JP2020025631A - Microwave therapy device - Google Patents
Microwave therapy device Download PDFInfo
- Publication number
- JP2020025631A JP2020025631A JP2018150941A JP2018150941A JP2020025631A JP 2020025631 A JP2020025631 A JP 2020025631A JP 2018150941 A JP2018150941 A JP 2018150941A JP 2018150941 A JP2018150941 A JP 2018150941A JP 2020025631 A JP2020025631 A JP 2020025631A
- Authority
- JP
- Japan
- Prior art keywords
- housing
- center
- therapy device
- microwave
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radiation-Therapy Devices (AREA)
Abstract
Description
本発明は、マイクロ波治療器に関するものである。 The present invention relates to a microwave therapy device.
従来のマイクロ波治療器は、マイクロ波発生源として真空管の一種であるマグネトロンが用いられていた。マグネトロンを用いる方式(マグネトロン方式)では、マグネトロンの重量が嵩むため、特許文献1に示されているように、アンテナと同一筐体に取付けることができず、アンテナとは別の本体にマグネトロンを設置せざるを得なかった。 In a conventional microwave therapy device, a magnetron which is a kind of vacuum tube is used as a microwave generation source. In the method using a magnetron (magnetron method), since the weight of the magnetron increases, it cannot be mounted on the same housing as the antenna, as shown in Patent Document 1, and the magnetron is installed in a main body separate from the antenna. I had to do it.
一方、昨今の半導体技術の進歩を踏まえて、マイクロ波発生源として半導体制御素子を用いた半導体制御回路により、マイクロ波治療を行う半導体制御方式が考えられる。半導体制御方式は、マグネトロン方式と比較してマイクロ波発生源である半導体制御回路を大幅に小型化できるため、アンテナと半導体制御回路を同一筐体に配置することが可能となる。 On the other hand, based on recent advances in semiconductor technology, a semiconductor control system that performs microwave therapy by a semiconductor control circuit using a semiconductor control element as a microwave generation source is conceivable. In the semiconductor control method, the semiconductor control circuit, which is a microwave generation source, can be significantly reduced in size as compared with the magnetron method, so that the antenna and the semiconductor control circuit can be arranged in the same housing.
アンテナと半導体制御回路を同一筐体に配置することで、半導体制御方式では、マグネトロン方式において必要であり本体に配したマグネトロンより供給されたマイクロ波をアンテナへ伝送する太い同軸ケーブルを廃することで、同軸ケーブルに纏わる異常発熱による故障を防止することができる。 By arranging the antenna and the semiconductor control circuit in the same housing, the semiconductor control method eliminates the need for a thick coaxial cable that is necessary for the magnetron method and transmits microwaves supplied from the magnetron arranged on the main body to the antenna. In addition, it is possible to prevent a failure due to abnormal heat generated in the coaxial cable.
しかしながら、マイクロ波治療器においては、治療の際、アンテナを患者の患部付近に移動させて治療を行うのが一般的であるが、半導体制御方式では、アンテナと半導体制御回路を同一筐体に配置することで、筐体自体(操作部)の重量が嵩むことになる。さらに、半導体制御回路の半導体制御素子は、そのスイッチング動作により発熱するため冷却フィンを取付け、放熱する必要があり、従来のマグネトロン方式と比較して、操作部の重量が増加することにより、その操作性悪化に繋がるおそれがあった。 However, in the case of a microwave therapy device, it is common to perform the treatment by moving the antenna to the vicinity of the affected part of the patient during the treatment, but in the semiconductor control method, the antenna and the semiconductor control circuit are arranged in the same housing. By doing so, the weight of the housing itself (the operation unit) increases. Furthermore, since the semiconductor control element of the semiconductor control circuit generates heat due to its switching operation, it is necessary to attach cooling fins and dissipate heat. There was a possibility that it would lead to sex deterioration.
本発明は、上記課題を解決するものであり、アンテナと半導体制御回路を同一筐体に配した半導体制御方式のマイクロ波治療器において、その操作性を適性化することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to optimize the operability of a microwave treatment device of a semiconductor control system in which an antenna and a semiconductor control circuit are arranged in the same housing.
上記課題を解決するために、本発明のマイクロ波治療器は、マイクロ波を供給するための半導体制御素子と、前記半導体制御素子を冷却するための冷却フィン及び冷却ファンと、前記マイクロ波を患者に供給するためのアンテナ部とを同一筐体に有する操作部を備え、前記筐体の筐体面の一部に吸気口または排熱口を有し、前記冷却フィンは前記筐体の内部にあって、前記筐体の筐体中央より前記吸気口または前記排熱口に寄せて配し、前記筐体を本体に可動的に配置するための取付けアームを前記筐体中央より前記冷却フィン側に寄せて配してなるものである。 In order to solve the above problems, a microwave therapy device of the present invention includes a semiconductor control element for supplying a microwave, a cooling fin and a cooling fan for cooling the semiconductor control element, and An operation unit having an antenna unit for supplying the same to the housing, an intake port or a heat exhaust port on a part of the housing surface of the housing, and the cooling fins inside the housing. A mounting arm for arranging the housing movably in the main body from the center of the housing toward the cooling fin side from the center of the housing. They are arranged close together.
本発明に係るマイクロ波治療器によれば、アンテナとマイクロ波供給部である半導体制御回路を同一筐体に配した場合であっても、その重量の増加に拘らず、操作部を適正化し、円滑に操作することが可能となる。 According to the microwave therapy apparatus according to the present invention, even when the antenna and the semiconductor control circuit that is the microwave supply unit are arranged in the same housing, regardless of the increase in the weight, the operation unit is optimized, It is possible to operate smoothly.
(第1実施形態)
以下、本発明にかかる第1実施形態について、図1〜図2を用いて説明する。第1実施形態におけるマイクロ波治療器は、本体部1と、本体部1に取付けアーム3を介して可動的に接続された操作部2とを備える。また、本体部1と操作部2は電気信号線4により電気的に接続されている。
(1st Embodiment)
Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. The microwave therapy device according to the first embodiment includes a main body 1 and an operation section 2 movably connected to the main body 1 via a mounting arm 3. The main unit 1 and the operation unit 2 are electrically connected by an electric signal line 4.
本体部1は、機器各部への電力を供給する電源部5と、マイクロ波出力値、治療時間を含む治療条件を入力する入力部6と、設定値や治療状態を表示する表示部7と、入力部6により入力された治療条件の実行指示や表示部7の表示等、機器全体に関する制御をする制御部8を有している。電源部5からの電源電力や制御部8からの出力制御信号等は本体部1から操作部2へ電気信号線4を介して送信されている。また、従来のマグネトロン方式とは異なり、本体部1にマイクロ波発生源(マグネトロン)を配置していないため、本体部1を軽量化、小型化することができる。 The main unit 1 includes a power supply unit 5 for supplying power to each unit of the device, an input unit 6 for inputting a treatment condition including a microwave output value and a treatment time, a display unit 7 for displaying a set value and a treatment state, The control unit 8 controls the entire apparatus, such as an instruction to execute a treatment condition input from the input unit 6 and a display on the display unit 7. Power supply power from the power supply unit 5, output control signals from the control unit 8, and the like are transmitted from the main unit 1 to the operation unit 2 via the electric signal line 4. Further, unlike the conventional magnetron method, since the microwave generation source (magnetron) is not arranged in the main body 1, the main body 1 can be reduced in weight and size.
操作部2は、マイクロ波を供給する半導体制御回路9と、マイクロ波を患者に供給するためのアンテナ部10と、半導体制御回路9を冷却するための冷却フィン11及び冷却ファン12(排気式)とを同一筐体に備えている。また、筐体の筐体面の一部には吸気口21を配し、排熱口22を、吸気口21を配した筐体面と筐体中央14より反対側の筐体面に配している。 The operation unit 2 includes a semiconductor control circuit 9 for supplying microwaves, an antenna unit 10 for supplying microwaves to a patient, a cooling fin 11 for cooling the semiconductor control circuit 9, and a cooling fan 12 (exhaust type). Are provided in the same housing. An intake port 21 is provided on a part of the housing surface of the housing, and a heat exhaust port 22 is provided on the housing surface opposite to the housing surface on which the air inlet 21 is provided and the housing center 14.
半導体制御回路9は増幅素子として、半導体制御素子13を有する。半導体制御素子13には、Si(シリコン)やGaAs(ガリウム砒素)やGaN(ガリウムナイトライド)を用いることができる。半導体制御素子13の半導体スイッチングによりマイクロ波を増幅させ、アンテナ部10へ供給し、アンテナ部10から患者の患部へ供給している。マイクロ波の供給中は、半導体制御素子13の半導体スイッチングによりスイッチング損失が生じ、その発熱により熱に弱い半導体制御素子13の破壊が生じる可能性があるため、半導体制御素子13を冷却フィン11及び冷却ファン12により冷却している。具体的には、半導体制御素子13に取付けた冷却フィン11を介して放熱させ、筐体外部に取付けられた冷却ファン12から筐体内部の冷却フィン11へ風を送り、冷却フィン11の放熱を促している。第1実施形態では、冷却フィン11を筐体中央14より吸気口21に寄せて配し、冷却ファン12を、吸気口21を設けた筐体面に配置している。 The semiconductor control circuit 9 has a semiconductor control element 13 as an amplification element. As the semiconductor control element 13, Si (silicon), GaAs (gallium arsenide), or GaN (gallium nitride) can be used. The microwave is amplified by the semiconductor switching of the semiconductor control element 13, supplied to the antenna unit 10, and supplied from the antenna unit 10 to the affected part of the patient. During the supply of microwaves, switching loss occurs due to semiconductor switching of the semiconductor control element 13, and the heat generated by the semiconductor control element 13 may cause the semiconductor control element 13 to be damaged by heat. Cooled by fan 12. Specifically, heat is radiated through the cooling fins 11 attached to the semiconductor control element 13, and wind is sent from the cooling fan 12 attached to the outside of the housing to the cooling fins 11 inside the housing to release the heat from the cooling fins 11. Is urging. In the first embodiment, the cooling fins 11 are arranged closer to the air inlet 21 from the housing center 14, and the cooling fan 12 is arranged on the housing surface provided with the air inlet 21.
また、取付けアーム3は、操作部2の筐体中央14より冷却フィン11側に寄せて接続されており、取付けアーム3と操作部2の接続部にはボールジョイントなどを使用し、操作部2を回動可能に操作することができる。 The mounting arm 3 is connected to the cooling fin 11 side from the housing center 14 of the operation unit 2. A ball joint or the like is used for a connection between the mounting arm 3 and the operation unit 2. Can be operated rotatably.
上記構成により、本発明にかかる第1実施形態は、図3に示している操作部2の第1回転軸15、第2回転軸16を中心とした回転方向の操作を、円滑にすることができる。 With the configuration described above, in the first embodiment according to the present invention, the operation of the operation unit 2 in the rotation direction about the first rotation shaft 15 and the second rotation shaft 16 shown in FIG. it can.
具体的には、半導体制御回路9とアンテナ部10を同一筐体にした場合、半導体制御素子13に取付ける冷却フィン11の冷却効率を考えると吸気口21または排熱口22に近接させて配する必要があり、操作部2の重心が冷却フィン11側に偏る。そのため、操作部2と取付けアーム3の接続位置次第では、操作部2の慣性モーメントが大きくなることで、操作開始時に大きな力を必要とすることとなり、操作者への負担を増加させ、操作部2の円滑な操作が困難となる。 Specifically, when the semiconductor control circuit 9 and the antenna unit 10 are formed in the same housing, considering the cooling efficiency of the cooling fins 11 attached to the semiconductor control element 13, the cooling fins 11 are arranged close to the intake port 21 or the exhaust port 22. Therefore, the center of gravity of the operation unit 2 is shifted toward the cooling fin 11 side. For this reason, depending on the connection position between the operation unit 2 and the mounting arm 3, the moment of inertia of the operation unit 2 becomes large, so that a large force is required at the start of the operation, and the burden on the operator is increased. 2 makes smooth operation difficult.
しかしながら、図1に示す本発明の第1実施形態によれば、取付けアーム3を筐体中央14より冷却フィン11側に寄せて接続しているため、操作部2の重心と取付けアーム3の接続位置を近接させている。従って、操作部2の重心と操作部2操作時の第1回転軸15、第2回転軸16との距離を短くし、第1回転軸15、第2回転軸16を中心とした回転における慣性モーメントを小さくすることができ、その他の取付けアーム3の接続位置より、第1回転軸15、第2回転軸16を中心した回転方向への操作を小さな力で行うことができる。その結果、操作者が操作部2の操作時に、不要に大きな力を必要とすることなく、操作を円滑にすることができる。 However, according to the first embodiment of the present invention shown in FIG. 1, since the mounting arm 3 is connected to the cooling fin 11 side from the housing center 14, the connection between the center of gravity of the operation unit 2 and the mounting arm 3 is performed. The position is close. Therefore, the distance between the center of gravity of the operation unit 2 and the first rotation shaft 15 and the second rotation shaft 16 when the operation unit 2 is operated is shortened, and the inertia in rotation about the first rotation shaft 15 and the second rotation shaft 16 is reduced. The moment can be reduced, and the operation in the rotation direction about the first rotation shaft 15 and the second rotation shaft 16 can be performed with a small force from the connection position of the other mounting arms 3. As a result, when the operator operates the operation unit 2, the operation can be smoothly performed without requiring an unnecessary large force.
また、冷却フィン11を筐体中央14より吸気口21に寄せて配し、冷却ファン12を、吸気口21を設けた筐体面に配することで、操作部2の重量配分を取付けアーム3の接続位置近郊に集中させ、第1回転軸15、第2回転軸16を中心とした回転における慣性モーメントをさらに小さくすることが可能である。なお、上記冷却ファン12の配置は、冷却フィン11と冷却ファン12の距離を近づけ、冷却フィン11が、冷却ファン12が筐体外部から取り入れた風をより多く受けるため、冷却フィン11の放熱効果をさらに促進させることで、半導体制御素子13への熱による負荷を軽減し、半導体スイッチング動作を安定させることができる。 In addition, the cooling fins 11 are arranged closer to the air inlet 21 from the housing center 14, and the cooling fan 12 is arranged on the housing surface provided with the air inlet 21, so that the weight distribution of the operation unit 2 is reduced. By concentrating near the connection position, it is possible to further reduce the moment of inertia in rotation about the first rotation shaft 15 and the second rotation shaft 16. The arrangement of the cooling fan 12 shortens the distance between the cooling fins 11 and the cooling fan 12, and the cooling fins 11 receive more wind that the cooling fan 12 takes in from outside the housing. Is further promoted, the load of the semiconductor control element 13 due to heat is reduced, and the semiconductor switching operation can be stabilized.
また、マイクロ波治療環境下では、患部以外へのマイクロ波照射により、周辺電子機器やマイクロ波治療器の誤動作や破壊など弊害を及ぼすことがある。マイクロ波の遮蔽手段としては、制御回路等の電子基板を金属などのマイクロ波反射材等により囲むことが良い。しかし、半導体制御方式では、筐体面に吸気口21または排熱口22が必要なため、筐体をマイクロ波反射材等により囲むことは困難である。また、操作部2の重量増加に繋がるため好ましくない。そこで、第1実施形態では、吸気口21または排熱口22を網目状とし、各網目の辺の長さをマイクロ波の波長の1/4波長以下とし、マイクロ波の筐体内部への進入を防止または低減し、マイクロ波治療器の破壊や誤動作を防ぐことができる。 Further, in a microwave treatment environment, adverse effects such as malfunction or destruction of peripheral electronic devices or a microwave treatment device may be caused by microwave irradiation to an area other than the affected part. As a microwave shielding means, an electronic substrate such as a control circuit is preferably surrounded by a microwave reflecting material such as a metal. However, in the semiconductor control method, since the air inlet 21 or the heat exhaust port 22 is required on the housing surface, it is difficult to surround the housing with a microwave reflecting material or the like. Further, it is not preferable because it leads to an increase in the weight of the operation unit 2. Therefore, in the first embodiment, the intake port 21 or the heat discharge port 22 is formed in a mesh shape, and the length of the side of each mesh is set to 1 / wavelength or less of the microwave wavelength, and the microwave enters the inside of the housing. Can be prevented or reduced, and destruction or malfunction of the microwave therapy device can be prevented.
(第2実施形態)
本発明にかかる第2実施形態について図4を用いて説明する。基本的な構造は第1実施形態と同様であるが、第2実施形態では、排気式の冷却ファン12ではなく、吸気式冷却ファン19を設けた点で第1実施形態と異なる。以下、第1実施形態と異なる点を中心に記載する。
(2nd Embodiment)
A second embodiment according to the present invention will be described with reference to FIG. Although the basic structure is the same as that of the first embodiment, the second embodiment is different from the first embodiment in that an intake-type cooling fan 19 is provided instead of the exhaust-type cooling fan 12. Hereinafter, points different from the first embodiment will be mainly described.
具体的には、吸気式冷却ファン19を、排熱口22が配された筐体中央14より冷却フィン11と反対側の筐体面に配置し、操作部2の重心を第1実施形態より筐体端から筐体中央14方向へ移動させている。また、操作部2の重心の移動に伴い、操作部2と取付けアーム3の接続位置を、第1実施形態より筐体端から筐体中央14方向へ移動させている。 More specifically, the intake-type cooling fan 19 is disposed on the housing surface opposite to the cooling fins 11 from the housing center 14 where the exhaust heat port 22 is arranged, and the center of gravity of the operation unit 2 is set to be smaller than that of the first embodiment. It is moved from the body end to the housing center 14 direction. Further, with the movement of the center of gravity of the operation unit 2, the connection position between the operation unit 2 and the mounting arm 3 is moved from the end of the housing toward the center 14 of the housing from the first embodiment.
当該構成によれば、第1実施形態では、操作者が、操作部2の冷却フィン11取付け側を把持して操作部2を操作することは、筐体中央14より冷却フィン11と反対側を把持して操作した時に比べて、困難であった。しかし、第2実施形態においては、操作部2の重心と操作部2操作時の第1回転軸15、第2回転軸16との距離を短く保ちつつ、操作部2と取付けアーム3の接続位置が第1実施形態より筐体中央14方向にあるため、操作部2の冷却フィン11取付け側を把持し易くなり、操作部2の冷却フィン11取付け側を把持した際、第1実施形態に比べて円滑に操作することができる。 According to the configuration, in the first embodiment, when the operator grips the cooling fin 11 attachment side of the operation unit 2 and operates the operation unit 2, the operation is performed on the side opposite to the cooling fin 11 from the housing center 14. It was more difficult than when gripping and operating. However, in the second embodiment, while keeping the distance between the center of gravity of the operation unit 2 and the first rotation shaft 15 and the second rotation shaft 16 during operation of the operation unit 2 short, the connection position between the operation unit 2 and the mounting arm 3 is kept small. Is located closer to the center 14 of the housing than in the first embodiment, so that it is easier to grip the side of the operation unit 2 where the cooling fins 11 are attached. And can be operated smoothly.
(第3実施形態)
本発明にかかる第3実施形態について図5〜図6を用いて説明する。基本的な構造は第1実施形態と同様であるが、第3実施形態は、操作部2に排熱処理手段18を更に設けた点で第1実施形態と異なる。以下、第1実施形態と異なる点を中心に記載する。
(Third embodiment)
A third embodiment according to the present invention will be described with reference to FIGS. Although the basic structure is the same as that of the first embodiment, the third embodiment is different from the first embodiment in that an exhaust heat treatment unit 18 is further provided in the operation unit 2. Hereinafter, points different from the first embodiment will be mainly described.
具体的には、図5に示すように、冷却ファン12の排熱をアンテナ部10のマイクロ波供給面より後方へ廃する排熱処理手段18を排熱口22と同一筐体面に配置し、第2実施形態と同様に、操作部2と取付けアーム3の接続置を第1実施形態より、筐体端から筐体中央14方向へ移動させている。 Specifically, as shown in FIG. 5, the exhaust heat treatment means 18 for exhausting the exhaust heat of the cooling fan 12 backward from the microwave supply surface of the antenna unit 10 is disposed on the same housing surface as the exhaust heat port 22. As in the second embodiment, the connection between the operating unit 2 and the mounting arm 3 is moved from the housing end toward the housing center 14 from the first embodiment.
当該構成によれば、第1実施形態では、操作部2を操作する際に、冷却ファン12の排熱(温風または冷風)が操作者または患者に当たる可能性があった。しかし、第3実施形態においては、操作部2の筐体中央14より冷却ファン12と反対側に、排熱処理手段18としてダクト(風の通り道)を配置させている。従って、冷却ファン12の排熱が操作者や患者に当たることを防ぎ、操作部2を安全に操作することがでる。また治療中、排熱が体に当たるという患者の不快感をなくし、リラックスした状態で治療を受けることができる。 According to the configuration, in the first embodiment, when operating the operation unit 2, there is a possibility that the exhaust heat (warm air or cold air) of the cooling fan 12 hits the operator or the patient. However, in the third embodiment, a duct (wind passage) is disposed as the exhaust heat treatment means 18 on the side opposite to the cooling fan 12 from the housing center 14 of the operation unit 2. Therefore, it is possible to prevent the exhaust heat of the cooling fan 12 from hitting the operator or the patient, and to safely operate the operation unit 2. In addition, during treatment, the discomfort of the patient that the exhaust heat hits the body is eliminated, and the treatment can be received in a relaxed state.
また、図6に示すように、第2実施形態に排熱処理手段18を更に設けた場合は、吸気式冷却ファン19と排熱処理手段18を吸気式冷却ファン19に取り付けることで、操作者や患者に排熱が当たることを防ぐことができる。 As shown in FIG. 6, when the exhaust heat treatment means 18 is further provided in the second embodiment, by attaching the intake cooling fan 19 and the exhaust heat treatment means 18 to the intake cooling fan 19, an operator or a patient Can be prevented from being exposed to exhaust heat.
(実施例1)
以下、本発明の実施例1の操作部について図7〜図8を用いて説明する。操作部2は、マイクロ波を供給する半導体制御素子13と、マイクロ波を患者に供給するためのアンテナ部10と、マイクロ波を半導体制御素子13からアンテナ部10へ伝達するための伝送路23と、半導体制御素子13を冷却するための冷却フィン11及び冷却ファン12を同一筐体に備え、冷却ファン12は筐体外部の筐体面に取付けられ、排気式を用いている。また、冷却ファン12を取付けた筐体面に吸気口21を、筐体中央14を介して反対側の筐体面に排熱口22を設けている。
(Example 1)
Hereinafter, the operation unit according to the first embodiment of the present invention will be described with reference to FIGS. The operation unit 2 includes a semiconductor control element 13 for supplying microwaves, an antenna unit 10 for supplying microwaves to a patient, and a transmission path 23 for transmitting microwaves from the semiconductor control element 13 to the antenna unit 10. A cooling fin 11 and a cooling fan 12 for cooling the semiconductor control element 13 are provided in the same housing, and the cooling fan 12 is mounted on a housing surface outside the housing, and uses an exhaust type. In addition, an intake port 21 is provided on the housing surface to which the cooling fan 12 is attached, and a heat exhaust port 22 is provided on the opposite housing surface via the housing center 14.
半導体制御素子13は、LDMOSFET、GaAsFETも使用可能だが、高効率を図るためスイッチング損失の少ないGaNを用いたGaNFETを使用する。マイクロ波出力時には、半導体制御素子13の半導体スイッチングにより増幅された2.45GHzのマイクロ波を、伝送路23を介してアンテナ部10に供給され、アンテナ部10から患部へ供給されている。また、マイクロ波の出力状態を操作者や患者へ示すために、GaNFETのゲートON時にLED(図示せず)を光らせている。 As the semiconductor control element 13, an LDMOSFET and a GaAsFET can be used, but a GaNFET using GaN with a small switching loss is used for high efficiency. At the time of microwave output, the microwave of 2.45 GHz amplified by the semiconductor switching of the semiconductor control element 13 is supplied to the antenna unit 10 via the transmission line 23 and is supplied from the antenna unit 10 to the affected part. Further, in order to indicate the output state of the microwave to the operator or the patient, an LED (not shown) is illuminated when the gate of the GaN FET is turned on.
また半導体制御回路9とアンテナ部10を結ぶ伝送路23は、マグネトロン方式比べ、大幅に短くすることができ、伝送路23でのマイクロ波の反射ロスを最小限に抑え、半導体制御回路9から供給されたマイクロ波をアンテナ部10から効率良く患者の患部へ供給することができる。また、伝送路23は筐体内にあり操作者や患者が触れることがないため、伝送路23の故障を軽減することも可能である。 In addition, the transmission line 23 connecting the semiconductor control circuit 9 and the antenna unit 10 can be significantly shortened as compared with the magnetron method, minimizing the reflection loss of microwaves on the transmission line 23, and supplying from the semiconductor control circuit 9. The microwave thus obtained can be efficiently supplied from the antenna unit 10 to the affected part of the patient. Further, since the transmission path 23 is in the housing and is not touched by the operator or the patient, it is possible to reduce the failure of the transmission path 23.
またアンテナ部10には、操作部2の小型化、軽量化を図るために、板状アンテナのパッチアンテナや、板状のフェーズドアレイアンテナ、マイクロストリップアンテナ、ダイポルアンテナを用いることが望ましい。 Further, it is desirable to use a patch antenna of a plate antenna, a plate-shaped phased array antenna, a microstrip antenna, or a dipole antenna as the antenna unit 10 in order to reduce the size and weight of the operation unit 2.
また吸気口21または排熱口22は、操作部2の軽量化を考え、冷却ファン12を取付けた筐体面と筐体中央14を介して反対側の筐体面の全面に設けてもよいが、不要な埃やごみが筐体内へ進入するのを防ぐため、また吸気または排熱機能に影響を与えない必要最低限の冷却ファン12と筐体面接触面積分を設けている。また、吸気口21、排熱口22を網目状とし、各網目の辺の長さは、マイクロ波の筐体内への進入による破壊や誤動作を低減するために、マイクロ波の1/4波長である30mm以下とすることが望ましい。実施例1では、医療用のマイクロ波治療器には2.4GHz〜2.5GHzの周波数範囲が割り当てられているため、2.4GHz〜2.5GHzのマイクロ波の筐体内への進入を確実に防ぐことを考え、5mm以下とし、可能な限り各網目の辺の長さを小さくしている。 The intake port 21 or the exhaust port 22 may be provided on the entire surface of the housing opposite to the housing surface on which the cooling fan 12 is mounted and the housing center 14 in consideration of the weight reduction of the operation unit 2. In order to prevent unnecessary dust and dirt from entering the housing, a minimum necessary cooling fan 12 and a housing surface contact area which do not affect the intake or heat discharge function are provided. In addition, the intake port 21 and the heat discharge port 22 are formed in a mesh shape, and the length of the side of each mesh is set to 1/4 wavelength of the microwave in order to reduce breakage and malfunction due to the penetration of the microwave into the housing. It is desirable to set it to a certain 30 mm or less. In the first embodiment, the frequency range of 2.4 GHz to 2.5 GHz is assigned to the microwave treatment device for medical use, so that it is ensured that the microwave of 2.4 GHz to 2.5 GHz enters the housing. In order to prevent this, the length is set to 5 mm or less and the length of each mesh side is reduced as much as possible.
また、操作部2の重心25は筐体中央14より冷却フィン11取付け側に偏るが、本実施例では、図8に示すように、第1回転軸15が操作部2の重心25を通るよう取付けアーム3を操作部2に接続することで、操作部2の重心25と第1回転軸15、第2回転軸16の距離が最短となり、第1回転軸15、第2回転軸16を中心とする回転における慣性モーメントを小さくすることで、操作部2を円滑に操作することができる。 Further, the center of gravity 25 of the operation unit 2 is biased toward the side where the cooling fins 11 are mounted from the center 14 of the housing, but in this embodiment, the first rotation shaft 15 passes through the center of gravity 25 of the operation unit 2 as shown in FIG. By connecting the mounting arm 3 to the operation unit 2, the distance between the center of gravity 25 of the operation unit 2 and the first rotation shaft 15 and the second rotation shaft 16 is minimized, and the first rotation shaft 15 and the second rotation shaft 16 are centered. The operation unit 2 can be smoothly operated by reducing the moment of inertia in the rotation.
(実施例2)
以下、本発明の実施例2について図4、図9〜図12を用いて説明する。基本的な構造は実施例1と同様であるが、実施例2では排気式の冷却ファン12ではなく吸気式冷却ファン19を備えている。吸気式冷却ファン19は、操作部2の筐体中央14より冷却フィン11と反対側に寄せて配置すれば、操作部2の重心を筐体端から筐体中央14方向へ移動させることで冷却フィン11取付け側を把持した際の操作性を向上させている。また、実施例1と同様に、第1回転軸15が操作部2の重心を通るよう取付けアーム3を操作部2に接続することで、慣性モーメントを小さくしている。
(Example 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 4 and 9 to 12. The basic structure is the same as that of the first embodiment, but the second embodiment includes an intake-type cooling fan 19 instead of the exhaust-type cooling fan 12. If the intake-type cooling fan 19 is disposed closer to the side opposite to the cooling fins 11 than the housing center 14 of the operation unit 2, the cooling is performed by moving the center of gravity of the operation unit 2 from the housing end toward the housing center 14. Operability when gripping the fin 11 attachment side is improved. Further, similarly to the first embodiment, the mounting arm 3 is connected to the operation unit 2 so that the first rotation shaft 15 passes through the center of gravity of the operation unit 2, thereby reducing the moment of inertia.
また、操作部2の重心が筐体端から筐体中央14方向へ移動し、操作部2と取付けアーム3の接続位置を筐体中央14に近づけることを考えると、実施例1に、マイクロ波が供給されると光を放つことでマイクロ波の供給状態を把握することができる蛍光管17(図9参照)や、半導体制御素子13の出力側に設けられてマイクロ波の反射等を防止するアイソレータ20(図10参照)、または、操作部2を所望の位置へ移動させるために把持する持ち手24(図11参照)を更に設け、操作部2の筐体中央14より冷却フィン11と反対側に寄せて配置することによっても同様の効果を得ることができる。さらに、アンテナ部10にパッチアンテナを使用した場合は、パッチアンテナを操作部2の筐体中央14より冷却ファン12と反対側に延出させること(図12参照)によっても、同様の効果を得ることができる。 Further, considering that the center of gravity of the operation unit 2 moves from the end of the housing toward the center 14 of the housing and the connection position between the operation unit 2 and the mounting arm 3 is closer to the center 14 of the housing, the first embodiment has When the light is supplied, the fluorescent tube 17 (see FIG. 9) which emits light so that the state of supply of the microwave can be grasped, and is provided on the output side of the semiconductor control element 13 to prevent the reflection of the microwave and the like. An isolator 20 (see FIG. 10) or a handle 24 (see FIG. 11) for gripping the operation unit 2 to a desired position is further provided, and the cooling fin 11 is opposed to the housing center 14 of the operation unit 2. A similar effect can be obtained by arranging it close to the side. Further, when a patch antenna is used for the antenna unit 10, the same effect can be obtained by extending the patch antenna from the housing center 14 of the operation unit 2 to the side opposite to the cooling fan 12 (see FIG. 12). be able to.
(実施例3)
以下、本発明の実施例3について図5、図6または図13、図14を用いて説明する。基本的な構造は実施例1と同様であるが、実施例3では実施例1に更に排熱処理手段18を備えている。図5に示すように、排熱処理手段18にはダクトが用いられ、排熱口22を覆う形で配置され、排熱をアンテナ部10のマイクロ波供給面より後方に排出することにより、操作者と患者に排熱が当たることを防ぐことができる。また、図14に示すように、排熱口22をアンテナ部10と反対側の筐体面に設け、そこから排熱が排出されるよう筐体内部にダクトなどを設け、排熱口22へ誘導する構成でもよい。
(Example 3)
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 5 and 6 or FIGS. The basic structure is the same as that of the first embodiment. However, in the third embodiment, the exhaust heat treatment unit 18 is further provided in the first embodiment. As shown in FIG. 5, a duct is used for the exhaust heat treatment means 18, which is disposed so as to cover the exhaust heat port 22, and discharges the exhaust heat backward from the microwave supply surface of the antenna unit 10, so that the operator And the patient can be prevented from being exposed to exhaust heat. As shown in FIG. 14, the heat exhaust port 22 is provided on the housing surface opposite to the antenna unit 10, and a duct or the like is provided inside the housing so that the exhaust heat is discharged therefrom. The configuration may be as follows.
また、図6に示すように、排気式の冷却ファン12ではなく、吸気式冷却ファン19を用いる場合は、吸気式冷却ファン19と排熱処理手段18を操作部2の筐体中央14より冷却フィン11と反対側に寄せて配置する。そして、吸気式冷却ファン19を排熱口22に取付け、吸気式冷却ファン19の排出口にダクトを取付けることにより、排熱をアンテナ部10のマイクロ波供給面より後方に排出することができる。また、ダクトは吸気式冷却ファン19の排出口を覆う形で取付けても、排熱をアンテナ部10より後方に排出することができる。 As shown in FIG. 6, when an intake-type cooling fan 19 is used instead of the exhaust-type cooling fan 12, the intake-type cooling fan 19 and the exhaust heat-treating unit 18 are moved from the housing center 14 of the operation unit 2 to the cooling fan 11 and arranged on the opposite side. By attaching the intake-type cooling fan 19 to the heat exhaust port 22 and attaching a duct to the exhaust port of the intake-type cooling fan 19, the exhaust heat can be exhausted to the rear from the microwave supply surface of the antenna unit 10. Further, even if the duct is attached so as to cover the outlet of the intake-type cooling fan 19, the exhaust heat can be exhausted backward from the antenna unit 10.
また、図13に示すように、ダクトで排熱口22を覆い、ダクトの排出口に吸気式冷却ファン19を取付けても、同様の効果を得ることができる。 Also, as shown in FIG. 13, the same effect can be obtained by covering the exhaust heat port 22 with a duct and attaching the intake-type cooling fan 19 to the exhaust port of the duct.
1 本体部
2 操作部
3 取付けアーム
10 アンテナ部
11 冷却フィン
12 冷却ファン(排気式)
13 半導体制御素子
14 筐体中央
15 第1回転軸
16 第2回転軸
17 蛍光管
18 排熱処理手段
19 吸気式冷却ファン
20 アイソレータ
21 吸気口
22 排熱口
23 伝送路
24 持ち手
25 重心
DESCRIPTION OF SYMBOLS 1 Main body part 2 Operation part 3 Mounting arm 10 Antenna part 11 Cooling fin 12 Cooling fan (exhaust type)
Reference Signs List 13 semiconductor control element 14 housing center 15 first rotation axis 16 second rotation axis 17 fluorescent tube 18 exhaust heat treatment means 19 intake cooling fan 20 isolator 21 intake port 22 heat exhaust port 23 transmission path 24 handle 25 center of gravity
Claims (9)
An exhaust heat treatment unit for disposing exhaust heat of the cooling fan behind the antenna unit, wherein the exhaust heat treatment unit is provided in the housing and provided on a side of the cooling fan from a center of the housing. 4. The microwave therapy device according to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018150941A JP7118375B2 (en) | 2018-08-10 | 2018-08-10 | microwave therapy device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018150941A JP7118375B2 (en) | 2018-08-10 | 2018-08-10 | microwave therapy device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020025631A true JP2020025631A (en) | 2020-02-20 |
JP7118375B2 JP7118375B2 (en) | 2022-08-16 |
Family
ID=69620613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018150941A Active JP7118375B2 (en) | 2018-08-10 | 2018-08-10 | microwave therapy device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7118375B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3011462U (en) * | 1994-11-22 | 1995-05-30 | 伊藤超短波株式会社 | Microwave therapy |
KR20160065528A (en) * | 2014-12-01 | 2016-06-09 | 주식회사 한빛엔지니어링 | Microwave physical therapy apparatus |
WO2018046967A1 (en) * | 2016-09-12 | 2018-03-15 | Ipulse Limited | Apparatus for dermatological treatment |
JP2018061747A (en) * | 2016-10-14 | 2018-04-19 | ミナト医科学株式会社 | Microwave therapeutic device |
US20180117355A1 (en) * | 2015-05-12 | 2018-05-03 | Klox Technologies Inc. | Devices and methods for phototherapy |
-
2018
- 2018-08-10 JP JP2018150941A patent/JP7118375B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3011462U (en) * | 1994-11-22 | 1995-05-30 | 伊藤超短波株式会社 | Microwave therapy |
KR20160065528A (en) * | 2014-12-01 | 2016-06-09 | 주식회사 한빛엔지니어링 | Microwave physical therapy apparatus |
US20180117355A1 (en) * | 2015-05-12 | 2018-05-03 | Klox Technologies Inc. | Devices and methods for phototherapy |
WO2018046967A1 (en) * | 2016-09-12 | 2018-03-15 | Ipulse Limited | Apparatus for dermatological treatment |
JP2018061747A (en) * | 2016-10-14 | 2018-04-19 | ミナト医科学株式会社 | Microwave therapeutic device |
Also Published As
Publication number | Publication date |
---|---|
JP7118375B2 (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2953136B1 (en) | X-ray generator with adjustable collimation | |
US10856445B2 (en) | Electronic component housing apparatus and electronic device | |
EP1621970A2 (en) | Electronic apparatus with cooling device | |
JP2006287817A (en) | Microwave generating device, microwave supplying device, plasma treatment device and microwave generating method | |
CN110707870B (en) | Frequency converter integrated motor | |
JP4899595B2 (en) | Microwave generator | |
JP2020025631A (en) | Microwave therapy device | |
CN205485872U (en) | Electronic equipment | |
JP2008186694A (en) | Lighting system | |
KR100778789B1 (en) | Mobile telecommunication repeater cabinet | |
JP2000276259A (en) | Portable information processor | |
CN219515186U (en) | Radio frequency generating device, radio frequency thawing device and refrigerator | |
JP2011210806A (en) | Electronic apparatus | |
JP2020202052A (en) | Plasma electric field monitor, plasma processing apparatus, and plasma processing method | |
CN213662235U (en) | Electronic device | |
WO2024101283A1 (en) | Device | |
KR100269893B1 (en) | Exhaust cart improved cooling system | |
CN118676083B (en) | Packaging piece based on SiP packaging radio frequency receiver | |
CN112020167B (en) | Radio frequency heating equipment | |
JP2006511043A (en) | Cooling structure of plasma lighting device | |
KR100402500B1 (en) | A machine room cooling structure for micro wave oven | |
JP2010073385A (en) | Induction heating cooking appliance | |
JP2001168565A (en) | Cabinet for electronic equipment | |
KR100724381B1 (en) | Apparatus for cooling magnetron of plasma lighting system | |
CN115671562A (en) | Solid source integrated radiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7118375 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |