JP2018059281A - Method for earthquake-resistant design of building and program for earthquake-resistant design - Google Patents

Method for earthquake-resistant design of building and program for earthquake-resistant design Download PDF

Info

Publication number
JP2018059281A
JP2018059281A JP2016195634A JP2016195634A JP2018059281A JP 2018059281 A JP2018059281 A JP 2018059281A JP 2016195634 A JP2016195634 A JP 2016195634A JP 2016195634 A JP2016195634 A JP 2016195634A JP 2018059281 A JP2018059281 A JP 2018059281A
Authority
JP
Japan
Prior art keywords
compressive strength
vertical
strength
horizontal member
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016195634A
Other languages
Japanese (ja)
Other versions
JP6773509B2 (en
Inventor
小坂 英之
Hideyuki Kosaka
英之 小坂
寛 江頭
Hiroshi Egashira
寛 江頭
健太郎 松永
Kentaro Matsunaga
健太郎 松永
圭祐 南
Keisuke Minami
圭祐 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2016195634A priority Critical patent/JP6773509B2/en
Publication of JP2018059281A publication Critical patent/JP2018059281A/en
Application granted granted Critical
Publication of JP6773509B2 publication Critical patent/JP6773509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake-resistant design method capable of designing a building with good workability by suppressing material cost and reducing the burden of construction control, in the building having an intersection of a horizontal member such as a floor slab and a vertical member such as a wall.SOLUTION: An intersection (13) is composed of members constituting a floor slab (11), and a wall (12) is made of concrete having strength higher than that of the floor slab. An equivalent compressive strength (σ') calculated by considering the restraining effect of the floor slab is used for a material strength (σ) of the floor slab as the compressive strength of the intersection. If the equivalent compressive strength (σ') is equal to or greater than a compressive strength (σ) of the wall, the earthquake-resistant design is carried out by setting the compressive strength of an entire earthquake-resistant wall (21) obtained by combining the wall and the intersection to the compressive strength of the wall (σ).SELECTED DRAWING: Figure 6

Description

本開示は、建物の耐震設計方法及び耐震設計するためのプログラムに関する。特に、鉛直部材と水平部材との交差部の強度を評価した上で耐震設計を行う方法及びプログラムに関する。   The present disclosure relates to a seismic design method for a building and a program for seismic design. In particular, the present invention relates to a method and program for performing seismic design after evaluating the strength of the intersection between a vertical member and a horizontal member.

コンクリート造の建物では、梁と床スラブや、壁又は柱と床スラブのように、互いに隣接しながらもコンクリートに必要とされる強度が異なる部分がある。   In a concrete building, there are parts such as beams and floor slabs and walls or pillars and floor slabs that are adjacent to each other but have different strengths required for concrete.

このようなコンクリートの隣接構造の内、梁と床スラブの場合、床スラブが梁に及ぼす影響を考慮して梁の上部から側方に延出する床スラブに有効幅を設定し、梁を、有効幅部分の床スラブが一体となったT形梁とみなして曲げモーメントの計算を行う設計方法が一般的である。また、例えば、特許文献1では、せん断力についても梁をT形梁とみなして計算する方法が提案されている。   In the case of beams and floor slabs, the effective width is set for floor slabs that extend from the top of the beam to the side in consideration of the influence of the floor slab on the beam. A design method is generally used in which the bending moment is calculated on the assumption that the floor slab of the effective width portion is integrated with the T-shaped beam. Further, for example, Patent Document 1 proposes a method for calculating the shear force by regarding the beam as a T-shaped beam.

特開2006−97320号公報JP 2006-97320 A

しかしながら、壁や柱のような垂直部材と床スラブや梁のような水平部材との交差部に関しては、梁と床スラブとのように両部材の影響を考慮した設計方法がなかった。異なる強度のコンクリートが介在する場合には、安全を確保するための措置として低い方のコンクリート強度で部材強度を計算することが一般的である。   However, there is no design method that considers the influence of both members, such as beams and floor slabs, at the intersections between vertical members such as walls and columns and horizontal members such as floor slabs and beams. When concrete of different strength is present, it is common to calculate the member strength with the lower concrete strength as a measure for ensuring safety.

例えば、図9に示すように、床スラブ1と壁2,3との交差部4が、床スラブ1が下層階の壁2と上層階の壁3との間を貫通するように形成される場合、下層階の壁2のコンクリート強度をA、床スラブ1のコンクリート強度をB、上層階の壁3のコンクリート強度をCとすると、通常は、床自体に必要なコンクリート強度は、壁に必要なコンクリート強度よりも低いため、B<A=Cとなる。また、一般に、コンクリート強度が高いほどヤング係数は高いので、図の破線で示すように、壁2,3よりも床スラブ1が大きくひずむ。上層階及び下層階の壁2,3並びに交差部4を含む耐震壁の設計に於いて、床スラブ1の両端が自由端で床スラブのひずみを拘束するものがない場合には、上層階及び下層階の壁2,3よりも先に交差部4が破壊する。   For example, as shown in FIG. 9, the intersection 4 between the floor slab 1 and the walls 2 and 3 is formed so that the floor slab 1 passes between the lower floor wall 2 and the upper floor wall 3. In this case, if the concrete strength of the lower floor wall 2 is A, the concrete strength of the floor slab 1 is B, and the concrete strength of the upper floor wall 3 is C, usually the concrete strength required for the floor itself is necessary for the wall. B <A = C because it is lower than the concrete strength. Moreover, since the Young's modulus is generally higher as the concrete strength is higher, the floor slab 1 is distorted larger than the walls 2 and 3 as indicated by the broken lines in the figure. In the design of the seismic wall including the upper and lower floor walls 2 and 3 and the intersection 4, if both ends of the floor slab 1 are free ends and there is nothing to restrain the distortion of the floor slab, The intersection 4 is destroyed before the walls 2 and 3 on the lower floor.

交差部が先に破壊することを避けるため、床スラブに、壁や柱と同じ高強度コンクリートを使用すると、材料コストが増加するとともに、収縮ひび割れを防ぐための施工管理の負担が増大する。   If the same high-strength concrete as the walls and pillars is used for the floor slab in order to prevent the intersection from being destroyed first, the material cost increases and the burden of construction management for preventing shrinkage cracks increases.

また、交差部に壁や柱と同じ高強度コンクリートを使用し、床に低強度のコンクリートを使用して、交差部での破壊を防止するためには、壁や柱の周りにコンクリートの止め型枠を設置してコンクリートを打ち分ける必要があり、施工性が悪い。   In order to use the same high-strength concrete as the walls and pillars at the intersections and low-strength concrete at the floors to prevent breakage at the intersections, a concrete mold around the walls and pillars. It is necessary to install a frame and separate the concrete, so the workability is poor.

上記問題を鑑み、本発明は、水平部材と垂直部材との交差部を有する建物に於いて、材料コストを抑制し、施工管理の負担が小さく、施工性のよい建物を設計できる耐震設計方法及びその耐震設計のためのプログラムを提供することを目的とする。   In view of the above problems, the present invention provides a seismic design method capable of designing a building having good workability by suppressing the material cost in a building having an intersection of a horizontal member and a vertical member and reducing the burden of construction management. The purpose is to provide a program for the seismic design.

本発明の少なくともいくつかの実施形態に係る建物(10)の耐震設計方法は、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材(12)とを備える建物の耐震設計方法であって、前記鉛直部材の圧縮強度(σB1)を設定するステップと、前記水平部材の圧縮強度(σ)を設定するステップと、前記水平部材に於ける前記鉛直部材間に位置する交差部(13)に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばね(15)に置き換えるステップと、前記拘束ばねのばね定数(k)を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧(σ)を算定するステップと、前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定するステップと、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記水平部材の圧縮強度(σ)を大きくして、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように設定して設計するステップとを備えることを特徴とする。なお、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定して設計してもよい。ここで、「水平部材」とは、床スラブや梁等のように水平方向に延在する部材を言い、「鉛直部材」は、壁や柱等のように鉛直方向に延在する部材を言う。 An earthquake-resistant design method for a building (10) according to at least some embodiments of the present invention includes a concrete horizontal member (11) extending in a predetermined horizontal direction and a vertical direction perpendicular to the predetermined horizontal direction. A seismic design method for a building comprising a pair of upper and lower concrete vertical members (12) extending in a direction, coupled to the upper and lower surfaces of the horizontal member, and having a higher compressive strength than the horizontal member. A step of setting a compressive strength (σ B1 ) of the vertical member, a step of setting a compressive strength (σ B ) of the horizontal member, and an intersection (between the vertical members in the horizontal member) 13) The virtual restraining spring (15) has a function of preventing the crossing portion from receiving a vertical compressive force generated by an earthquake and spreading in the predetermined horizontal direction by the portion of the horizontal member adjacent to 13). A step of changing comes, the steps above using the spring constant of the restraining spring (k), to calculate the lateral pressure (sigma r) acting in the predetermined horizontal direction relative to the intersecting portion when subjected to seismic force, by correcting the compressive strength of the horizontal member (sigma B) taking into account the constraint effect by the lateral pressure, a step of calculating the equivalent compressive strength of the cross-section (σ B '), the equivalent compressive strength (sigma B When ') is equal to or higher than the compressive strength (σ B1 ) of the vertical member, the compressive strength of the intersecting portion is set to the value of the compressive strength (σ B1 ) of the vertical member, and the equivalent compressive strength (σ B ') If less than the compressive strength of the vertical member (sigma B1), the compressive strength of the horizontal member (sigma B) an increase, the equivalent compressive strength (sigma B') is the compressive strength of the vertical member ( σ B1 ) It is characterized by comprising a top. When the equivalent compressive strength (σ B ′) is smaller than the compressive strength (σ B1 ) of the vertical member, the compressive strength of the vertical member is set to the value of the equivalent compressive strength (σ B ′). May be. Here, the “horizontal member” means a member extending in the horizontal direction such as a floor slab or a beam, and the “vertical member” means a member extending in the vertical direction such as a wall or a column. .

この構成によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、収縮ひび割れを防止するための施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。   According to this configuration, since the seismic design can be performed without underestimating the strength of the intersection, the material cost can be suppressed and shrinkage cracking can be suppressed compared to the case where the same high-strength concrete as the vertical member is used for the horizontal member. The burden of construction management to prevent it can be reduced. Compared to the case of using the same high-strength concrete as the vertical member at the intersection and using low-strength concrete for the horizontal members other than the intersection, the workability is better because it is not necessary to install a stop formwork. It is.

本発明の少なくともいくつかの実施形態に係る建物の耐震設計方法は、上記構成に於いて、前記鉛直部材が、前記所定の水平方向に複数組配列され、前記拘束ばねを、前記所定の水平方向に互いに隣接する前記鉛直部材間の中心線から前記交差部に至る部分に対応する前記水平部材の部分の弾性を表すものとして設定して、前記拘束ばねの前記ばね定数を求めることを特徴とする。特に、前記鉛直部材が壁をなし、前記水平部材が床スラブをなす場合には、前記拘束ばねを、平面視にて、前記交差部に於ける地震力による曲げ圧縮領域の所定の範囲及び前記中心線を底辺とし、前記壁から前記中心線に向かう方向と脚とのなす角が0°以上45°以下である等脚台形部分の弾性を表すものとして設定することができる。   The building earthquake-resistant design method according to at least some embodiments of the present invention is the above-described configuration, wherein a plurality of sets of the vertical members are arranged in the predetermined horizontal direction, and the restraining springs are arranged in the predetermined horizontal direction. The spring constant of the constraining spring is determined by representing the elasticity of the part of the horizontal member corresponding to the part from the center line between the vertical members adjacent to each other to the intersection. . In particular, when the vertical member forms a wall and the horizontal member forms a floor slab, the restraining spring has a predetermined range of a bending compression region due to seismic force at the intersecting portion and It can be set to represent the elasticity of an isosceles trapezoidal portion having a center line as a base and an angle between a direction from the wall toward the center line and the leg is 0 ° or more and 45 ° or less.

この構成によれば、拘束ばねのばね定数を容易に求めることができる。   According to this configuration, the spring constant of the restraining spring can be easily obtained.

本発明の少なくともいくつかの実施形態に係る建物の耐震設計方法は、上記構成に於いて、前記水平部材の圧縮強度(σ)と、前記等価圧縮強度(σ')との対応関係を示す表又はグラフを作成するステップを更に備え、前記水平部材の圧縮強度(σ)を設定するステップでは、前記表又はグラフに基づき、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように前記水平部材の圧縮強度(σ)を設定することを特徴とする。 In the building seismic design method according to at least some embodiments of the present invention, in the above configuration, a correspondence relationship between the compressive strength (σ B ) of the horizontal member and the equivalent compressive strength (σ B ′) is obtained. A step of creating a table or graph, and in the step of setting the compressive strength (σ B ) of the horizontal member, based on the table or graph, the equivalent compressive strength (σ B ′) The compressive strength (σ B ) of the horizontal member is set so as to be equal to or higher than the strength (σ B1 ).

この構成によれば、水平部材に必要な圧縮強度を容易に把握でき、設計計算のやり直しを抑制することができる。   According to this configuration, it is possible to easily grasp the compressive strength required for the horizontal member, and it is possible to suppress re-design calculations.

また、本発明の少なくともいくつかの実施形態に係る建物(10)の耐震設計をするためのプログラムは、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交し、前記水平部材の上下面に交差方向に結合され、かつ前記水平部材よりも高強度であるコンクリート造の上下1組の鉛直部材(12)とを備える建物の耐震設計をするためのプログラムであって、前記鉛直部材の圧縮強度(σB1)の入力を受け付ける手段(ST1)と、前記水平部材の圧縮強度(σ)の入力を受け付ける手段(ST3)と、前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばね(15)に置き換える手段(ST4)と、前記拘束ばねのばね定数(k)を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧(σ)を算定する手段(ST5)と、前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定する手段(ST6)と、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定する手段(ST8)としてコンピュータを機能させる。さらに、プログラムは、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上とするために前記水平部材の圧縮強度(σ)を再入力するか、又は、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定するかの選択を受け付ける手段(ST9)としてコンピュータを機能させてもよい。 A program for making an earthquake-resistant design of a building (10) according to at least some embodiments of the present invention includes a concrete horizontal member (11) extending in a predetermined horizontal direction, and the predetermined horizontal direction. For a seismic design of a building including a pair of upper and lower concrete vertical members (12) that are orthogonal to the horizontal member and are coupled to the upper and lower surfaces of the horizontal member in a crossing direction and having higher strength than the horizontal member. A program (ST1) for receiving an input of the compressive strength (σ B1 ) of the vertical member, a means (ST3) for receiving an input of the compressive strength (σ B ) of the horizontal member, and the horizontal member A virtual restraining spring having a function of preventing the crossing portion from receiving the seismic force and spreading in the predetermined horizontal direction by the horizontal member adjacent to the crossing portion located between the vertical members. And means (ST4) to replace the 15), wherein with the spring constant of the restraining spring (k), the lateral pressure (sigma r) acting in the predetermined horizontal direction relative to the intersecting portion when subjected to seismic force Means for calculating (ST5) and means for calculating the equivalent compressive strength (σ B ′) of the intersecting portion by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure ( ST6) and when the equivalent compressive strength (σ B ′) is equal to or greater than the compressive strength (σ B1 ) of the vertical member, the compressive strength of the intersection is set to the value of the compressive strength (σ B1 ) of the vertical member. The computer is caused to function as means (ST8). Furthermore, the program, the equivalent compressive strength (σ B ') may the smaller than the compression strength of the vertical member (sigma B1), the equivalent compressive strength (σ B') is the compressive strength of the vertical member (sigma B1) Means for re-inputting the compressive strength (σ B ) of the horizontal member or setting the compressive strength of the vertical member to the value of the equivalent compressive strength (σ B ′) The computer may function as (ST9).

この構成によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。   According to this configuration, since the seismic design can be performed without underestimating the strength of the intersection, the material cost can be reduced compared to the case where the same high-strength concrete as the vertical member is used for the horizontal member, and the construction management The burden can be reduced. Compared to the case of using the same high-strength concrete as the vertical member at the intersection and using low-strength concrete for the horizontal members other than the intersection, the workability is better because it is not necessary to install a stop formwork. It is.

また、本発明の少なくともいくつかの実施形態に係る耐震設計構造の建物(10)は、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材(12)とを備える耐震設計構造の建物であって、前記水平部材に於ける前記鉛直部材間に位置する交差部(13)は、前記所定の水平方向に於いて、前記交差部に隣接する前記水平部材の部分による拘束効果を受け、前記鉛直部材の圧縮強度(σB1)は、前記水平部材の圧縮強度(σ)よりも大きく、地震時に於ける前記拘束効果の影響を考慮して前記水平部材の圧縮強度(σ)を補正して算出された、前記交差部の等価圧縮強度(σ')が、前記鉛直部材の圧縮強度(σB1)よりも大きいことを特徴とする。 Moreover, the building (10) having an earthquake-resistant design structure according to at least some embodiments of the present invention is configured to be orthogonal to the predetermined horizontal direction with a concrete horizontal member (11) extending in a predetermined horizontal direction. A building having a seismic design structure, comprising a pair of upper and lower vertical members (12) made of concrete and extending in the vertical direction, coupled to the upper and lower surfaces of the horizontal member and having higher compressive strength than the horizontal member The intersecting portion (13) located between the vertical members in the horizontal member is subjected to a restraining effect by the portion of the horizontal member adjacent to the intersecting portion in the predetermined horizontal direction, the compressive strength of the vertical member (sigma B1), the greater than the compression strength of the horizontal member (sigma B), compressive strength in consideration of the influence of in the restraining effect during an earthquake the horizontal member (sigma B) Calculated with correction Was the equivalent compressive strength of intersection (σ B '), characterized in that said greater than the compression strength of the vertical member (sigma B1).

この構成によれば、建物は、所定の耐震性能を有し、かつ交差部の強度が過小評価されていないため、交差部に垂直部材と同じ高強度コンクリートを使う必要がない。そのため、材料コスト抑制でき、収縮ひび割れを防止するための施工管理の負担を軽減でき、また、止め型枠を設置する必要がないため施工性が良好である。   According to this structure, since the building has predetermined earthquake resistance and the strength of the intersection is not underestimated, it is not necessary to use the same high-strength concrete as the vertical member at the intersection. Therefore, the material cost can be suppressed, the burden of construction management for preventing shrinkage cracks can be reduced, and the workability is good because there is no need to install a stop mold.

この発明によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。   According to the present invention, since the seismic design can be performed without underestimating the strength of the intersection, compared with the case where the same high-strength concrete as the vertical member is used for the horizontal member, the material cost can be suppressed, and the construction management can be performed. The burden can be reduced. Compared to the case of using the same high-strength concrete as the vertical member at the intersection and using low-strength concrete for the horizontal members other than the intersection, the workability is better because it is not necessary to install a stop formwork. It is.

実施形態に係る建物の模式的な縦断面図Schematic longitudinal sectional view of a building according to an embodiment 実施形態に係る建物の模式的な一部断面平面図Schematic partial sectional plan view of a building according to an embodiment 実施形態に係る壁及び床スラブと等価な構造を模式的に示す図The figure which shows typically the structure equivalent to the wall and floor slab which concerns on embodiment. 実施形態に係る壁及び床スラブの材料の強度を示す縦断面図The longitudinal cross-sectional view which shows the intensity | strength of the material of the wall and floor slab which concerns on embodiment 実施形態に係る設計方法のフローチャートFlow chart of design method according to embodiment 実施形態に係る壁及び床スラブに於いて、交差部に対する床スラブの影響を等価な拘束ばねに置き換えたモデル図In the wall and floor slab according to the embodiment, a model diagram in which the influence of the floor slab on the intersection is replaced with an equivalent restraint spring. 実施形態に係る床スラブの弾性部分の内、拘束ばねとして設定される部分を示す一部断面平面図The partial cross section top view which shows the part set as a restraint spring among the elastic parts of the floor slab which concerns on embodiment 実施形態に係る床スラブのコンクリート強度と側圧考慮時のコンクリート強度との関係を示すグラフThe graph which shows the relationship between the concrete strength of the floor slab which concerns on embodiment, and the concrete strength at the time of side pressure consideration 従来技術に係る壁及び床スラブの設計方法を説明するための縦断面図Longitudinal sectional view for explaining a conventional wall and floor slab design method

以下、図面を参照して、実施形態に係る建物10の設計方法について説明する。図1に示すように、建物10は、水平方向に延在する鉄筋コンクリート造の床スラブ11と、鉛直方向に延在し、床スラブ11の上下面に結合され、床スラブ11よりも高い圧縮強度を有するコンクリートが使用された鉄筋コンクリート造の壁12とを備える。下層階の壁12と上層階の壁12とは互いに上下方向に整合した位置に配置される。建物10は、例えば板状集合住宅のように、建物の長手方向に対して直交する複数の壁12が配置されていることが好適である。地震によって建物10に生じる慣性力(地震力)は、図1中の矢印で示すように、建物10が地面に固定された状態における水平力のように作用する。建物10を床レベルに質量が集中しているものとみなし、壁12に平行な水平力が各階の床レベルに作用するものとして設計する。この地震力によって、図1中の建物10の右下部に集中する圧縮束が形成されるため上下方向にも力が生じ、床スラブ11と壁12との交差部13(図3参照)には、上下方向に圧縮力を受ける領域と引張力を受ける領域とが生じる。   Hereinafter, a design method of the building 10 according to the embodiment will be described with reference to the drawings. As shown in FIG. 1, a building 10 includes a reinforced concrete floor slab 11 extending in a horizontal direction, a vertical extension, coupled to the upper and lower surfaces of the floor slab 11, and a higher compressive strength than the floor slab 11. And a reinforced concrete wall 12 made of concrete having the following. The lower floor wall 12 and the upper floor wall 12 are arranged at positions aligned in the vertical direction. The building 10 is preferably provided with a plurality of walls 12 orthogonal to the longitudinal direction of the building, such as a plate-shaped apartment house. The inertial force (earthquake force) generated in the building 10 due to the earthquake acts like a horizontal force in a state where the building 10 is fixed to the ground as shown by an arrow in FIG. The building 10 is considered to have a mass concentrated on the floor level, and the horizontal force parallel to the wall 12 is designed to act on the floor level of each floor. Due to this seismic force, a compressive bundle concentrated in the lower right part of the building 10 in FIG. 1 is formed, so that force is also generated in the vertical direction, and at the intersection 13 (see FIG. 3) between the floor slab 11 and the wall 12 A region receiving a compressive force in the vertical direction and a region receiving a tensile force are generated.

図2は、建物10のある階に於ける中間部分の横断面図であり、壁12の両端は、柱14に接合している。図中の太い矢印は、地震力を示す。壁12の地震力を受ける側には、上下方向(Z方向)に引張力が作用し、その反対側には上下方向に圧縮力が作用する。圧縮力が作用する領域に於いて、床スラブ11と壁12との交差部13(図3参照)は、上下方向に圧縮されるため、図2中の細い矢印で示すように、壁12と直交する水平方向(X方向)に拡がろうとする。しかしながら互いにX方向に隣接する壁12間の距離は地震時も変化しないため、床スラブ11の交差部13に隣接する部分によって、交差部13の変形が抑制される。   FIG. 2 is a cross-sectional view of an intermediate portion on a certain floor of the building 10, and both ends of the wall 12 are joined to the columns 14. Thick arrows in the figure indicate seismic force. A tensile force acts in the vertical direction (Z direction) on the side of the wall 12 that receives the seismic force, and a compressive force acts in the vertical direction on the opposite side. In the region where the compressive force acts, the intersection 13 (see FIG. 3) between the floor slab 11 and the wall 12 is compressed in the vertical direction, and therefore, as shown by the thin arrows in FIG. An attempt is made to spread in the orthogonal horizontal direction (X direction). However, since the distance between the walls 12 adjacent to each other in the X direction does not change even during an earthquake, deformation of the intersection 13 is suppressed by the portion adjacent to the intersection 13 of the floor slab 11.

このような地震時の力の作用は、互いにX方向に隣接する壁12間の中心線でX方向の変形が拘束された図3に示す構造と等価といえる。本実施形態は、この床スラブ11による交差部13への拘束効果を考慮して、交差部13のコンクリート強度を算出して、耐震設計を行うものである。   Such an action of force during an earthquake can be said to be equivalent to the structure shown in FIG. 3 in which the deformation in the X direction is constrained by the center line between the walls 12 adjacent to each other in the X direction. In the present embodiment, the concrete strength of the intersection 13 is calculated in consideration of the restraining effect on the intersection 13 by the floor slab 11, and the seismic design is performed.

図4に示すように、床スラブ11のコンクリート圧縮強度をσ、壁12の圧縮強度をσB1とし、図5のフローチャートを参照しながら、設計手順について説明する。 As shown in FIG. 4, the concrete compression strength of the floor slab 11 is σ B , and the compression strength of the wall 12 is σ B1, and the design procedure will be described with reference to the flowchart of FIG.

まず、壁12のコンクリート圧縮強度σB1、並びに、床及び壁12の形状等の基本データを入力する(ST(ステップ)1)。 First, basic data such as the concrete compressive strength σ B1 of the wall 12 and the shape of the floor and the wall 12 are input (ST (step) 1).

次に床スラブ11の有無を確認する(ST2)。床スラブ11がない場合は、本実施形態に係る設計方法は適用されない。床スラブ11がある場合は、床スラブ11のコンクリート圧縮強度σを入力する(ST3)。 Next, the presence or absence of the floor slab 11 is confirmed (ST2). When there is no floor slab 11, the design method according to the present embodiment is not applied. If there is a floor slab 11, the concrete compressive strength σ B of the floor slab 11 is input (ST3).

次に、図3に示す交差部13の拘束状態を、図6に示す仮想の拘束ばね15に置き換えて、拘束ばね15のばね定数kを算出する(ST4)。図6に於いて、太い矢印は地震力によって生じる上下方向の圧縮力を示し、破線は、この圧縮力によって変形した交差部13の形状を模式的に示す。交差部13のZ方向の変位をΔz、X方向の片側に拡がる変位を1/2Δxとすると、拘束ばね15によってΔxの大きさが抑えられる。例えば、拘束ばね15を、図7に於いて薄いドットパターンで示した、床スラブ11に於ける等脚台形の領域の弾性を表すものとして設定することができる。図7のA図、B図及びC図は、それぞれ、壁12が柱14に接合していないもの、壁12の両端に柱14が接合しているもの、及び、壁12の両端に柱14が接合し、かつ柱14から壁12に直交する方向に梁16が延出しているものを示すが、いずれの形態に於いても、同様の算出方法で拘束ばね15のばね定数kを算出することができる。なお、図7に図示される壁12及び柱14は断面であるが、断面を示すためのハッチングは省略している。   Next, the restraint state of the intersection 13 shown in FIG. 3 is replaced with a virtual restraint spring 15 shown in FIG. 6, and the spring constant k of the restraint spring 15 is calculated (ST4). In FIG. 6, the thick arrow indicates the vertical compressive force generated by the seismic force, and the broken line schematically indicates the shape of the intersecting portion 13 deformed by the compressive force. If the displacement of the intersecting portion 13 in the Z direction is Δz and the displacement extending to one side in the X direction is ½Δx, the restraining spring 15 suppresses the magnitude of Δx. For example, the restraining spring 15 can be set to represent the elasticity of an isosceles trapezoidal region in the floor slab 11 shown by a thin dot pattern in FIG. 7A, 7B, and 7C, the wall 12 is not joined to the pillar 14, the pillar 14 is joined to both ends of the wall 12, and the pillar 14 is attached to both ends of the wall 12, respectively. Are shown, and the beam 16 extends from the column 14 in a direction perpendicular to the wall 12. In any form, the spring constant k of the restraining spring 15 is calculated by the same calculation method. be able to. Although the wall 12 and the pillar 14 shown in FIG. 7 are cross sections, hatching for showing the cross section is omitted.

台形の一方の底辺は、交差部13との境界部分であり、交差部13からX方向の圧縮力を受ける。台形の他方の底辺は、互いに隣接する壁12間の中線であり、弾性部分を支持する支持部17である。壁12及び交差部13には、曲げ圧縮領域に、図7中に濃いドットパターンで示したせん断破壊判定領域18が設定され、その壁12に沿った水平方向(Y方向)の長さはlscである。台形の交差部13側の底辺の位置は、平面視で、せん断破壊判定領域18に隣接する部分に対応する。せん断破壊判定領域18は、壁12及び交差部13に於いて、地震力を受ける側とは反対側の端部から、地震力を受ける側に向かって壁12のY方向長さの1/3〜1/2程度までの領域である。X方向(壁12から支持部17に向かう方向、台形の高さ方向)と台形の脚とのなす角θは、0°以上45°以下であり、支持部17側の底辺の長さlは、交差部13側の底辺の長さlsc以上である。なお、建物10の端部側に設けられた壁12に於いて、他の壁12がない側の拘束ばね15に関しては、スラブ端に設けた梁19(図2参照)や、X方向への床スラブ11の変形を拘束するために壁12に平行な水平方向(Y方向)に延在する曲げ補強筋20(図2参照)を設置し、これらを拘束ばね15によって表される床スラブ11の台形の弾性部の支持部17としてもよい。 One base of the trapezoid is a boundary portion with the intersection 13 and receives a compressive force in the X direction from the intersection 13. The other base of the trapezoid is a middle line between the adjacent walls 12 and is a support portion 17 that supports the elastic portion. In the wall 12 and the intersecting portion 13, a shear fracture determination region 18 indicated by a dark dot pattern in FIG. 7 is set in the bending compression region, and the length in the horizontal direction (Y direction) along the wall 12 is l. sc . The position of the base on the trapezoidal intersection 13 side corresponds to a portion adjacent to the shear fracture determination region 18 in plan view. The shear fracture determination region 18 is 1/3 of the length of the wall 12 in the Y direction from the end opposite to the side receiving the seismic force toward the side receiving the seismic force in the wall 12 and the intersection 13. It is a region up to about ½. The angle θ formed by the X direction (the direction from the wall 12 toward the support portion 17 and the trapezoidal height) and the trapezoidal leg is 0 ° or more and 45 ° or less, and the length l B of the base on the support portion 17 side. Is not less than the length l sc of the bottom side on the intersection 13 side. In addition, in the wall 12 provided on the end side of the building 10, regarding the restraining spring 15 on the side where the other wall 12 is not provided, a beam 19 (see FIG. 2) provided on the slab end, In order to constrain the deformation of the floor slab 11, bending reinforcement bars 20 (see FIG. 2) extending in the horizontal direction (Y direction) parallel to the wall 12 are installed, and these are represented by the floor slab 11 represented by the restraining spring 15. It is good also as the support part 17 of a trapezoidal elastic part.

拘束ばね15のばね定数kは、上記の台形状の板にX方向に圧縮力が作用するときのたわみに基づいて算出する。まず、X方向(台形の高さ方向)の微小区間のたわみを求め、これをX方向に積分して全体のたわみを求める。ここで、X方向の圧縮力は、対象領域の全体に、均等に加わっているものとみなして計算する。次に、圧縮力を全体のたわみで割ってばね定数kを算出する。以上の計算に基づくばね定数kは、次式によって表される。なお、壁12の左右の仕様(スラブ厚t、スパンh、ヤング係数Eなど)が異なる場合は、それぞれのばね定数kを算出し、平均値を用いる。

Figure 2018059281
k:ばね定数
ω:設計上の安全率(1.0以下)
:床スラブ11の厚さ
:支持部17側の底辺の長さ
sc:壁12及び交差部13の曲げ圧縮領域に於けるせん断破壊判定領域の長さ(交差部13側の底辺の長さ)
:壁12から支持部17までの距離(台形の高さ)
:床スラブ11のヤング係数 The spring constant k of the restraining spring 15 is calculated based on the deflection when a compressive force acts on the trapezoidal plate in the X direction. First, the deflection of a minute section in the X direction (the height direction of the trapezoid) is obtained, and this is integrated in the X direction to obtain the entire deflection. Here, the compressive force in the X direction is calculated on the assumption that the entire target region is applied uniformly. Next, the spring constant k is calculated by dividing the compression force by the total deflection. The spring constant k based on the above calculation is expressed by the following equation. When the specifications of the left and right of the wall 12 (slab thickness t s , span h s , Young's modulus E c, etc.) are different, the respective spring constants k are calculated and average values are used.
Figure 2018059281
k: Spring constant ω: Design safety factor (1.0 or less)
t s : thickness of the floor slab 11 l B : length of the bottom side on the support portion 17 side l sc : length of the shear fracture determination region in the bending compression region of the wall 12 and the intersection portion 13 (on the intersection portion 13 side) Base length)
h s : distance from the wall 12 to the support portion 17 (the height of the trapezoid)
E c : Young's modulus of floor slab 11

次に、図5に示すように、拘束ばね15から交差部13に作用する側圧σを算定する(ST5)。まず、交差部13のX方向に拡がる変位Δxを求める。変位Δxは、次式によって表される。

Figure 2018059281
Δx:X方向に拡がる変位
ν:コンクリートのポアソン比
ε:圧縮ひずみ(交差部13のZ方向の変位(Δz)/床スラブ11の厚さ(t))
:壁12の厚さ Next, as shown in FIG. 5, the side pressure σ r acting on the intersection 13 from the restraining spring 15 is calculated (ST5). First, a displacement Δx extending in the X direction of the intersecting portion 13 is obtained. The displacement Δx is expressed by the following equation.
Figure 2018059281
[Delta] x: displacement extends in the X direction [nu: Poisson's ratio of the concrete epsilon z: Compression strain (Z-direction displacement of the intersection 13 (Δz) / thickness of the floor slab 11 (t s))
t w : thickness of the wall 12

次にΔxとばね定数kとから側圧σを求める。側圧σは、次式によって表される。

Figure 2018059281
σ:側圧
α:床スラブ11の状況による係数。壁12がx方向の両側から拘束される場合(壁12に対してx方向の両側に床スラブ11等がある場合)α=2、片側からのみ拘束される場合(壁12に対してx方向の片側にのみ床スラブ11等がある場合)α=1。 Next, the side pressure σ r is obtained from Δx and the spring constant k. The side pressure σ r is expressed by the following equation.
Figure 2018059281
σ r : lateral pressure α s : coefficient depending on the situation of the floor slab 11. When the wall 12 is constrained from both sides in the x direction (when there is a floor slab 11 or the like on both sides in the x direction with respect to the wall 12) α s = 2, when constrained only from one side (x with respect to the wall 12) When there is a floor slab 11 etc. only on one side in the direction) α s = 1.

次に、交差部13の等価圧縮強度σ'を算定する(ST6)。交差部13は、床スラブ11からの側圧σによる拘束効果によって材料強度(床スラブ11のコンクリート圧縮強度σ)よりも強度が高くなる。等価圧縮強度σ'は、この拘束効果を考慮して材料強度を補正した強度である。拘束されたコンクリートの圧縮強度が高くなることは公知であり、その算定方法は種々提案されている。等価圧縮強度σ'は、それらのいずれかの算定方法により算出することができる。例えば、次式によって算定することができる。

Figure 2018059281
σ':等価圧縮強度
σ:床スラブ11のコンクリート圧縮強度(交差部13の材料強度) Next, the equivalent compressive strength σ B ′ of the intersection 13 is calculated (ST6). The intersection 13 has a strength higher than the material strength (concrete compressive strength σ B of the floor slab 11) due to the restraining effect by the side pressure σ r from the floor slab 11. The equivalent compressive strength σ B ′ is a strength obtained by correcting the material strength in consideration of this constraint effect. It is known that the compressive strength of constrained concrete is high, and various calculation methods have been proposed. The equivalent compressive strength σ B ′ can be calculated by any one of those calculation methods. For example, it can be calculated by the following formula.
Figure 2018059281
σ B ': Equivalent compressive strength σ B : Concrete compressive strength of floor slab 11 (material strength of intersection 13)

次に、等価圧縮強度σ'と壁12のコンクリート圧縮強度σB1との大小を比較する(ST7)。 Next, the magnitudes of the equivalent compressive strength σ B ′ and the concrete compressive strength σ B1 of the wall 12 are compared (ST7).

等価圧縮強度σ'が、壁12のコンクリート圧縮強度σB1以上の場合、地震力が加わったとき、交差部13よりも先に壁12(母材)で破壊が生じる。そこで、耐震設計の計算上の交差部13の圧縮強度を壁12の圧縮強度の値に設定して設計する(ST8)。すなわち、設計上、壁12と交差部13とから耐震壁21が形成されると考えたときに、耐震壁21全体の圧縮強度を、交差部13の等価圧縮強度σ'と壁12のコンクリート圧縮強度σB1との内、小さいほうの圧縮強度である壁12のコンクリート圧縮強度σB1とみなして設計する。 When the equivalent compressive strength σ B ′ is equal to or greater than the concrete compressive strength σ B1 of the wall 12, when the seismic force is applied, the wall 12 (base material) breaks before the intersection 13. Therefore, the design is performed by setting the compressive strength of the intersection 13 in the calculation of the seismic design to the value of the compressive strength of the wall 12 (ST8). That is, when it is considered that the seismic wall 21 is formed from the wall 12 and the intersecting portion 13 by design, the compressive strength of the entire seismic wall 21 is equal to the equivalent compressive strength σ B ′ of the intersecting portion 13 and the concrete of the wall 12. among the compressive strength sigma B1, designed regarded as concrete compressive strength sigma B1 wall 12 is a compression strength of the smaller.

等価圧縮強度σ'が、壁12のコンクリート圧縮強度σB1より小さいと判断した場合、地震力が加わったとき、壁12(母材)よりも先に交差部13で破壊が生じる。このような交差部破壊型で設計するか否かを判断する(ST9)。交差部破壊型で設計する場合は、耐震設計の計算上の壁12の圧縮強度を等価圧縮強度σ'の値に設定して設計する(ST10)。すなわち、壁12と交差部13とからなる耐震壁21全体の圧縮強度を、交差部13の等価圧縮強度σ'と壁12のコンクリート圧縮強度σB1との内、小さいほうの圧縮強度である交差部13の等価圧縮強度σ'とみなして設計する。交差部破壊型で設計しない場合は、床スラブ11のコンクリート圧縮強度σの値を大きくして、ST3からやり直す。 When it is determined that the equivalent compressive strength σ B ′ is smaller than the concrete compressive strength σ B1 of the wall 12, when the seismic force is applied, the crossing portion 13 breaks before the wall 12 (base material). It is determined whether or not to design with such an intersection destruction type (ST9). When designing with the intersection fracture type, design is performed by setting the compressive strength of the wall 12 in the calculation of the seismic design to the value of the equivalent compressive strength σ B ′ (ST10). That is, the compressive strength of the entire earthquake-resistant wall 21 composed of the wall 12 and the intersecting portion 13 is the smaller compressive strength of the equivalent compressive strength σ B ′ of the intersecting portion 13 and the concrete compressive strength σ B1 of the wall 12. It is designed considering the equivalent compressive strength σ B ′ of the intersection 13. When not designing with the intersection fracture type, the value of the concrete compressive strength σ B of the floor slab 11 is increased and the process is repeated from ST3.

なお、類型化された形状の床スラブ11及び壁12に対して、図8に示すグラフのような床スラブ11のコンクリート圧縮強度σと等価圧縮強度σ'との対応関係を示すグラフや表を予め作成しておき、ST3に於いては、等価圧縮強度σ'が壁12のコンクリート圧縮強度σB1以上になると推定される値を床スラブ11のコンクリート圧縮強度σに設定してもよい。 In addition, with respect to the floor slab 11 and the wall 12 of the typified shape, a graph showing a correspondence relationship between the concrete compressive strength σ B and the equivalent compressive strength σ B ′ of the floor slab 11 as shown in FIG. A table is prepared in advance, and in ST3, a value estimated that the equivalent compressive strength σ B ′ is equal to or greater than the concrete compressive strength σ B1 of the wall 12 is set as the concrete compressive strength σ B of the floor slab 11. Also good.

下端側が基礎梁に接合し、上端側が加力梁に接合した、長さ1200mm、高さ900mmの壁板(横筋D6@85mm、縦筋D6@50mm)を試験体として、本発明の実施例と比較例とについて試験を行った。比較例1は、壁板全体が同一のコンクリートで打設された。比較例2は、壁板の脚部に高さ50mmの低強度層を設けたが、壁板本体と同じ厚さであり、床スラブに相当する部分は設けなかった。実施例1〜4は、壁板の脚部に高さ50mmの低強度層を設け、低強度層は、壁板と直交する方向に300mmの長さを有するスラブであり、壁板の両側に床スラブがある状態に対応するものとした。実施例1〜4のスラブには、スラブを基礎梁に定着させるスラブ筋(D6@100mm)を設け、さらに、実施例2〜4のスラブには、壁板と直交する方向に延在するU字拘束筋を設けた。実施例2のU字拘束筋は、基礎梁に定着しておらず、実施例3及び4のU字拘束筋は、両端部が下方に向けて屈曲させて基礎梁に定着させた。表1に試験体の性状を示す。

Figure 2018059281
A wall plate (horizontal bar D6 @ 85 mm, vertical bar D6 @ 50 mm) having a length of 1200 mm and a height of 900 mm, in which the lower end side is joined to the foundation beam and the upper end side is joined to the force beam, is used as an example of the present invention. Tests were conducted for the comparative example. In Comparative Example 1, the entire wall plate was cast with the same concrete. In Comparative Example 2, a low-strength layer having a height of 50 mm was provided on the leg portion of the wall plate, but the thickness was the same as that of the wall plate body, and no portion corresponding to the floor slab was provided. In Examples 1 to 4, a low-strength layer having a height of 50 mm is provided on the leg portion of the wall plate, and the low-strength layer is a slab having a length of 300 mm in a direction orthogonal to the wall plate, on both sides of the wall plate. It corresponded to the state with a floor slab. The slabs of Examples 1 to 4 are provided with slab bars (D6 @ 100 mm) for fixing the slab to the foundation beam. Furthermore, the slabs of Examples 2 to 4 have a U extending in a direction perpendicular to the wall plate. Character restraint was provided. The U-shaped constraining bars of Example 2 were not fixed to the foundation beam, and the U-shaped constraining bars of Examples 3 and 4 were fixed to the foundation beam by bending both ends downward. Table 1 shows the properties of the test specimens.
Figure 2018059281

数1〜数4に基づき、実施例1〜4の等価圧縮強度σ'を算出した。等価圧縮強度σ'の算出に当たって、設計上の安全率ωは1.0、lscは壁板の長さの1/3である400mm、拘束ばねによって表されるスラブの台形部分の高さ方向と脚との角度θ(図7参照)は45°、ポアソン比νは0.4(塑性域を考慮)、圧縮ひずみεは2000マイクロとした。実施例1〜4の全ての試験体に於いて、等価圧縮強度σ'は、壁板本体の圧縮強度σB1より大きかった。また、壁体本体の材料強度に基づく強度、低強度層の材料強度に基づく強度を計算した。 Based on Equations 1 to 4, the equivalent compressive strength σ B ′ of Examples 1 to 4 was calculated. In calculating the equivalent compressive strength σ B ′, the design safety factor ω is 1.0, l sc is 400 mm, which is 1/3 of the length of the wall plate, and the height of the trapezoidal portion of the slab represented by the restraining spring The angle θ between the direction and the leg (see FIG. 7) was 45 °, the Poisson's ratio ν was 0.4 (considering the plastic region), and the compressive strain ε z was 2000 micro. In all the test bodies of Examples 1 to 4, the equivalent compressive strength σ B ′ was larger than the compressive strength σ B1 of the wall plate body. In addition, the strength based on the material strength of the wall body and the strength based on the material strength of the low strength layer were calculated.

試験体に地震力に対応する壁板と平行な水平力を加えた。水平力は変位漸増の正負繰り返し加力であった。実験結果及び計算結果を表2に示す。

Figure 2018059281
A horizontal force parallel to the wall plate corresponding to the seismic force was applied to the specimen. The horizontal force was applied repeatedly with positive and negative displacements. The experimental results and calculation results are shown in Table 2.
Figure 2018059281

実施例1〜4に於いては、等価圧縮強度σ'は、壁板本体の圧縮強度σB1より大きかったため、本発明によれば、壁板本体と低強度層とを合わせた壁板全体の圧縮強度を、壁体本体の圧縮強度σB1とみなせる(図5のST8)。実施例1〜4について、実験値の最大荷重と壁板本体の強度とを比較すると、実験値の最大荷重の方が大きく、実施形態による耐震設計方法の安全性が示された。 In Examples 1 to 4, since the equivalent compressive strength σ B ′ was greater than the compressive strength σ B1 of the wall plate main body, according to the present invention, the entire wall plate combining the wall plate main body and the low strength layer. Can be regarded as the compressive strength σ B1 of the wall body (ST8 in FIG. 5). For Examples 1 to 4, when the maximum load of the experimental value and the strength of the wall plate main body were compared, the maximum load of the experimental value was larger, indicating the safety of the seismic design method according to the embodiment.

また、比較例1及び2は、曲げ強度よりも小さい値で破壊したため、破壊形式はせん断破壊と判断されるが、実施例1〜4は、曲げ強度よりも大きい値で破壊したため、破壊形式は曲げ破壊と判断される。   In addition, since Comparative Examples 1 and 2 were broken at a value smaller than the bending strength, the fracture type was judged to be shear fracture, but Examples 1 to 4 were broken at a value larger than the bending strength, so the fracture type was Judgment of bending failure.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。壁と床スラブとの交差部に代えて、柱と床スラブの交差部や、壁と梁との交差部、又は柱と梁との交差部に本発明を適用してもよい。拘束ばねによって表される床スラブの弾性部部分の形状を変更してもよい。また、本発明は、上記実施形態の各ステップに対応する手段としてコンピュータを機能させるためのプログラムに適用してもよい。   Although the description of the specific embodiment is finished as described above, the present invention is not limited to the above embodiment and can be widely modified. Instead of the intersection between the wall and the floor slab, the present invention may be applied to the intersection between the column and the floor slab, the intersection between the wall and the beam, or the intersection between the column and the beam. The shape of the elastic portion of the floor slab represented by the restraining spring may be changed. Further, the present invention may be applied to a program for causing a computer to function as means corresponding to each step of the above embodiment.

10:建物
11:床スラブ(水平部材)
12:壁(鉛直部材)
13:交差部
14:柱
15:拘束ばね
16:X方向に延在する梁
17:支持部
18:せん断破壊判定領域
19:Y方向に延在する梁
20:曲げ補強筋
21:耐震壁
10: Building 11: Floor slab (horizontal member)
12: Wall (vertical member)
13: Crossing part 14: Column 15: Restraining spring 16: Beam 17 extending in the X direction 17: Supporting part 18: Shear fracture judgment area 19: Beam extending in the Y direction 20: Bending reinforcement 21: Seismic wall

Claims (7)

所定の水平方向に延在するコンクリート造の水平部材と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材とを備える建物の耐震設計方法であって、
前記鉛直部材の圧縮強度(σB1)を設定するステップと、
前記水平部材の圧縮強度(σ)を設定するステップと、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換えるステップと、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定するステップと、
前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定するステップと、
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記水平部材の圧縮強度(σ)を大きくして、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように設定して設計するステップとを備えることを特徴とする建物の耐震設計方法。
A concrete horizontal member extending in a predetermined horizontal direction, and a vertical member extending in a vertical direction orthogonal to the predetermined horizontal direction, coupled to the upper and lower surfaces of the horizontal member, and higher in compression than the horizontal member. A seismic design method for a building having strength and a pair of concrete upper and lower vertical members,
Setting the compressive strength (σ B1 ) of the vertical member;
Setting the compressive strength (σ B ) of the horizontal member;
In the horizontal member, the intersection of the horizontal member adjacent to the intersection located between the vertical members is prevented from spreading in the predetermined horizontal direction due to the vertical compressive force generated by the earthquake. Replacing the function to be replaced with a virtual restraint spring;
Using the spring constant of the restraining spring to calculate a lateral pressure acting in the predetermined horizontal direction on the intersecting portion when subjected to seismic force;
Calculating the equivalent compressive strength (σ B ′) of the intersecting portion by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure;
When the equivalent compressive strength (σ B ′) is equal to or higher than the compressive strength (σ B1 ) of the vertical member, the compressive strength of the intersection is set to the value of the compressive strength (σ B1 ) of the vertical member, When the equivalent compressive strength (σ B ′) is smaller than the compressive strength (σ B1 ) of the vertical member, the equivalent compressive strength (σ B ′) is increased by increasing the compressive strength (σ B ) of the horizontal member. An earthquake-resistant design method for a building, comprising the step of setting and designing so as to be equal to or higher than the compressive strength (σ B1 ) of the vertical member.
所定の水平方向に延在するコンクリート造の水平部材と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材とを備える建物の耐震設計方法であって、
前記鉛直部材の圧縮強度(σB1)を設定するステップと、
前記水平部材の圧縮強度(σ)を設定するステップと、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換えるステップと、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定するステップと、
前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定するステップと、
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定して設計するステップとを備えることを特徴とする建物の耐震設計方法。
A concrete horizontal member extending in a predetermined horizontal direction, and a vertical member extending in a vertical direction orthogonal to the predetermined horizontal direction, coupled to the upper and lower surfaces of the horizontal member, and higher in compression than the horizontal member. A seismic design method for a building having strength and a pair of concrete upper and lower vertical members,
Setting the compressive strength (σ B1 ) of the vertical member;
Setting the compressive strength (σ B ) of the horizontal member;
In the horizontal member, the intersection of the horizontal member adjacent to the intersection located between the vertical members is prevented from spreading in the predetermined horizontal direction due to the vertical compressive force generated by the earthquake. Replacing the function to be replaced with a virtual restraint spring;
Using the spring constant of the restraining spring to calculate a lateral pressure acting in the predetermined horizontal direction on the intersecting portion when subjected to seismic force;
Calculating the equivalent compressive strength (σ B ′) of the intersecting portion by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure;
When the equivalent compressive strength (σ B ′) is equal to or higher than the compressive strength (σ B1 ) of the vertical member, the compressive strength of the intersection is set to the value of the compressive strength (σ B1 ) of the vertical member, When the equivalent compressive strength (σ B ′) is smaller than the compressive strength (σ B1 ) of the vertical member, the compressive strength of the vertical member is set to the value of the equivalent compressive strength (σ B ′). A seismic design method for a building, comprising:
前記鉛直部材が、前記所定の水平方向に複数組配列され、
前記拘束ばねを、前記所定の水平方向に互いに隣接する前記鉛直部材間の中心線から前記交差部に至る部分に対応する前記水平部材の部分の弾性を表すものとして設定して、前記拘束ばねの前記ばね定数を求めることを特徴とする請求項1又は2に記載の耐震設計方法。
A plurality of the vertical members are arranged in the predetermined horizontal direction,
The restraining spring is set to represent elasticity of a portion of the horizontal member corresponding to a portion extending from a center line between the vertical members adjacent to each other in the predetermined horizontal direction to the intersecting portion; The seismic design method according to claim 1, wherein the spring constant is obtained.
前記鉛直部材が壁をなし、
前記水平部材が床スラブをなし、
前記拘束ばねを、平面視にて、前記交差部に於ける地震力による曲げ圧縮領域の所定の範囲及び前記中心線を底辺とし、前記壁から前記中心線に向かう方向と脚とのなす角が0°以上45°以下である等脚台形部分の弾性を表すものとして設定することを特徴とする請求項3に記載の耐震設計方法。
The vertical member forms a wall;
The horizontal member forms a floor slab;
In the plan view, the restraint spring has a predetermined range of a bending compression region due to seismic force at the intersection and the center line as a base, and an angle formed between the direction from the wall toward the center line and the leg. The seismic design method according to claim 3, wherein the seismic design method is set to represent elasticity of an isosceles trapezoidal part that is 0 ° to 45 °.
前記水平部材の圧縮強度(σ)と、前記等価圧縮強度(σ')との対応関係を示す表又はグラフを作成するステップを更に備え、
前記水平部材の圧縮強度(σ)を設定するステップでは、前記表又はグラフに基づき、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように前記水平部材の圧縮強度(σ)を設定することを特徴とする請求項1〜4のいずれか一項に記載の耐震設計方法。
Further comprising the step of creating a table or graph showing the correspondence between the compressive strength (σ B ) of the horizontal member and the equivalent compressive strength (σ B ′),
Wherein in the step of setting the compressive strength of the horizontal member (sigma B), based on the table or chart, the equivalent compressive strength (σ B ') is the horizontal such that the compressive strength of the vertical member (sigma B1) or The earthquake-resistant design method according to any one of claims 1 to 4, wherein the compressive strength (σ B ) of the member is set.
所定の水平方向に延在するコンクリート造の水平部材と、前記所定の水平方向に直交し、前記水平部材の上下面に交差方向に結合され、かつ前記水平部材よりも高強度であるコンクリート造の上下1組の鉛直部材とを備える建物の耐震設計をするためのプログラムであって、
前記鉛直部材の圧縮強度(σB1)の入力を受け付ける手段と、
前記水平部材の圧縮強度(σ)の入力を受け付ける手段と、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換える手段と、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定する手段と、
前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定する手段と、
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定する手段
としてコンピュータを機能させるためのプログラム。
A concrete horizontal member extending in a predetermined horizontal direction, and a concrete horizontal member orthogonal to the predetermined horizontal direction, coupled to the upper and lower surfaces of the horizontal member in a crossing direction and having higher strength than the horizontal member. A program for seismic design of a building comprising a pair of upper and lower vertical members,
Means for receiving an input of the compressive strength (σ B1 ) of the vertical member;
Means for receiving an input of the compressive strength (σ B ) of the horizontal member;
An imaginary restraint function of the horizontal member adjacent to the intersection located between the vertical members in the horizontal member to suppress the intersection from spreading in the predetermined horizontal direction due to seismic force. Means to replace it with a spring;
Means for calculating a side pressure acting in the predetermined horizontal direction with respect to the intersection when receiving a seismic force using a spring constant of the restraining spring;
Means for calculating the equivalent compressive strength (σ B ′) of the intersecting portion by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure;
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, the computer as a means for setting the compressive strength of the intersection of the value of compressive strength (sigma B1) of the vertical member A program to make it work.
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上とするために前記水平部材の圧縮強度(σ)を再入力するか、又は、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定するかの選択を受け付ける手段としてコンピュータを機能させることを更に含むことを特徴とする請求項6に記載のプログラム。 When the equivalent compressive strength (σ B ′) is smaller than the compressive strength (σ B1 ) of the vertical member, the equivalent compressive strength (σ B ′) is equal to or higher than the compressive strength (σ B1 ) of the vertical member. Re-input the compression strength (σ B ) of the horizontal member, or cause the computer to function as a means for accepting selection of whether to set the compression strength of the vertical member to the value of the equivalent compression strength (σ B ′) The program according to claim 6, further comprising:
JP2016195634A 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design Active JP6773509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016195634A JP6773509B2 (en) 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016195634A JP6773509B2 (en) 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design

Publications (2)

Publication Number Publication Date
JP2018059281A true JP2018059281A (en) 2018-04-12
JP6773509B2 JP6773509B2 (en) 2020-10-21

Family

ID=61908761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016195634A Active JP6773509B2 (en) 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design

Country Status (1)

Country Link
JP (1) JP6773509B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589209A (en) * 1991-09-27 1993-04-09 Haseko Corp Structural design system for building body
JP2000356041A (en) * 1999-06-17 2000-12-26 Nishimatsu Constr Co Ltd Method for placing concrete
JP2004197524A (en) * 2002-12-20 2004-07-15 Misawa Homes Co Ltd Design system, designed method, computer program, and record medium
JP2012216235A (en) * 2012-06-25 2012-11-08 Denki Kagaku Kogyo Kk Design support device for reinforced concrete member, design support method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589209A (en) * 1991-09-27 1993-04-09 Haseko Corp Structural design system for building body
JP2000356041A (en) * 1999-06-17 2000-12-26 Nishimatsu Constr Co Ltd Method for placing concrete
JP2004197524A (en) * 2002-12-20 2004-07-15 Misawa Homes Co Ltd Design system, designed method, computer program, and record medium
JP2012216235A (en) * 2012-06-25 2012-11-08 Denki Kagaku Kogyo Kk Design support device for reinforced concrete member, design support method, and program

Also Published As

Publication number Publication date
JP6773509B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
FarhangVesali et al. Development of arching action in longitudinally-restrained reinforced concrete beams
Musmar Analysis of shear wall with openings using solid65 element
JP7196886B2 (en) Steel beam with floor slab
Botte et al. Influence of design parameters on tensile membrane action in reinforced concrete slabs
Abdelwahed et al. Reinforced concrete beam-column inverted knee joint behaviour after ground corner column loss-numerical analysis
Jolly et al. Structural behaviour of reinforced concrete haunched beam: A study on ANSYS and ETABS
Kim et al. Flexural capacity of the composite beam using angle as a shear connector
JP6773509B2 (en) Building seismic design methods and programs for seismic design
Astawa et al. Ductile Structure Framework of Earthquake Resistant of Highrise Building on Exterior Beam-Column Joint with the Partial Prestressed Concrete Beam-Column Reinforced Concrete
JP5050088B2 (en) Reinforced concrete beam design method and reinforced concrete beam
Ademović et al. Seismic assessment of a typical masonry residential building in Bosnia and Herzegovina
Ha et al. Prediction of time-dependent lateral movement induced by differential shortening in tall buildings using construction stage analysis
Kotsovou et al. Improving the design of earthquake resistant reinforced concrete exterior beam-column joints
Choi et al. Experimental study of interior slab-column connections subjected to vertical shear and cyclic moment transfer
Ahmed et al. Development of displacement based shear hinge for shear controlled RC components
JP5399649B2 (en) Evaluation method of bending strength of reinforced concrete beams
Kian et al. Plastic hinge length and inelastic rotational capacity of reinforced concrete shear walls detailed with Self-Centering reinforcement
Ghoraba et al. The strut-and-tie model and the finite element-good design companions
Meng et al. Performance and strength analysis of concrete-encased steel plate walls under tensile-flexural-shear load
Basha et al. Evaluation of shear demand on columns of masonry infilled reinforced concrete frames
Senthil et al. Evaluation of RC Frames in Shifting on Seismic Zone 3 to 5 and Retrofitting Techniques using ETABS
Ariyasajjakorn Full scale testing of overhang falsework hangers on NCDOT modified bulb tee (MBT) girders
Masajedian et al. Progressive collapse resistance of composite steel frame structures under corner column removal
JP6816512B2 (en) How to design a wall with pillars on both sides and a wall with pillars on both sides
Encina et al. Wall-to-floor interaction in RC buildings: modelling case study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250