JP2018062455A - Water retentive block - Google Patents
Water retentive block Download PDFInfo
- Publication number
- JP2018062455A JP2018062455A JP2016213740A JP2016213740A JP2018062455A JP 2018062455 A JP2018062455 A JP 2018062455A JP 2016213740 A JP2016213740 A JP 2016213740A JP 2016213740 A JP2016213740 A JP 2016213740A JP 2018062455 A JP2018062455 A JP 2018062455A
- Authority
- JP
- Japan
- Prior art keywords
- water
- block
- water absorption
- sand
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 302
- 238000010521 absorption reaction Methods 0.000 claims abstract description 133
- 239000004576 sand Substances 0.000 claims abstract description 104
- 238000012360 testing method Methods 0.000 claims abstract description 23
- 229920000742 Cotton Polymers 0.000 claims abstract description 7
- 239000004744 fabric Substances 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 94
- 230000000694 effects Effects 0.000 description 61
- 238000001704 evaporation Methods 0.000 description 47
- 230000008020 evaporation Effects 0.000 description 45
- 206010016807 Fluid retention Diseases 0.000 description 43
- 230000009467 reduction Effects 0.000 description 27
- 238000000034 method Methods 0.000 description 12
- 239000004575 stone Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
本発明は、敷き砂中の水を吸水する高吸水、高保水のインターロッキングブロック(以下ILBと略称する)、セラミックブロック、床平板などの保水性ブロックに関するものである。 The present invention relates to a water retention block such as a high water absorption, high water retention interlocking block (hereinafter abbreviated as ILB), a ceramic block, a floor plate, and the like that absorbs water in laid sand.
従来、保水性ブロックは、ブロック本体中に貯えた水を、ブロック表面を通じ蒸発させて、舗装面の温度を下げ、都市のヒートアイランド現象防止への貢献を狙うが、既存の保水性コンクリートブロックは、ブロック本体の貯水量が少ない。ILB規格は0.15g/cm3以上、通常0.15g/cm3〜0.22g/cm3、0.15g/cm3の場合60mm厚ブロックで9mm(長さではなく量の表示、雨量に同じ、以下同様)の保水であり、夏季晴天下では、5mm/日程度は蒸発することから、1日半分の貯水量である。よって蒸発持続時間が少ない。更に本体内の毛細管が太いので、ブロック下側の水(敷き砂や砕石等が保水する水)の吸い上げ速度が夏季の蒸発速度より遅く、又、毛細管が太いので表層部分は容易に乾燥し、蒸発面が表面より下にすぐ下ってしまい、この両者で、表面温度低減効果は長続きしない(表面での蒸発が最も表面温度を下げる効果があり、蒸発面が5mm以上も下がると、効果は1/4以下に激減する)。以上のことから、特に敷き砂からの吸水性能が低いことから既存の保水性コンクリートブロックの温度低減効果は、雨の後、一日程度。よって、普及は進んでいないばかりでなく、現状では常時水の人為的供給がなければ、効果は続かない。Conventionally, water retention blocks aim to contribute to prevention of urban heat island phenomenon by lowering the temperature of the pavement surface by evaporating the water stored in the block body through the block surface, but existing water retention concrete blocks There is little water storage in the block body. ILB standard 0.15 g / cm 3 or more, typically 0.15g / cm 3 ~0.22g / cm 3 , the case of 0.15 g / cm 3 60 mm thick block with 9 mm (indication of the amount not the length, the rainfall The same, the same applies hereinafter), and in summer clear weather, about 5 mm / day evaporates. Therefore, the evaporation duration is short. Furthermore, because the capillaries in the main body are thick, the suction speed of the water below the block (water that holds sand, crushed stones, etc.) is slower than the evaporation rate in summer, and the capillaries are thick, so the surface layer part is easily dried. The evaporation surface falls immediately below the surface, and in both cases, the surface temperature reduction effect does not last long (evaporation on the surface has the effect of lowering the surface temperature most. If the evaporation surface is lowered by 5 mm or more, the effect is 1) Drastically reduced to / 4 or less). From the above, the water-reducing performance from the sand is especially low, so the temperature-reducing effect of existing water-retaining concrete blocks is about a day after rain. Therefore, it is not only popularized, but at present, the effect will not continue unless there is always an artificial supply of water.
そこで、発明者等は、保水量向上をさらに進めるため、メジアン径20μmの微細な粉体である未利用資源のキラを使った焼成系ブロックを開発した。微細な粉体の焼成品は、本体内に細い多数の毛細管を形成し、貯水能力は大きく、その保水量は0.20〜0.25g/cm3ある。細い毛細管は水を保持するばかりではなく、敷設するために設ける敷き砂等下地側の水をも吸水する(水は毛管の太い方から細い方へは移動しやすい、通常下地側の敷き砂や砕石の毛細管はこの開発品より太い)。ブロック本体内の水と下地側の水を合わせ利用できるので、表面での蒸発が長続きする。保水量が0.25g/cm3で、ブロック厚60mmであれば、本体に15mm、敷き砂の保水量は0.3g/cm3程度であるから、厚さ30mmであれば、この部分にも9mm貯水がある。また敷き砂の下の砕石は、粒度調整砕石であれば、0.15g/cm3の水を保水出来、歩道であれば10cm厚に敷かれるので、この部分で、15mmの貯水が可能である。したがって降雨直後は、合わせて39mmの貯水も可能である。適当な砕石、敷き砂を使い、このブロックを敷設した舗装面は、夏季、降雨後晴天が4日続いても、ブロック表面は湿ったままの状態を保ち、通常の保水しないセラミック系のブロックに比べ、日射の強い真昼で12度から7度、表面温度は低い(無吸水ブロックとの表面温度差=温度低減効果)。このこと自体、大きな効果ではあるが、5日以降は、効果は急激に減少する。この効果をもっと長続きさせなければならない。Therefore, the inventors have developed a fired block using the unused resource glitter, which is a fine powder having a median diameter of 20 μm, in order to further improve the water retention amount. The fine powder fired product forms a large number of thin capillaries in the main body, has a large water storage capacity, and has a water retention amount of 0.20 to 0.25 g / cm 3 . The thin capillary tube not only retains water but also absorbs water on the ground side, such as laying sand provided for laying (water tends to move from the thicker side of the capillary to the thinner side, usually the sand on the ground side, The crushed capillaries are thicker than this developed product). Since the water in the block body and the water on the ground side can be used together, evaporation on the surface lasts for a long time. If the water retention amount is 0.25 g / cm 3 and the block thickness is 60 mm, the main body is 15 mm and the sand retention amount is about 0.3 g / cm 3. There is 9mm water storage. In addition, the crushed stone under the laying sand can retain water of 0.15 g / cm 3 if it is a particle size-adjusted crushed stone, and if it is a sidewalk, it is laid 10 cm thick. Therefore, 15 mm of water can be stored in this part. . Therefore, a total of 39 mm of water can be stored immediately after rainfall. The pavement surface where this block was laid using appropriate crushed stones and laid sand, the block surface remains moist even in the summer and after four days of fine weather after raining, it becomes a normal ceramic block that does not retain water. In comparison, the surface temperature is low at 12 to 7 degrees in midday when the sunlight is strong (surface temperature difference from the non-absorbing block = temperature reduction effect). This is a great effect in itself, but after 5 days, the effect decreases rapidly. This effect must last longer.
保水性の評価は、保水性ILBがJIS A 5371(非特許文献1)で、保水性として保水量を、吸水性として30分後の吸い上げ高さを規定している。保水量はブロックを水中に24時間浸漬し、その吸水量を体積で除したもので、規格は0.15g/cm3以上としている。30分後の吸い上げ高さは。ブロック底面から毛管吸水させた30分間の水量が、保水量の70%以上とする規定であり、吸水速度が一定以上の速さを持つことが要求している。水はいずれもフリーの状態(重力はかかるが、毛細管等の拘束はない)にある。 In the evaluation of water retention, the water retention ILB is JIS A 5371 (Non-Patent Document 1), and the water retention amount is defined as water retention, and the suction height after 30 minutes is defined as water absorption. The water retention amount is obtained by immersing the block in water for 24 hours and dividing the water absorption amount by volume, and the standard is 0.15 g / cm 3 or more. The sucking height after 30 minutes. It is stipulated that the amount of water absorbed for 30 minutes from the bottom of the block is 70% or more of the amount of water retained, and the water absorption speed is required to be a certain level or higher. All of the water is in a free state (gravity is applied, but there is no restriction of capillaries, etc.).
保水性ブロックの評価は、夏季、敷設したブロックの表面温度を測定し、無吸水のブロックとの温度差(=温度低減効果)で求められるが、夏季しか評価できず、通年評価できる確立された試験方法が無い、またこの効果とJISの基準との関連性も不明確である。この夏季の敷設品で見る効果と連動するブロックの性状を求める評価試験方法と装置を確立させ、その判定基準を定め、それに合致するブロックを原料調合、製法で開発した。これが本発明である。 The water retention block is evaluated by measuring the surface temperature of the laid block in the summer and calculated by the temperature difference from the non-absorbent block (= temperature reduction effect). There is no test method, and the relationship between this effect and JIS standards is unclear. Established an evaluation test method and device for determining the properties of the block in conjunction with the effects seen in this summer laying product, set the criteria for the test, and developed a block that matched it with raw material blending and manufacturing methods. This is the present invention.
温度低減効果を確保するには、貯水、吸水と移動、蒸発の能力が必要で、ブロックは次の性状が必要である。
(1)少なくとも保水量0.25g/cm3以上、保水性が高いこと
(2)敷き砂中の水も吸水出来ること
(3)この水がブロック表面まで移動し、ブロック内の表面近傍での水の移動速度が、夏季の蒸発速度に優ること
(4)蒸発量が適量であること。
発明者開発の従来ブロックは、この(1)についてはキラの適量配合で0.20〜0.25g/cm3の保水量は実現している。(4)については撥水剤利用、釉薬利用で可能であるが、(2)〜(3)については、原料配合によって、かなり違い、吸水は早いが、蒸発も早い物、吸水が遅く、蒸発が少ない物、吸水が適当な速さで、蒸発量もあって温度低減効果が大きい物などがある。この吸水、移動はすべて毛細管の存在で可能になる。よってこの違いは毛細管の径にあるのではないかと思われたので、毛細管現象について調べた。毛細管の吸水高さは管径が影響し、毛細管が細い程、水は高く上がることは、既に知られていたが、毛細管の中の水の移動速度、異なる毛細管径が接する界面の移動はどうなるか分からなかった。そこで管径が異なると思われるブロックを試作し、この吸水性状を、水から直接吸水する場合、敷き砂から吸水する場合の2方法で調べた。水から直接は5〜10mmの深さに水を入れた容器内に、試作したブロックを置き、ブロック下部から水を吸水させ、吸水状況を見る、一般によく行われる方法である。この結果次のことが分かった。
従来言われている通りであるが毛細管径が太いと、水は高く上がらないことと毛細管が太いと水の吸水、上昇は早く、細いと水の吸水、移動速度が遅くなる。
これはフリーの水(重力以外の力がかかっていない水)を吸水させる場合である。敷き砂中の、敷き砂の毛細管に拘束された水を吸水させる場合は管径と吸水の関係がどうなるかは分からず試験する必要があるが、確立された試験方法、装置、基準はない。In order to secure the temperature reduction effect, it is necessary to have the ability to store water, absorb and move, and evaporate, and the block must have the following properties.
(1) Water holding capacity of at least 0.25 g / cm 3 or higher, high water holding capacity (2) Water in the laid sand can also be absorbed (3) This water moves to the surface of the block, near the surface in the block The water movement speed is superior to the summer evaporation speed. (4) The evaporation amount is appropriate.
The conventional block developed by the inventor achieves a water retention amount of 0.20 to 0.25 g / cm 3 with an appropriate amount of glitter for (1). For (4), it is possible to use water repellents and glazes, but (2) to (3) differ considerably depending on the raw material composition, water absorption is fast, but fast evaporation, water absorption is slow, evaporation There is a thing with little temperature, and a thing with a large temperature reduction effect with the amount of evaporation at an appropriate speed and the amount of evaporation. This water absorption and movement is all possible due to the presence of capillaries. Therefore, since this difference seemed to be in the diameter of the capillary, the capillary phenomenon was investigated. It has been already known that the water absorption height of the capillary tube is affected by the tube diameter, and the thinner the capillary, the higher the water rises, but what happens to the movement speed of the water in the capillary tube and the movement of the interface where the different capillary diameters touch? I didn't know. Therefore, a block with a different pipe diameter was made as a prototype, and the water absorption state was examined by two methods: water absorption directly from water and water absorption from laying sand. This is a commonly performed method in which a prototype block is placed in a container filled with water at a depth of 5 to 10 mm directly from water, and the water is absorbed from the lower part of the block to check the water absorption status. As a result, the following was found.
As it has been said in the past, if the capillary diameter is large, the water will not rise high, and if the capillary is thick, the water will absorb and rise quickly, while if it is thin, the water will absorb and move slowly.
This is a case where free water (water that is not subjected to a force other than gravity) is absorbed. It is necessary to test the relationship between the pipe diameter and the water absorption when absorbing water confined by the capillary in the sand, but there is no established test method, equipment, or standard.
そこで、考案者等は、保水量向上をさらに進めるため、微細な粉体である未利用資源のキラを使った焼成系ブロックを開発した(特許文献1)。微細な粉体の焼成品は、本体内に細い多数の毛細管を形成し、貯水能力は大きく、その保水量で0.25g/cm3以上ある。細い毛細管は水を保持するばかりではなく、敷設するために設ける敷き砂等下地側の水をも吸水する(水は毛管の太い方から細い方へ移動する、通常下地側−敷き砂や砕石の毛細管はこの開発品より太い)。ブロック本体内の水と下地側の水を合わせ利用できるので、表面での蒸発が長続きする。保水量が0.25g/cm3で、ブロック厚60mmであれば、本体に15mm、敷き砂の保水量は0.3g/cm3程度であるから、厚さ30mmであれば、この部分にも9mm貯水がある。降雨直後は、合わせて24mm貯水も可能である。敷き砂の下には砕石が100mm厚程度敷かれ、これに粒度調整砕石を使えば、更に貯水量は多くできる。適当な敷き砂を使い、このブロックを敷設した舗装面は、夏季、降雨後晴天が4日続いても、ブロック表面は湿ったままの状態を保ち、通常の保水しないセラミック系のブロックに比べ、日射の強い真昼で12度から7度、表面温度は低い(=温度低減効果)。このこと自体、大きな効果ではあるが、5日以降は、効果は急激に減少する。この効果をもっと長続きさせなければならない。In view of this, the inventors have developed a firing block using the unused resource glitter, which is a fine powder, in order to further improve the water retention amount (Patent Document 1). The fine powder fired product forms a large number of thin capillaries in the main body, has a large water storage capacity, and has a water holding capacity of 0.25 g / cm 3 or more. A thin capillary tube not only retains water but also absorbs water on the ground side, such as laid sand provided for laying (water moves from the thicker side of the capillary to the thinner side, usually the ground side-laid sand and crushed stone Capillary tube is thicker than this developed product). Since the water in the block body and the water on the ground side can be used together, evaporation on the surface lasts for a long time. If the water retention amount is 0.25 g / cm 3 and the block thickness is 60 mm, the main body is 15 mm and the sand retention amount is about 0.3 g / cm 3. There is 9mm water storage. Immediately after rainfall, 24mm water storage is possible. If the crushed stone is laid about 100 mm thick under the laying sand, and the particle size-adjusted crushed stone is used for this, the amount of stored water can be further increased. Pavement surface using this appropriate laying sand, the paved surface laying the block surface in the summer, even after four days of fine weather after rain, remains moist, compared to a ceramic block that does not retain water. The surface temperature is low (= temperature reduction effect) at 12 to 7 degrees in midday with strong solar radiation. This is a great effect in itself, but after 5 days, the effect decreases rapidly. This effect must last longer.
また、このように、高い保水量を持つブロックは、その吸水性能を評価する方法や装置が確立されていないが、コンクリートにおける深さ方向の吸水性分布を非破壊で評価することができるようにするものとして、特開2014−32126(特許文献1)が、平面位置を同じくする開口面を有する平面視円形の中心チャンバー及び当該中心チャンバーを環状に囲む第一の環状チャンバーとしての中間チャンバー及び当該中間チャンバーを環状に囲む第二の環状チャンバーとしての外周チャンパーと、これら各チャンバーのそれぞれに設けられてこれら各チャンバー内のそれぞれに水を供給するための貯留部とを有し、貯留部に水を貯めて各チャンバー内に水を供給してからの各チャンバー内の水のコンクリートによる吸水量を検出するようにしたものが提案されているが、保水ブロックには応用できず、大掛かりなものでもある。 In addition, as described above, a method and apparatus for evaluating the water absorption performance of a block having a high water retention amount has not been established, but the water absorption distribution in the depth direction of concrete can be evaluated nondestructively. As an example, Japanese Patent Application Laid-Open No. 2014-32126 (Patent Document 1) discloses a center chamber having a circular shape in plan view having an opening surface having the same planar position, an intermediate chamber as a first annular chamber surrounding the center chamber in an annular shape, and the An outer peripheral chamber as a second annular chamber that annularly surrounds the intermediate chamber, and a reservoir provided in each of these chambers for supplying water to each of the chambers. To detect the amount of water absorbed by the concrete in each chamber after the water is stored and supplied to each chamber It has been proposed those, but can not be applied to the water-holding block, which may be further large scale.
都市の夏季のヒートアイランド現象は保水性のないアスファルトやコンクリート舗装も一因であり、その防止を狙って、保水性ブロックが市販されている。保水性はILBでは、保水量0.15g/cm3以上の規格があるが、この程度の保水量(例えば0.2g/cm3)では、夏季の温度低減効果の持続時間は極めて短い。市販品はほとんど保水量0.22g/cm3以下で、ブロック敷設の下部、敷き砂等からの吸水も遅く、温度低減効果は小さい。そこで発明者は保水量向上をさらに進めるため、メジアン径20μmの微細な粉体である未利用資源のキラを使った焼成系ブロックを開発した。このブロックを敷設した舗装面は、夏季、降雨後晴天が4日続いても、ブロック表面は湿ったままの状態を保ち、通常の保水しないセラミック系のブロックに比べ、日射の強い真昼で12度から7度、表面温度は低い(無吸水ブロックとの表面温度差=温度低減効果)。このこと自体、大きな効果ではあるが、5日以降は、効果は急激に減少する。この効果をもっと長続きさせなければならない。The urban summer heat island phenomenon is partly due to non-water retentive asphalt and concrete pavement, and water retentive blocks are commercially available to prevent it. In ILB, there is a standard for water retention of 0.15 g / cm 3 or more in ILB, but with this amount of water retention (for example, 0.2 g / cm 3 ), the duration of the summer temperature reduction effect is extremely short. Most commercial products have a water retention amount of 0.22 g / cm 3 or less, the water absorption from the lower part of the block laying, the sand, etc. is slow, and the temperature reduction effect is small. Accordingly, the inventor has developed a fired block using the unused resource glitter, which is a fine powder having a median diameter of 20 μm, in order to further improve the water retention amount. The pavement surface where this block was laid is 12 degrees in the midday when the sun is strong in the sun, compared to a ceramic block that does not retain water, even in the summer, when the weather continues for 4 days after raining, the block surface remains moist. To 7 degrees, the surface temperature is low (surface temperature difference from the non-absorbing block = temperature reduction effect). This is a great effect in itself, but after 5 days, the effect decreases rapidly. This effect must last longer.
ブロック表面からの蒸発によって、温度低減を図るためには、ブロック本体の保水以外に、ブロック敷設の下部からの吸水能力(下部の砕石、敷き砂中には、ブロックと同量以上の水がある、ブロックは蒸発によって失う水を、ブロック下部の水を、吸水して補給しながら蒸発を続ける)、ブロック内の水の移動速度(特にブロック表面近くの移動速度)を確保することが、重要で、この能力を、ブロック内の毛細管量、毛細管径の設定で解決し、出来るだけ長く、ブロックからの蒸発が続くようにして、水の蒸発による温度低減効果を長続きさせ、都市の夏季のヒートアイランド現象防止、冬季の乾燥防止に役立たせたい。毛細管の設定には敷き砂から吸水させる毛細管吸水試験装置が必要で、その方法の開発、確立が必要である。 In order to reduce the temperature by evaporating from the block surface, in addition to the water retention of the block body, the water absorption capacity from the lower part of the block laying (the crushed stone and the sand in the lower part have more water than the block) It is important to secure the movement speed of the water in the block (especially the movement speed near the block surface) while water absorbs and replenishes the water lost by evaporation, and absorbs the water below the block. This ability can be solved by setting the capillary volume and capillary diameter in the block, so that the evaporation from the block continues as long as possible, and the temperature reduction effect due to water evaporation lasts long, and the urban summer heat island phenomenon I want to help prevent dryness in winter. Capillary tube setting requires a capillary water absorption test device that absorbs water from the sand, and the development and establishment of this method is required.
本発明は、図1の保水ブロックの顕微鏡写真に示されているように、ブロック内の水を貯留する空隙の90%以上を、管径10μm以下の毛細管とし、保水量0.25g/cm3以上、かつ、敷き砂からの吸水を測定する保水性ブロック底面より大きい、水の入っている下部容器と、同30mm厚の敷き砂の入った上部容器2個を積み重ね、該上部容器にはブロックを載せ、下部の水を、上部容器の底面に開設されているスリットを介して、上部容器の敷き砂下部と下部容器の水中とを連結する木綿地布の吸水帯により、敷き砂に水分を供給するとともに毛管吸水で供給する敷き砂中の水をブロックに吸水させ、ブロックの重量の変化で、ブロックの敷き砂からの吸水量を測定する毛細管吸水量試験装置による吸水開始から30分の吸水量を3mm以上としたことを特徴とする保水性ブロックである。3mm以上であれば、許容量まで保水できることが望ましいが現実的には少なくとも3mm以上で十分である。
敷き砂からの吸水を測定したい。ブロック底面より大きい箱型の容器に敷き砂を30mm厚さに敷き、この上にブロックを載せ、敷き砂からの吸水量を測るが、敷き砂にはあらかじめ吸水させておく必要がある。敷き砂の上から水を注いだのでは、毛細管以外の空隙にも水が入り、フリー水が多くなって、敷き砂の毛細管に拘束された水を吸水することにはならない。また吸水量の多いブロックであると、水が不足し、一定の吸水条件にはならない。敷き砂には毛管吸水で、定常的に水を供給したい。敷き砂の容器の隣に、水面が敷き砂底面より下になるように水を容れた容器を一段下げて置き、水と敷き砂下部を木綿のタオル地で繋ぎ、毛管吸水で水を敷き砂に供給する方法が考えられ、これで、定常的に敷き砂への水の毛管吸水による供給は、可能になったが、コンパクトではないし、また後述する、ブロックから水の蒸発量は測定できなかった。そこで考案したのが、図2、3に示す毛管吸水試験装置である。毛細管吸水試験装置Aは、 吸水を測定する保水性ブロック底面より大きい、水の入っている下部容器と、同30mm厚の敷き砂の入った上部容器2個を積み重ね、該上部容器にはブロックを載せ、下部の水を、上部容器の底面に開設されているスリットを介して、上部容器の敷き砂下部と下部容器の水中とを連結する木綿地布の吸水帯により、敷き砂に水分を供給するとともに、毛管吸水で供給された敷き砂中の水をブロックに吸水させ、ブロックの重量の変化で、ブロックの敷き砂からの吸水量を測定する毛細管吸水量試験装置である。なお上記容器1、2の外形寸法は、220mm×120mmで、図示していないがスリットの大きさは5mm×50mmが2つ容器の側壁に沿って設けるものである。下部容器1内の水の量は容器内での深さが20mm〜30mmの深さとなるのが望ましい。さらに敷き砂の上部に載置するブロックの大きさは一般的なもので、200mm×100mm×60mmである。敷き砂は粒径4.75mm以下、75μm篩通過量5%以下の砂である。In the present invention, as shown in the micrograph of the water retention block of FIG. 1, 90% or more of the voids storing water in the block are capillaries having a tube diameter of 10 μm or less, and the water retention amount is 0.25 g / cm 3. Above, the lower container containing water, which is larger than the bottom of the water retaining block for measuring water absorption from the sand, and two upper containers containing the same 30 mm thick sand are stacked, and the upper container has a block. Water is applied to the bottom sand by the water absorption band of the cotton cloth that connects the bottom sand of the upper container and the water of the lower container through a slit provided in the bottom of the upper container. Water absorption in the sand that is supplied and supplied by capillary absorption is absorbed by the block, and water absorption from the capillary water absorption test device that measures the water absorption from the sand of the block by changing the weight of the block. Amount A water retention block, characterized in that not less than mm. If it is 3 mm or more, it is desirable that water can be retained up to an allowable amount, but in reality, at least 3 mm or more is sufficient.
I want to measure water absorption from the sand. Lay sand on a box-shaped container that is larger than the bottom of the block to a thickness of 30 mm, place a block on it, and measure the amount of water absorbed from the sand, but it is necessary to preliminarily absorb the sand. If water is poured from the laying sand, water will also enter the gaps other than the capillaries, and free water will increase, so that the water bound by the laying sand capillaries will not be absorbed. Further, if the block has a large amount of water absorption, water is insufficient and the water absorption conditions are not constant. I want to supply water constantly to the sand by capillary absorption. Next to the laying sand container, place a container filled with water so that the water surface is below the bottom of the sand, connect the water and the bottom of the laying sand with a cotton towel, spread the water with capillary water absorption into the sand. A method of supplying water can be considered. With this, water can be regularly supplied to the laid sand by capillary absorption, but it is not compact, and the evaporation amount of water from the block, which will be described later, could not be measured. . Accordingly, the capillary water absorption test apparatus shown in FIGS. Capillary water absorption test device A stacks a lower container containing water, which is larger than the bottom of the water retention block for measuring water absorption, and two upper containers containing the same 30 mm-thick sand, and blocks the upper container. Place the water in the lower part of the water by the water absorption band of the cotton cloth that connects the lower part of the upper container and the water in the lower container through the slit established in the bottom of the upper container. In addition, this is a capillary water absorption amount test apparatus for measuring the water absorption amount from the block sand by changing the weight of the block by causing the block to absorb the water in the sand supplied by capillary water absorption. The outer dimensions of the containers 1 and 2 are 220 mm × 120 mm, and although not shown, two slits of 5 mm × 50 mm are provided along the side wall of the container. The amount of water in the lower container 1 is preferably 20 to 30 mm in depth in the container. Furthermore, the size of the block placed on the upper part of the spread sand is general, and is 200 mm × 100 mm × 60 mm. The spread sand is sand having a particle size of 4.75 mm or less and a 75 μm sieve passing amount of 5% or less.
この毛細管吸水試験装置で、敷き砂からの吸水の程度を測定した。結果、図4および図5のようなグラフを得ることができ、吸水時間と吸水量の関係が明確となった。敷き砂からの吸水性状は次の様であった。
(1)水の吸水速度はフリーの水からの吸水より、かなり遅くなるものと遅くならないものがある。
(2)遅くなるものは、毛細管径が太い物であり、変わらない物は管径の細い物である。
(3)吸水量は、時間の違いはあるが、変わらない。
このように、フリーの水からと同じ結果にはならない。ブロックの毛細管径が太いと、吸水速度は遅くなる。比較として調べた3銘柄の保水性ILBのうち、2銘柄は水からの場合の1割程度の速さになった、1銘柄は極端に遅くなり、水からの吸水では1時間以内に60mm高さまで達するのに、敷き砂からは3日かかった。24時間時点で判定すれば、吸水せずと判定される遅さである。発明者のブロックは水からの吸水速度の5割〜6割程度の速さになる。界面を隔てた毛細管の水は毛細管の太い方から細い方へは移動しやすいが、細い方から太い方へは移動しにくい。ブロックの管径が太い物は界面の移動が律速になり、吸水速度は遅くなる、遅ければブロック内の移動速度も遅くなる。一方、ブロックの管径が細い物は、敷き砂と接する界面があっても、吸水速度は変わらない。毛細管が太い場合は、界面での移動速度が律速になるが、細い場合は、もともと移動速度が遅いので、界面が律速にならず、毛細管内の速度になる。
よって、フリーの水の吸水結果で、ブロックの良し悪しを判断すると、敷設した場合の結果を見誤ることになる。ブロックの種類と吸水開始後30分間の吸水量(mm)を図6の表に示す。ブロックの種類によって、差があることが分かる。With this capillary water absorption test device, the degree of water absorption from the sand was measured. As a result, graphs as shown in FIGS. 4 and 5 were obtained, and the relationship between the water absorption time and the water absorption amount became clear. The water absorption from the sand was as follows.
(1) The water absorption rate of water is much slower than that of free water, and there are some that do not slow down.
(2) Those that are slow are those with a large capillary diameter, and those that are not changed are those with a small tube diameter.
(3) The amount of water absorption does not change although there is a difference in time.
Thus, the result is not the same as from free water. If the capillary diameter of the block is large, the water absorption speed becomes slow. Of the three brands of water retaining ILB examined as a comparison, two brands were about 10% faster than water, one brand was extremely slow, and water absorption from water increased 60 mm within one hour. It took 3 days from the sand to reach it. If it is determined at 24 hours, it is a delay that is determined not to absorb water. The inventor's block is about 50% to 60% of the water absorption rate from water. Capillary water that separates the interface is easy to move from the thicker to the thinner capillary, but harder to move from the thinner to the thicker. When the block tube diameter is large, the movement of the interface becomes rate-limiting, and the water absorption speed becomes slow. If it is slow, the movement speed in the block also becomes slow. On the other hand, the water absorption speed does not change for the thin block pipe diameter even if there is an interface in contact with the sand. When the capillary is thick, the moving speed at the interface is rate-limiting. However, when the capillary is thin, the moving speed is originally slow, so the interface is not rate-limited and the speed inside the capillary is reached.
Therefore, if the quality of the block is judged based on the result of free water absorption, the result of laying will be mistaken. The type of block and the amount of water absorbed (mm) for 30 minutes after the start of water absorption are shown in the table of FIG. It can be seen that there is a difference depending on the type of block.
敷き砂からの吸水速度(時間当たりの吸水量)はどの程度が必要かを示したのが図7である。図7は、管径が太すぎて、表面では蒸発が起こらないILBのようなブロックは除き、ブロック表面で蒸発が起こっているブロックについて、蒸発量が多い程、温度低減効果も大きくなるかどうか調べたものである。先に示した敷き砂からの吸水試験方法で吸水した後、更にブロック側面と露出している敷き砂表面をアルミテープで覆い(図10)、夏季屋外暴露で、ブロックからの蒸発量と、正午頃の表面温度の関係を調べた所、蒸発量が4mm以下になると、蒸発量が温度に影響することが分かった。暑い名古屋の8月の実験である。実験例の図7は3個の試験体の5日間のデータである。よって、蒸発量は、1日4mm以上は必要であり、またそれ以上は多く蒸発しても効果は変わらない。今回考案した吸水試験装置は、このように蒸発量の測定もできる。 FIG. 7 shows the degree of water absorption rate (water absorption amount per hour) from the spread sand. FIG. 7 shows whether the temperature reduction effect increases as the amount of evaporation increases for blocks where evaporation occurs on the block surface, except for blocks such as ILB where the tube diameter is too thick and evaporation does not occur on the surface. It has been investigated. After absorbing water by the water absorption test method shown above, the side of the block and the exposed surface of the exposed sand are covered with aluminum tape (Fig. 10). As a result of investigating the relationship between the surface temperatures of these days, it was found that when the evaporation amount was 4 mm or less, the evaporation amount affected the temperature. This is an August experiment in hot Nagoya. FIG. 7 of the experimental example is data for 5 days of three test specimens. Therefore, the amount of evaporation needs to be 4 mm or more per day, and the effect does not change even if it is evaporated more than that. The water absorption test device devised this time can also measure evaporation.
このことから、敷き砂からの水の上昇速度、更にブロック表面近くの水の移動量がこの蒸発量4mmを超える能力を持つ必要がある。1日4mmと云っても、蒸発するのは主に昼間8時間であるから、時間当たりの蒸発量を考える時は、この点を考慮し、1時間0.5mm以上の蒸発能力が必要である。敷き砂からの30分の吸水量から表面近くの水の移動量は求める事が出来る。 For this reason, it is necessary that the rising speed of water from the laying sand and the amount of movement of water near the block surface have an ability to exceed the evaporation amount of 4 mm. Even if it is 4 mm per day, it evaporates mainly for 8 hours in the daytime, so when considering the amount of evaporation per hour, this point is taken into consideration and an evaporation capacity of 0.5 mm or more per hour is required. . The amount of water movement near the surface can be determined from the amount of water absorbed from the sand for 30 minutes.
即ちブロック表面近くの水の移動量は、敷き砂からの吸水量が吸水時間と関数関係、Y=aX1/2(Yは吸水量、Xは吸水時間、aはブロックによる定数)にある。図5に示すように吸水量は吸水時間の平方根と比例関係にある。このことは水からの吸水では、既に知られており、敷き砂からでも考案者のブロックもこの関係にあることが分かったので、これから(微分して)表面近くの上昇流量は求められる。これを使って、敷き砂からの30分間の吸水量3mmの場合の表面の流量を求めると、0.6mm/hr.となって、1時間0.5mmの蒸発に対応可能である。敷き砂からの30分の吸水量を求めれば、表面近傍の毛管水の移動速度が推定できるので、逆に表面近傍の必要移動速度から、敷き砂からの30分の吸水量を求める事が出来、これを基準とすることもできる。なお表面近傍の移動速度(表面流量)はブロック厚さが同じであれば、30分の吸水量の二乗に比例し、保水量に反比例する。That is, the amount of water moving near the block surface is such that the amount of water absorbed from the sand is a function relationship with the water absorption time, Y = aX 1/2 (Y is the amount of water absorption, X is the water absorption time, and a is a constant by the block). As shown in FIG. 5, the amount of water absorption is proportional to the square root of the water absorption time. This is already known in the case of water absorption from water, and it has been found that the block of the inventor is also in this relationship even from the sand, so the ascending flow rate near the surface is determined from this (differentiated). Using this, the flow rate on the surface when the water absorption from the sand was 30 mm for 30 minutes was 0.6 mm / hr. Thus, it can cope with evaporation of 0.5 mm for 1 hour. If the amount of water absorption for 30 minutes from the sand is obtained, the moving speed of capillary water near the surface can be estimated. Conversely, the amount of water absorbed for 30 minutes from the sand can be obtained from the required moving speed near the surface. This can be used as a reference. If the block thickness is the same, the moving speed near the surface (surface flow rate) is proportional to the square of the water absorption amount for 30 minutes and inversely proportional to the water retention amount.
この試験装置で測定した30分の吸水量mm(量)と実際に敷設したブロックの温度低減効果の結果を図8の表に示す。表中の市販保水性セラミックブロックが3.6mmであるのに、効果がほとんどなしとあるのは、保水量が少ないこと、毛細管径が太いので蒸発が早いことによる。また、図9及び図10のグラフでも同様のことがわかる。なお、保水量はブロックを5mm〜10mm深さの水面に置き、24時間の吸水量をブロックの体積(cm3)で除したJISの試験方法による値である。また温度低減効果は、ブロックを通常の工法で敷設し、夏季、降雨後から、毎日正午過ぎに表面温度を測定し、無吸水ブロック(同形状の吸水性のないブロック)との温度差である。マイナスの値が多きい程効果は大。The table of FIG. 8 shows the results of the water absorption amount mm (amount) for 30 minutes measured by this test apparatus and the temperature reduction effect of the actually laid blocks. The fact that the commercially available water-retaining ceramic block in the table is 3.6 mm has almost no effect due to the fact that the water retention amount is small and the capillary diameter is large, so that the evaporation is fast. The same can be seen from the graphs of FIGS. The water retention amount is a value according to a JIS test method in which a block is placed on a water surface having a depth of 5 mm to 10 mm, and the water absorption amount for 24 hours is divided by the block volume (cm 3 ). The temperature reduction effect is the temperature difference from the non-absorbing block (block of the same shape without water absorption) by laying the block with a normal construction method, measuring the surface temperature every day after noon every day after raining in the summer. . The greater the negative value, the greater the effect.
30分の吸水量は、吸水する水量の多寡を表している。よって毛細管径の大小と共に、保水量=毛細管の空隙量が影響する。管径が同じなら、毛細管の本数が多い方が30分の吸水量は多くなる。発明者の従来品の保水量は0.20〜0.25g/cm3であるが、これを0.25g/cm3以上に上げるべきである。保水量が増すと、30分の吸水量が増し、これに連動するブロック表面の流量が増す。必要以上の蒸発が起ったとしても、これは表面の釉薬等で調整できるから、温度低減効果を長引かせることが出来る。 The amount of water absorbed for 30 minutes represents the amount of water absorbed. Therefore, along with the size of the capillary diameter, the water retention amount = capillary gap amount affects. If the tube diameter is the same, the amount of water absorption increases for 30 minutes as the number of capillaries increases. The water content of the inventor's conventional product is 0.20 to 0.25 g / cm 3, but this should be increased to 0.25 g / cm 3 or more. When the water retention amount increases, the water absorption amount for 30 minutes increases, and the flow rate of the block surface in conjunction with this increases. Even if evaporation occurs more than necessary, this can be adjusted with a surface glaze or the like, so that the temperature reduction effect can be prolonged.
これ等の結果から、ブロックの温度低減効果を長引かせるためには、ブロックの保水量0.25g/cm3以上、30分の吸水量mm(量)が3mm以上必要と考えた。From these results, in order to prolong the temperature reduction effect of the block, it was considered that the water retention amount of the block was 0.25 g / cm 3 or more and the water absorption amount mm (amount) for 30 minutes was 3 mm or more.
保水量を上げるには、また水の上昇速度を上げるために、原料の粒径をより細かい方にする、逆にキラより粗いシャモットや砂を配合する、焼成温度を調整する、或は、成形坏土の含水を調整し嵩密度を下げる、成形方法を変えるなどの方法がある。しかし、これらを使って、上昇速度を大きくすると、逆に、これらブロックは、温度低減効果が長続きしないことが判明した。これは毛細管径を太くすると敷き砂からの水の吸水が遅くなることによる。また、管径が太いと蒸発速度が速く、蒸発量にブロック内の水の移動速度が追い付かず、蒸発面がブロック内部に後退することによる。一方、反対にキラより細かい粘土(2μm以下)を加えたりして毛細管径を細くしたブロックは、吸水速度は遅くなるが、温度低減効果は長続きする。ただし、これも限度があって、例えば、キラより微細な粘土主体の配合のブロックは、かえって温度低減効果は小さく、長続きしない。これは敷き砂からの吸水は出来ても、管径が細いためブロック内の水の移動速度が遅く、蒸発量に追いつかないことによる。このように吸水試験における毛管吸水の速度は速すぎても、遅すぎても効果は長続きしない。早すぎれば、敷き砂の水の利用がし難く、遅すぎれば、蒸発に対して、補給が追い付かない。これ等は全て、毛細管径の大小に起因する。よって、毛細管径を温度低減効果に適する範囲に納めれば良いが、管径を測定することは容易ではない。管径と連動する性状で規定を考えることが必要である。 In order to increase the amount of water retained and to increase the rate of water rise, the particle size of the raw material is made finer, conversely, chamotte and sand coarser than glitter are added, the firing temperature is adjusted, or molding is performed. There are methods such as adjusting the moisture content of the clay to lower the bulk density and changing the molding method. However, it has been found that if these are used to increase the rising speed, these blocks do not last long for the temperature reduction effect. This is because if the capillary diameter is increased, the water absorption from the sand becomes slower. Further, if the tube diameter is large, the evaporation speed is fast, the movement speed of water in the block cannot catch up with the evaporation amount, and the evaporation surface is retracted into the block. On the other hand, in the block where the capillary diameter is reduced by adding clay (2 μm or less) finer than the glitter, the water absorption speed is slow, but the temperature reduction effect continues. However, this also has a limit. For example, a clay-based blending block finer than Kira has a small temperature reduction effect and does not last long. This is due to the fact that even though water can be absorbed from the sand, the pipe has a small diameter and the water movement speed in the block is slow, and the amount of evaporation cannot be caught up. Thus, even if the speed of capillary water absorption in the water absorption test is too fast or too slow, the effect does not last long. If it is too early, it is difficult to use the sand water, and if it is too late, replenishment cannot catch up with evaporation. These are all due to the capillary diameter. Therefore, the capillary diameter may be within a range suitable for the temperature reduction effect, but it is not easy to measure the pipe diameter. It is necessary to consider the rules based on the properties linked to the pipe diameter.
フリーの水からの吸水、敷き砂の水からの吸水、結果は異なるが、いずれも毛細管径が影響するから、毛細管径の把握が重要である。しかし、毛細管径の測定は難しい。電子顕微鏡で見ることは出来るが、一部分しか見えず、高価であり、日常的には使えない。そこで、毛細管径を直接測定するのではなく、先述の敷き砂からの30分の吸水量を尺度として3mm以上とすることが、考えられる。 Although the results of water absorption from free water and water from laying sand are different, it is important to know the capillary diameter because the capillary diameter affects both. However, it is difficult to measure the capillary diameter. Although it can be seen with an electron microscope, it is only partially visible, expensive, and unusable on a daily basis. Therefore, instead of directly measuring the capillary diameter, it is conceivable that the water absorption amount for 30 minutes from the above-mentioned laid sand is set to 3 mm or more as a scale.
また他の方法として、フリーの水を吸水する時の水の上昇速度を尺度とする方法も考えられ、この速度と毛細管径が影響すると思われる性状との関係を見た。その結果、水からの吸水が最初の30分で5cm〜18cm(ここでは吸水する高さ、ブロックは表面長手方向を垂直におく、通常高さ200mm)であれば、長期間温度低減効果が続くことが分かった。 As another method, a method of measuring the rate of water rising when free water is absorbed is also considered, and the relationship between this rate and the property that the capillary diameter seems to influence was observed. As a result, if water absorption from water is 5 cm to 18 cm in the first 30 minutes (here, the height to absorb water, the block is placed vertically in the longitudinal direction of the surface, and the normal height is 200 mm), the effect of temperature reduction continues for a long period of time. I understood that.
18cm以上は毛細管が太く、フリーの水からは早くても、ブロックと敷き砂の界面の存在で(毛管水は管径の太い方から細い方へは移動しにくいので)敷き砂の水の吸水が遅い、よってブロック表面での水の移動が遅いこととなり効果は小さい。
5cm以下は毛細管が細く、敷き砂からの水の移動はフリーの水からと変わらない。これは、もともと細い毛細管の中の移動速度は遅い(ここが律速)ことによる。ブロック表面での水の移動が遅いので、効果は小さい。At 18cm or more, the capillaries are thick, and even if it is early from free water, the presence of the block-laying sand interface (because capillary water is difficult to move from thicker to thinner pipes), the water in the sand is absorbed. Is slow, and therefore the movement of water on the block surface is slow and the effect is small.
Below 5 cm, the capillaries are narrow, and the movement of water from the sand is not different from that of free water. This is because the moving speed in a thin capillary tube is originally slow (this is rate limiting). Since the movement of water on the block surface is slow, the effect is small.
これで、どのブロックが、温度低減効果があるか判定できるが、より直接的に敷き砂からの吸水方法で規定する方が、簡単で便利である。 This makes it possible to determine which block has the effect of reducing the temperature, but it is easier and more convenient to define the block more directly by the water absorption method from the sand.
ブロックの温度低減効果の評価は実際に敷設したブロックの夏季の表面温度を見る方法が最も確実であるが、評価が一年に夏季しか出来ない。
これが、前述の水から、或は図2の試験装置を利用し測定した敷き砂からの30分の吸水量が尺度となることが分かったので、従来品を更に、敷き砂からの吸水量を増大させる方法で改良を行った。30分吸水量を大きくするためには、保水量を増大し、管径を細くすることである。手段として、従来のキラを造粒して成形する方法を採らず、珪砂や長石の精製過程で、フィルタープレスからケーキ状で排出されるキラをそのまま使う方法を検討、この製法の方が、毛細管径が小さくなり、コストも安くできる。これが先の表の発明者開発品で、夏季雨後、10日間の温度低減効果がある。毛細管が細くなりすぎると、30分の吸水量が小さくなるので、このような時は、シャモット等を配合して調整することが有効である。原料中2割程度配合する。30分の吸水量が多い場合は、蒸発が多くなるので、表面に蒸発を抑える釉薬層などを設ける。これにより、高価は長続きする。The most effective method for evaluating the temperature reduction effect of a block is to look at the surface temperature in the summer of the actually laid block, but the evaluation can only be done in the summer in one year.
Since this proved to be a measure of the amount of water absorption from the above-mentioned water or from the laid sand measured using the test apparatus of FIG. 2, the water absorption from the laid sand was further increased. Improvements were made in an increasing manner. In order to increase the water absorption amount for 30 minutes, the water retention amount is increased and the tube diameter is reduced. As a means, the conventional method of granulating and shaping the glitter is not used, but a method of using the cake discharged from the filter press as it is in the purification process of silica sand and feldspar is examined. The diameter is reduced and the cost can be reduced. This is the product developed by the inventors in the previous table, and has the effect of reducing the temperature for 10 days after the summer rain. If the capillary tube becomes too thin, the water absorption amount for 30 minutes becomes small. In such a case, it is effective to mix and adjust with chamotte or the like. About 20% is mixed in the raw material. When the amount of water absorption for 30 minutes is large, evaporation increases, so a glaze layer or the like that suppresses evaporation is provided on the surface. This makes the cost last longer.
これ等を検討し、ブロックの保水量0.25g/mm3以上、30分の吸水量mm(量)が3mm以上としたのが本発明である。Considering these, it is the present invention that the water retention amount of the block is 0.25 g / mm 3 or more and the water absorption mm (amount) for 30 minutes is 3 mm or more.
以上の説明から明らかなように、0.20g/cm3〜0.25g/cm3の保水量の発明者の従来のブロックでは、温度低減効果は4〜5日続くが、その後は、効果は急激に減少する。これを解決するため、本発明にあっては、ブロックの空隙の9割以上を管径10μm以下の毛細管とし、敷き砂から吸水したブロックの保水量を0.25g/cm3以上、30分の吸水量mm(量)を3mm以上とした結果、ブロック内の水の移動速度は蒸発速度に優り、貯水量が増し、敷き砂以下の水の吸水性能が増すから、表面に蒸発をコントロールする釉薬層があっても、温低減効果は充分ある。その効果を2016年夏季の実験例で、従来品と比較して示すと、図9のごとくなり、従来の保水性コンクリート製品であれば、2日目には効果が無くなるが(今回の実験では初日から効果なし)、発明者の発明した従来ブロックは、7日経過後効果は減少するものの、なお10日程度は効果持続する(図中の施釉モイストペーブ)。34mmの降雨後の測定である。性能が向上し、効果が2日〜4日程長くできることが分かる。施釉ブロックの効果が長続きするのは、施釉面(水蒸気の透過する細孔がある)を通じて水は蒸発するが、蒸発量が抑えられることによる。また施釉面は汚れ防止の効果もある。現在、人為的水の補給なしで、雨後10日も温度低減効果が続くブロックは、他に存在しない。As apparent from the above description, in the conventional block of the inventors of the water retention capacity of 0.20g / cm 3 ~0.25g / cm 3 , the temperature reduction effect lasts 4-5 days, then the effect is Decreases rapidly. In order to solve this, in the present invention, 90% or more of the voids of the block are capillaries having a tube diameter of 10 μm or less, and the water retention amount of the block that has absorbed water from the spread sand is 0.25 g / cm 3 or more and 30 minutes. As a result of water absorption amount mm (quantity) of 3 mm or more, the movement speed of water in the block is superior to the evaporation rate, the amount of stored water is increased, and the water absorption performance of the water below the laying sand is increased. Even if there is a layer, the temperature reduction effect is sufficient. The effect is shown in Fig. 9 in an experiment example in the summer of 2016 as compared with the conventional product, and if it is a conventional water-retaining concrete product, the effect is lost on the second day (in this experiment, The effect of the conventional block invented by the inventor is reduced after 7 days, but the effect continues for about 10 days (glazed moist paper in the figure). It is a measurement after 34 mm of rain. It can be seen that the performance is improved and the effect can be prolonged by 2 to 4 days. The effect of the glazed block lasts for a long time because water evaporates through the glazed surface (having pores through which water vapor passes), but the amount of evaporation is suppressed. The glazed surface also has an effect of preventing dirt. At present, there is no other block that has a temperature reduction effect even after rain for 10 days without artificial water supply.
また、敷き砂からの吸水開始後30分間の吸水量で、ブロック表面近傍での水の移動速度が推定できることが判明し、夏季の蒸発量から必要となる表面近傍での移動速度を得るために必要な、敷き砂からの吸水開始後30分の吸水量を求める事が可能になった。 In addition, it was found that the water movement speed near the block surface can be estimated from the water absorption amount for 30 minutes after the start of water absorption from the spread sand, in order to obtain the required movement speed near the surface from the evaporation amount in summer. The required amount of water absorption for 30 minutes after the start of water absorption from the spread sand can be obtained.
以下、本発明の実施の形態を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明は、図1の保水ブロックの顕微鏡写真に示されているように、ブロック内の水を貯留する空隙の90%以上を、管径10μm以下の毛細管とし、保水量0.25g/cm3以上、かつ、敷き砂からの吸水を測定する保水性ブロック底面より大きい、水の入っている下部容器と、同30mm厚の敷き砂の入った上部容器2個を積み重ね、該上部容器にはブロックを載せ、下部の水を、上部容器の底面に開設されているスリットを介して、上部容器の敷き砂下部と下部容器の水中とを連結する木綿地布の吸水帯により、敷き砂に水分を供給するとともに毛管吸水で供給する敷き砂中の水をブロックに吸水させ、ブロックの重量の変化で、ブロックの敷き砂からの吸水量を測定する毛細管吸水量試験装置による吸水開始から30分の吸水量を3mm以上としたことを特徴とする保水性ブロックである。30分の吸水量が3mm未満の場合は、所望の効果が得られず、30分の吸水量が3mm以上を大きく上回ると、水の移動速度、蒸発量が増し、効果は大きくなるが、必要以上の蒸発量は必要なく(図7)、効果は長続きさせるためには、その調整が必要となる。少なくとも30分の吸水量3mm以上を達成できれば温度低減効果は得られる。図中単体1、24、39とあるのはブロックの種類である。
この性能を持つブロックを得るには、窯業原料精製時にフイルタープレスから排出されるケーキ状の適当な粒径のキラをそのまま原料とし、必要に応じ、粘土、砂やシャモットを配合して、成形し、施釉して、所定の空隙量になるような焼成温度で焼成する。In the present invention, as shown in the micrograph of the water retention block of FIG. 1, 90% or more of the voids storing water in the block are capillaries having a tube diameter of 10 μm or less, and the water retention amount is 0.25 g / cm 3. Above, the lower container containing water, which is larger than the bottom of the water retaining block for measuring water absorption from the sand, and two upper containers containing the same 30 mm thick sand are stacked, and the upper container has a block. Water is applied to the bottom sand by the water absorption band of the cotton cloth that connects the bottom sand of the upper container and the water of the lower container through a slit provided in the bottom of the upper container. Water absorption in the sand that is supplied and supplied by capillary absorption is absorbed by the block, and water absorption from the capillary water absorption test device that measures the water absorption from the sand of the block by changing the weight of the block. Amount A water retention block, characterized in that not less than mm. If the amount of water absorption for 30 minutes is less than 3 mm, the desired effect cannot be obtained. If the amount of water absorption for 30 minutes greatly exceeds 3 mm or more, the moving speed of water and the amount of evaporation increase and the effect increases, but it is necessary. The above evaporation amount is not necessary (FIG. 7), and the adjustment is necessary for the effect to last long. If a water absorption of 3 mm or more can be achieved for at least 30 minutes, a temperature reduction effect can be obtained. In the figure, singles 1, 24, and 39 are block types.
In order to obtain a block with this performance, the cake-shaped glitter that is discharged from the filter press at the time of refining ceramic raw materials is used as it is, and if necessary, clay, sand and chamotte are blended and molded. Then, it is glazed and fired at a firing temperature such that a predetermined void amount is obtained.
該保水性ブロック表面に、水蒸気を通す1mm厚以下の斑点状の釉薬層を設けた請求項1記載の保水性ブロックであり、保水ブロックの蒸発を抑制すると共に、美観を向上させるためのものである。 The water-retaining block according to claim 1, wherein a spotted glaze layer having a thickness of 1 mm or less that allows water vapor to pass through is provided on the surface of the water-retaining block, for suppressing evaporation of the water-retaining block and improving aesthetics. is there.
敷き砂中の毛細管に拘束された水の吸水性状を試験する必要がある。この試験方法として使用する装置を図2の斜視図および図3の構成図に従って説明すると、本発明に利用する毛細管吸水試験装置Aは、 吸水を測定する保水性ブロック底面より大きい容器2個1、2を積み重ねた、水3の入っている下部容器1と、30mm厚の敷き砂4の入った上部容器2から成り、該上部容器2にはブロックを載せ、下部の水3を、上部容器2の底面に開設されているスリット(図3の構成図において布が上部容器2の敷き砂から下部容器1の水3に連なる右側の隙間)を介して、上部容器2の敷き砂4下部と下部容器1の水中3とを連結する木綿地布の吸水帯5により、敷き砂に水分を供給するとともに毛管吸水で供給する敷き砂4中の水を吸水させ、保水ブロックの重量の変化による方法で測定する敷き砂からの毛細管吸水試験装置である。ここで敷き砂は粒径4.75mm以下、75μm篩通過量5%以下の砂である。 It is necessary to test the water absorption state of water confined to the capillaries in the sand. The apparatus used as this test method will be described with reference to the perspective view of FIG. 2 and the configuration diagram of FIG. 3. The capillary water absorption test apparatus A used in the present invention has two containers 1 larger than the bottom surface of the water retention block for measuring water absorption. 2 is composed of a lower container 1 containing water 3 and an upper container 2 containing 30 mm thick sand 4, a block is placed on the upper container 2, and the lower water 3 is added to the upper container 2. The bottom of the sand 4 of the upper container 2 and the lower part through the slits opened on the bottom surface of the container (in the configuration diagram of FIG. 3, the right side of the cloth connects the sand of the upper container 2 to the water 3 of the lower container 1) By means of a change in the weight of the water-retaining block, water is absorbed into the sand by the water absorption zone 5 of the cotton fabric that connects the water 3 of the container 1 and water is absorbed in the sand 4 supplied by capillary water absorption. Hair from laying sand to measure Tube is a water testing apparatus. Here, the spread sand is sand having a particle size of 4.75 mm or less and a 75 μm sieve passing amount of 5% or less.
本発明は、保水性のきわめて高い保水ブロックを製造する産業で利用される。 The present invention is used in an industry for producing a water retaining block with extremely high water retention.
A 毛細管吸水試験装置
1 下部容器
2 上部容器
3 水
4 敷き砂
5 吸水帯(布)A Capillary water absorption test device 1 Lower container 2 Upper container 3 Water 4 Laying sand 5 Water absorption zone (cloth)
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213740A JP6854624B2 (en) | 2016-10-13 | 2016-10-13 | Water retention block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213740A JP6854624B2 (en) | 2016-10-13 | 2016-10-13 | Water retention block |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018062455A true JP2018062455A (en) | 2018-04-19 |
JP6854624B2 JP6854624B2 (en) | 2021-04-07 |
Family
ID=61967367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016213740A Active JP6854624B2 (en) | 2016-10-13 | 2016-10-13 | Water retention block |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6854624B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5626786A (en) * | 1979-08-06 | 1981-03-14 | Tanto Kk | Manufacture of color tile |
JP2006342585A (en) * | 2005-06-09 | 2006-12-21 | Saitama Univ | Lower structure of water retentive pavement |
JP2010001691A (en) * | 2008-06-23 | 2010-01-07 | Furukawa Electric Co Ltd:The | Water retaining member, watering structure, and method for supplying water to water-retentive block of the watering structure |
JP2011017139A (en) * | 2009-07-07 | 2011-01-27 | Inax Corp | Water holding material package, connecting body for water holding material package, and water holding structure |
JP3202672U (en) * | 2015-11-20 | 2016-02-18 | 増岡窯業原料株式会社 | Water retention block |
-
2016
- 2016-10-13 JP JP2016213740A patent/JP6854624B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5626786A (en) * | 1979-08-06 | 1981-03-14 | Tanto Kk | Manufacture of color tile |
JP2006342585A (en) * | 2005-06-09 | 2006-12-21 | Saitama Univ | Lower structure of water retentive pavement |
JP2010001691A (en) * | 2008-06-23 | 2010-01-07 | Furukawa Electric Co Ltd:The | Water retaining member, watering structure, and method for supplying water to water-retentive block of the watering structure |
JP2011017139A (en) * | 2009-07-07 | 2011-01-27 | Inax Corp | Water holding material package, connecting body for water holding material package, and water holding structure |
JP3202672U (en) * | 2015-11-20 | 2016-02-18 | 増岡窯業原料株式会社 | Water retention block |
Non-Patent Citations (1)
Title |
---|
中野正樹、山田英司 : "破砕・石灰混合・締固めにより改良された窯業副産物キラの骨格構造概念に基づく解釈", 土木学会論文集C, vol. 65, no. 2, JPN6020030156, 2009, pages 518 - 531, ISSN: 0004325712 * |
Also Published As
Publication number | Publication date |
---|---|
JP6854624B2 (en) | 2021-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment | |
Tan et al. | Biochar from waste biomass as hygroscopic filler for pervious concrete to improve evaporative cooling performance | |
Wang et al. | Impacts of the water absorption capability on the evaporative cooling effect of pervious paving materials | |
Dekker et al. | Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils | |
JP2009013013A (en) | Porous brick and its production method | |
JP3208815U (en) | Capillary water absorption test equipment for water retention block | |
Collis-George et al. | The effect of aggregate size on the infiltration behaviour of a slaking soil and its relevance to ponded irrigation | |
Miller et al. | Moisture retention by soil with coarse layers in the profile | |
Seifeddine et al. | Experimental investigation of physical characteristics to improve the cooling effect of permeable pavements | |
Zhongjie et al. | Effect of rock fragments on the percolation and evaporation of forest soil in Liupan Mountains, China | |
JP2018062455A (en) | Water retentive block | |
JP2000109699A (en) | Water-retentive pavement | |
JP2008156944A (en) | Road pavement structure | |
JP2003147717A (en) | Asphalt pavement body provided with rising suppressing function for road surface temperature, asphalt road surface structure and forming method for asphalt pavement body | |
JP2006161335A (en) | Block for paving | |
JP2007063861A (en) | Water retentive pavement construction method | |
Ali et al. | The effects of coarser sand addition on thermal properties of pervious concrete | |
JP3168268B2 (en) | Perforated surface layer using ceramic sintered body | |
JP3202672U (en) | Water retention block | |
JP2006214147A (en) | Water supply type retentive pavement structure and its construction method | |
JP3852290B2 (en) | Road pavement structure and road pavement method | |
JP2006283380A (en) | Water-retentive/moisture-permeable pavement and construction method therefor | |
JP3683528B2 (en) | Road pavement | |
Huang et al. | In-situ temperature effects in basic oxygen furnace slag asphalt concrete pavement | |
JP5206930B2 (en) | Selection method of water retention roadbed material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200407 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200527 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6854624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |