JP2018061747A - Microwave therapeutic device - Google Patents

Microwave therapeutic device Download PDF

Info

Publication number
JP2018061747A
JP2018061747A JP2016202484A JP2016202484A JP2018061747A JP 2018061747 A JP2018061747 A JP 2018061747A JP 2016202484 A JP2016202484 A JP 2016202484A JP 2016202484 A JP2016202484 A JP 2016202484A JP 2018061747 A JP2018061747 A JP 2018061747A
Authority
JP
Japan
Prior art keywords
antenna
microwave
standing wave
wave ratio
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202484A
Other languages
Japanese (ja)
Other versions
JP6867670B2 (en
Inventor
武史 裏鍛
Takeshi Uraga
武史 裏鍛
米次郎 有本
Yonejiro Arimoto
米次郎 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minato Medical Science Co Ltd
Original Assignee
Minato Medical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minato Medical Science Co Ltd filed Critical Minato Medical Science Co Ltd
Priority to JP2016202484A priority Critical patent/JP6867670B2/en
Publication of JP2018061747A publication Critical patent/JP2018061747A/en
Application granted granted Critical
Publication of JP6867670B2 publication Critical patent/JP6867670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microwave therapeutic device in which the drift of the oscillation frequency of microwave is reduced and its output stability is improved.SOLUTION: The device comprises: an oscillator 1 which generates microwave; a transmission part for supplying an antenna 3 with the microwave generated by the oscillator; and standing wave ratio measuring means 2 for measuring a standing wave ratio at the transmission part. The oscillator uses a semiconductor device for switching and, in accordance with an output of the standing wave ratio, changes its oscillation frequency within a predetermined frequency range.SELECTED DRAWING: Figure 1

Description

本発明は、マイクロ波治療器に関するものである。   The present invention relates to a microwave therapy device.

マイクロ波治療器は、アンテナから放射されたマイクロ波を生体組織に放射して加温する温熱治療器である。マイクロ波治療は、その周波数帯域を考慮すると、ヒータ等の伝導熱や赤外線等の輻射熱を用いた治療器と比較して、患者の深部の加温が可能である。また、患者が衣服等を着用していても治療が可能であり、衣服を脱がずに所望する患部を温熱治療できる等の利点を有する。   A microwave therapy device is a thermal therapy device that radiates and heats a microwave emitted from an antenna to a living tissue. In consideration of the frequency band, microwave therapy can warm a patient deeper than a treatment device using conduction heat such as a heater or radiation heat such as infrared rays. In addition, even if the patient wears clothes or the like, the treatment is possible, and there is an advantage that the desired affected part can be treated with heat without taking off the clothes.

ここで、従来のマイクロ波治療器は、図6、図7に示されるように、AC100Vの交流電力を高圧トランス22で昇圧した後、整流器23で整流し、この整流後の電圧をマグネトロン24の陽極に供給し、マグネトロン24の陽極電圧が発振電圧を超えると、マイクロ波を発生し、最終的にアンテナ25から患者に向けて輻射されるものが一般的であった。   Here, as shown in FIGS. 6 and 7, the conventional microwave therapy device boosts AC 100V AC power with a high-voltage transformer 22 and then rectifies it with a rectifier 23, and the rectified voltage is applied to the magnetron 24. When it is supplied to the anode and the anode voltage of the magnetron 24 exceeds the oscillation voltage, a microwave is generally generated and finally radiated from the antenna 25 toward the patient.

特開2015-119798JP2015-119798 特開2013-065406JP2013-065406

上記従来のマイクロ波治療器に使用するマグネトロン24には、特有の不要輻射の問題がある。具体的には、マイクロ波治療用のマグネトロンは、陽極本体に2450MHz帯のマイクロ波を発生させるが、実際には、この基本波以外に、その整数倍の周波数の高調波勢力が同時に発生している。この高調波がアンテナ25から輻射されると、基本波と同様に人体を含めた外部に伝搬されることとなる。当該マグネトロン24の不要輻射は、高調波以外に、マグネトロン24の内部の共振器構造に起因する周波数の輻射や、ノイズから立ち上がる発振機構に起因する輻射等がある。当該不要輻射を抑制するために、例えば、先行文献2に記載されるように、熱膨張係数を考慮した材料で形成した不要輻射の抑制チョークを具備する対策等が為されていた。   The magnetron 24 used in the conventional microwave therapy device has a problem of peculiar unnecessary radiation. Specifically, a magnetron for microwave therapy generates 2450 MHz band microwaves in the anode body, but in reality, in addition to this fundamental wave, harmonic forces with a frequency that is an integral multiple of that frequency are generated simultaneously. Yes. When this harmonic is radiated from the antenna 25, it is propagated to the outside including the human body in the same manner as the fundamental wave. The unnecessary radiation of the magnetron 24 includes, in addition to harmonics, radiation at a frequency due to a resonator structure inside the magnetron 24, radiation due to an oscillation mechanism rising from noise, and the like. In order to suppress the unwanted radiation, for example, as described in the prior art document 2, a measure including a choke for suppressing unwanted radiation formed of a material considering a thermal expansion coefficient has been taken.

しかしながら、当該不要輻射の抑制には機構的な限界もあり、無線障害を起こす場合もあった。特に、治療用に、マイクロ波を患者に照射するものにおいては、電子レンジのように、筐体構造で不要輻射の漏えいをシャットアウトする方法は望めないため、筐体以外の方法で、不要輻射の漏えいを抑制する必要がある。
また、マグネトロン24は、高圧トランス、ヒータートランス、高圧コンデンサ等の比較的外形の大きいデバイスを用いて駆動されており、小型化に対する問題があった。
However, the suppression of the unnecessary radiation has a mechanical limit and sometimes causes a radio failure. In particular, in the case of irradiating a patient with microwaves for treatment, a method of shutting out leakage of unnecessary radiation with a housing structure like a microwave oven cannot be expected. It is necessary to suppress the leakage.
Further, the magnetron 24 is driven by using a device having a relatively large outer shape such as a high-voltage transformer, a heater transformer, a high-voltage capacitor, and the like, and there has been a problem with downsizing.

上記課題を解決するために、本発明に係るマイクロ波治療器は、マイクロ波を発生させる発振器と、前記発振器で作られたマイクロ波をアンテナ部に供給するための伝達部と、前記伝達部における定在波比を測定するための定在波測定手段とを備え、前記発振器は、スイッチングに半導体素子を用いるとともに、前記定在波比の出力に応じて、所定の周波数の範囲内で発振周波数を変更してなるものである。   In order to solve the above-described problems, a microwave treatment device according to the present invention includes an oscillator that generates a microwave, a transmission unit that supplies a microwave generated by the oscillator to an antenna unit, and a transmission unit A standing wave measuring means for measuring a standing wave ratio, wherein the oscillator uses a semiconductor element for switching, and an oscillation frequency within a predetermined frequency range according to the output of the standing wave ratio Is a change.

本発明に係るマイクロ波治療器によれば、優れた周波数ドリフト抑制性能と出力安定性を備えることができ、不要輻射を効果的に抑制したマイクロ波治療器を実現することができる。   According to the microwave treatment device according to the present invention, it is possible to provide a microwave treatment device that can be provided with excellent frequency drift suppression performance and output stability, and can effectively suppress unnecessary radiation.

本発明のマイクロ波治療器の一実施形態を示した図The figure which showed one Embodiment of the microwave therapy device of this invention 同実施形態に用いるアンテナを示した図The figure which showed the antenna used for the embodiment 同実施形態に用いる放熱フィンの配置を示した図The figure which showed arrangement of the radiation fin used for the embodiment 本発明の一実施例の半導体制御によるマイクロ波治療器の回路構成図The circuit block diagram of the microwave therapeutic device by the semiconductor control of one Example of this invention 同実施例の半導体制御によるマイクロ波治療器の応用回路構成図Application circuit configuration diagram of microwave therapy device by semiconductor control of the same embodiment 従来例のマグネトロン発振回路を示した図The figure which showed the magnetron oscillation circuit of the conventional example 同マグネトロンの概説図Overview of the magnetron

本発明の一実施形態について、図1〜図3を用いて説明する。本発明のマイクロ波治療器は、半導体発振器回路1と、当該半導体発振器1に連なる方向性結合器2及び輻射用のアンテナ部3を有している。半導体発振器回路1における半導体スイッチング素子には、Si(シリコン)やGaAs(ガリウム砒素)を用いることも可能だが、更なる高効率を図るために、GaN(ガリウムナイトライド)を用いることが望ましい。当該半導体スイッチングによれば、マグネトロン固有の内部共振器構造に起因する周波数の輻射等の問題が無いため、その周波数占有帯域幅をマグネトロン方式と比較して、数十分の1程度に抑えることができ、高いQ値で制御することが可能となる。   An embodiment of the present invention will be described with reference to FIGS. The microwave therapy device of the present invention includes a semiconductor oscillator circuit 1, a directional coupler 2 connected to the semiconductor oscillator 1, and a radiation antenna unit 3. As the semiconductor switching element in the semiconductor oscillator circuit 1, Si (silicon) or GaAs (gallium arsenide) can be used, but it is desirable to use GaN (gallium nitride) for further higher efficiency. According to the semiconductor switching, since there is no problem of frequency radiation caused by the internal resonator structure unique to the magnetron, the frequency occupation bandwidth can be suppressed to about several tenths compared with the magnetron system. It is possible to control with a high Q value.

一方、医療用のマイクロ波治療装置には、2 400 MHz∼2 500 MHz の周波数範囲の電磁界が割り当てられており、また、JIS規格では、ケーブル又は導波管で接続するアプリケータに対して、電圧定在波比(VSWR)が 1.5 を超えてはならないと規定されている。当該状況下、2 400 MHz∼2 500 MHz以外の帯域における不要輻射を抑え、同時に、VSWRを規定値内に収めるためには、優れたQ値特性を有する半導体スイッチングを用いた発振回路が望ましい。   On the other hand, electromagnetic wave therapy devices for medical use are assigned electromagnetic fields in the frequency range of 2 400 MHz ∼ 2 500 MHz, and in JIS standards, applicators connected by cables or waveguides are used. On the other hand, it is specified that the voltage standing wave ratio (VSWR) must not exceed 1.5. Under such circumstances, an oscillation circuit using semiconductor switching with excellent Q-value characteristics is required to suppress unwanted radiation in a band other than 2 400 MHz ∼ 2 500 MHz and at the same time keep VSWR within the specified value. desirable.

また、患部にパッチアンテナを近接させて使用する治療器においては、患部以外に放射されるマイクロ波を抑制することができるが、半導体スイッチングを用いた場合、周波数を変更することが比較的容易であることから、所定の周波数(2400〜2500MHz)の範囲で、そのパッチ電極の幅や径を粗調しておき、実際に、周波数を変更させて、定在波比等が最良となるように微調整(追従)させることが可能となり、その生産性を向上させることも可能となる。   In addition, in a treatment device that uses a patch antenna close to an affected part, microwaves radiated to other than the affected part can be suppressed. However, when semiconductor switching is used, it is relatively easy to change the frequency. Therefore, in the range of a predetermined frequency (2400-2500MHz), the width and diameter of the patch electrode are coarsely adjusted, and the frequency is changed so that the standing wave ratio is the best. Fine adjustment (following) can be performed, and the productivity can be improved.

具体的には、パッチ電極の適切なサイズは、λ(波長)/2に関係した外径を有することとなり、実際には、機材(パッチ電極とアース間の誘電体)の実効比誘電率をεとして、λ/(ε1/2・2)の大きさで設計することになる。医療機器として使用可能な周波数の範囲は、2400〜2500MHzであるから、仮にε=3の機材を用いた場合には、λ=3.0*108/f(周波数)から、34.64〜36.09mmの範囲の外径で最適合するパッチ電極を調整することとなる。
また、従来のマグネトロン方式であれば、不要な高調波が発生し得るために、マグネトロンの性能次第では、意図せぬ人体深度に電磁波が及ぶ可能性があるが、Q値に優れる半導体スイッチング回路を用いることにより、当該不具合は是正され、正しく患部を治療することが可能となる。
Specifically, the appropriate size of the patch electrode has an outer diameter related to λ (wavelength) / 2, and in practice, the effective relative dielectric constant of the equipment (dielectric between the patch electrode and the ground) is As ε, the size is designed to be λ / (ε 1/2 · 2). Since the frequency range that can be used as a medical device is 2400 to 2500 MHz, if equipment with ε = 3 is used, the range of λ = 3.0 * 108 / f (frequency) to 34.64 to 36.09 mm. The patch electrode that best matches the outer diameter will be adjusted.
In addition, since the conventional magnetron method can generate unnecessary harmonics, depending on the performance of the magnetron, electromagnetic waves may reach unintended human body depth, but a semiconductor switching circuit with an excellent Q value is required. By using it, the defect is corrected and the affected part can be treated correctly.

なお、半導体素子の効率ロス分は、半導体素子に取付けられた放熱フィン5等を介して放熱されるが、図3に示すように、当該放熱フィン5の配置を、半導体素子1とアンテナ3の間に物理的に配置することで、スイッチングに伴う発生ノイズがアンテナに及ぶのを抑制することができ、不要輻射の抑制を更に改善することができる。 The efficiency loss of the semiconductor element is radiated through the radiation fins 5 attached to the semiconductor element. As shown in FIG. 3, the arrangement of the radiation fins 5 is different between the semiconductor element 1 and the antenna 3. By physically disposing them between them, it is possible to suppress the noise generated by switching from reaching the antenna, and to further suppress the suppression of unnecessary radiation.

以下、本発明の一実施例について説明する。本実施例は、図4に示すように、マイクロ波半導体発振回路は、アンプとなる半導体スイッチング素子13と、この半導体スイッチング素子13に対して、信号発生及び信号が可変出来る信号発生部11(VCO:電圧制御発振器)と、信号発生部11の出力を調整するアンプ12と、半導体スイッチング素子の入力側に設けられるゲート電圧制御回路16と、半導体スイッチング素子13の出力側に設けられて反射等を防止するアイソレータ14と、進行波に対して反射波を取り出す方向性結合器15(若しくはリターンロスブリッジ)と半導体スイッチング素子13への給電を行う電源回路17で構成する。 Hereinafter, an embodiment of the present invention will be described. In this embodiment, as shown in FIG. 4, the microwave semiconductor oscillation circuit includes a semiconductor switching element 13 that serves as an amplifier, and a signal generator 11 (VCO) that can change the signal generation and signal with respect to the semiconductor switching element 13. Voltage control oscillator), an amplifier 12 for adjusting the output of the signal generator 11, a gate voltage control circuit 16 provided on the input side of the semiconductor switching element, and a reflection provided on the output side of the semiconductor switching element 13. An isolator 14 for prevention, a directional coupler 15 (or a return loss bridge) that extracts a reflected wave with respect to a traveling wave, and a power supply circuit 17 that supplies power to the semiconductor switching element 13 are configured.

信号発生部11より、マイクロ波帯域の基本周波数、例えば2.45GHzを出力し、その出力をアンプ12で調整する。信号発生部11及びアンプ12の信号を半導体スイッチング素子13でスイッチング制御して電力を増幅する。半導体スイッチング素子13には、LDMOSFET,GaAsFET、GaNFET等のFETを使用する。FETのゲートに信号発生部11から出力された2.45GHzの信号が印加され、ドレインに電圧供給部からの駆動電圧が印加され、増幅された2.45GHzのマイクロ波がアンテナから出力される。   A fundamental frequency in the microwave band, for example, 2.45 GHz, is output from the signal generation unit 11, and the output is adjusted by the amplifier 12. The signals of the signal generator 11 and the amplifier 12 are controlled by the semiconductor switching element 13 to amplify the power. As the semiconductor switching element 13, an FET such as an LDMOSFET, a GaAsFET, or a GaNFET is used. The 2.45 GHz signal output from the signal generation unit 11 is applied to the gate of the FET, the drive voltage from the voltage supply unit is applied to the drain, and the amplified 2.45 GHz microwave is output from the antenna.

また、方向性結合器15は、伝送路上に流れる信号を、進行波と反射波に分けて取り出す事ができる。アンテナと半導体発振器間の伝送線路に方向性結合器15を挿入して,その電圧・電流を取り出し、進行波電力と反射波電力をそれぞれ測定し,その差から実際にアンテナに供給される電力を求める。方向性結合器15より取り出された進行波と反射波の電力をアナログデジタル変換回路18で変換する。その電力を制御回路16にて比較し、反射が大きい場合は、反射波の電力が小さくなるように、信号発生部11の電圧を制御し、発振周波数を2.4GHzから、2.5GHzの範囲で可変し、VSWRが1.5となる周波数を選択する。   In addition, the directional coupler 15 can extract a signal flowing on the transmission path by separating it into a traveling wave and a reflected wave. The directional coupler 15 is inserted into the transmission line between the antenna and the semiconductor oscillator, the voltage / current is taken out, the traveling wave power and the reflected wave power are measured, and the power actually supplied to the antenna is calculated from the difference. Ask. The power of the traveling wave and the reflected wave taken out from the directional coupler 15 is converted by the analog / digital conversion circuit 18. The power is compared by the control circuit 16, and when the reflection is large, the voltage of the signal generator 11 is controlled so that the power of the reflected wave is small, and the oscillation frequency is in the range from 2.4 GHz to 2.5 GHz. The frequency at which VSWR is 1.5 is selected.

また、アンテナ部と人体との距離に於けるVSWRの良い中心周波数は近傍界ではアンテナ長(λ/2)の整数倍時で効いており、人体から離れ遠方界になると空中放射に近づく為、2450MHz近辺で安定する。不要輻射を極力抑える事も意図し、アンテナ-患部間はアンテナ長の整数倍の距離であるλ/4、λ/2 (30mm、60mm) とする。また、アンテナに関しては、人体の比誘電率を考慮した形状とすることが望ましく、皮膚組織を想定したアンテナ形状にする必要がある。そのため、アンテナ波長122mmのλ/2である61mmに比誘電率を考慮した放射板とする。脂肪等の比誘電率は5.5であり、λ/2である61mmをこの値の平方根で割った一辺とするので、一辺が26mmの放射板のアンテナとしている。なお、VSWRを調整する際に、必要に応じて、患部を想定した位置に、直径 20 cm,長さ 50 cmの低損失材(例えば,メタクリル樹脂)で作った円柱形容器に0.9%の食塩水を満たした状態をファントムとして各種データを測定する方法が用いられる。   Also, the good center frequency of VSWR at the distance between the antenna part and the human body is effective in the near field when it is an integer multiple of the antenna length (λ / 2). Stable near 2450MHz. In order to suppress unnecessary radiation as much as possible, the distance between the antenna and the affected area is λ / 4, λ / 2 (30mm, 60mm), which is an integral multiple of the antenna length. Further, it is desirable that the antenna has a shape that takes into account the relative permittivity of the human body, and it is necessary to have an antenna shape that assumes skin tissue. For this reason, the radiation plate takes into consideration the relative dielectric constant at 61 mm, which is λ / 2 of the antenna wavelength 122 mm. The relative permittivity of fat or the like is 5.5, and 61 mm, which is λ / 2, is divided by the square root of this value, so that it is an antenna of a radiation plate having a side of 26 mm. When adjusting the VSWR, if necessary, place 0.9% salt in a cylindrical container made of a low-loss material (for example, methacrylic resin) with a diameter of 20 cm and a length of 50 cm at the position where the affected area is assumed. A method of measuring various data using a state filled with water as a phantom is used.

VSWRを最良な値にする為には、伝送路(同軸ケーブル)を極力最短で結ぶことが望ましいが、マグネトロンを使用した場合には、駆動回路等が大型であるため、伝送路である同軸ケーブルが必要となり、マグネトロンをアンテナに直結することは困難である。この点、本実施例では、半導体スイッチング素子13を使用することで、マイクロ波の出力を安定させ、不要輻射を低減するものであり、同時に、小型化を可能とするものである。そのため、人体の近辺に駆動部を配置することも可能であり、アンテナ部と駆動部を一体化、小型化して、モバイル性を高めることも可能となる。   In order to obtain the best value for VSWR, it is desirable to connect the transmission line (coaxial cable) as short as possible. However, when a magnetron is used, the drive circuit is large, so the coaxial cable is the transmission line. It is difficult to directly connect the magnetron to the antenna. In this respect, in the present embodiment, the use of the semiconductor switching element 13 stabilizes the microwave output and reduces unnecessary radiation, and at the same time enables miniaturization. For this reason, it is possible to dispose the drive unit in the vicinity of the human body, and it is possible to improve mobility by integrating and miniaturizing the antenna unit and the drive unit.

また、アンテナ形状や、アンテナと患部との距離を調整することで、VSWRを良好として、不要輻射を低減することができるが、例えば、アンテナ-患部間の距離を的確に規定するために、放射板−誘電体−導体地板 の三層構成を有するパッチアンテナを使用した場合、放射板は誘電体を空気とする為、比誘電率ε=1として、λ/2である61mmを一辺とした寸法とする。また、アンテナ-患部間はアンテナ長の整数倍の距離とするが、不要輻射を極力抑える事を意図し、λ/4またはλ/2の距離とする。具体的には、表1より30mmまたは60mmとする。なお、表1は、周波数を2200〜2900MHzまで可変した際に、アンテナから人体までの距離(10mm〜60mm)に応じて、VSWRがどのように変化するかを調べたものである。   Also, by adjusting the antenna shape and the distance between the antenna and the affected area, the VSWR can be improved and unnecessary radiation can be reduced. For example, in order to accurately define the distance between the antenna and the affected area, radiation When a patch antenna having a three-layer structure of plate-dielectric-conductor ground plane is used, since the radiation plate uses dielectric as air, the relative permittivity ε = 1 and λ / 2 of 61 mm as one side And The distance between the antenna and the affected area is an integral multiple of the antenna length, but the distance is λ / 4 or λ / 2 in order to suppress unnecessary radiation as much as possible. Specifically, it is set to 30 mm or 60 mm from Table 1. Table 1 shows how the VSWR changes according to the distance (10 mm to 60 mm) from the antenna to the human body when the frequency is varied from 2200 to 2900 MHz.

また、マイクロ波治療器はマイクロ波を生体組織に放射して加温する温熱治療器であるが、低出力(10W)のマイクロ波を照射した場合には、高出力(200W)のマイクロ波を出力した場合と比較して、生体組織(たんぱく質等)への異なる影響があるものと考えられている。この点、半導体発振方式は、高速スイッチングによるデューティー制御が可能であり、リップルを0.1%以下に抑えつつ、低出力制御を行い、患者の状態に応じた出力制御を行うことが比較的安易である。また、半導体発振方式によれば、交互に、高出力と低出力を瞬時に切り替えることが可能であり、例えば、低出力を主体に制御しつつ、所望の時間帯に、一時的に高出力制御を交える等の制御も可能であり、患者の状態に応じて、よりきめ細かな出力制御が可能となる。   A microwave therapy device is a thermotherapy device that radiates and heats microwaves to living tissue. When a microwave with a low output (10W) is irradiated, a microwave with a high output (200W) is applied. Compared to the case of outputting, it is considered that there is a different influence on the living tissue (protein etc.). In this respect, the semiconductor oscillation method is capable of duty control by high-speed switching, and it is relatively easy to perform output control according to the patient's condition by performing low output control while suppressing ripple to 0.1% or less. . In addition, according to the semiconductor oscillation method, it is possible to instantaneously switch between high output and low output alternately. For example, the high output control is temporarily performed in a desired time zone while mainly controlling the low output. Can be controlled, and more detailed output control is possible according to the patient's condition.

1 半導体発振回路
2 方向性結合器
3 アンテナ
11 信号発生部
13 半導体スイッチング素子
15 方向性結合器



DESCRIPTION OF SYMBOLS 1 Semiconductor oscillation circuit 2 Directional coupler 3 Antenna 11 Signal generation part 13 Semiconductor switching element 15 Directional coupler



Claims (8)

マイクロ波を発生させる発振器と、前記発振器で作られたマイクロ波をアンテナ部に供給するための伝達部と、前記伝達部における定在波比を測定するための定在波比測定手段とを備え、前記発振器は、そのスイッチング制御に半導体素子を使用するとともに、前記定在波比の出力に応じて、所定の周波数の範囲内で、その発振周波数を変更してなるマイクロ波治療器。 An oscillator for generating a microwave, a transmission unit for supplying a microwave generated by the oscillator to an antenna unit, and a standing wave ratio measuring unit for measuring a standing wave ratio in the transmission unit The oscillator uses a semiconductor element for switching control, and changes the oscillation frequency within a predetermined frequency range according to the output of the standing wave ratio. 前記定在波比測定手段は、マイクロ波を患部に照射中、定期的に前記伝達部における定在波比を測定してなる請求項1記載のマイクロ波治療器。 2. The microwave therapy device according to claim 1, wherein the standing wave ratio measuring means measures the standing wave ratio in the transmission unit periodically while irradiating the affected part with microwaves. 前記定在波比測定手段は、マイクロ波を患部に照射中、前記患部の温度変化に応じて定在波比を測定してなる請求項1記載のマイクロ波治療器。 2. The microwave therapy device according to claim 1, wherein the standing wave ratio measuring means measures the standing wave ratio according to a temperature change of the affected part while irradiating the affected part with microwaves. 前記発振器は、前記患部の温度に応じて、出力の大きさを変更してなる請求項3記載のマイクロ波治療器。 The microwave therapy device according to claim 3, wherein the oscillator changes an output magnitude according to a temperature of the affected part. 前記アンテナ部は、パッチアンテナを使用するとともに、前期定在波比の出力に応じて前記アンテナ部の形状を変更してなる請求項1記載のマイクロ波治療器。 The microwave therapy device according to claim 1, wherein the antenna unit uses a patch antenna, and the shape of the antenna unit is changed according to the output of the standing wave ratio. 前記スイッチング用の半導体の冷却手段を備え、前記発振器とアンテナ部を同一筐体内に配するとともに、前記冷却手段を前記アンテナ部と発振器の間に配してなる請求項1記載のマイクロ波治療器。 2. The microwave therapy device according to claim 1, further comprising a cooling means for cooling the switching semiconductor, wherein the oscillator and the antenna section are arranged in the same housing, and the cooling means is arranged between the antenna section and the oscillator. . 前記アンテナ部にパッチアンテナを使用するとともに、パッチアンテナから患部までの距離に応じて、前記半導体素子による発振周波数を変更してなる請求項1記載のマイクロ波治療器。 The microwave therapy device according to claim 1, wherein a patch antenna is used for the antenna portion, and an oscillation frequency by the semiconductor element is changed according to a distance from the patch antenna to the affected part. 前記アンテナ部にパッチアンテナを使用するとともに、前記半導体素子による発振周波数に応じて、パッチアンテナから患部までの距離を変更してなる請求項1記載のマイクロ波治療器。

The microwave therapy device according to claim 1, wherein a patch antenna is used for the antenna unit, and the distance from the patch antenna to the affected part is changed according to the oscillation frequency of the semiconductor element.

JP2016202484A 2016-10-14 2016-10-14 Microwave therapy device Active JP6867670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202484A JP6867670B2 (en) 2016-10-14 2016-10-14 Microwave therapy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202484A JP6867670B2 (en) 2016-10-14 2016-10-14 Microwave therapy device

Publications (2)

Publication Number Publication Date
JP2018061747A true JP2018061747A (en) 2018-04-19
JP6867670B2 JP6867670B2 (en) 2021-05-12

Family

ID=61967041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202484A Active JP6867670B2 (en) 2016-10-14 2016-10-14 Microwave therapy device

Country Status (1)

Country Link
JP (1) JP6867670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025631A (en) * 2018-08-10 2020-02-20 ミナト医科学株式会社 Microwave therapy device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139349U (en) * 1981-02-25 1982-08-31
JPS5916651U (en) * 1982-07-23 1984-02-01 タカラベルモント株式会社 microwave therapy device
JPH04180776A (en) * 1990-11-15 1992-06-26 Sanyo Electric Co Ltd Microwave radiating device
JPH05161717A (en) * 1991-12-11 1993-06-29 Yoshiaki Saito Cancer thermotherapeutic device with cavity resonator
JP2006075357A (en) * 2004-09-09 2006-03-23 Institute Of Physical & Chemical Research Athlete's foot treating apparatus
JP2009183312A (en) * 2006-07-14 2009-08-20 Katsutoshi Tabuse Microwave induction heating device
JP2013066706A (en) * 2011-09-20 2013-04-18 Vivant Medical Inc Handheld medical device including microwave amplifier unit at device handle
JP2013090737A (en) * 2011-10-25 2013-05-16 Orient Micro Wave:Kk Microwave surgical instrument and apparatus including microwave surgical instrument
JP2013094346A (en) * 2011-10-31 2013-05-20 Techno Link Co Ltd Biological simulation device
JP2015119798A (en) * 2013-12-20 2015-07-02 ミナト医科学株式会社 Microwave therapeutic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139349U (en) * 1981-02-25 1982-08-31
JPS5916651U (en) * 1982-07-23 1984-02-01 タカラベルモント株式会社 microwave therapy device
JPH04180776A (en) * 1990-11-15 1992-06-26 Sanyo Electric Co Ltd Microwave radiating device
JPH05161717A (en) * 1991-12-11 1993-06-29 Yoshiaki Saito Cancer thermotherapeutic device with cavity resonator
JP2006075357A (en) * 2004-09-09 2006-03-23 Institute Of Physical & Chemical Research Athlete's foot treating apparatus
JP2009183312A (en) * 2006-07-14 2009-08-20 Katsutoshi Tabuse Microwave induction heating device
JP2013066706A (en) * 2011-09-20 2013-04-18 Vivant Medical Inc Handheld medical device including microwave amplifier unit at device handle
JP2013090737A (en) * 2011-10-25 2013-05-16 Orient Micro Wave:Kk Microwave surgical instrument and apparatus including microwave surgical instrument
JP2013094346A (en) * 2011-10-31 2013-05-20 Techno Link Co Ltd Biological simulation device
JP2015119798A (en) * 2013-12-20 2015-07-02 ミナト医科学株式会社 Microwave therapeutic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025631A (en) * 2018-08-10 2020-02-20 ミナト医科学株式会社 Microwave therapy device
JP7118375B2 (en) 2018-08-10 2022-08-16 ミナト医科学株式会社 microwave therapy device

Also Published As

Publication number Publication date
JP6867670B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP5352831B2 (en) Microwave array applicator for hyperthermia
JP5280251B2 (en) Portable microwave plasma generator
CN111602336B (en) Microwave amplifier
Hadadian et al. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions
JP6867670B2 (en) Microwave therapy device
US20110069518A1 (en) Resonant inverter of radio frequency generator for radiofrequency ablation
JP5514089B2 (en) Microwave surgical device
KR101143852B1 (en) RF generator frequency common-mode noise filter treatment
Tatsukawa et al. Development of submillimeter wave catheter transmitting a gyrotron output for irradiation on living bodies
Le-Huu et al. Dual-Band Transmitter for Wireless Power Transfer to Biomedical Implant Applications
CN109921745B (en) Side output type radio frequency resonance generator and insecticidal sterilization device
KR101143851B1 (en) RF thermal treatment of high-frequency resonant inverter generator
JP6956326B2 (en) High frequency heating device
KR101762163B1 (en) A cooking apparatus
CN105832410B (en) Electrode control device, method and electromagnetic knife operation system
US20100286573A1 (en) System and methods of treatment using ultra-wideband, high powered focusing emitters
JPS6138709B2 (en)
JP2015119798A (en) Microwave therapeutic device
KR101404565B1 (en) Applicator for effecting hyperthermic treatment
RU2261682C2 (en) Method and device for carrying out tissue coagulation with plasma
RU2775009C2 (en) Microwave amplifier
KR20120019276A (en) A cooking apparatus using microwave
Paolella et al. High efficiency microwave system for cardiac therapy
Chaichanyut et al. Microwave Ablation System Design to Study the Effects of Coaxial Antenna on IN-Vitro Animal Tissue
Pchelnikov Medical application of slow-wave structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6867670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250