JP6867670B2 - Microwave therapy device - Google Patents

Microwave therapy device Download PDF

Info

Publication number
JP6867670B2
JP6867670B2 JP2016202484A JP2016202484A JP6867670B2 JP 6867670 B2 JP6867670 B2 JP 6867670B2 JP 2016202484 A JP2016202484 A JP 2016202484A JP 2016202484 A JP2016202484 A JP 2016202484A JP 6867670 B2 JP6867670 B2 JP 6867670B2
Authority
JP
Japan
Prior art keywords
antenna
oscillator
semiconductor
standing wave
wave ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202484A
Other languages
Japanese (ja)
Other versions
JP2018061747A (en
Inventor
武史 裏鍛
武史 裏鍛
米次郎 有本
米次郎 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minato Medical Science Co Ltd
Original Assignee
Minato Medical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minato Medical Science Co Ltd filed Critical Minato Medical Science Co Ltd
Priority to JP2016202484A priority Critical patent/JP6867670B2/en
Publication of JP2018061747A publication Critical patent/JP2018061747A/en
Application granted granted Critical
Publication of JP6867670B2 publication Critical patent/JP6867670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Description

本発明は、マイクロ波治療器に関するものである。 The present invention relates to a microwave therapy device.

マイクロ波治療器は、アンテナから放射されたマイクロ波を生体組織に放射して加温する温熱治療器である。マイクロ波治療は、その周波数帯域を考慮すると、ヒータ等の伝導熱や赤外線等の輻射熱を用いた治療器と比較して、患者の深部の加温が可能である。また、患者が衣服等を着用していても治療が可能であり、衣服を脱がずに所望する患部を温熱治療できる等の利点を有する。 The microwave therapy device is a hyperthermia therapy device that heats living tissues by radiating microwaves radiated from an antenna. Considering the frequency band of microwave treatment, it is possible to heat a deep part of a patient as compared with a treatment device using conductive heat such as a heater or radiant heat such as infrared rays. Further, the treatment can be performed even if the patient is wearing clothes or the like, and there is an advantage that the desired affected area can be thermally treated without taking off the clothes.

ここで、従来のマイクロ波治療器は、図6、図7に示されるように、AC100Vの交流電力を高圧トランス22で昇圧した後、整流器23で整流し、この整流後の電圧をマグネトロン24の陽極に供給し、マグネトロン24の陽極電圧が発振電圧を超えると、マイクロ波を発生し、最終的にアンテナ25から患者に向けて輻射されるものが一般的であった。 Here, in the conventional microwave therapy device, as shown in FIGS. 6 and 7, the AC power of AC100V is boosted by the high-voltage transformer 22, then rectified by the rectifier 23, and the voltage after the rectification is the voltage of the magnetron 24. It was generally supplied to the anode, and when the anode voltage of the magnetron 24 exceeded the oscillation voltage, a microwave was generated and finally radiated from the antenna 25 toward the patient.

特開2015−119798JP 2015-119798 特開2013−065406JP 2013-065406

上記従来のマイクロ波治療器に使用するマグネトロン24には、特有の不要輻射の問題がある。具体的には、マイクロ波治療用のマグネトロンは、陽極本体に2450MHz帯のマイクロ波を発生させるが、実際には、この基本波以外に、その整数倍の周波数の高調波勢力が同時に発生している。この高調波がアンテナ25から輻射されると、基本波と同様に人体を含めた外部に伝搬されることとなる。当該マグネトロン24の不要輻射は、高調波以外に、マグネトロン24の内部の共振器構造に起因する周波数の輻射や、ノイズから立ち上がる発振機構に起因する輻射等がある。当該不要輻射を抑制するために、例えば、先行文献2に記載されるように、熱膨張係数を考慮した材料で形成した不要輻射の抑制チョークを具備する対策等が為されていた。 The magnetron 24 used in the conventional microwave therapy device has a problem of unnecessary radiation peculiar to the magnetron 24. Specifically, magnetrons for microwave therapy generate microwaves in the 2450 MHz band on the anode body, but in reality, in addition to this fundamental wave, harmonic forces with frequencies that are integral multiples of that are also generated at the same time. There is. When this harmonic is radiated from the antenna 25, it is propagated to the outside including the human body in the same manner as the fundamental wave. In addition to harmonics, the unnecessary radiation of the magnetron 24 includes radiation of frequencies caused by the resonator structure inside the magnetron 24, radiation caused by an oscillation mechanism rising from noise, and the like. In order to suppress the unnecessary radiation, for example, as described in Prior Document 2, measures have been taken such as providing a choke for suppressing unnecessary radiation formed of a material in consideration of the coefficient of thermal expansion.

しかしながら、当該不要輻射の抑制には機構的な限界もあり、無線障害を起こす場合もあった。特に、治療用に、マイクロ波を患者に照射するものにおいては、電子レンジのように、筐体構造で不要輻射の漏えいをシャットアウトする方法は望めないため、筐体以外の方法で、不要輻射の漏えいを抑制する必要がある。
また、マグネトロン24は、高圧トランス、ヒータートランス、高圧コンデンサ等の比較的外形の大きいデバイスを用いて駆動されており、小型化に対する問題があった。
However, there is a mechanical limit to the suppression of the unnecessary radiation, which may cause a radio failure. In particular, in the case of irradiating a patient with microwaves for treatment, unlike a microwave oven, a method of shutting out leakage of unnecessary radiation with a housing structure cannot be expected, so unnecessary radiation is not required by a method other than the housing. It is necessary to control the leakage of radiation.
Further, the magnetron 24 is driven by using a device having a relatively large outer shape such as a high-voltage transformer, a heater transformer, and a high-voltage capacitor, and has a problem of miniaturization.

上記課題を解決するために、本発明に係るマイクロ波治療器は、マイクロ波を発生させる発振器と、前記発振器で作られたマイクロ波をアンテナ部に供給するための伝達部と、前記伝達部における定在波比を測定するための定在波比測定手段とを備え、前記発振器は、そのスイッチング制御に半導体素子を使用、前記定在波比測定手段により得られた定在波比の値に応じて、所定の周波数の範囲内で、その発振周波数を変更するとともに、前記発振器とアンテナ部を同一筐体内に配し、前記半導体素子の冷却手段を前記アンテナ部と発振器の間に配してなるものである。 In order to solve the above problems, the microwave treatment device according to the present invention has an oscillator for generating microwaves, a transmission unit for supplying the microwaves produced by the oscillator to the antenna unit, and the transmission unit. The antenna is provided with a standing wave ratio measuring means for measuring the standing wave ratio, the antenna uses a semiconductor element for its switching control, and the value of the standing wave ratio obtained by the standing wave ratio measuring means. depending on, within a predetermined frequency range, as well as change its oscillation frequency, arranged said oscillator and the antenna unit in the same housing, and distribution of the cooling means of the semiconductor element between the antenna portion and the oscillator It is made up of.

本発明に係るマイクロ波治療器によれば、優れた周波数ドリフト抑制性能と出力安定性を備えることができ、不要輻射を効果的に抑制したマイクロ波治療器を実現することができる。 According to the microwave therapy device according to the present invention, it is possible to provide an excellent frequency drift suppression performance and output stability, and it is possible to realize a microwave therapy device that effectively suppresses unnecessary radiation.

本発明のマイクロ波治療器の一実施形態を示した図The figure which showed one Embodiment of the microwave therapy apparatus of this invention 同実施形態に用いるアンテナを示した図The figure which showed the antenna used in the same embodiment 同実施形態に用いる放熱フィンの配置を示した図The figure which showed the arrangement of the heat radiation fin used in the same embodiment 本発明の一実施例の半導体制御によるマイクロ波治療器の回路構成図Circuit block diagram of microwave therapy device by semiconductor control of one embodiment of the present invention 同実施例の半導体制御によるマイクロ波治療器の応用回路構成図Application circuit configuration diagram of microwave therapy device by semiconductor control of the same embodiment 従来例のマグネトロン発振回路を示した図The figure which showed the magnetron oscillation circuit of the conventional example 同マグネトロンの概説図Overview of the magnetron

本発明の一実施形態について、図1〜図3を用いて説明する。本発明のマイクロ波治療器は、半導体発振器回路1と、当該半導体発振器1に連なる方向性結合器2及び輻射用のアンテナ部3を有している。半導体発振器回路1における半導体スイッチング素子には、
Si(シリコン)やGaAs(ガリウム砒素)を用いることも可能だが、更なる高効率を図るために、GaN(ガリウムナイトライド)を用いることが望ましい。当該半導体スイッチングによれば、マグネトロン固有の内部共振器構造に起因する周波数の輻射等の問題が無いため、その周波数占有帯域幅をマグネトロン方式と比較して、数十分の1程度に抑えることができ、高いQ値で制御することが可能となる。
An embodiment of the present invention will be described with reference to FIGS. 1 to 3. The microwave therapy device of the present invention has a semiconductor oscillator circuit 1, a directional coupler 2 connected to the semiconductor oscillator 1, and an antenna unit 3 for radiation. The semiconductor switching element in the semiconductor oscillator circuit 1 includes
Although it is possible to use Si (silicon) or GaAs (gallium arsenide), it is desirable to use GaN (gallium nitride) for higher efficiency. According to the semiconductor switching, there is no problem such as frequency radiation due to the internal resonator structure peculiar to the magnetron, so that the frequency occupied bandwidth can be suppressed to about one tenth of that of the magnetron method. It can be controlled with a high Q value.

一方、医療用のマイクロ波治療装置には、2 400 MHz〜2 500 MHz の周波数範囲の電磁界が割り当てられており、また、JIS規格では、ケーブル又は導波管で接続するアプリケータに対して、電圧定在波比(VSWR)が 1.5 を超えてはならないと規定されている。当該状況下、2 400 MHz〜2 500 MHz以外の帯域における不要輻射を抑え、同時に、VSWRを規定値内に収めるためには、優れたQ値特性を有する半導体スイッチングを用いた発振回路が望ましい。 On the other hand, medical microwave therapy equipment is assigned an electromagnetic field in the frequency range of 2400 MHz to 2500 MHz, and according to the JIS standard, for applicators connected by cables or waveguides. , It is stipulated that the voltage standing wave ratio (VSWR) must not exceed 1.5. Under these circumstances, an oscillator circuit using semiconductor switching with excellent Q value characteristics is desirable in order to suppress unnecessary radiation in bands other than 2400 MHz to 2500 MHz and at the same time keep VSWR within the specified value.

また、患部にパッチアンテナを近接させて使用する治療器においては、患部以外に放射されるマイクロ波を抑制することができるが、半導体スイッチングを用いた場合、周波数を変更することが比較的容易であることから、所定の周波数(2400〜2500MHz)の範囲で、そのパッチ電極の幅や径を粗調しておき、実際に、周波数を変更させて、定在波比等が最良となるように微調整(追従)させることが可能となり、その生産性を向上させることも可能となる。 Further, in a treatment device in which a patch antenna is used close to the affected area, microwaves radiated to areas other than the affected area can be suppressed, but when semiconductor switching is used, it is relatively easy to change the frequency. Therefore, in the range of a predetermined frequency (2400 to 2500 MHz), the width and diameter of the patch antenna are roughly adjusted, and the frequency is actually changed so that the standing wave ratio etc. becomes the best. It is possible to make fine adjustments (following), and it is also possible to improve the productivity.

具体的には、パッチ電極の適切なサイズは、λ(波長)/2に関係した外径を有することとなり、実際には、機材(パッチ電極とアース間の誘電体)の実効比誘電率をεとして、λ/(ε1/2・2)の大きさで設計することになる。医療機器として使用可能な周波数の範囲は、2400〜2500MHzであるから、仮にε=3の機材を用いた場合には、λ=3.0*108/f(周波数)から、34.64〜36.09mmの範囲の外径で最適合するパッチ電極を調整することとなる。
また、従来のマグネトロン方式であれば、不要な高調波が発生し得るために、マグネトロンの性能次第では、意図せぬ人体深度に電磁波が及ぶ可能性があるが、Q値に優れる半導体スイッチング回路を用いることにより、当該不具合は是正され、正しく患部を治療することが可能となる。
Specifically, the appropriate size of the patch electrode will have an outer diameter related to λ (wavelength) / 2, and in reality, the effective relative permittivity of the equipment (dielectric between the patch electrode and ground) will be determined. As ε, it will be designed with a size of λ / (ε1 / 2.2). Since the frequency range that can be used as a medical device is 2400 to 2500 MHz, if equipment with ε = 3 is used, the range from λ = 3.0 * 108 / f (frequency) to 34.64 to 36.09 mm. The patch electrode that best fits the outer diameter will be adjusted.
In addition, if the conventional magnetron method is used, unnecessary harmonics may be generated. Therefore, depending on the performance of the magnetron, electromagnetic waves may reach an unintended depth of the human body. By using it, the defect is corrected and the affected area can be treated correctly.

なお、半導体素子の効率ロス分は、半導体素子に取付けられた放熱フィン5等を介して放熱されるが、図3に示すように、当該放熱フィン5の配置を、半導体素子1とアンテナ3の間に物理的に配置することで、スイッチングに伴う発生ノイズがアンテナに及ぶのを抑制することができ、不要輻射の抑制を更に改善することができる。 The efficiency loss of the semiconductor element is dissipated through the heat radiation fins 5 and the like attached to the semiconductor element. As shown in FIG. 3, the heat radiation fins 5 are arranged in the semiconductor element 1 and the antenna 3. By physically arranging them in between, it is possible to suppress the noise generated by switching from reaching the antenna, and it is possible to further improve the suppression of unnecessary radiation.

以下、本発明の一実施例について説明する。本実施例は、図4に示すように、マイクロ波半導体発振回路は、アンプとなる半導体スイッチング素子13と、この半導体スイッチング素子13に対して、信号発生及び信号が可変出来る信号発生部11(VCO:電圧制御発振器)と、信号発生部11の出力を調整するアンプ12と、半導体スイッチング素子の入力側に設けられるゲート電圧制御回路16と、半導体スイッチング素子13の出力側に設けられて反射等を防止するアイソレータ14と、進行波に対して反射波を取り出す方向性結合器15(若しくはリターンロスブリッジ)と半導体スイッチング素子13への給電を行う電源回路17で構成する。 Hereinafter, an embodiment of the present invention will be described. In this embodiment, as shown in FIG. 4, in the microwave semiconductor oscillation circuit, the semiconductor switching element 13 serving as an amplifier and the signal generation unit 11 (VCO) capable of generating a signal and varying the signal with respect to the semiconductor switching element 13 : Voltage control oscillator), an amplifier 12 that adjusts the output of the signal generator 11, a gate voltage control circuit 16 provided on the input side of the semiconductor switching element, and a gate voltage control circuit 16 provided on the output side of the semiconductor switching element 13 for reflection and the like. It is composed of an isolator 14 for prevention, a directional coupler 15 (or a return loss bridge) for extracting reflected waves from a traveling wave, and a power supply circuit 17 for supplying power to the semiconductor switching element 13.

信号発生部11より、マイクロ波帯域の基本周波数、例えば2.45GHzを出力し、その出力をアンプ12で調整する。信号発生部11及びアンプ12の信号を半導体スイッチング素子13でスイッチング制御して電力を増幅する。半導体スイッチング素子13には、LDMOSFET,GaAsFET、GaNFET等のFETを使用する。FETの
ゲートに信号発生部11から出力された2.45GHzの信号が印加され、ドレインに電圧供給部からの駆動電圧が印加され、増幅された2.45GHzのマイクロ波がアンテナから出力される。
The signal generation unit 11 outputs a fundamental frequency in the microwave band, for example, 2.45 GHz, and the output is adjusted by the amplifier 12. The signals of the signal generator 11 and the amplifier 12 are switched and controlled by the semiconductor switching element 13 to amplify the electric power. FETs such as LD MOSFETs, GaAs FETs, and GaN FETs are used as the semiconductor switching element 13. The 2.45 GHz signal output from the signal generation unit 11 is applied to the gate of the FET, the drive voltage from the voltage supply unit is applied to the drain, and the amplified 2.45 GHz microwave is output from the antenna.

また、方向性結合器15は、伝送路上に流れる信号を、進行波と反射波に分けて取り出す事ができる。アンテナと半導体発振器間の伝送線路に方向性結合器15を挿入して,その電圧・電流を取り出し、進行波電力と反射波電力をそれぞれ測定し,その差から実際にアンテナに供給される電力を求める。方向性結合器15より取り出された進行波と反射波の電力をアナログデジタル変換回路18で変換する。その電力を制御回路16にて比較し、反射が大きい場合は、反射波の電力が小さくなるように、信号発生部11の電圧を制御し、発振周波数を2.4GHzから、2.5GHzの範囲で可変し、VSWRが1.5となる周波数を選択する。 Further, the directional coupler 15 can take out a signal flowing on the transmission path separately as a traveling wave and a reflected wave. A directional coupler 15 is inserted into the transmission line between the antenna and the semiconductor oscillator, the voltage and current are taken out, the traveling wave power and the reflected wave power are measured respectively, and the power actually supplied to the antenna is calculated from the difference. Ask. The power of the traveling wave and the reflected wave taken out from the directional coupler 15 is converted by the analog-digital conversion circuit 18. The power is compared by the control circuit 16, and when the reflection is large, the voltage of the signal generation unit 11 is controlled so that the power of the reflected wave becomes small, and the oscillation frequency is in the range of 2.4 GHz to 2.5 GHz. Select the frequency at which VSWR is 1.5.

また、アンテナ部と人体との距離に於けるVSWRの良い中心周波数は近傍界ではアンテナ長(λ/2)の整数倍時で効いており、人体から離れ遠方界になると空中放射に近づく為、2450MHz近辺で安定する。不要輻射を極力抑える事も意図し、アンテナ-患部間はアンテナ長の整数倍の距離であるλ/4、λ/2 (30mm、60mm) とする。また、アンテナに関しては、人体の比誘電率を考慮した形状とすることが望ましく、皮膚組織を想定したアンテナ形状にする必要がある。そのため、アンテナ波長122mmのλ/2である61mmに比誘電率を考慮した放射板とする。脂肪等の比誘電率は5.5であり、λ/2である61mmをこの値の平方根で割った一辺とするので、一辺が26mmの放射板のアンテナとしている。なお、VSWRを調整する際に、必要に応じて、患部を想定した位置に、直径 20 cm,長さ 50 cmの低損失材(例えば,メタクリル樹脂)で作った円柱形容器に0.9%の食塩水を満たした状態をファントムとして各種データを測定する方法が用いられる。 In addition, the good center frequency of VSWR in the distance between the antenna part and the human body is effective at an integral multiple of the antenna length (λ / 2) in the near field, and approaches the aerial radiation in the far field away from the human body. Stable around 2450MHz. The distance between the antenna and the affected area is λ / 4, λ / 2 (30 mm, 60 mm), which is an integral multiple of the antenna length, with the intention of suppressing unnecessary radiation as much as possible. Further, it is desirable that the antenna has a shape that takes into consideration the relative permittivity of the human body, and it is necessary to have an antenna shape that assumes the skin tissue. Therefore, a radiation plate with a relative permittivity of 61 mm, which is λ / 2 with an antenna wavelength of 122 mm, is used. The relative permittivity of fat etc. is 5.5, and 61 mm, which is λ / 2, is divided by the square root of this value to make one side, so the antenna is a radiation plate with a side of 26 mm. When adjusting VSWR, if necessary, 0.9% saline solution should be placed in a cylindrical container made of a low-loss material (for example, methacrylic resin) with a diameter of 20 cm and a length of 50 cm at a position assuming the affected area. A method of measuring various data using a state filled with water as a phantom is used.

VSWRを最良な値にする為には、伝送路(同軸ケーブル)を極力最短で結ぶことが望ましいが、マグネトロンを使用した場合には、駆動回路等が大型であるため、伝送路である同軸ケーブルが必要となり、マグネトロンをアンテナに直結することは困難である。この点、本実施例では、半導体スイッチング素子13を使用することで、マイクロ波の出力を安定させ、不要輻射を低減するものであり、同時に、小型化を可能とするものである。そのため、人体の近辺に駆動部を配置することも可能であり、アンテナ部と駆動部を一体化、小型化して、モバイル性を高めることも可能となる。 In order to obtain the best VSWR value, it is desirable to connect the transmission line (coaxial cable) as short as possible, but when a magnetron is used, the drive circuit etc. is large, so the coaxial cable that is the transmission line Is required, and it is difficult to connect the magnetron directly to the antenna. In this regard, in this embodiment, by using the semiconductor switching element 13, the microwave output is stabilized and unnecessary radiation is reduced, and at the same time, miniaturization is possible. Therefore, it is possible to arrange the drive unit in the vicinity of the human body, and it is also possible to integrate the antenna unit and the drive unit, reduce the size, and enhance the mobility.

また、アンテナ形状や、アンテナと患部との距離を調整することで、VSWRを良好として、不要輻射を低減することができるが、例えば、アンテナ-患部間の距離を的確に規定するために、放射板−誘電体−導体地板 の三層構成を有するパッチアンテナを使用した場合、放射板は誘電体を空気とする為、比誘電率ε=1として、λ/2である61mmを一辺とした寸法とする。また、アンテナ-患部間はアンテナ長の整数倍の距離とするが、不要輻射を極力抑える事を意図し、λ/4またはλ/2の距離とする。具体的には、表1より30mmまたは60mmとする。なお、表1は、周波数を2200〜2900MHzまで可変した際に、アンテナから人体までの距離(10mm〜60mm)に応じて、VSWRがどのように変化するかを調べたものである。 In addition, by adjusting the shape of the antenna and the distance between the antenna and the affected area, VSWR can be improved and unnecessary radiation can be reduced. When a patch antenna having a three-layer structure of plate-dielectric-conductor base plate is used, the radiation plate uses air as the dielectric, so the relative permittivity ε = 1 and the dimension is 61 mm, which is λ / 2. And. The distance between the antenna and the affected area is an integral multiple of the antenna length, but the distance is λ / 4 or λ / 2 with the intention of suppressing unnecessary radiation as much as possible. Specifically, it is set to 30 mm or 60 mm from Table 1. Table 1 shows how VSWR changes according to the distance from the antenna to the human body (10 mm to 60 mm) when the frequency is changed from 2200 to 2900 MHz.

Figure 0006867670
Figure 0006867670

また、マイクロ波治療器はマイクロ波を生体組織に放射して加温する温熱治療器であるが、低出力(10W)のマイクロ波を照射した場合には、高出力(200W)のマイクロ波を出力した場合と比較して、生体組織(たんぱく質等)への異なる影響があるものと考えられている。この点、半導体発振方式は、高速スイッチングによるデューティー制御が可能であり、リップルを0.1%以下に抑えつつ、低出力制御を行い、患者の状態に応じた出力制御を行うことが比較的安易である。また、半導体発振方式によれば、交互に、高出力と低出力を瞬時に切り替えることが可能であり、例えば、低出力を主体に制御しつつ、所望の時間帯に、一時的に高出力制御を交える等の制御も可能であり、患者の状態に応じて、よりきめ細かな出力制御が可能となる。 In addition, the microwave therapy device is a hyperthermia device that radiates microwaves to living tissue to heat it, but when it is irradiated with low-power (10W) microwaves, it emits high-power (200W) microwaves. It is considered that there is a different effect on the living tissue (protein, etc.) as compared with the case of output. In this respect, the semiconductor oscillation method enables duty control by high-speed switching, and it is relatively easy to perform low output control and output control according to the patient's condition while suppressing ripple to 0.1% or less. .. Further, according to the semiconductor oscillation method, it is possible to switch between high output and low output alternately, for example, while controlling mainly low output, temporarily high output control at a desired time zone. It is also possible to control such as mixing, and more detailed output control is possible according to the patient's condition.

1 半導体発振回路
2 方向性結合器
3 アンテナ
11 信号発生部
13 半導体スイッチング素子
15 方向性結合器
1 Semiconductor oscillator circuit 2 Directional coupler 3 Antenna 11 Signal generator 13 Semiconductor switching element 15 Directional coupler

Claims (1)

マイクロ波を発生させる発振器と、前記発振器で作られたマイクロ波をアンテナ部に供給するための伝達部と、前記伝達部における定在波比を測定するための定在波比測定手段とを備え、前記発振器は、そのスイッチング制御に半導体素子を使用、前記定在波比測定手段により得られた定在波比の値に応じて、所定の周波数の範囲内で、その発振周波数を変更するとともに、前記発振器とアンテナ部を同一筐体内に配し、前記半導体素子の冷却手段を前記アンテナ部と発振器の間に配してなるマイクロ波治療器。 It is provided with an oscillator that generates microwaves, a transmission unit for supplying the microwaves produced by the oscillator to the antenna unit, and a standing wave ratio measuring means for measuring the standing wave ratio in the transmission unit. the oscillator uses a semiconductor element to the switching control, the according to the value of the standing wave ratio obtained by the standing wave ratio measuring means, within a predetermined frequency range, to change its oscillation frequency together with the oscillator and arranged in the same housing the antenna unit, a microwave treatment apparatus comprising a cooling unit of the semiconductor device in coordination between the antenna unit and the oscillator.
JP2016202484A 2016-10-14 2016-10-14 Microwave therapy device Active JP6867670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202484A JP6867670B2 (en) 2016-10-14 2016-10-14 Microwave therapy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202484A JP6867670B2 (en) 2016-10-14 2016-10-14 Microwave therapy device

Publications (2)

Publication Number Publication Date
JP2018061747A JP2018061747A (en) 2018-04-19
JP6867670B2 true JP6867670B2 (en) 2021-05-12

Family

ID=61967041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202484A Active JP6867670B2 (en) 2016-10-14 2016-10-14 Microwave therapy device

Country Status (1)

Country Link
JP (1) JP6867670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7118375B2 (en) * 2018-08-10 2022-08-16 ミナト医科学株式会社 microwave therapy device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115905Y2 (en) * 1981-02-25 1986-05-16
JPS5916651U (en) * 1982-07-23 1984-02-01 タカラベルモント株式会社 microwave therapy device
JPH04180776A (en) * 1990-11-15 1992-06-26 Sanyo Electric Co Ltd Microwave radiating device
JPH05161717A (en) * 1991-12-11 1993-06-29 Yoshiaki Saito Cancer thermotherapeutic device with cavity resonator
JP2006075357A (en) * 2004-09-09 2006-03-23 Institute Of Physical & Chemical Research Athlete's foot treating apparatus
JP2009183312A (en) * 2006-07-14 2009-08-20 Katsutoshi Tabuse Microwave induction heating device
US9039692B2 (en) * 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
JP5979845B2 (en) * 2011-10-25 2016-08-31 株式会社 オリエントマイクロウェーブ Microwave surgical device and device including microwave surgical device
JP5708443B2 (en) * 2011-10-31 2015-04-30 株式会社テクノリンク Biological stimulator
JP2015119798A (en) * 2013-12-20 2015-07-02 ミナト医科学株式会社 Microwave therapeutic device

Also Published As

Publication number Publication date
JP2018061747A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP5352831B2 (en) Microwave array applicator for hyperthermia
ES2383376T3 (en) Improved system to heat biological tissue using RF energy
US5186181A (en) Radio frequency thermotherapy
KR100622760B1 (en) Microwave applicator
US11058487B2 (en) Microwave ablation antenna system with reflector and slot
JP7454241B2 (en) microwave amplifier
KR20190017741A (en) Electrosurgical device with integrated microwave source
JPS60193292A (en) Electronic range
JP6867670B2 (en) Microwave therapy device
JP5514089B2 (en) Microwave surgical device
Le-Huu et al. Bipolar concentric-loop midfield transmitter for high-performance wireless power transfer to biomedical implants
KR101762163B1 (en) A cooking apparatus
CN115006729A (en) Gynaecology's millimeter wave therapeutic instrument
JP2015119798A (en) Microwave therapeutic device
US20100286573A1 (en) System and methods of treatment using ultra-wideband, high powered focusing emitters
JPS6138709B2 (en)
JP6911410B2 (en) Microwave heating device
KR101404565B1 (en) Applicator for effecting hyperthermic treatment
CN219023030U (en) Solid source integrated radiator
CN113694385B (en) Integrated tunable medical microwave radiator for sebum layer local treatment
KR101748606B1 (en) A cooking apparatus using microwave
JPS59105464A (en) Electromagnetic wave generator for heat treatment
Neagu A study of the effects of geometry on the efficiency of single slot microwave ablation antennas used in hepatic tumor hyperthermia
KR20230166430A (en) Microwave thermotherapy device
JPH0317885Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6867670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250