JP2018060387A - 予兆診断装置及びそれを有する発電装置制御システム - Google Patents

予兆診断装置及びそれを有する発電装置制御システム Download PDF

Info

Publication number
JP2018060387A
JP2018060387A JP2016197847A JP2016197847A JP2018060387A JP 2018060387 A JP2018060387 A JP 2018060387A JP 2016197847 A JP2016197847 A JP 2016197847A JP 2016197847 A JP2016197847 A JP 2016197847A JP 2018060387 A JP2018060387 A JP 2018060387A
Authority
JP
Japan
Prior art keywords
power generation
divergence
degree
degeneration
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197847A
Other languages
English (en)
Other versions
JP6783110B2 (ja
Inventor
順弘 楠野
Yoshihiro Kusuno
順弘 楠野
晃治 陰山
Koji Kageyama
晃治 陰山
平野 正博
Masahiro Hirano
正博 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016197847A priority Critical patent/JP6783110B2/ja
Publication of JP2018060387A publication Critical patent/JP2018060387A/ja
Application granted granted Critical
Publication of JP6783110B2 publication Critical patent/JP6783110B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

【課題】発電装置の故障の予兆を把握し、発電装置を最適に縮退運転させることで発電装置の稼働率を維持し得る予兆診断装置及びそれを有する発電制御システムを提供する。【解決手段】予兆診断装置10は、発電装置2aの運転状態を取得するセンサ信号及び発電装置2aを縮退運転させる縮退期限が入力される入力部11、発電装置2aを制御するための制御変数を出力する出力部13、及び演算部12を備える。演算部12は、少なくとも発電装置2aの運転状態を表すセンサ信号及び入力された縮退期限に基づき、発電装置2aを構成する機器の正常な運転状態からの乖離度及び当該乖離度の変化速度を求め、少なくとも縮退運転の要否を判定し、縮退運転が必要な場合に、乖離度及び乖離度の変化速度に基づき乖離度の変化が運転状況に応じて設定される縮退期間以内で所定の変化範囲内に抑制するよう発電装置2aの制御変数を更新する。【選択図】 図1

Description

本発明は、発電装置の予兆を診断する予兆診断装置及びそれを有する発電制御システムに関する。
風力発電システム又は太陽光発電システム等の再生可能エネルギーシステムでは、風況や日照等の制御不能な外部要因に因り、その発電設備から得られる発電量が左右される。このため、発電事業者にとって、常に発電できる健全な状態に発電設備を維持し、その稼働率を向上させることが重要である。
一般的に再生可能エネルギーシステムは、屋外環境下での20年から30年の耐用年数を想定して設計される。しかし、立地条件によっては、想定以上の外乱因子、例えば風力発電システムでは、風乱流強度やウィンドファームによる風車間の相互干渉の影響などによって、設計荷重を超過する疲労荷重が発生する場合がある。これによって発電設備の耐用年数が減少し、結果として、発電事業者の事業性を損ねる可能性がある。また、落雷や風雪等の偶発事象によって、発電装置を構成する部品群が想定よりも早期に劣化が進む場合があり、結果として、偶発故障の増加の要因となる。
そこで、これら発電設備において、耐用年数を確保しながら発電量の減少を極力抑える方法として、特許文献1に記載される技術が提案されている。
特許文献1では、風車の荷重データを用いて、所定期間における風車の疲労損傷度を評価するための疲労等価荷重を算出する疲労等価荷重算出部、及び、疲労等価荷重と風車の耐用年数に応じて決定される基準荷重とを比較し、その差分が所定の閾値を超えていた場合に、現在採用されている運転制限の条件設定値を該差分に応じて更新する設定値更新部を備える風車の運転制限調整装置が開示されている。そして、特許文献1では、上記疲労等価荷重算出部は、レインフローカウント法を用いて、疲労等価荷重を所定の期間(例えば、1年間)にわたって積分することで、年間における疲労等価荷重を風向毎に算出し、次に、風向毎に算出された年間の疲労等価荷重を風車の耐用年数で決定される基準荷重とそれぞれ比較し、これらの比較結果から事前検討において決定された初期条件設定値が適切であるか否かを判断し、適切でなかった場合には、上記初期条件設定値を更新する旨記載されている。
特開2010−48239号公報 特開2016−12158号公報 特開2016−81482号公報
しかしながら、特許文献1では、疲労等価荷重を所定の期間にわたって積分する構成、すなわち、荷重の時系列データを用いる構成であるため、仮に、積分期間内においてセンサが故障した場合、荷重の時系列データに欠損が生じ、累積疲労荷重が正しく評価できない虞がある。
以下に風力発電システムを一例として具体的に課題を記載する。風力発電システムでは、軽量化を目的として、ブレードを中心に複合材の適用が進められており、判定基準のための疲労強度曲線(S―N曲線)が十分に調査されていない場合がある。また、タワーやブレードなどの形状上、落雷の被害を受け易く、風力発電システムへの落雷によるセンサ異常や破損のみならず通信網への落雷も荷重の時系列データの欠損の要因となる。雷発生時は一般に荒天であることが多く、センサ異常によるデータ欠損期間に、荒天により風力発電システムに過大な荷重が発生していた場合、累積疲労荷重の評価精度を著しく劣化させる要因となる。結果として、適切な縮退運転ができない可能性がある。
さらに、タワーや基礎など、物理的に交換が不可能若しくは交換作業が高額となるため著しく事業性を損なう部品を除き、20年から30年の設計耐用年数を考慮した縮退運転を実施するよりも、交換した方が将来発電量を加味して事業性の改善が見込める場合も有り得る。ここで交換可能な部品として、例えば、ブレードや主軸、増速機、発電機などのドライブトレイン構成部品及びそれらを構成する軸受等の部材、ブレードのピッチ角やナセル方位角を変更・保持するピッチ機構やヨー機構を構成する駆動機や歯車・軸受、及び電力変換器等の電気品がある。特に、ブレードやドライブトレイン構成部品は部品手配や作業のためのクレーン等の機材準備に時間を要するため、交換作業に伴う風力発電システムの停止期間も発電機会損益に大きく影響する。発電機会損益を最小化するためには、部品の交換作業に着手可能な期日まで縮退運転により発電運転を可能な状態を維持し、好風況時に発電運転を可能とすることで、発電量を確保することが強く望まれている。
そこで、本発明は、発電装置の故障の予兆を把握し、発電装置を最適に縮退運転させることで発電装置の稼働率を維持し得る予兆診断装置及びそれを有する発電制御システムを提供する。
上記課題を解決するため、本発明に係る予兆診断装置は、発電装置の運転状態を取得するセンサ信号及び発電装置を縮退運転させる縮退期限が入力される入力部と、前記発電装置を制御するための制御変数を出力する出力部と、演算部と、を備え、前記演算部は、少なくとも発電装置の運転状態を表すセンサ信号及び入力された縮退期限に基づき、前記発電装置を構成する機器の正常な運転状態からの乖離度及び当該乖離度の変化速度を求め、求めた前記乖離度及び前記乖離度の変化速度に基づき少なくとも縮退運転の要否を判定し、縮退運転が必要な場合に、前記乖離度及び乖離度の変化速度に基づき前記乖離度の変化が運転状況に応じて設定される縮退期間以内で所定の変化範囲内に抑制するよう前記発電装置の制御変数を更新することを特徴とする。
また、本発明に係る発電制御システムは、発電装置を構成する機器に設置されるセンサ、少なくとも前記センサからのセンサ信号に基づき縮退運転の要否を判定する予兆診断装置と、前記予兆診断装置から出力される制御変数に基づき前記発電装置を制御する発電装置制御器と、を備え、前記予兆診断装置は、前記発電装置を縮退運転させる縮退期限及び前記センサからのセンサ信号が入力される入力部と、前記発電装置を制御するための制御変数を出力する出力部と、演算部と、を有し、前記演算部は、少なくとも発電装置の運転状態を表す前記センサからのセンサ信号及び入力された縮退期限に基づき、前記発電装置を構成する機器の正常な運転状態からの乖離度及び当該乖離度の変化速度を求め、求めた前記乖離度及び前記乖離度の変化速度に基づき少なくとも縮退運転の要否を判定し、縮退運転が必要な場合に、前記乖離度及び乖離度の変化速度に基づき前記乖離度の変化が運転状況に応じて設定される縮退期間以内で所定の変化範囲内に抑制するよう前記発電装置の制御変数を更新することを特徴とする。
本発明によれば、発電装置の故障の予兆を把握し、発電装置を最適に縮退運転させることで発電装置の稼働率を維持し得る予兆診断装置及びそれを有する発電制御システムを提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1の予兆診断装置を有する発電装置制御システムの全体概略構成図である。 発電装置及び発電装置制御システムの全体概略構成図である。 乖離度と閾値との比較、及び乖離度の変化速度判定を説明する説明図である。 本発明の他の実施例に係る実施例2の予兆診断装置を有する発電装置制御システムの全体概略構成図である。 本発明の他の実施例に係る実施例3の予兆診断装置を有する発電装置制御システムの全体概略構成図である。 本発明の他の実施例に係る実施例4の予兆診断装置を有する発電装置制御システムの全体概略構成図である。 図6に示す縮退運転方法記憶部に格納されるデータ構造を示す図である。 風力発電装置における運転カーブを示す図である。 表示装置の表示画面例を示す図である。
本明細書において、故障の予兆を把握し縮退運転の対象とする発電装置は、風力発電装置又は太陽光発電装置などの再生可能エネルギー発電装置、及び、火力発電装置などを含む。
先ず、図2を用いて、本発明に係る予兆診断装置が適用される発電制御システムについて説明する。図2は、発電装置及び発電装置制御システムの全体概略構成図である。図2に示すように、発電制御システム1は、発電装置2を制御するため少なくとも制御指令を発電装置2へ出力する発電装置制御器3、発電装置2を構成する機器に設置され運転状態を取得する制御用センサ4と監視用センサ5、制御用センサ4と監視用センサ5にて取得される発電装置2を構成する機器の運転状態を表すセンサ信号を動作履歴情報として格納する動作履歴記憶部6、動作履歴記憶部6から動作履歴情報を取得すると共に発電装置制御器3へ運転指令を出力する操作端末7、及び操作端末7から発電装置制御器3へのアクセス及び動作履歴記憶部6へのアクセスを可能とする通信ネットワーク8を備える。なお、通信ネットワーク8は、有線であるか無線であるかを問わない。
制御用センサ4にて取得されたセンサ信号は、発電装置制御器3及び動作履歴記憶部6に入力される。一方、監視用センサ5にて取得されたセンサ信号は、動作履歴記憶部6に入力される。ここで、制御用センサ4及び監視用センサ5は、発電装置2を構成する機器(部品)における、振動加速度や変位、回転数や移動速度、冷却媒体や潤滑媒体などの温度などを取得するセンサであり、検出対象となる物理量は任意である。制御用センサ4は、発電装置2を所望の運転状態に至らしめるため、発電装置制御器3に入力されるセンサ信号を出力するセンサであり、監視用センサ5は、発電装置2の運転状態の把握に使用されるセンサである。発電装置制御器3は、操作端末7より出力され通信ネットワーク8を介して入力される運転指令、及び制御用センサ4より入力されるセンサ信号に基づき、一般にフィードフォワード制御又はフィードバック制御などによって、発電装置2が所望の運転状態となるように、発電装置2に設けられる図示しない操作装置を操作する。ここで、発電装置2に設けられる図示しない操作装置としては、例えば、発電装置2が風力発電装置である場合、ブレードピッチ角を調整するピッチ機構、ナセル方位角を調整するヨー機構、及び発電電力を調整する電力変換器などの装置が相当する。操作端末7は、図示しない入力装置及び表示装置を備える。操作端末7の入力装置は、例えば、キーボード又はマウスなどのであり、操作端末7の表示装置は、例えば、液晶ディスプレイ(LCD)又は有機ELディスプレイなどである。操作端末7は、発電装置2の運転状態を表示装置の画面上に表示することが可能であり、動作履歴記憶部6に蓄積(格納)される発電装置2の動作履歴情報を、通信ネットワーク8を介して取得し、取得された発電装置2の動作履歴情報を時系列波形や数値表などの表示形式にて表示装置(図示せず)の画面上に表示することができる。また、発電装置制御器3、制御用センサ4、及び監視用センサ5は、発電装置2に物理的に近接して設置されることが一般的であり、その他の装置及び機器は通信ネットワーク8を介して物理的に遠隔地に建設される制御室に設置しても良く、さらに、運用上の利便性や冗長性から多地点に複数設置しても良い。また、操作端末7を発電装置2内に設置する構成としても良い。その他、図示しない発電装置2の発電運転に必要となる装置群及びセンサ群、並びに操作端末や記憶装置や表示装置などの情報機器群を設けても良い。
以下、図面を用いて本発明の実施例について説明する。なお、以下に示す実施例では、風力発電装置を発電装置2の一例として説明する。また、以下では、図2に示した構成要素と同様の構成要素に同一の符号を付している。
図1は、本発明の一実施例に係る実施例1の予兆診断装置を有する発電装置制御システムの全体概略構成図である。図1に示すように、本実施例に係る発電制御システム1は、図2に示した発電制御システムに、予兆診断装置10を備えている。予兆診断装置10は、入力部11、演算部12、出力部13、及び閾値記憶部14を有する。予兆診断装置10を構成する、入力部11、演算部12、及び出力部13は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。なお、閾値記憶部14を外部記憶装置に構築し、予兆診断装置10に通信I/Fを設け、当該通信I/Fを介して予兆診断装置10が閾値記憶部14へアクセスするよう構成しても良い。また、演算部12に閾値記憶部14を内蔵する構成としても良い。
また、図1に示すように、発電装置2としての風力発電装置2aは、風を受けて回転するブレード24、ブレード24を支持するハブ23、ナセル22、及びナセル22を回動可能に支持するタワー21を備える。ナセル22内に、ハブ23に接続されハブ23と共に回転する主軸25、主軸25に連結されるシュリンクディスク26、シュリンクディスク26を介して主軸25に接続され回転速度を増速する増速機27、及び増速機27により増速された回転速度で回転子を回転させて発電運転する発電機28を備えている。ブレード24の回転エネルギーを発電機28に伝達する部位は、動力伝達部と呼ばれ、本実施例では、主軸25、シュリンクディスク26、及び増速機27が動力伝達部に含まれる。そして、増速機27及び発電機28は、メインフレーム29上に保持されている。また、ブレード24及びハブ23によりロータが構成される。図1に示すように、タワー21内の底部(下部)に、電力の周波数を変換する電力変換器30、電流の開閉を行うスイッチング用の開閉器及び変圧器など(図示せず)が配されている。なお、図1に示す風力発電装置2aは、一例としてダウンウィンド型の風力発電装置を示しているが、これに限られず、アップウィンド型の風力発電装置としても良い。また、3枚のブレード24とハブ23にてロータを構成する例を示すが、これに限られず、ロータを、ハブ23と少なくとも1枚のブレード24にて構成しても良い。本実施例に係る風力発電装置2aは、洋上、山岳部及び平野部の何れの場所にも設置できるものである。
発電制御システム1を構成する制御用センサ4は、例えば、ブレード24の根元に設置されブレードピッチ角を計測するセンサ、主軸25の根元に設置されロータアジマス角を計測するセンサ、ナセル22の方位角を計測するセンサ、及びナセル22の上部に設置され風速を計測する風速計(図示せず)を含む。また、更には、制御用センサ4は、風向、発電機28の回転数、発電量などを計測するセンサを含む。換言すれば、制御用センサ4は、風力発電装置2aの制御に必要な種々の状態を計測するセンサである。また、監視用センサ5は、例えば、ナセル22内の温度、湿度、或は、潤滑媒体の温度、増速機27及び/又は発電機28の振動加速度や変位などを計測するセンサを含む。
発電制御システム1を構成する発電装置制御器3として、例えば、制御盤又はSCADA(Supervisory Control And Data Acquisition)が用いられる。図1では、発電装置制御器2をタワー21外に配する例を示しているが、これに限られず、タワー21内の底部(下部)に、発電装置制御器3を配する構成としても良い。
予兆診断装置10を構成する入力部11には、風力発電装置2aに設置される監視用センサ5からのセンサ信号、及び風力発電装置2aの運用者により入力装置(図示せず)を介して操作端末7へ入力され通信ネットワーク8を介して縮退期限が入力される。入力部11は、入力されたセンサ信号に対して、各種フィルタリング処理又は包絡線処理によるノイズ除去、或はフーリエ変換に代表される周波数解析やウェブレット変換による時間―周波数解析などを実行し、風力発電装置2aの運転状態の特徴を示す物理量を抽出する。
なお、縮退期限は、常時入力される必要は無く、演算部12に過去に入力された情報に変更がなければ記憶部(図示せず)に継続して記憶保持しても良い。すなわち、縮退期限は、風力発電装置2aの定期保守計画に基づく日付群を風力発電装置2aの運転開始時に設定しても良いし、定期保守時に次回実施予定の日付を設定しても良い。また、後述する予兆診断機能によって、正常状態からの乖離を検出した機器の乖離状態を是正するための、保守作業員、保守作業に用いられるクレーン等の機材の準備可能日、交換機器或は機器を構成する部品の入手可能日、さらには、気候などの外部要因によって決定される日時のうち、少なくとも一つを考慮した日付、すなわち、正常状態からの乖離を検出した部品或は機器の保守が実施可能となる日付を、操作端末7を用いて随時設定しても良い。
予兆診断装置10を構成する演算部12は、入力部11を介して得られる風力発電装置2aの運転状態の特徴を示す物理量を処理し、正常状態からの乖離度を算出する。ここで、乖離度の算出は、例えば、特許文献2又は特許文献3に開示される適応共鳴理論(Adaptive Resonace Theory:ART)を用いたカテゴリー分類手法を用いて行われる。すなわち、2次元空間上にてカテゴリー分類を行う場合を想定すると、2次元空間上にて円にて規定される正常カテゴリーの重心からの距離或いは、正常カテゴリーの境界(円)のうち、最も近接する正常カテゴリーの円周上からの距離に基づき乖離度が算出される。なお、正常状態からの乖離度の算出は、必ずしも上述の適応共鳴理論(ART)に限られるものでは無く、例えば、マハラノビス距離など乖離度を定義可能な手法であれば、何れの手法を用いても良い。演算部12は、算出した正常状態からの乖離度に基づき、後述する閾値と比較して縮退運転の要否を判定する。
ここで、演算部12による正常状態からの乖離度の算出タイミングは重要である。特に、風力発電装置2aでは、入力エネルギー(風)は制御不能である。よって、風力発電装置2aの運転実施の有無自体が左右されるため、入力エネルギー(風)が無ければ正常状態からの乖離度を算出するための風力発電装置2aの運転状態に関するセンサ信号が得られない。風速がある程度存在しなければ発電運転は実施されず、同程度の発電運転状態下でなければ乖離度が算出できない、若しくは、誤って低い乖離度を算出する虞がある。そのため、演算部12は、入力部11から得られる情報を用いて、演算の実行可否を所定の基準に従って決定する、若しくは、算出する乖離度に演算時の運転情報を付随させることが重要である。
次に、乖離度の閾値について説明する。乖離度の閾値の定義の仕方として、例えば以下がある。
風力発電装置2aが健全な状態と定義し得る状態において、本来得られるべき監視用センサ5より出力されるセンサ信号の特徴量を予兆診断機能によって予め学習などさせ、乖離度の基準を作成する。この基準に基づき、健全な状態から乖離していると判断すべき最小の乖離度をA、十分に乖離していると判断すべき乖離度をB、乖離が大きく直ちに風力発電装置2aを停止させなければ、他の機器の機能や寿命に影響を及ぼし得る乖離度をCと定義し、これら乖離度A〜乖離度Cを、それぞれ閾値A〜閾値Cとして、予め閾値記憶部14に格納する。運用上必要であれば上述の閾値A〜閾値Cに加え、さらに細分化して乖離度の閾値を定義しても良い。
また、乖離度の閾値の定義の他の方法としては、風力発電装置2aが健全な状態と定義し得る状態において得られる監視用センサ5より出力されるセンサ信号の特徴量を、予兆診断機能によって予め学習などさせ、さらに、実際の故障事例に至った過去における風力発電装置2aの運転履歴データを同様に予兆診断機能に学習させ、これらに基づき、故障事例発生の直前を上述の乖離度を閾値Cとし、上述の健全な状態と定義した乖離度を基準として、当該基準と閾値Cに基づき、適宜上述の閾値A及び閾値Bに対応する乖離度の閾値を定めても良い。また、実際の故障事例がない場合には、風力発電装置2aを模擬する解析モデル或は実機縮尺模型によって、健全な状態と定義し得る解析若しくは実験を実施し、監視用センサ5と対応し得る数値を収集し、且つ、故障を模擬した解析モデル或は実機縮尺模型に故障を導入し、同じように監視用センサ5より出力されるセンサ信号と対応し得る数値を収集し、これを故障時のデータと見做して予兆診断機能に予め学習させ、それぞれ、健全な状態における基準と閾値Cを定義し、同様に閾値A及び閾値Bを定めても良い。さらには、解析モデル或は実機縮尺模型に故障の程度を模擬できる場合は、程度模擬で得られたデータに基づき、それぞれ閾値A〜閾値Cを定めても良い。
以下の説明において、閾値Aを風力発電装置2aの縮退運転を要さない軽乖離レベル、閾値Bを風力発電装置2aの縮退運転の実施開始判断とする中乖離レベル、閾値Cを重乖離レベルとする。また、乖離度が大きいほど、風力発電装置2aを構成する各機器又は当該機器の部品が健全な状態から乖離しているものとして、上述の閾値A〜閾値Cは、A<B<Cの関係を満たすものとする。
各々の乖離度は、単一の数値で定義される場合もあれば、数値の組み合わせで定義される場合もある。ここで、「数値の組み合わせ」とは、例えば、上述のように、乖離度の算出に適応共鳴理論(ART)を一例として用いた場合、風力発電装置2aを構成するナセル22内に配される発電機28の出力、ブレード25のピッチ角、及び風向などの複数のパラメータの組み合わせを意味する。従って、各々の乖離度が数値の組み合わせで定義される場合、多次元空間上における正常カテゴリーの重心からの距離或は、多次元空間上における正常カテゴリーの境界のうち、最も近接する正常カテゴリーの境界からの距離に基づき乖離度が算出される。また、乖離事象の原因によって、複数の閾値を定義する構成としても良い。例えば、風力発電装置2aにおいて、増速機27の歯車の正常からの乖離度の定義、及び増速機27の軸受の正常からの乖離度の定義は、それぞれ異なった数値及び数値群で表しても良い。さらに、単一の部品及びその構成部であっても、乖離の原因となる現象によって閾値の定義が異なっても良い。例えば、風力発電装置2aにおいて、増速機27の歯車の歯面損傷に対する乖離度の定義と歯元損傷に対する乖離度の定義は、それぞれ異なった数値及び数値群で表しても良い。
これによって、演算部12により乖離が検出された場合に、その乖離の原因が、風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などと推定することが可能となる。従って、軽度の乖離検出時においては、それら風力発電装置2aを構成する機器或は当該機器の構成部品などを事前発注することで、さらに乖離が進んだ場合の故障対応のリードタイムが削減されるため、風力発電装置2aの稼働率低下の抑制に寄与することができる。また、故障に至らずとも、定期保守等で軽度の乖離が検知される部位を重点的に保守することで、風力発電装置2aを構成する機器の長命化も期待できる。これによっても発電事業者の事業性を改善し得ることは言うまでもない。
いずれにせよ、風力発電装置2aが健全な状態と定義し得る状態は、上述の全ての閾値(閾値A〜閾値C)に乖離度が達していない状態であると定義することが可能である。これを逸脱した場合、すなち、定義された乖離度の閾値を構成する数値群の最小値(例えば、閾値A)を逸脱した場合、風力発電装置2aの有意な変化として検出が可能であり、現地にて確認することが望ましい。
さらに、予兆診断装置10を構成する演算部12は、上述の乖離度の変化速度を算出する。乖離度の変化速度の算出は、所定の期間を定めて風力発電装置2aを同一運転条件で動作させ、同程度の発電運転状態下において算出された乖離の度合いの所定期間の開始と終了における増減を、その期間で除して求める。なお、ここで「同一運転条件」とは、運転指令に対する風力発電装置2aの応答を特徴付ける制御変数を変更しないという意味である。制御変数とは、制御指令値への追従特性を決定付ける制御ゲイン、及び、発電装置制御器3内の内部変数若しくは内部変数の変化速度が特定の値の範囲に収まるように制限を課すための制限値又は特定の値の範囲になることを抑制するための制限値、及び、急峻な時間的変動或は特定周波数の変動を抑制するなどのフィルタ特性を決定付けるフィルタ定数などのうち、少なくとも一つを含むものである。換言すれば、制御変数、すなわち、上述の各種パラメータを同一とすることが同一運転条件に該当する。これは、本実施例では、発電装置2として風力発電装置2aを一例として説明しているが、発電装置2としては上述のように太陽光発電装置などの再生可能エネルギー発電装置、及び火力発電装置なども含まれ、発電装置2の種別により、入力エネルギー及び発電装置2の出力は変動するものの、制御変数(上述の制御ゲインなどを含む各種パラメータ)が同一であれば、同一運転条件と見做すことができることによる。
なお、風力発電装置2aの入力エネルギー(風)は制御不能であるが、風力発電装置2aなどの再生可能エネルギー発電装置に限らず、火力発電装置などの入力エネルギー(火力発電装置の場合は、石炭或はガスなどの燃焼により生成される熱量)が制御可能な発電装置2においても、電力需要家による電力消費は制御不能であり、且つ、絶えず変動しており、所定の期間において発電装置2の同一運転を継続することは不可能である。
また、「同程度の発電運転状態下」とは、上述のように、予兆診断装置10を構成する演算部12による乖離度の演算時の運転情報が同程度であること意味する。風力発電装置2aでは、例えば、同程度の風速が得られる状態或は同程度のブレード24の回転が得られ、同程度の発電電力を発生している状態が、同程度の発電運転状態下に相当する。これにより、所定期間の開始時点で発電運転を実施しており、終了時点で発電運転が停止していた場合に、乖離度が改善されたと誤認識することを抑制できる。
その他、所定期間内における、乖離度の平均値、乖離度の最大値、及び乖離度の最小値のうち少なくとも一つを、後続の所定期間続における開始時の乖離度とし、後続の所定期間における、乖離度の平均値、乖離度の最大値、及び乖離度の最小値のうち少なくとも一つを同様に終了時の乖離度としても良い。これによっても風力発電装置2aの運転実績による乖離度の評価を是正することが可能となる。
次に、予兆診断装置10を構成する演算部12にて求められる、乖離度及び乖離度の変化速度の評価について説明する。
演算部12は、閾値記憶部14に格納されている閾値と求めた乖離度とを比較し、比較結果に基づき以下の(1)〜(3)のうち何れかの動作を実行する。
(1)求めた乖離度が閾値Aに達していた場合、演算部12は、出力部13及び通信ネットワーク8を介して操作端末7の表示装置(図示せず)の画面上に軽乖離の警報を発し、風力発電装置2aの運用者に注意を喚起する。
(2)求めた乖離度が閾値Bに達していた場合、演算部12は、出力部13及び通信ネットワーク8を介して操作端末7の表示装置(図示せず)の画面上に中乖離の警報を発すると共に、縮退運転が必要と判定し縮退運転を開始する。
(3)求めた乖離度が閾値Cに達していた場合、演算部12は、出力部13及び通信ネットワーク8を介して操作端末7の表示装置(図示せず)の画面上に重乖離の警報を発すると共に、風力発電装置2aの運転を停止する。
上述の(3)に示すように、求めた乖離度が閾値Cに達した(重乖離レベル)後、風力発電装置2aの運転を停止した後に、再び風力発電装置2aを起動する、又は、風力発電装置2aの再起動の上限回数制限を設けた上で起動するなどは、風力発電装置2aの設計者又は運用者の判断に依存する。同様に、風力発電装置2aの再起動後も含め、縮退運転によって乖離度が低下した場合には、風力発電装置2aの縮退運転を中止しても良く、同様に風力発電装置2aの設計者や運用者の判断するところである。例えば、演算部12により求められた乖離度が閾値A以下に復帰した場合は、風力発電装置2aの縮退運転を停止するなどがある。なお、ここでの風力発電装置2aの縮退運転の形態としては、例えば、風力発電装置2aの発電出力の上限値(リミッタ)を低減することにより、最大発電出力を抑制することで実現される。
次に、予兆診断装置10を構成する演算部12にて求められる乖離度の変化速度と当該乖離度の変化速度の評価について説明する。図3は、乖離度と閾値との比較、及び乖離度の変化速度判定を説明する説明図である。横軸に日時、縦軸に乖離度を取り、演算部12にて求められる乖離度の時間変化を、上述の乖離度の閾値A〜乖離度の閾値Cと共に示している。図3に示すように、演算部12は、乖離度の変化速度を所定の周期(Δt)にて算出する。図3における演算時点よりも前の日時において示されるように、乖離度の変化速度を算出する周期(Δt)、すなわち、乖離度の変化速度の算出間隔(Δt)の期間において乖離度がどの程度変化したかその度合いを示す値が乖離度の変化速度である。従って、乖離度の変化速度は、乖離度の変化速度の算出間隔(Δt)の期間における乖離度の変化量(Δd)を乖離度の変化速度の算出間隔(Δt)で除した値(Δd/Δt)である。図3に示すように、演算時点より前の時点において、乖離度が多少変動するものの常に乖離度の閾値A未満となる実線にて示される乖離度の時間変化(経時変化)は、正常と見做し得る事象として演算部12により判定される。一方、演算時点に向かうに従い乖離度が閾値Aを超え、さらに乖離度が閾値Bを超える実線にて示される乖離度の時間変化(経時変化)は、正常から乖離が進展する事象として演算部12により判定される。
この正常から乖離が進展する事象として判定される乖離度の変化速度について以下に説明する。先ず、演算部12は、演算時点の日時を始点日として、操作端末7の入力装置(図示せず)より通信ネットワーク8を介して予兆診断装置10を構成する入力部11に入力される縮退期限(複数の縮退期限が設定されている場合は最近日)を終点日として求められる、始点日から終点日の間の日数(縮退期間(ΔT))で、演算時点の乖離度を重乖離レベル(閾値C)から減じて求める乖離余裕(ΔD)を除した値を算出し、これを乖離度の基準変化速度(ΔD/ΔT)とする。また、演算部12は、乖離度の時間変化(経時変化)が演算時点以降リニア(線形)に変化すると想定し、演算時点よりも一つ前の乖離度の変化速度の算出間隔(Δt)の期間における乖離度の変化量(Δd)に基づき、乖離度の変化速度(Δd/Δt)を算出する。次に、演算部12は、求めた乖離度の変化速度(Δd/Δt)と乖離度の基準変化速度(ΔD/ΔT)とを比較し、比較結果に基づき次の(1)又は(2)の動作を実行する。
(1)乖離度の基準変化速度(ΔD/ΔT)に対し乖離度の変化速度(Δd/Δt)が大きい場合は、縮退期限以前に重乖離レベルの閾値Cに到達する可能性があるため、縮退強弱要求を「強め」とする。
(2)一方、乖離度の基準変化速度(ΔD/ΔT)に対し乖離度の変化速度(Δd/Δt)が小さい場合には、縮退期限以降に重乖離レベルの閾値Cに到達すると見込まれるため、縮退強弱要求を「弱め」とする。
図3に示す例では、縮退期間の最終日(縮退期限)の時点で、乖離度に余裕が存在する、すなわち、重乖離レベルの閾値Cに到達すると予測される日時である想定重乖離到達日時は、縮退期限を経過してさらに所定時間経過後となることが予測されることから、縮退強弱要求を「弱め」(風力発電装置2aの出力を増加させる方向)とする必要がある。乖離度の基準変化速度(ΔD/ΔT)の点線は、縮退期間の最終日(縮退期限)の時点で、閾値Cに到達するよう変化させた場合を示しており、縮退強弱要求を「弱め」とすることは、乖離度の変化速度(Δd/Δt)を大きくすることを意味し、逆に、縮退強弱要求を「強め」とすることは、乖離度の変化速度(Δd/Δt)を小さくすることを意味する。すなわち、乖離度の変化速度(Δd/Δt)の点線の傾きを大きくすることが縮退強弱要求を「弱め」とすることに対応し、乖離度の変化速度(Δd/Δt)の点線の傾きを小さくすることが縮退強弱要求を「強め」とすることに対応する。但し、乖離度の基準変化速度(ΔD/ΔT)と乖離度の変化速度(Δd/Δt)との大小比較のみでは、乖離度の変化速度(Δd/Δt)の変化に過剰に敏感になる可能性があることから、適切な不感帯を設ける構成としても良い。この場合、不感帯に含まれる乖離度の変化速度(Δd/Δt)であれば、縮退強弱を変更しない。
予兆診断装置10を構成する出力部13は、演算部12から縮退強弱要求を入力し、次のように動作する。
縮退強弱要求が「強め」の場合には、縮退運転の度合いを強める。すなわち、通常の発電運転における制御変数から遠ざかる方向に制御変数を変更し、風力発電装置2aを健全と見做し得る状態からの乖離の進展を遅くするようにする。具体的には、例えば、制御変数に含まれる制御ゲインを通常の発電運転時における制御ゲインから変更し、当該変更した制御ゲインによって得られた制御指令を発電装置制御器3へ出力する。これにより、所望の縮退期限まで風力発電装置2aを稼動し続けることが可能となる。
一方、縮退強弱要求が「弱め」の場合には、縮退運転の度合いを弱める。すなわち、通常の発電運転における制御変数に近づく方向に制御変数を変更し、風力発電装置2aを健全と見做し得る状態からの乖離の進展を早めるようにする。具体的には、例えば、制御変数に含まれる制御ゲインを通常の発電運転時における制御ゲインに近づけ、当該変更した制御ゲインによって得られた制御指令を発電装置制御器3へ出力する。これにより、所望の縮退期限まで風力発電装置2aを稼動し続けることが可能となると共に、不要な縮退運転を抑制することで、発電量を確保することが可能となる。
なお、本実施例では、縮退期限を操作端末7の図示しない入力装置より入力する構成としたがこれに限られるものでは無い。例えば、予兆診断装置10に入力装置を設け、当該入力装置より入力部11へ縮退期限を入力する構成としても良く、また、風力発電装置2aに入力装置を設け、当該入力装置より入力される縮退期限を、予兆診断装置10を構成する入力部11へ出力する構成としても良い。
また、本実施例では、監視用センサ5より出力されるセンサ信号を、信号線を介して予兆診断装置10の入力部11へ出力する構成としたがこれに限られるものでは無い。例えば、発電装置制御器3としてSCADAを用い、SCADAが監視用センサ5より出力されるセンサ信号を収集し、収集されたセンサ信号を予兆診断装置10の入力部11へ出力する構成としても良い。
以上のとおり、本実施例によれば、発電装置の故障の予兆を把握し、発電装置を最適に縮退運転させることで発電装置の稼働率を維持し得る予兆診断装置及びそれを有する発電制御システムを提供することが可能となる。
また、本実施例によれば、発電装置のセンサ信号を継続的に把握すれば良く、時系列データの累積は不要である。このため、センサ故障或は通信障害に対してロバストである。
また、縮退期限を定め、予兆診断装置より求める乖離度の変化速度から、縮退期限での乖離度の超過可否を判定し、適宜発電装置の制御を変更する縮退運転を実行することで、発電装置の状況に応じて最も控え目な縮退運転で所定の縮退期日まで運転を継続することができ、縮退運転による発電量の減少を最小とし、且つ、発電装置の稼働率を損なわない。これにより、故障停止に陥った場合に好風況が発生した場合の発電機会の損失を回避することが可能となる。
図4は、本発明の他の実施例に係る実施例2の予兆診断装置を有する発電装置制御システムの全体概略構成図である。本実施例では、予兆診断装置10が監視用センサ5からのセンサ信号に代えて制御用センサ4からのセンサ信号を用いる点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付し、以下では、実施例1と重複する説明を省略する。
風力発電装置2aの制御のために用いられる制御用センサ4は、一般的に、監視のために用いられる監視用センサ5に比べて、センサ信号の取得間隔、すなわち、サンプリング周期が短いという特徴がある。これは、制御用であるため制御出力の応答を逐次次周期の制御出力に反映させ、正確で応答性の高い制御を実現するためには、サンプリング周期を短く設定する必要があるからである。
図4に示すように、本実施例に係る発電制御システム1では、予兆診断装置10を構成する入力部11には、風力発電装置2aに設置される制御用センサ4からのセンサ信号、及び風力発電装置2aの運用者により入力装置(図示せず)を介して操作端末7へ入力され通信ネットワーク8を介して縮退期限が入力される。入力部11は、入力されたセンサ信号に対して、各種フィルタリング処理又は包絡線処理によるノイズ除去、或はフーリエ変換に代表される周波数解析やウェブレット変換による時間―周波数解析などを実行し、風力発電装置2aの運転状態の特徴を示す物理量を抽出する。予兆診断装置10を構成する、演算部12、出力部13、及び閾値記憶部14は、上述の実施例1と同様であるため、ここでは説明を省略する。
予兆診断装置10を構成する演算部12は、入力部11を介して得られる風力発電装置2aの運転状態の特徴を示す物理量に基づき、上述の実施例1と同様に乖離度を算出すると共に、算出した乖離度及び縮退期限に基づき乖離度の変化速度を求め、乖離度の変化速度を上述の実施例1と同様に評価する。サンプリング周期の短い制御用センサ4から出力されるセンサ信号を用いることで、風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などより変化周期の短い物理現象も詳細に検出できる。これにより、予兆診断装置10により検出可能な物理現象の種類が多くなるため、より詳細に風力発電装置2aの健全な状態からの乖離が進んでいる機器或は当該機器の構成部品若しくは構成部品の部位の特定並びに原因事象の推定が可能となる。従って、対応する部品発注をより確からしく実施することができ、故障発生時の発電機会の損益を抑制するだけでなく、より軽微な保守で済む故障現象で乖離を検出でき、ダウンタイムがより多く必要となる重篤な故障に至る前に対応することで、廉価な交換部品で対応でき、かつ、交換作業も比較的安価に抑えることが可能となる。
なお、制御用センサ4と監視用センサ5の区別はあくまでもその用途でなされ、サンプリング周期の長短による区別ではないことは言うまでも無い。
なお、本実施例では、縮退期限を操作端末7の図示しない入力装置より入力する構成としたがこれに限られるものでは無い。例えば、予兆診断装置10に入力装置を設け、当該入力装置より入力部11へ縮退期限を入力する構成としても良く、また、風力発電装置2aに入力装置を設け、当該入力装置より入力される縮退期限を、予兆診断装置10を構成する入力部11へ出力する構成としても良い。
また、本実施例では、制御用センサ4より出力されるセンサ信号を、信号線を介して予兆診断装置10の入力部11へ出力する構成としたがこれに限られるものでは無い。例えば、発電装置制御器3としてSCADAを用い、SCADAが制御用センサ4より出力されるセンサ信号を収集し、収集されたセンサ信号を予兆診断装置10の入力部11へ出力する構成としても良い。
以上の通り、本実施例によれば、実施例の効果に加え、故障発生時の発電機会の損益を抑制するだけでなく、より軽微な保守で済む故障現象で乖離を検出でき、ダウンタイムがより多く必要となる重篤な故障に至る前に対応することで、廉価な交換部品で対応でき、かつ、交換作業も比較的安価に抑えることが可能となる。
図5は、本発明の他の実施例に係る実施例3の予兆診断装置を有する発電装置制御システムの全体概略構成図である。本実施例では、予兆診断装置10が制御用センサ4からのセンサ信号と監視用センサ5からのセンサ信号の双方のセンサ信号を用いる点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付し、以下では、実施例1と重複する説明を省略する。
風力発電装置2aの制御のために用いられる制御用センサ4は、一般的に、監視のために用いられる監視用センサ5に比べて、センサ信号の取得間隔、すなわち、サンプリング周期が短いという特徴がある。これは、制御用であるため制御出力の応答を逐次次周期の制御出力に反映させ、正確で応答性の高い制御を実現するためには、サンプリング周期を短く設定する必要があるからである。
一方で、例えば、風力発電装置2aの運転制御おいて制御対象としないセンサ項目として、ナセル22内の温度などがある。ナセル22内に配される風力発電装置2aを構成する機器の温度上昇(温度変化)は時定数の長い物理現象であることから、ナセル22内の温度など取得する監視用センサ5のセンサ信号の取得間隔、すなわち、サンプリング周期は長く設定される特徴がある。ナセル22内の温度変化は時定数が長い現象であるため、軽微な乖離による影響が累積して物性値、すなわち、ナセル22内の温度変化として現れる可能性がある。
図5に示すように、本実施例に係る発電制御システム1では、予兆診断装置10を構成する入力部11には、風力発電装置2aに設置される制御用センサ4からのセンサ信号、風力発電装置2aに設置される監視用センサ5からのセンサ信号、及び風力発電装置2aの運用者により入力装置(図示せず)を介して操作端末7へ入力され通信ネットワーク8を介して縮退期限が入力される。入力部11は、入力された制御用センサ4からのセンサ信号及び監視用センサ5からのセンサ信号に対して、各種フィルタリング処理又は包絡線処理によるノイズ除去、或はフーリエ変換に代表される周波数解析やウェブレット変換による時間―周波数解析などを実行し、風力発電装置2aの運転状態の特徴を示す物理量を抽出する。予兆診断装置10を構成する、演算部12、出力部13、及び閾値記憶部14は、上述の実施例1と同様であるため、ここでは説明を省略する。
予兆診断装置10を構成する演算部12は、入力部11を介して得られる風力発電装置2aの運転状態の特徴を示す物理量に基づき、上述の実施例1と同様に乖離度を算出すると共に、算出した乖離度及び縮退期限に基づき乖離度の変化速度を求め、乖離度の変化速度を上述の実施例1と同様に評価する。サンプリング周期の短い制御用センサ4から出力されるセンサ信号を用いることで、風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などより変化周期の短い物理現象も詳細に検出できる。また、サンプリング周期の長い監視用センサ5からのセンサ信号を用いることで、風力発電装置2aを構成する機器の時定数の長い物理現象も合わせて検出できる。これにより、サンプリング周期の短い制御用センサ4とサンプリング周期の長い監視用センサ5の両方のセンサ信号を用いることで、予兆診断装置10は、より詳細に風力発電装置2aの健全な状態からの乖離が進んでいる風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などの特定ならびに原因事象の推定が可能となる。
なお、本実施例では、縮退期限を操作端末7の図示しない入力装置より入力する構成としたがこれに限られるものでは無い。例えば、予兆診断装置10に入力装置を設け、当該入力装置より入力部11へ縮退期限を入力する構成としても良く、また、風力発電装置2aに入力装置を設け、当該入力装置より入力される縮退期限を、予兆診断装置10を構成する入力部11へ出力する構成としても良い。
また、本実施例では、制御用センサ4より出力されるセンサ信号を、信号線を介して予兆診断装置10の入力部11へ出力する構成としたがこれに限られるものでは無い。例えば、発電装置制御器3としてSCADAを用い、SCADAが制御用センサ4より出力されるセンサ信号を収集し、収集されたセンサ信号を予兆診断装置10の入力部11へ出力する構成としても良い。
以上の通り、本実施例によれば、実施例2と比較しより詳細に風力発電装置2aの健全な状態からの乖離が進んでいる風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などの特定ならびに原因事象の推定が可能となる。
図6は、本発明の他の実施例に係る実施例4の予兆診断装置を有する発電装置制御システムの全体概略構成図である。本実施例では、予兆診断装置10が制御用センサ4からのセンサ信号と監視用センサ5からのセンサ信号の双方のセンサ信号を用いる点、及び予兆診断装置10が縮退運転方法記憶部15を備える点が実施例1と異なる。なお、縮退運転方法記憶部15は、一般的な、一次的な情報を記憶し、再構築する機能や探索項目に対応する値を返す機能のみを意味するものではなく、条件に応じた関数群やその設定等を記憶し、必要な場合に応じて再構築する機能も有するものとする。実施例1と同様の構成要素に同一符号を付し、以下では、実施例1と重複する説明を省略する。
風力発電装置2aの制御のために用いられる制御用センサ4は、一般的に、監視のために用いられる監視用センサ5に比べて、センサ信号の取得間隔、すなわち、サンプリング周期が短いという特徴がある。これは、制御用であるため制御出力の応答を逐次次周期の制御出力に反映させ、正確で応答性の高い制御を実現するためには、サンプリング周期を短く設定する必要があるからである。
一方で、例えば、風力発電装置2aの運転制御おいて制御対象としないセンサ項目として、ナセル22内の温度などがある。ナセル22内に配される風力発電装置2aを構成する機器の温度上昇(温度変化)は時定数の長い物理現象であることから、ナセル22内の温度など取得する監視用センサ5のセンサ信号の取得間隔、すなわち、サンプリング周期は長く設定される特徴がある。ナセル22内の温度変化は時定数が長い現象であるため、軽微な乖離による影響が累積して物性値、すなわち、ナセル22内の温度変化として現れる可能性がある。
図6に示すように、本実施例に係る発電制御システム1では、予兆診断装置10を構成する入力部11には、風力発電装置2aに設置される制御用センサ4からのセンサ信号、風力発電装置2aに設置される監視用センサ5からのセンサ信号、及び風力発電装置2aの運用者により入力装置(図示せず)を介して操作端末7へ入力され通信ネットワーク8を介して縮退期限が入力される。入力部11は、入力された制御用センサ4からのセンサ信号及び監視用センサ5からのセンサ信号に対して、各種フィルタリング処理又は包絡線処理によるノイズ除去、或はフーリエ変換に代表される周波数解析やウェブレット変換による時間―周波数解析などを実行し、風力発電装置2aの運転状態の特徴を示す物理量を抽出する。
予兆診断装置10を構成する演算部12は、入力部11を介して得られる風力発電装置2aの運転状態の特徴を示す物理量に基づき、上述の実施例1と同様に乖離度を算出すると共に、算出した乖離度及び縮退期限に基づき乖離度の変化速度を求め、乖離度の変化速度を上述の実施例1と同様に評価する。サンプリング周期の短い制御用センサ4から出力されるセンサ信号を用いることで、風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などより変化周期の短い物理現象も詳細に検出できる。また、サンプリング周期の長い監視用センサ5からのセンサ信号を用いることで、風力発電装置2aを構成する機器の時定数の長い物理現象も合わせて検出できる。これにより、サンプリング周期の短い制御用センサ4とサンプリング周期の長い監視用センサ5の両方のセンサ信号を用いることで、予兆診断装置10は、より詳細に風力発電装置2aの健全な状態からの乖離が進んでいる風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位などの特定ならびに原因事象の推定が可能となる。
予兆診断装置10を構成する出力部13は、演算部12による乖離度の算出結果及び算出された乖離度と閾値記憶部14に格納される閾値(乖離度の閾値A〜乖離度の閾値C)との比較結果に基づき、風力発電装置2aの健全な状態からの乖離が進んでいる風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位の特定、及び原因事象の推定に基づき、適切な縮退運転を縮退運転方法記憶部15から選択する。若しくは、複数の縮退運転方法の候補を操作端末7の表示装置(図示せず)の画面上に表示し、風力発電装置2aの運用者による選択指定により所望の縮退運転を決定する構成としても良い。これにより、風力発電装置2aの運用者が保護したい機器を重視した縮退運転の選択が可能となる。
なお、出力部13が発電装置制御器3へ出力する制御変数は、制御指令値への追従特性を決定付ける制御ゲイン、及び、発電装置制御器3内の内部変数若しくは内部変数の変化速度が特定の値の範囲に収まるように制限を課すための制限値又は特定の値の範囲になることを抑制するための制限値、及び、急峻な時間的変動或は特定周波数の変動を抑制するなどのフィルタ特性を決定付けるフィルタ定数などのうち、少なくとも一つを含むものである。これによって、例えば、ブレード24のピッチ角変更速度を高めて、入力風の変動への応答を高めて、よりタワー21及び/又はナセル22などの構造部材に加わる荷重を低減することや、特定のナセル方位角に対する最大発電量を下げるなどによってタワー21及び/又はナセル22などの構造部材に加わる荷重を低減することや、特定の風速以上での運転を抑制するなどの縮退運転を実現する。
ここで、縮退運転方法記憶部15について説明する。図7は、図6に示す縮退運転方法記憶部15に格納されるデータ構造を示す図である。
図7に示すように、縮退運転方法記憶部15は、例えば、「損傷部位(事象)」欄及び「乖離度」欄よりなる第1領域16、及び、縮退運転方法(運転に関するパラメータ)の候補を示す、「発電機(ロータ)最大回転数[rpm]」欄、「発電機(ロータ)最大回転数変化速度[Δrpm]」欄、「発電機最大出力[W]」欄、及び「ピッチ角 最大ピッチ角変化速度[Δrad」欄を含む第2領域17からなるテーブル形式のデータ構造を有する。
第1領域16における「損傷部位(事象)」欄には、「増速機(軸受損傷)」、「ブレード(クラック)」など、風力発電装置2aを構成する機器或は部品名と、当該風力発電装置2aを構成する機器或は部品に発生すると予測される事象が格納されている。また、第1領域16における「乖離度」欄には、予兆診断装置10を構成する演算部12により算出された乖離度と閾値記憶部14に格納される閾値(乖離度の閾値A〜乖離度の閾値C)との比較結果である、算出された乖離度が閾値A未満であることを示す「<A」、算出された乖離度が閾値B未満であることを示す「<B」、及び算出された乖離度が閾値C未満であることを示す「<C」が、各「損傷部位(事象)」毎に対応付けて格納されている。
また、第2領域17おける「発電機(ロータ)最大回転数[rpm]」欄には、通常の運転状態(定格運転状態)とすることを示す「×1」、通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.95」や「×0.95」などが、第1領域16における「損傷部位(事象)」欄及び「乖離度」欄毎にそれぞれ対応付けられて格納されている。第2領域17おける「発電機(ロータ)最大回転数変化速度[Δrpm]」欄には、通常の運転状態(定格運転状態)とすることを示す「×1」、通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.75」や「×0.5」などが、第1領域16における「損傷部位(事象)」欄及び「乖離度」欄毎にそれぞれ対応付けられて格納されている。第2領域17おける「発電機最大出力[W]」欄には、通常の運転状態(定格運転状態)とすることを示す「×1」、通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.7」や「×0.5」などが、第1領域16における「損傷部位(事象)」欄及び「乖離度」欄毎にそれぞれ対応付けられて格納されている。第2領域17おける「ピッチ角 最大ピッチ角変化速度[Δrad」欄には、通常の運転状態(定格運転状態)とすることを示す「×1」、通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.5」や「×0.25」などが、第1領域16における「損傷部位(事象)」欄及び「乖離度」欄毎にそれぞれ対応付けられて格納されている。
例えば、テーブル形式のデータ構造を有する縮退運転方法記憶部15の第1行目には、第1領域16における「損傷部位(事象)」欄には「増速機(軸受損傷)」、「乖離度」欄には算出された乖離度が閾値A未満であることを示す「<A」、第2領域17おける「発電機(ロータ)最大回転数[rpm]」欄、発電機(ロータ)最大回転数変化速度[Δrpm]」欄、「発電機最大出力[W]」欄、及び「ピッチ角 最大ピッチ角変化速度[Δrad」欄には、全て「×1」が格納さており、風力発電装置2aを構成する増速機27の乖離度は閾値A未満であることから、縮退運転を要することなく通常運転(定格運転)を継続可能な旨を示している。
一方、テーブル形式のデータ構造を有する縮退運転方法記憶部15の第6行目には、第1領域16における「損傷部位(事象)」欄には「ブレード(クラック)」、「乖離度」欄には算出された乖離度が閾値C未満であることを示す「<C」、第2領域17おける縮退運転の候補を示す、「発電機(ロータ)最大回転数[rpm]」欄には「×0.25」、発電機(ロータ)最大回転数変化速度[Δrpm]」欄には「×0.5」、「発電機最大出力[W]」欄には「×0.25」、及び「ピッチ角 最大ピッチ角変化速度[Δrad」欄には「×0.25」が格納さており、風力発電装置2aを構成するブレード24の乖離度は閾値C未満であるものの乖離度は閾値B以上であることから、縮退運転が必要であることを示し、縮退運転方法の候補が上述の通り複数格納されている。
次に、風力発電装置2aの出力、回転速度、及びトルクとの関係、並びに、風力発電装置2aを構成する機器或は当該機器を構成する部品の寿命、回転速度、及びトルクとの関係について説明する。一般的には、回転運動によって得られる出力は、以下の式(1)に示すようにトルクと回転速度の積にて算出される。
出力=回転速度×トルク ・・・(1)
また、回転を伴う部品の寿命は、一般的に、以下の式(2)に示すようにトルクの累乗と回転数の累乗の積に比例する。
寿命∝(回転速度)×(トルク) ・・・(2)
例えば、軸受の寿命は、国際規格ISOなどによると、以下の式(3)で表現される。
寿命∝(回転速度)−1×(トルク)−3 ・・・(3)
図8は、風力発電装置2aにおける運転カーブを示す図である。横軸に回転速度(rpm)、縦軸にトルク(N・m)を取り曲線として運転カーブが示される。一般的に図8に示すように、風力発電装置2aは回転速度とトルクの関係を満たすように制御され、ハッチングにて示される運転領域(1)では、ブレード24の流体力学的な効率を最大化するような運転点で発電運転が実施され、風力発電装置2aの定格速度に到達した時点では、ブレード24の流体特性を犠牲にし、トルクを取ることで発電量を増加させるように発電運転が実施される。換言すれば、回転速度は定格速度で一定とし、トルクを増加させることで発電量を増加させる。ブレード24の流体力学的な最大効率点を逸脱した運転を採用する場合には、回転速度については、回転運動による構造体の遠心荷重による耐量や電力変換器30の対応最大周波数等が上限制約であり、トルクについては、同様にトルク荷重及び電力変換器30のトルクに比例して大きくなる電流量が上限制約となる。
従って、出力部13が出力する制御変数は、風力発電装置2aが健全と見做し得る非縮退運転下では、風力発電装置2aを構成する構成部品などの機械強度又は冷却能力などを考慮して上記式(1)を最大化するように発電運転し、縮退運転を実施する場合には、上記に加えて上記式(2)も考慮し、式(1)を最大化しつつ、且つ、縮退期限まで風力発電装置2aが発電運転可能な回転速度とトルクを選択するように制御変数を更新すれば良い。軸受の場合の上記式(3)によると、トルクの減少を優先する方が、回転速度を減少するよりも寿命の長大化への寄与が大きいため、回転速度を優先し、トルクを減じることで発電出力を抑制する縮退運転を実施すれば良いことが分かる。図8に示す運転領域(2)では、トルクを減じることで、上記式(2)を考慮しつつ、上記式(1)の最大化が可能となる。
次に、予兆診断装置10を構成する出力部13が、演算部12による乖離度の算出結果及び算出された乖離度と閾値記憶部14に格納される閾値(乖離度の閾値A〜乖離度の閾値C)との比較結果に基づき、風力発電装置2aの健全な状態からの乖離が進んでいる風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位の特定、及び原因事象の推定に基づき、複数の縮退運転方法の候補を操作端末7の表示装置(図示せず)の画面上に表示し、風力発電装置2aの運用者による選択指定により所望の縮退運転を決定する構成について説明する。
図9は、操作端末7を構成する表示装置(図示しない)の表示画面例を示す図である。図9に示すように、表示画面31は、風力発電装置2aの出力曲線を表示する第1表示領域32、及び、予兆診断装置10を構成する出力部13により縮退運転方法記憶部15より読み出された上述の図7に示すテーブルを表示する第2表示領域33から構成される。図9に示す例では、第1表示領域32に、横軸に風速、縦軸に風力発電装置2aの出力を取り、出力表示曲線が表示されている。また、第2表示領域33に、予兆診断装置10を構成する出力部13により縮退運転方法記憶部15より読み出された上述の第1領域16及び第2領域17よりなるテーブルが表示されている。図9に示すように、第2表示領域33には、乖離度が疑わしい事象の行についてハイライト表示されている。すなわち、風力発電装置2aを構成する増速機27については、算出された乖離度が閾値B未満であることを示す「<B」と対応する縮退運転方法の候補として、「発電機(ロータ)最大回転数[rpm]」欄には通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.95」、「発電機(ロータ)最大回転数変化速度[Δrpm]」欄には通常の運転状態(定格運転状態)とすることを示す「×1」、「発電機最大出力[W]」欄には通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.7」、及び「ピッチ角 最大ピッチ角変化速度[Δrad」欄には、通常の運転状態(定格運転状態)とすることを示す「×1」がハッチング表示されている。
また、風力発電装置2aを構成するブレード24については、算出された乖離度が閾値C未満であることを示す「<C」と対応する縮退運転方法の候補として、「発電機(ロータ)最大回転数[rpm]」欄には通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.25」、「発電機(ロータ)最大回転数変化速度[Δrpm]」欄には通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.5」、「発電機最大出力[W]」欄には通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.25」、及び「ピッチ角 最大ピッチ角変化速度[Δrad」欄には、通常の運転状態(定格運転状態)に対する縮退運転度合いを示す「×0.25」がハッチング表示されている。
このような、第2表示領域33の表示状態において、風力発電装置2aの運用者による操作端末7の入力装置であるマウスの操作により、マウスポインタが所望の縮退運転方法の候補上に移動され、マウスポインタがクリックされると、当該縮退運転方法の候補が選択指定される。選択指定された縮退運転方法の候補の情報は、通信ネットワーク8を介して予兆診断装置10に入力され、予兆診断装置10を構成する出力部13より発電装置制御器3へ出力され縮退運転が開始される。なお、ここで、縮退運転方法の候補として、一つのみならず、複数の組み合わせにて選択指定することができる。
なお、本実施例では、乖離度が疑わしい事象の行についてハイライト表示する構成としたが、他と識別可能な表示形態であれば、異なる色にて表示するなど如何なる表示形態としても良い。また、本実施例では、第1表示領域32に出力曲線を表示する例をしましたがこれに限られず、出力曲線の表示に代えて、風速の時系列データに対する発電予測値を表示する形態としても良い。
本実施例では、縮退期限を操作端末7の図示しない入力装置より入力する構成としたがこれに限られるものでは無い。例えば、予兆診断装置10に入力装置を設け、当該入力装置より入力部11へ縮退期限を入力する構成としても良く、また、風力発電装置2aに入力装置を設け、当該入力装置より入力される縮退期限を、予兆診断装置10を構成する入力部11へ出力する構成としても良い。
また、本実施例では、制御用センサ4より出力されるセンサ信号を、信号線を介して予兆診断装置10の入力部11へ出力する構成としたがこれに限られるものでは無い。例えば、発電装置制御器3としてSCADAを用い、SCADAが制御用センサ4より出力されるセンサ信号を収集し、収集されたセンサ信号を予兆診断装置10の入力部11へ出力する構成としても良い。
また、予兆診断装置10を構成する出力部13が、演算部12による乖離度の算出結果及び算出された乖離度と閾値記憶部14に格納される閾値(乖離度の閾値A〜乖離度の閾値C)との比較結果に基づき、風力発電装置2aの健全な状態からの乖離が進んでいる風力発電装置2aを構成する機器或は当該機器の構成部品若しくは構成部品の部位の特定、及び原因事象の推定に基づき、適切な縮退運転を縮退運転方法記憶部15から選択する構成の場合には、第2表示領域33を設ける必要は無い。
また、本実施例では、図7に示したように、縮退運転方法記憶部15がテーブル形式のデータ構造を有する場合を示したが、これに代えて、関数として格納する構成としても良い。
以上の通り、本実施例によれば、実施例3の効果に加え、より最適な風力発電装置2aの縮退運転を実現することが可能となる。
また、本実施例によれば、風力発電装置2aの運用者による縮退運転方法の選択が可能となることから、風力発電装置2aの運用者の意図に応じた縮退運転を実施することが可能となる。
上述の実施例1乃至実施例4では、予兆診断装置10によって得られる乖離度及び乖離度の変化速度を用いて、乖離度が縮退運転を必要と定義する閾値を超過した場合において、演算時点から所望の縮退期限まで縮退運転が継続可能となるような構成を示したがこれに限られるものでは無い。例えば、予兆診断装置10により得られる乖離度及び乖離度の変化速度を用い、所望の期日まで縮退運転が可能となるよう縮退運転状態を適宜調整する方法、及び、発電装置制御器3に所望の期日を設定し、且つ、縮退運転時に制御変数を更新することによって縮退運転の継続を担保する構成としても良い。また、予兆診断装置10を発電装置制御器3内に組み込んでも良く、また、通信ネットワーク8を介して遠隔地の制御室に予兆診断装置10を設置する構成としても良い。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
1・・・発電制御システム
2・・・発電装置
2a・・・風力発電装置
3・・・発電装置制御器
4・・・制御用センサ
5・・・監視用センサ
6・・・動作履歴記憶部
7・・・操作端末
8・・・通信ネットワーク
10・・・予兆診断装置
11・・・入力部
12・・・演算部
13・・・出力部
14・・・閾値記憶部
15・・・縮退運転方法記憶部
16・・・第1領域
17・・・第2領域
21・・・タワー
22・・・ナセル
23・・・ハブ
24・・・ブレード
25・・・主軸
26・・・シュリンクディスク
27・・・増速機
28・・・発電機
29・・・メインフレーム
30・・・電力変換器
31・・・表示画面
32・・・第1表示領域
33・・・第2表示領域

Claims (15)

  1. 発電装置の運転状態を取得するセンサ信号及び発電装置を縮退運転させる縮退期限が入力される入力部と、前記発電装置を制御するための制御変数を出力する出力部と、演算部と、を備え、
    前記演算部は、少なくとも発電装置の運転状態を表すセンサ信号及び入力された縮退期限に基づき、前記発電装置を構成する機器の正常な運転状態からの乖離度及び当該乖離度の変化速度を求め、求めた前記乖離度及び前記乖離度の変化速度に基づき少なくとも縮退運転の要否を判定し、縮退運転が必要な場合に、前記乖離度及び乖離度の変化速度に基づき前記乖離度の変化が運転状況に応じて設定される縮退期間以内で所定の変化範囲内に抑制するよう前記発電装置の制御変数を更新することを特徴とする予兆診断装置。
  2. 請求項1に記載の予兆診断装置において、
    前記演算部は、前記発電装置が運転される所定期間における前記乖離度の増減量を、前記所定期間で除して前記乖離度の変化速度を求めることを特徴とする予兆診断装置。
  3. 請求項2に記載の予兆診断装置において、
    前記演算部は、前記算出された前記乖離度及び前記乖離度の変化速度と、所望の値若しくはその組合せで設定される一つ以上の閾値とを比較し、比較結果に基づき縮退運転の要否を判定することを特徴とする予兆診断装置。
  4. 請求項2に記載の予兆診断装置において、
    前記演算部は、前記算出された前記乖離度及び前記乖離度の変化速度と、所望の値若しくはその組合せで設定される一つ以上の閾値とを比較し、比較結果に基づき縮退強弱要求を判定することを特徴とする予兆診断装置。
  5. 請求項3又は請求項4に記載の予兆診断装置において、
    前記センサ信号は、前記発電装置の制御に用いる制御用センサ信号及び/又は前記発電装置を構成する機器の状態を監視する監視用センサ信号であることを特徴とする予兆診断装置。
  6. 請求項5に記載の予兆診断装置において、
    前記発電装置を構成する機器毎に、前記算出された乖離度と前記閾値との比較結果、及び複数の縮退運転方法の候補を対応付けて格納する縮退運転方法記憶部を備え、
    前記出力部は、前記演算部による乖離度と閾値との比較結果に対応する縮退運転方法を前記縮退運転方法記憶部より読み出し、当該読み出された縮退運転方法に基づき前記発電装置の制御変数を更新することを特徴とする予兆診断装置。
  7. 発電装置を構成する機器に設置されるセンサ、少なくとも前記センサからのセンサ信号に基づき縮退運転の要否を判定する予兆診断装置と、前記予兆診断装置から出力される制御変数に基づき前記発電装置を制御する発電装置制御器と、を備え、
    前記予兆診断装置は、前記発電装置を縮退運転させる縮退期限及び前記センサからのセンサ信号が入力される入力部と、前記発電装置を制御するための制御変数を出力する出力部と、演算部と、を有し、
    前記演算部は、少なくとも発電装置の運転状態を表す前記センサからのセンサ信号及び入力された縮退期限に基づき、前記発電装置を構成する機器の正常な運転状態からの乖離度及び当該乖離度の変化速度を求め、求めた前記乖離度及び前記乖離度の変化速度に基づき少なくとも縮退運転の要否を判定し、縮退運転が必要な場合に、前記乖離度及び乖離度の変化速度に基づき前記乖離度の変化が運転状況に応じて設定される縮退期間以内で所定の変化範囲内に抑制するよう前記発電装置の制御変数を更新することを特徴とする発電制御システム。
  8. 請求項7に記載の発電制御システムにおいて、
    前記演算部は、前記発電装置が運転される所定期間における前記乖離度の増減量を、前記所定期間で除して前記乖離度の変化速度を求めることを特徴とする発電制御システム。
  9. 請求項8に記載の発電制御システムにおいて、
    前記演算部は、前記算出された前記乖離度及び前記乖離度の変化速度と、所望の値若しくはその組合せで設定される一つ以上の閾値とを比較し、比較結果に基づき縮退運転の要否を判定することを特徴とする発電制御システム。
  10. 請求項8に記載の発電制御システムにおいて、
    前記演算部は、前記算出された前記乖離度及び前記乖離度の変化速度と、所望の値若しくはその組合せで設定される一つ以上の閾値とを比較し、比較結果に基づき縮退強弱要求を判定することを特徴とする発電制御システム。
  11. 請求項9又は請求項10に記載の発電制御システムにおいて、
    前記センサ信号は、前記発電装置の制御に用いる制御用センサ信号及び/又は前記発電装置を構成する機器の状態を監視する監視用センサ信号であることを特徴とする発電制御システム。
  12. 請求項11に記載の発電制御システムにおいて、
    前記予兆診断装置は、
    前記発電装置を構成する機器毎に、前記算出された乖離度と前記閾値との比較結果、及び複数の縮退運転方法の候補を対応付けて格納する縮退運転方法記憶部を備え、
    前記出力部は、前記演算部による乖離度と閾値との比較結果に対応する縮退運転方法を前記縮退運転方法記憶部より読み出し、当該読み出された縮退運転方法に基づき前記発電装置の制御変数を更新し、前記発電装置制御器へ出力することを特徴とする発電制御システム。
  13. 請求項12に記載の発電制御システムにおいて、
    表示装置を備え、
    前記表示装置の表示画面は、前記発電装置の出力曲線又は風速の時系列データに対する発電予測値を表示する第1表示領域と、前記発電装置を構成する機器毎に前記算出された乖離度と前記閾値との比較結果及び複数の縮退運転方法の候補を対応付けて表示する第2表示領域を有することを特徴とする発電制御システム。
  14. 請求項12に記載の発電制御システムにおいて、
    前記予兆診断装置から出力される制御変数は、制御指令値への追従特性を決定付ける制御ゲイン、前記発電装置制御器内の内部変数若しくは内部変数の変化速度が特定の値の範囲に収まるように制限を課すための制限値又は特定の値の範囲になることを抑制するための制限値、及び、急峻な時間的変動或は特定周波数の変動を抑制するフィルタ特性を決定付けるフィルタ定数のうち、少なくとも一つを含むことを特徴とする発電制御システム。
  15. 請求項14に記載の発電制御システムにおいて、
    前記運転状況に応じて設定される縮退期間は、前記予兆診断装置の演算部による演算時点の日時を始点日とし、予め定められた前記発電装置の定期保守計画のうち前記始点日以降であって前記入力された縮退期限に対応する日時を終点日としたとき、前記始点日から前記終点日までの期間であることを特徴とする発電制御システム。
JP2016197847A 2016-10-06 2016-10-06 予兆診断装置及びそれを有する発電装置制御システム Active JP6783110B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197847A JP6783110B2 (ja) 2016-10-06 2016-10-06 予兆診断装置及びそれを有する発電装置制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197847A JP6783110B2 (ja) 2016-10-06 2016-10-06 予兆診断装置及びそれを有する発電装置制御システム

Publications (2)

Publication Number Publication Date
JP2018060387A true JP2018060387A (ja) 2018-04-12
JP6783110B2 JP6783110B2 (ja) 2020-11-11

Family

ID=61909981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197847A Active JP6783110B2 (ja) 2016-10-06 2016-10-06 予兆診断装置及びそれを有する発電装置制御システム

Country Status (1)

Country Link
JP (1) JP6783110B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003292A (ja) * 2017-06-12 2019-01-10 株式会社東芝 監視制御装置
WO2020004998A1 (ko) * 2018-06-28 2020-01-02 한국남동발전 주식회사 발전소 고장 예측 및 진단시스템의 화면표시방법
JP2020112035A (ja) * 2019-01-08 2020-07-27 株式会社日立製作所 風力発電装置とその運転方法
WO2020195691A1 (ja) 2019-03-28 2020-10-01 Ntn株式会社 状態監視システム
CN113631811A (zh) * 2019-03-28 2021-11-09 Ntn株式会社 状态监视系统
JP2022114704A (ja) * 2021-01-27 2022-08-08 三菱重工業株式会社 多変量データの異常診断支援方法及び異常診断支援装置
JP7477625B2 (ja) 2020-03-04 2024-05-01 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ メンテナンス最適化及びそのような方法を実行するためのシステムのためのハイブリッドリスクモデル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013744A (ja) * 2001-06-29 2003-01-15 Ebara Corp ガスタービン制御装置、コージェネレーションシステム
JP2013170507A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd ウインドファームの運転方法及びウインドファームの運転制御システム
WO2014076845A1 (ja) * 2012-11-19 2014-05-22 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013744A (ja) * 2001-06-29 2003-01-15 Ebara Corp ガスタービン制御装置、コージェネレーションシステム
JP2013170507A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd ウインドファームの運転方法及びウインドファームの運転制御システム
WO2014076845A1 (ja) * 2012-11-19 2014-05-22 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020803B2 (ja) 2017-06-12 2022-02-16 株式会社東芝 監視制御装置
JP2019003292A (ja) * 2017-06-12 2019-01-10 株式会社東芝 監視制御装置
WO2020004998A1 (ko) * 2018-06-28 2020-01-02 한국남동발전 주식회사 발전소 고장 예측 및 진단시스템의 화면표시방법
JP2020112035A (ja) * 2019-01-08 2020-07-27 株式会社日立製作所 風力発電装置とその運転方法
JP7209542B2 (ja) 2019-01-08 2023-01-20 株式会社日立製作所 風力発電装置とその運転方法
US20220170446A1 (en) * 2019-03-28 2022-06-02 Ntn Corporation Condition monitoring system
CN113631811A (zh) * 2019-03-28 2021-11-09 Ntn株式会社 状态监视系统
EP3951167A4 (en) * 2019-03-28 2022-12-14 NTN Corporation CONDITION MONITORING SYSTEM
WO2020195691A1 (ja) 2019-03-28 2020-10-01 Ntn株式会社 状態監視システム
US11939955B2 (en) 2019-03-28 2024-03-26 Ntn Corporation Condition monitoring system
JP7477625B2 (ja) 2020-03-04 2024-05-01 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ メンテナンス最適化及びそのような方法を実行するためのシステムのためのハイブリッドリスクモデル
JP2022114704A (ja) * 2021-01-27 2022-08-08 三菱重工業株式会社 多変量データの異常診断支援方法及び異常診断支援装置
JP7125518B2 (ja) 2021-01-27 2022-08-24 三菱重工業株式会社 多変量データの異常診断支援方法及び異常診断支援装置

Also Published As

Publication number Publication date
JP6783110B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
JP6783110B2 (ja) 予兆診断装置及びそれを有する発電装置制御システム
EP3465359B1 (en) System and method for controlling a dynamic system, in particular a wind turbine
Yang et al. Wind turbine condition monitoring: technical and commercial challenges
DK177922B1 (en) Method and system for monitoring wind turbine
JP5260649B2 (ja) 風車の動特性監視装置及びその方法
WO2017163561A1 (ja) 稼働補助装置及び風力発電システム
JP5439357B2 (ja) 工事時期選択装置及び工事時期選択方法
KR20160017681A (ko) 풍력플랜트 관리 시스템 및 그 방법
KR20160073945A (ko) 풍력플랜트 관리 시스템 및 그 방법
EP3855019A1 (en) System and method for operating a wind turbine
CN102022263A (zh) 用以调节风轮机中部件警报水平的方法和系统
US20120029843A1 (en) Method, system, and computer program product for sensor data collection in a wind turbine
US11649804B2 (en) Systems and methods for controlling a wind turbine
WO2016042652A1 (ja) 風力発電設備および風力発電設備の損傷度診断装置
EP3608538A1 (en) Model-based repowering solutions for wind turbines
WO2013002316A1 (ja) 風車の修理時期決定支援装置及び修理時期決定支援方法
WO2019230191A1 (ja) 風力発電システム
CN115111115A (zh) 用于操作发电资产的系统和方法
Ferrari et al. Statistical analysis of component failures: A 16 year survey on more than 550 wind turbines
KR102456262B1 (ko) 진동기반 풍력터빈 하중 및 수명 예측방법 및 시스템
Wu Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of wind turbines
US20220364549A1 (en) System and method for scheduling preventative maintenance actions based on operational usage
Zappalá et al. Reliability and condition monitoring
CN115126666A (zh) 基于场区控制模拟的海上风电场运维服务平台装置
CN117980713A (zh) 用于控制资产系列的工业资产的系统和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150