーバーヒートに関する考え方は全く記載されていない。また、特許文献3については、送り速度という記述はあるが、金敷幅、被鍛造材の高さに関する考え方は全く記載されていない。   However, none of the above-mentioned patent documents solves the two problems of remaining voids and overheating in difficult-to-process large products. For example, Patent Document 1 or 2 only describes that the gap is pressure-bonded, and does not describe any concept regarding overheating. Moreover, although patent document 3 has description of a feed rate, the view regarding anvil width and the height of a to-be-forged material is not described at all.

上述したような2つの問題を同時に解消するために、発明者らは鋭意開発を進めた結果、空隙に起因する不良およびオーバーヒートに起因する不良の発生しやすい難加工性大型製品において、鋼塊を所定の温度に加熱し、その軸方向に対し直角方向から上金敷を下金敷に向かって適正な金敷比(=W/H、Wは鍛伸に使用する金敷の金敷幅、Hは被鍛造材の高さを示す)をもって圧下し、被鍛造材を長手方向に間欠的に送りつつ鍛伸することにより、中心欠陥発生を防止することを可能とした、難加工性大型製品の中心欠陥防止方法を提供することにある。   In order to solve the above-mentioned two problems at the same time, the inventors have made extensive developments. As a result, the steel ingots were formed in a difficult-to-work large product that is prone to defects due to voids and defects due to overheating. Heat to a predetermined temperature, and the appropriate anvil ratio from the direction perpendicular to the axial direction from the upper anvil to the lower anvil (= W / H, W is the width of the anvil used for forging, H is the material to be forged The center defect prevention method for large-size difficult-to-work products, which can prevent the occurrence of center defects by forging and extending the forged material intermittently in the longitudinal direction. Is to provide.

その発明の要旨とするところは、
(1)難加工性大型鋼塊からなる被鍛造材をその軸方向に対し直角方向から上金敷を下金敷に向かって圧下し、被鍛造材を長手方向に間欠的に送りつつ鍛伸するに際し、被鍛造材に対する1パス当たりの減面率を10〜20%の範囲にするとともに、鍛伸に使用する金敷のW/Hを、被鍛造材の断面積が素材断面積の100〜50%までは、W/Hを0.3〜0.7とし、断面積が素材断面積の50%未満〜15%までは、金敷比を0.8〜1.2とすることを特徴とする難加工性大型製品の中心欠陥防止方法。
(2)前記(1)に記載のW/Hを被鍛造材の断面積が素材断面積の100〜50%までは、0.4〜0.6とし、断面積が素材断面積の50%未満〜15%までは、金敷比を1.0〜1.2とすることを特徴とする難加工性大型製品の中心欠陥防止方法にある。
The gist of the invention is that
(1) When forging a to-be-formed material consisting of large steel ingots that are difficult to process, from the direction perpendicular to the axial direction from the upper metallization toward the lower metallurgy and forging the material to be forged while being intermittently fed in the longitudinal direction. The area reduction ratio per pass for the forged material is in the range of 10 to 20%, and the W / H of the anvil used for forging is 100 to 50% of the cross-sectional area of the forged material. Until, W / H is 0.3 to 0.7, and the cross-sectional area is less than 50% to 15% of the material cross-sectional area, the anvil ratio is 0.8 to 1.2. Central defect prevention method for workable large products.
(2) The W / H described in (1) is set to 0.4 to 0.6 when the cross-sectional area of the material to be forged is 100 to 50% of the cross-sectional area of the material, and the cross-sectional area is 50% of the cross-sectional area of the material. If the ratio is less than 15%, the center defect prevention method of the difficult-to-process large product is characterized in that the anvil ratio is 1.0 to 1.2.

以上述べたように、本発明により、中心欠陥のない良好な難加工性大型製品を得るものである。すなわち、鋼塊中心部の鋳造時の凝固収縮に起因した空隙が消失し、ミクロ偏析起因のオーバーヒートの発生を防止することができ、不良率を大幅に低減させ、品質向上を図ることができる極めて優れた効果を奏するものである。   As described above, according to the present invention, a large difficult-to-process large product having no central defect is obtained. That is, voids due to solidification shrinkage at the time of casting of the steel ingot center disappear, generation of overheating due to microsegregation can be prevented, defect rate can be greatly reduced, and quality can be improved. It has an excellent effect.

以下、本発明について詳細に説明する。
先ず、本発明に係る対象としては、軸線方向に直角な菊型断面または正方形断面を有し、直径及び対角寸法が900ミリ以上の大型鋼塊で、その成分組成が、質量%で、C:0.8〜1.7%、Si:0.2〜1.5%、Cr:6.0〜12.0%、Mo:0.9〜2.0%、V:0.25〜1.0%を含有し、残部がFe及び不可避的不純物からなる鋼とする。このような、上記条件の鋼塊を所定の温度に加熱し、その軸方向に対し直角方向から上金敷を下金敷に向かって圧下し、被鍛造材を長手方向に間欠的に送りつつ鍛伸するに際し、中心欠陥発生を防止することができる加工条件を提供することである。
Hereinafter, the present invention will be described in detail.
First, as an object according to the present invention, a large steel ingot having a chrysanthemum-shaped cross section or a square cross section perpendicular to the axial direction and having a diameter and a diagonal dimension of 900 mm or more, the composition of which is mass%, C : 0.8-1.7%, Si: 0.2-1.5%, Cr: 6.0-12.0%, Mo: 0.9-2.0%, V: 0.25-1 The steel contains 0.0% and the balance is Fe and inevitable impurities. Such a steel ingot of the above conditions is heated to a predetermined temperature, the upper metal is rolled down from the direction perpendicular to the axial direction toward the lower metal, and the forging is carried out while intermittently feeding the material to be forged in the longitudinal direction. In doing so, it is to provide processing conditions that can prevent the occurrence of central defects.

すなわち、上記した鋼塊のその中心部には、鋳造時の凝固収縮に起因した空隙(いわゆる、巣)が生じていることがある。この空隙は、鍛伸により押しつぶされる。押しつぶしにより、空隙周辺の金属が圧着される。しかし、圧着が不十分であると、製品である丸棒鋼に空隙が残存する。この空隙は、いわゆる欠陥である。これに対して、鋼塊の温度が十分高く設定されることにより、又は加工量が十分高く設定されることにより、空隙の残存が抑制される。   That is, there may be a void (so-called nest) due to solidification shrinkage during casting at the center of the steel ingot. This void is crushed by forging. By crushing, the metal around the gap is pressed. However, if the pressure bonding is insufficient, voids remain in the round bar steel that is the product. This void is a so-called defect. On the other hand, when the temperature of the steel ingot is set sufficiently high, or the processing amount is set sufficiently high, the remaining voids are suppressed.

また、鋼塊の温度は、加工性に大きく影響するもので、温度が低い場合には加工量が大きく設定され得ないと言う問題がある。また、小さな加工量で製品を得るためには、パス回数の増加を招くことになり、その結果、加工性の観点からも、鋼塊の温度が十分高く設定される必要がある。   Further, the temperature of the steel ingot greatly affects the workability, and there is a problem that when the temperature is low, the processing amount cannot be set large. Further, in order to obtain a product with a small amount of processing, the number of passes increases, and as a result, the temperature of the steel ingot needs to be set sufficiently high from the viewpoint of workability.

一方、鋼塊の鋳造時には、ミクロ偏析が生じる。具体的には、結晶粒界に沿って炭素原子等がリッチな領域が生じる。状態図において、炭素原子濃度が多いほど、固相線の温度は低い。また、炭素原子がリッチな領域は溶融しやすい。一方、鍛伸では、圧下により加工熱が発生する。この加工熱により、鋼塊の中心は昇温する。そのため、高温に加熱された鋼塊にさらに加工熱が発生することにより、鋼塊の中心は極めて高温に達する。従って、この中心近傍の炭素原子がリッチな領域においては溶融が生じることがある。この現象は、オーバーヒートと称される。オーバーヒートにより、製品である丸棒鋼の内部に欠陥が生じる。   On the other hand, when the steel ingot is cast, microsegregation occurs. Specifically, a region rich in carbon atoms or the like is generated along the crystal grain boundary. In the phase diagram, the higher the carbon atom concentration, the lower the solidus temperature. In addition, a region rich in carbon atoms is easily melted. On the other hand, in forging, processing heat is generated by reduction. This processing heat raises the temperature of the center of the steel ingot. For this reason, the processing heat is further generated in the steel ingot heated to a high temperature, so that the center of the steel ingot reaches a very high temperature. Therefore, melting may occur in a region rich in carbon atoms near the center. This phenomenon is called overheating. Overheating causes defects inside the round bar steel that is the product.

以上のように、空隙の抑制及び加工性の観点からは、鋼塊の温度を高く設定する必要がある。一方、オーバーヒートの抑制の観点からは、鋼塊の高すぎる温度は好ましくない。また、鍛伸では、鋼塊の温度制御が極めて重要である。しかし、空隙およびオーバーヒートが生じず、しかも優れた加工性が得られる温度の範囲は極めて狭いために、鋼塊の温度制御には非常に難しい問題がある。そうは言うものの、空隙に起因する不良及びオーバーヒートに起因する不良の抑制は重要であり、この不良率を抑制するためには、鋼塊の加熱温度、加熱時間、圧下率、金敷の形状、金敷比(=W/H)等の種々の加工条件に依存することを突き止め、これらの条件を最適に制御する必要があることが分かった。   As described above, it is necessary to set the temperature of the steel ingot to be high from the viewpoint of suppressing voids and workability. On the other hand, from the viewpoint of suppressing overheating, an excessively high temperature of the steel ingot is not preferable. Further, in forging, temperature control of the steel ingot is extremely important. However, since the temperature range in which voids and overheating do not occur and excellent workability is obtained is extremely narrow, there is a very difficult problem in controlling the temperature of the steel ingot. That said, it is important to suppress defects due to voids and defects due to overheating. To suppress this defect rate, the heating temperature, heating time, rolling reduction, shape of anvil, anvil It has been found that it depends on various processing conditions such as the ratio (= W / H), and it has been found that these conditions need to be optimally controlled.

以下、本発明について図面に従って詳細に説明する。
図1は、本発明に係る製造方法を説明するための斜視図である。この図1には、熱間自由鍛造の一種である鍛伸の様子が示されている。鍛伸では、溶製、鋳造等の工程を経て、鋼塊1が得られる。この鋼塊1には、鋳造時の凝固収縮により、中心近傍に空隙が生じている。鋼塊1の中心近傍には、ミクロ偏析も生じている。この鋼塊1は、加熱炉に投入されて加熱される。加熱時間が短いときは、鋼塊1の中心は、表面よりも温度が低い。換言すれば、鋼塊1は温度分布を有している。加熱時間が十分長いときは、鋼塊2の温度は均一である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view for explaining a manufacturing method according to the present invention. FIG. 1 shows a state of forging, which is a kind of hot free forging. In forging, the steel ingot 1 is obtained through processes such as melting and casting. The steel ingot 1 has a gap near the center due to solidification shrinkage during casting. In the vicinity of the center of the steel ingot 1, microsegregation also occurs. This steel ingot 1 is put into a heating furnace and heated. When the heating time is short, the temperature of the center of the steel ingot 1 is lower than that of the surface. In other words, the steel ingot 1 has a temperature distribution. When the heating time is sufficiently long, the temperature of the steel ingot 2 is uniform.

この図1に示されるように、鋼塊1が所定位置にセットされると、上金敷2が下金敷3へ下降する。換言すれば、鋼塊1は圧下される。圧下により、鋼塊1の断面寸法が低減し、又は断面形状が変形する。鋼塊1は、図示されていない搬送手段により、矢印Aの方向に間欠的に搬送される。この搬送に同調して、圧下が繰り返される。   As shown in FIG. 1, when the steel ingot 1 is set at a predetermined position, the upper anvil 2 is lowered to the lower anvil 3. In other words, the steel ingot 1 is reduced. By the reduction, the cross-sectional dimension of the steel ingot 1 is reduced or the cross-sectional shape is deformed. The steel ingot 1 is intermittently conveyed in the direction of arrow A by conveying means (not shown). The reduction is repeated in synchronization with this conveyance.

第一回目の鍛伸が終了すると、母材が90°回される。この母材に、第二回目の鍛伸が施される。この鍛伸によっても、母材の断面積が低減し、又断面形状が変形する。母材にはさらに、所定回数の鍛伸が施される。その後、母材を一定角度に均等に回転させながら、鍛伸していくと徐々に円に近づく。最終的に、タップという工具で鍛伸することにより鍛造製品である丸棒鋼を得る。   When the first forging is completed, the base material is turned 90 °. The base material is subjected to the second forging. This forging also reduces the cross-sectional area of the base material and deforms the cross-sectional shape. The base material is further subjected to forging a predetermined number of times. After that, when the base metal is forged and rotated evenly at a certain angle, it gradually approaches a circle. Finally, a round bar steel which is a forged product is obtained by forging with a tool called a tap.

不良のない丸棒鋼が得られるには、鍛伸により空隙が完全に圧着される必要があり、かつ鋼塊1にオーバーヒートが生じないようにする必要がある。不良の有無は、加工条件に大きく依存する。その場合の鍛伸に際しては、被鍛造材に対する1パス当りの減面率は常に10〜20%の範囲で行う必要がある。1パス当りの減面率が10%未満では鍛伸により空隙の圧着が不十分であり、また、20%を超えるとオーバーヒートの発生がある。従って、その最適範囲を10〜20%とした。   In order to obtain a round steel bar having no defects, it is necessary to completely press the gap by forging and to prevent overheating of the steel ingot 1. The presence or absence of defects greatly depends on the processing conditions. In the case of forging in that case, it is necessary to always perform the area reduction rate per pass for the material to be forged in the range of 10 to 20%. If the area reduction per pass is less than 10%, the gap is not sufficiently crimped by forging, and if it exceeds 20%, overheating occurs. Therefore, the optimal range was made 10 to 20%.

また、加熱炉の温度が高いほど、鋼塊1の中心が達する温度が大きいので、オーバーヒートが生じやすい。このオーバーヒートの抑制の観点から、加熱炉の温度が低く設定されることが好ましい。しかし、温度が低すぎる場合は、鍛伸の効率が悪い。また、加熱時間が長いほど、鋼塊1の中心が達する温度が大きいので、オーバーヒートが生じやすい。オーバーヒートの抑制の観点から、短い加熱時間が好ましい。しかし、加熱時間が短すぎると、鋼塊1の表面温度が低すぎて、鍛伸の効率が悪い。   Moreover, since the temperature which the center of the steel ingot 1 reaches is so large that the temperature of a heating furnace is high, it is easy to produce overheating. From the viewpoint of suppressing this overheating, the temperature of the heating furnace is preferably set low. However, if the temperature is too low, the forging efficiency is poor. Moreover, since the temperature which the center of the steel ingot 1 reaches is so large that heating time is long, it is easy to produce overheating. From the viewpoint of suppressing overheating, a short heating time is preferable. However, if the heating time is too short, the surface temperature of the steel ingot 1 is too low and the forging efficiency is poor.

一方、圧下率が大きいほど、空隙が圧着されやすい。しかし、大きな圧下率により大きな加工熱が生じる。大きな加工熱によってオーバーヒートが生じるおそれがある。加熱炉の温度、加熱時間及び圧下率以外にも、不良率に影響する加工条件が種々存在する。他の加工条件としては、W/H、金敷の形状、鋼塊1の初期形状等が挙げられる。不良の抑制には、適正な加工条件が決定される必要がある。   On the other hand, the larger the rolling reduction, the easier the gap is crimped. However, a large processing heat is generated by a large rolling reduction. There is a possibility that overheating may occur due to large processing heat. In addition to the temperature of the heating furnace, the heating time, and the reduction rate, there are various processing conditions that affect the defect rate. Other processing conditions include W / H, the shape of the anvil, the initial shape of the steel ingot 1 and the like. In order to suppress defects, it is necessary to determine appropriate processing conditions.

また、空隙を圧着する為には、W/Hを大きくとる必要がある。しかしながら、プレスの能力からして、上記に示す大型鋼塊では、最大値で1.2が限度であり、また、経験上0.3未満であれば、ほとんど空隙を圧着できない。従って、その適正なW/Hの値は、0.3〜1.2とした。しかも、被鍛造材の断面積が100〜50%までは、W/Hを0.3〜0.7とする。0.3未満では空隙の圧着が不十分であり、また、0.7%を超えると被鍛造材の断面積が大きい状態での金敷比でありオーバーヒートが生じることから、その範囲を定めた。好ましくは0.4〜0.6とする。また、断面積が50%未満〜15%までは、W/Hを0.8〜1.2とする。W/Hが0.8未満では空隙の圧着効果が不十分であり、また、1.2を超えると、上記設備上から、その範囲を定めた。好ましくは、1.0〜1.2とする。   Further, in order to pressure-bond the gap, it is necessary to increase W / H. However, in terms of the ability of the press, in the large steel ingot shown above, the maximum value is 1.2, and if it is less than 0.3 from experience, almost no gap can be crimped. Therefore, the appropriate value of W / H is set to 0.3 to 1.2. Moreover, W / H is set to 0.3 to 0.7 when the cross-sectional area of the material to be forged is 100 to 50%. If it is less than 0.3, the pressure-bonding of the gap is insufficient, and if it exceeds 0.7%, it is an anvil ratio in a state where the cross-sectional area of the material to be forged is large, and overheating occurs. Preferably it is set to 0.4-0.6. Further, W / H is set to 0.8 to 1.2 when the cross-sectional area is less than 50% to 15%. When W / H is less than 0.8, the effect of pressure bonding of the gap is insufficient, and when it exceeds 1.2, the range is determined from the above equipment. Preferably, it is set to 1.0 to 1.2.

上述したように、オーバーヒートの観点からは、できる限り加工熱を抑制する必要がある為、W/Hは小さくする必要がある。FEMシミュレーションにより鍛伸時に中心温度を推定したところ、被鍛造材の断面積が大きい場合ほど温度が上がりやすい。つまりオーバーヒートは大断面の時に発生しやすいことがわかった。そこで、大断面の時は、W/Hを小さくし、オーバーヒート発生を防止し、オーバーヒートが発生し難い小断面になった時から、W/Hを大きくし、空隙を圧着すれば内部欠陥のない丸棒鋼が得られる。   As described above, from the viewpoint of overheating, since it is necessary to suppress the processing heat as much as possible, W / H needs to be reduced. When the center temperature is estimated during forging by FEM simulation, the temperature is likely to increase as the cross-sectional area of the material to be forged increases. In other words, it was found that overheating tends to occur when the cross section is large. Therefore, when the cross section is large, W / H is reduced to prevent overheating, and when a small cross section is obtained where overheating is difficult to occur, if W / H is increased and the gap is crimped, there is no internal defect. Round bar steel is obtained.

上記したFEMシミュレーションとは、有限要素法によるシミュレーションを意味し、その具体的方法としては、鍛伸工程における変形−温度連成解析を行うことによって被鍛造材の中心温度を推定するものである。上記オーバーヒート発生の有無については、中心温度により評価するものである。また、空隙の有無については、具体的には静水圧応力、相当応力、ひずみから得られる(1)式で示される空隙圧着パラメータGm+によって評価するものである。
Gm+=∫(σm/σeq)dε … (1) ただし、σm:静水圧応力、σeq:相当応力、ε:ひずみ
The above-mentioned FEM simulation means simulation by the finite element method, and the specific method is to estimate the center temperature of the material to be forged by performing a deformation-temperature coupled analysis in the forging process. The presence or absence of the occurrence of overheating is evaluated based on the center temperature. The presence or absence of voids is specifically evaluated by the void pressure bonding parameter Gm + represented by the equation (1) obtained from hydrostatic pressure stress, equivalent stress, and strain.
Gm + = ∫ (σm / σeq) dε (1) where σm: hydrostatic stress, σeq: equivalent stress, ε: strain

被鍛造材として、C:1.50%、Si :0.20%、Cr:11.3%、Mo:0.9%、V:0.25%、残部Fe及び不可避的不純物よりなる冷間工具鋼を、また、鋼塊形状として、直径で925ミリのものを素材としたものを用いた。この被鍛造材2を加熱炉内で約1125℃に加熱したのち、マニピュレータにて片持ち状態で保持させ、プレスにより1パス当たりの減面率を10〜20%で、被鍛造材を軸方向に送りながら圧下させ、さらに90度回転した後、鍛伸を繰り返し製品にした。この時、鍛伸時に使用する金敷を表1に示すようなものとして鍛伸を行い、鍛伸により得た各軸状丸製品の内部品質を調査した。この結果を同じく表1に示す。   As a material to be forged, C: 1.50%, Si: 0.20%, Cr: 11.3%, Mo: 0.9%, V: 0.25%, the balance consisting of the balance Fe and inevitable impurities The tool steel was also used as a steel ingot shape with a diameter of 925 mm as the material. The forged material 2 is heated to about 1125 ° C. in a heating furnace, and is held in a cantilever state by a manipulator, and the forging material is axially moved at a reduction rate of 10 to 20% per pass by a press. The product was reduced while being fed, and further rotated 90 degrees, and then forging was repeated to make a product. At this time, the anvil used for forging was forged as shown in Table 1, and the internal quality of each shaft-shaped round product obtained by forging was investigated. The results are also shown in Table 1.

表1に示す被鍛造材の断面積は、図1における鋼塊1の鍛伸前の最初の断面積を100として、鍛伸を繰り返し行ってその時に断面積が半分となる時点をもって被鍛造材の断面積100〜50%とし、その後の鍛伸を繰り返し行って結果50%未満から15%を2区分し、その間の金敷幅Wと被鍛造材の高さHとの比W/Hを変化させた。その結果、内部品質の評価としての内部欠陥発生率をFEMシミュレーションによって評価し算出したものである。   The cross-sectional area of the material to be forged shown in Table 1 is the material to be forged at the time when the initial cross-sectional area before forging of the ingot 1 in FIG. The cross-sectional area is 100 to 50%, the subsequent forging is repeated, and the result is less than 50% to 15%, and the ratio W / H between the anvil width W and the height H of the forged material is changed. I let you. As a result, the internal defect occurrence rate as an evaluation of internal quality is evaluated and calculated by FEM simulation.

Figure 2009006379
表1に示したように、No.1〜8は本発明例であり、No.9〜16は比較例である。比較例No.9は、1パス当たりの減面率が低いために鍛伸による空隙の圧着が不十分で、内部欠陥の発生が見られる。比較例No.10は、1パス当たりの減面率が低く、かつ断面積が素材断面積の100〜50%までのW/Hの値が低いために空隙を圧着できないために内部欠陥の発生が生じた。
Figure 2009006379
As shown in Table 1, no. 1-8 are examples of the present invention. 9 to 16 are comparative examples. Comparative Example No. In No. 9, since the area reduction rate per pass is low, the press-bonding of the voids by forging is insufficient, and internal defects are observed. Comparative Example No. No. 10 has a low surface area reduction per pass, and the cross-sectional area is low in the value of W / H up to 100 to 50% of the cross-sectional area of the material.

比較例No.11は、断面積が素材断面積の100〜50%までのW/Hの値が0.2と低いために鍛伸により空隙の圧着が不十分で、内部欠陥の発生が生じた。比較例No.12は、断面積が素材断面積の100〜50%までのW/Hの値が0.8と高いためにオーバーヒートを生じ、その結果内部欠陥の発生が生じた。比較例No.13は、断面積が素材断面積の50%未満〜15%までのW/Hの値が低いために空隙の圧着効果が不十分で内部欠陥の発生が生じた。   Comparative Example No. No. 11 has a low W / H value of 100 to 50% of the cross-sectional area of the material as low as 0.2, so that the press-bonding of the voids is insufficient by forging, and internal defects are generated. Comparative Example No. No. 12 was overheated because the cross-sectional area was as high as 0.8 with a W / H value of 100 to 50% of the cross-sectional area of the material. Comparative Example No. In No. 13, since the cross-sectional area had a low W / H value of less than 50% to 15% of the cross-sectional area of the material, the effect of crimping the gap was insufficient and internal defects were generated.

比較例No.14は、断面積が素材断面積の100〜50%までのW/Hの値が0.8と高いためにオーバーヒートを生じ、かつ断面積が素材断面積の50%未満〜15%までのW/Hの値が低いために空隙の圧着効果が不十分のために内部欠陥の発生が大きく生じた。比較例No.15は、1パス当たりの減面率が高いためにオーバーヒートを生じ、かつ断面積が素材断面積の100〜50%までのW/Hの値が0.8と高いために、さらにオーバーヒートを生じ、その結果内部欠陥が多発した。   Comparative Example No. No. 14, the cross-sectional area is overheated because the value of W / H up to 100 to 50% of the material cross-sectional area is as high as 0.8, and the cross-sectional area is W less than 50% to 15% of the material cross-sectional area. Since the value of / H is low, the effect of press-bonding the gap is insufficient, resulting in large occurrence of internal defects. Comparative Example No. No. 15 causes overheating due to a high area reduction rate per pass, and further causes overheating because the cross-sectional area has a high W / H value of 0.8 to 100% of the material cross-sectional area of 0.8. As a result, internal defects occurred frequently.

比較例No.16は、1パス当たりの減面率が高くオーバーヒートを生じ、かつ断面積が素材断面積の100〜50%までのW/Hの値が高いために、さらにオーバーヒートにより内部欠陥の発生率が高く、しかも断面積が素材断面積の50%未満〜15%までのW/Hの値が低いために空隙の圧着効果が不十分のために内部欠陥の発生率が極めて高いものとなった。このように、比較例のいずれも内部欠陥による内部品質のよくないものであった。これに対して、本発明例No.1〜8はいずれの条件をも満たしていることから内部欠陥率の低い品質の良いものが得られることが分かる。   Comparative Example No. No. 16 has a high area reduction rate per pass, causes overheating, and has a high W / H value of 100 to 50% of the cross-sectional area of the material. In addition, since the cross-sectional area has a low W / H value of less than 50% to 15% of the cross-sectional area of the material, the pressure-bonding effect of the air gap is insufficient, so that the incidence of internal defects is extremely high. Thus, all of the comparative examples had poor internal quality due to internal defects. On the other hand, the present invention example No. Since 1-8 satisfy | fills all conditions, it turns out that a good thing with a low internal defect rate is obtained.

図1は、本発明に係る製造方法を説明するための斜視図である。FIG. 1 is a perspective view for explaining a manufacturing method according to the present invention.

符号の説明Explanation of symbols

1 鋼塊
2 上金敷
3 下金敷


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
1 Steel ingot 2 Upper anvil 3 Lower anvil


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (2)

難加工性大型鋼塊からなる被鍛造材をその軸方向に対し直角方向から上金敷を下金敷に向かって圧下し、被鍛造材を長手方向に間欠的に送りつつ鍛伸するに際し、被鍛造材に対する1パス当たりの減面率を10〜20%の範囲にするとともに、鍛伸に使用する金敷の金敷幅W、被鍛造材の高さHを、被鍛造材の断面積が素材断面積の100〜50%までは、W/Hを0.3〜0.7とし、断面積が素材断面積の50%未満〜15%までは、W/Hを0.8〜1.2とすることを特徴とする難加工性大型製品の中心欠陥防止方法。   When forging a to-be-formed material consisting of a difficult-to-work large steel ingot from the direction perpendicular to its axial direction, the upper metallization is squeezed toward the lower metallurgy, and the forging material is forged while being intermittently fed in the longitudinal direction. The area reduction per pass for the material is in the range of 10-20%, the anvil width W of the anvil used for forging, and the height H of the forged material, the cross-sectional area of the forged material is the material cross-sectional area 100 to 50%, W / H is set to 0.3 to 0.7, and W / H is set to 0.8 to 1.2 when the sectional area is less than 50% to 15% of the material sectional area. A central defect prevention method for difficult-to-process large-sized products. 請求項1に記載のW/Hを被鍛造材の断面積が素材断面積の100〜50%までは、0.4〜0.6とし、断面積が素材断面積の50%未満〜15%までは、W/Hを1.0〜1.2とすることを特徴とする難加工性大型製品の中心欠陥防止方法。   The W / H according to claim 1 is 0.4 to 0.6 when the cross-sectional area of the material to be forged is 100 to 50% of the cross-sectional area of the material, and the cross-sectional area is less than 50% to 15% of the cross-sectional area of the material. Up to, the center defect prevention method for difficult-to-process large-sized products, wherein W / H is 1.0 to 1.2.
JP2007171402A 2007-06-29 2007-06-29 Center defect prevention method for large-sized hard-to-work product Withdrawn JP2009006379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171402A JP2009006379A (en) 2007-06-29 2007-06-29 Center defect prevention method for large-sized hard-to-work product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171402A JP2009006379A (en) 2007-06-29 2007-06-29 Center defect prevention method for large-sized hard-to-work product

Publications (1)

Publication Number Publication Date
JP2009006379A true JP2009006379A (en) 2009-01-15

Family

ID=40322015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171402A Withdrawn JP2009006379A (en) 2007-06-29 2007-06-29 Center defect prevention method for large-sized hard-to-work product

Country Status (1)

Country Link
JP (1) JP2009006379A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294425A (en) * 2011-08-22 2011-12-28 中原特钢股份有限公司 Forging device and forging method for upper wide anvil and lower narrow anvil
CN102581186A (en) * 2012-02-15 2012-07-18 德谦杭重锻造有限公司 Method for controlling internal defect of large forging
CN102773393A (en) * 2012-07-31 2012-11-14 攀钢集团攀枝花钢铁研究院有限公司 Shape design method of anvil for forging large forge piece
CN104588560A (en) * 2014-12-26 2015-05-06 无锡透平叶片有限公司 Molding anvil block structure for numerical control free forging blank
CN105522089A (en) * 2016-01-18 2016-04-27 中钢集团邢台机械轧辊有限公司 Drawing-out method for high-speed steel cold roll neck
CN106734801A (en) * 2016-12-01 2017-05-31 贵州安大航空锻造有限责任公司 Stainless steel large-sized disk forging part forging forming method
JP2017094392A (en) * 2015-09-17 2017-06-01 ライストリッツ トゥルビネンテヒニーク ゲーエムベーハーLeistritz Turbinentechnik GmbH METHOD FOR PRODUCING PREFORM FROM α+γ TITANIUM ALUMINIDE ALLOY FOR PRODUCING COMPONENT WITH HIGH LOAD-BEARING CAPACITY FOR PISTON ENGINES AND GAS TURBINES
CN106964739A (en) * 2017-05-18 2017-07-21 宝鸡市博信金属材料有限公司 A kind of metal forging equipment with cambered surface tup at an angle to each other
CN107414011A (en) * 2016-12-01 2017-12-01 贵州安大航空锻造有限责任公司 High temperature alloy large disc type forging part forging forming method
CN107414010A (en) * 2016-12-01 2017-12-01 贵州安大航空锻造有限责任公司 Titanium alloy large-sized disk forging part forging forming method
CN107470542A (en) * 2016-12-01 2017-12-15 贵州安大航空锻造有限责任公司 Aluminium alloy large-sized disk forging part forging forming method
CN108262435A (en) * 2017-12-07 2018-07-10 中国航发北京航空材料研究院 A kind of titanium alloy bar stock pulls out forging method
CN112536405A (en) * 2020-11-19 2021-03-23 河南科技大学 Free forging method of large flat square forging
CN112846059A (en) * 2020-12-30 2021-05-28 安徽省瑞杰锻造有限责任公司 Free forging process of bearing seat

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294425A (en) * 2011-08-22 2011-12-28 中原特钢股份有限公司 Forging device and forging method for upper wide anvil and lower narrow anvil
CN102581186A (en) * 2012-02-15 2012-07-18 德谦杭重锻造有限公司 Method for controlling internal defect of large forging
CN102773393A (en) * 2012-07-31 2012-11-14 攀钢集团攀枝花钢铁研究院有限公司 Shape design method of anvil for forging large forge piece
CN104588560A (en) * 2014-12-26 2015-05-06 无锡透平叶片有限公司 Molding anvil block structure for numerical control free forging blank
JP2017094392A (en) * 2015-09-17 2017-06-01 ライストリッツ トゥルビネンテヒニーク ゲーエムベーハーLeistritz Turbinentechnik GmbH METHOD FOR PRODUCING PREFORM FROM α+γ TITANIUM ALUMINIDE ALLOY FOR PRODUCING COMPONENT WITH HIGH LOAD-BEARING CAPACITY FOR PISTON ENGINES AND GAS TURBINES
CN105522089A (en) * 2016-01-18 2016-04-27 中钢集团邢台机械轧辊有限公司 Drawing-out method for high-speed steel cold roll neck
CN106734801A (en) * 2016-12-01 2017-05-31 贵州安大航空锻造有限责任公司 Stainless steel large-sized disk forging part forging forming method
CN107414011A (en) * 2016-12-01 2017-12-01 贵州安大航空锻造有限责任公司 High temperature alloy large disc type forging part forging forming method
CN107414010A (en) * 2016-12-01 2017-12-01 贵州安大航空锻造有限责任公司 Titanium alloy large-sized disk forging part forging forming method
CN107470542A (en) * 2016-12-01 2017-12-15 贵州安大航空锻造有限责任公司 Aluminium alloy large-sized disk forging part forging forming method
CN106964739A (en) * 2017-05-18 2017-07-21 宝鸡市博信金属材料有限公司 A kind of metal forging equipment with cambered surface tup at an angle to each other
CN108262435A (en) * 2017-12-07 2018-07-10 中国航发北京航空材料研究院 A kind of titanium alloy bar stock pulls out forging method
CN108262435B (en) * 2017-12-07 2019-07-23 中国航发北京航空材料研究院 A kind of titanium alloy bar stock pulling forging method
CN112536405A (en) * 2020-11-19 2021-03-23 河南科技大学 Free forging method of large flat square forging
CN112846059A (en) * 2020-12-30 2021-05-28 安徽省瑞杰锻造有限责任公司 Free forging process of bearing seat

Similar Documents

Publication Publication Date Title
JP2009006379A (en) Center defect prevention method for large-sized hard-to-work product
JP2007136487A (en) Method of hot forging
JP6648999B2 (en) Aluminum alloy brazing sheet
JP2014512272A (en) Manufacturing method of clad steel products
CN107552698B (en) A kind of forging method of HR-2 resistant to hydrogen steel bar
JP6137080B2 (en) Slab forging method
JP2007301581A (en) Method for manufacturing forged product
WO2016051499A1 (en) Titanium slab for hot rolling, and production method therefor
WO2015019518A1 (en) Welding material for building-up, straightening roll, guide roll, conveyance roll and anvil
JP2010024544A (en) Warm-hot forging die
JP2019141906A (en) Manufacturing method of hot forging material
CN101823115B (en) Method for eliminating method of inner cavity of shaft type heavy forged piece
JP5374390B2 (en) Forging method to improve internal defects in forgings
JP4308709B2 (en) Method for producing polygonal cross-section hollow body and polygonal cross-section hollow body
JP4304406B2 (en) Anvil for free forging
JP2005238290A (en) Method for producing metal slab
JP5594164B2 (en) Manufacturing method of seamless steel pipe in high alloy or stainless steel
JP5765757B2 (en) Method for manufacturing annular shaped material
JP5009520B2 (en) Method for producing Fe-Cr martensitic stainless steel bar
JP6421793B2 (en) Method of joining steel slabs in continuous hot rolling, continuous hot rolling method, and manufacturing method of hot rolled steel sheet
KR20130064577A (en) A forging method for monel metal
JP5648750B2 (en) Sheet bar joining method in continuous hot rolling
JP5093170B2 (en) Erhard&#39;s drilling method and core for Erhard&#39;s drilling
CN113547060B (en) V-shaped anvil for drawing large-specification round bar and drawing method of large-specification round bar
JP2004269981A (en) Production method of steel bar

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907