JP6773509B2 - Building seismic design methods and programs for seismic design - Google Patents
Building seismic design methods and programs for seismic design Download PDFInfo
- Publication number
- JP6773509B2 JP6773509B2 JP2016195634A JP2016195634A JP6773509B2 JP 6773509 B2 JP6773509 B2 JP 6773509B2 JP 2016195634 A JP2016195634 A JP 2016195634A JP 2016195634 A JP2016195634 A JP 2016195634A JP 6773509 B2 JP6773509 B2 JP 6773509B2
- Authority
- JP
- Japan
- Prior art keywords
- compressive strength
- intersection
- vertical
- horizontal member
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 25
- 239000004567 concrete Substances 0.000 claims description 51
- 230000006835 compression Effects 0.000 claims description 33
- 238000007906 compression Methods 0.000 claims description 33
- 230000000452 restraining effect Effects 0.000 claims description 11
- 238000005452 bending Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 description 14
- 239000011372 high-strength concrete Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 7
- 238000009430 construction management Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009415 formwork Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Landscapes
- Joining Of Building Structures In Genera (AREA)
Description
本開示は、建物の耐震設計方法及び耐震設計するためのプログラムに関する。特に、鉛直部材と水平部材との交差部の強度を評価した上で耐震設計を行う方法及びプログラムに関する。 This disclosure relates to seismic design methods and programs for seismic design of buildings. In particular, the present invention relates to a method and a program for performing seismic design after evaluating the strength of the intersection between the vertical member and the horizontal member.
コンクリート造の建物では、梁と床スラブや、壁又は柱と床スラブのように、互いに隣接しながらもコンクリートに必要とされる強度が異なる部分がある。 In concrete buildings, there are parts that are adjacent to each other but have different strengths required for concrete, such as beams and floor slabs and walls or columns and floor slabs.
このようなコンクリートの隣接構造の内、梁と床スラブの場合、床スラブが梁に及ぼす影響を考慮して梁の上部から側方に延出する床スラブに有効幅を設定し、梁を、有効幅部分の床スラブが一体となったT形梁とみなして曲げモーメントの計算を行う設計方法が一般的である。また、例えば、特許文献1では、せん断力についても梁をT形梁とみなして計算する方法が提案されている。
In the case of beams and floor slabs in such an adjacent structure of concrete, the effective width is set for the floor slab extending from the top of the beam to the side in consideration of the influence of the floor slab on the beam, and the beam is set. A general design method is to calculate the bending moment by regarding the floor slab of the effective width portion as an integrated T-beam. Further, for example,
しかしながら、壁や柱のような垂直部材と床スラブや梁のような水平部材との交差部に関しては、梁と床スラブとのように両部材の影響を考慮した設計方法がなかった。異なる強度のコンクリートが介在する場合には、安全を確保するための措置として低い方のコンクリート強度で部材強度を計算することが一般的である。 However, for the intersection of a vertical member such as a wall or a column and a horizontal member such as a floor slab or a beam, there is no design method considering the influence of both members like a beam and a floor slab. When concretes of different strengths intervene, it is common to calculate the member strength with the lower concrete strength as a measure to ensure safety.
例えば、図9に示すように、床スラブ1と壁2,3との交差部4が、床スラブ1が下層階の壁2と上層階の壁3との間を貫通するように形成される場合、下層階の壁2のコンクリート強度をA、床スラブ1のコンクリート強度をB、上層階の壁3のコンクリート強度をCとすると、通常は、床自体に必要なコンクリート強度は、壁に必要なコンクリート強度よりも低いため、B<A=Cとなる。また、一般に、コンクリート強度が高いほどヤング係数は高いので、図の破線で示すように、壁2,3よりも床スラブ1が大きくひずむ。上層階及び下層階の壁2,3並びに交差部4を含む耐震壁の設計に於いて、床スラブ1の両端が自由端で床スラブのひずみを拘束するものがない場合には、上層階及び下層階の壁2,3よりも先に交差部4が破壊する。
For example, as shown in FIG. 9, the intersection 4 between the
交差部が先に破壊することを避けるため、床スラブに、壁や柱と同じ高強度コンクリートを使用すると、材料コストが増加するとともに、収縮ひび割れを防ぐための施工管理の負担が増大する。 Using the same high-strength concrete as walls and columns for floor slabs to prevent intersections from breaking first increases material costs and increases the burden of construction management to prevent shrinkage cracks.
また、交差部に壁や柱と同じ高強度コンクリートを使用し、床に低強度のコンクリートを使用して、交差部での破壊を防止するためには、壁や柱の周りにコンクリートの止め型枠を設置してコンクリートを打ち分ける必要があり、施工性が悪い。 Also, use the same high-strength concrete as the walls and columns at the intersections, and use low-strength concrete for the floor, and in order to prevent destruction at the intersections, concrete stoppers around the walls and columns It is necessary to install a frame and separate the concrete, resulting in poor workability.
上記問題を鑑み、本発明は、水平部材と垂直部材との交差部を有する建物に於いて、材料コストを抑制し、施工管理の負担が小さく、施工性のよい建物を設計できる耐震設計方法及びその耐震設計のためのプログラムを提供することを目的とする。 In view of the above problems, the present invention provides a seismic design method capable of designing a building having an intersection between a horizontal member and a vertical member, which can suppress the material cost, reduce the burden of construction management, and have good workability. The purpose is to provide a program for its seismic design.
本発明の少なくともいくつかの実施形態に係る建物(10)の耐震設計方法は、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材(12)とを備える建物の耐震設計方法であって、前記鉛直部材の圧縮強度(σB1)を設定するステップと、前記水平部材の圧縮強度(σB)を設定するステップと、前記水平部材に於ける前記鉛直部材間に位置する交差部(13)に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばね(15)に置き換えるステップと、前記拘束ばねのばね定数(k)を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧(σr)を算定するステップと、前記水平部材の圧縮強度(σB)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σB')を算定するステップと、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記水平部材の圧縮強度(σB)を大きくして、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上となるように設定して設計するステップとを備えることを特徴とする。なお、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記鉛直部材の圧縮強度を前記等価圧縮強度(σB')の値に設定して設計してもよい。ここで、「水平部材」とは、床スラブや梁等のように水平方向に延在する部材を言い、「鉛直部材」は、壁や柱等のように鉛直方向に延在する部材を言う。 The seismic design method of the building (10) according to at least some embodiments of the present invention is vertical to a concrete horizontal member (11) extending in a predetermined horizontal direction so as to be orthogonal to the predetermined horizontal direction. It is a seismic design method for a building including a pair of vertical members (12) made of concrete, which extend in the direction, are connected to the upper and lower surfaces of the horizontal member, and have a higher compressive strength than the horizontal member. The step of setting the compressive strength (σ B1 ) of the vertical member, the step of setting the compressive strength (σ B ) of the horizontal member, and the intersection located between the vertical members in the horizontal member ( A step of replacing the function of the portion of the horizontal member adjacent to 13) to prevent the intersection from expanding in the predetermined horizontal direction by receiving a vertical compressive force generated by an earthquake with a virtual restraint spring (15). And the step of calculating the lateral pressure (σ r ) acting on the intersection in the predetermined horizontal direction when the seismic force is received by using the spring constant (k) of the restraining spring, and the horizontal member. By correcting the compression strength (σ B ) of the above in consideration of the restraining effect of the lateral pressure, the step of calculating the equivalent compression strength (σ B ') of the intersection and the equivalent compression strength (σ B ') are When the compression strength of the vertical member (σ B1 ) or more, the compression strength of the intersection is set to the value of the compression strength (σ B1 ) of the vertical member for design, and the equivalent compression strength (σ B ′) is If the less than the compression strength of the vertical member (sigma B1), to increase the compressive strength of the horizontal member (σ B), the equivalent compressive strength (σ B ') compressive strength of the vertical member (sigma B1) It is characterized by including a step of setting and designing as described above. When the equivalent compressive strength (σ B ') is smaller than the compressive strength (σ B1 ) of the vertical member, the compression strength of the vertical member is set to the value of the equivalent compressive strength (σ B ') for design. You may. Here, the "horizontal member" refers to a member extending in the horizontal direction such as a floor slab or a beam, and the "vertical member" refers to a member extending in the vertical direction such as a wall or a pillar. ..
この構成によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、収縮ひび割れを防止するための施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。 According to this configuration, seismic design can be performed without underestimating the strength of the intersection, so the material cost can be suppressed and shrinkage cracks can be prevented compared to the case where the same high-strength concrete as the vertical member is used for the horizontal member. The burden of construction management to prevent it can be reduced. In addition, compared to the case where the same high-strength concrete as the vertical member is used for the intersection and low-strength concrete is used for the horizontal member other than the intersection, it is not necessary to install a stop formwork, so the workability is good. Is.
本発明の少なくともいくつかの実施形態に係る建物の耐震設計方法は、上記構成に於いて、前記鉛直部材が、前記所定の水平方向に複数組配列され、前記拘束ばねを、前記所定の水平方向に互いに隣接する前記鉛直部材間の中心線から前記交差部に至る部分に対応する前記水平部材の部分の弾性を表すものとして設定して、前記拘束ばねの前記ばね定数を求めることを特徴とする。特に、前記鉛直部材が壁をなし、前記水平部材が床スラブをなす場合には、前記拘束ばねを、平面視にて、前記交差部に於ける地震力による曲げ圧縮領域の所定の範囲及び前記中心線を底辺とし、前記壁から前記中心線に向かう方向と脚とのなす角が0°以上45°以下である等脚台形部分の弾性を表すものとして設定することができる。 In the seismic design method for a building according to at least some embodiments of the present invention, in the above configuration, a plurality of sets of the vertical members are arranged in the predetermined horizontal direction, and the restraint springs are arranged in the predetermined horizontal direction. It is characterized in that the spring constant of the restraining spring is obtained by setting it as representing the elasticity of the portion of the horizontal member corresponding to the portion extending from the center line between the vertical members adjacent to each other to the intersection. .. In particular, when the vertical member forms a wall and the horizontal member forms a floor slab, the restraining spring is used in a predetermined range of a bending compression region due to seismic force at the intersection in a plan view. It can be set to represent the elasticity of the isosceles trapezoidal portion in which the center line is the base and the angle between the wall and the leg is 0 ° or more and 45 ° or less.
この構成によれば、拘束ばねのばね定数を容易に求めることができる。 According to this configuration, the spring constant of the restraint spring can be easily obtained.
本発明の少なくともいくつかの実施形態に係る建物の耐震設計方法は、上記構成に於いて、前記水平部材の圧縮強度(σB)と、前記等価圧縮強度(σB')との対応関係を示す表又はグラフを作成するステップを更に備え、前記水平部材の圧縮強度(σB)を設定するステップでは、前記表又はグラフに基づき、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上となるように前記水平部材の圧縮強度(σB)を設定することを特徴とする。 The seismic design method for a building according to at least some embodiments of the present invention has a correspondence relationship between the compressive strength (σ B ) of the horizontal member and the equivalent compressive strength (σ B ') in the above configuration. In the step of setting the compression strength (σ B ) of the horizontal member, which further comprises a step of creating the table or graph shown, the equivalent compression strength (σ B ') is the compression of the vertical member based on the table or graph. It is characterized in that the compressive strength (σ B ) of the horizontal member is set so as to be equal to or higher than the strength (σ B1 ).
この構成によれば、水平部材に必要な圧縮強度を容易に把握でき、設計計算のやり直しを抑制することができる。 According to this configuration, the compressive strength required for the horizontal member can be easily grasped, and the re-design calculation can be suppressed.
また、本発明の少なくともいくつかの実施形態に係る建物(10)の耐震設計をするためのプログラムは、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交し、前記水平部材の上下面に交差方向に結合され、かつ前記水平部材よりも高強度であるコンクリート造の上下1組の鉛直部材(12)とを備える建物の耐震設計をするためのプログラムであって、前記鉛直部材の圧縮強度(σB1)の入力を受け付ける手段(ST1)と、前記水平部材の圧縮強度(σB)の入力を受け付ける手段(ST3)と、前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばね(15)に置き換える手段(ST4)と、前記拘束ばねのばね定数(k)を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧(σr)を算定する手段(ST5)と、前記水平部材の圧縮強度(σB)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σB')を算定する手段(ST6)と、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定する手段(ST8)としてコンピュータを機能させる。さらに、プログラムは、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上とするために前記水平部材の圧縮強度(σB)を再入力するか、又は、前記鉛直部材の圧縮強度を前記等価圧縮強度(σB')の値に設定するかの選択を受け付ける手段(ST9)としてコンピュータを機能させてもよい。 In addition, the program for seismic design of the building (10) according to at least some embodiments of the present invention includes a concrete horizontal member (11) extending in a predetermined horizontal direction and the predetermined horizontal direction. For seismic design of a building provided with a pair of upper and lower vertical members (12) made of concrete, which are orthogonal to the horizontal member, are coupled to the upper and lower surfaces of the horizontal member in an intersecting direction, and have higher strength than the horizontal member. In the program, a means (ST1) for accepting an input of the compressive strength (σ B1 ) of the vertical member, a means (ST3) for accepting an input of the compressive strength (σ B ) of the horizontal member, and the horizontal member. The virtual restraint spring (15) has a function of suppressing the intersection from expanding in a predetermined horizontal direction by receiving an earthquake force by the portion of the horizontal member adjacent to the intersection located between the vertical members. A means for calculating the lateral pressure (σ r ) acting in the predetermined horizontal direction on the intersection when a seismic force is applied by using the replacement means (ST4) and the spring constant (k) of the restraint spring. (ST5) and means (ST6) for calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure. the case equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, means for setting the compressive strength of the intersection of the value of compressive strength (sigma B1) of the vertical member (ST8 ) To make the computer work. Further, in the program, when the equivalent compressive strength (σ B ′) is smaller than the compressive strength (σ B1 ) of the vertical member, the equivalent compressive strength (σ B ′) is the compressive strength (σ B1 ) of the vertical member. Means for accepting the choice of re-entering the compressive strength (σ B ) of the horizontal member or setting the compressive strength of the vertical member to the value of the equivalent compressive strength (σ B ') in order to achieve the above. The computer may function as (ST9).
この構成によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。 According to this configuration, seismic design can be performed without underestimating the strength of the intersection, so material costs can be suppressed and construction management can be performed compared to the case where the same high-strength concrete as the vertical member is used for the horizontal member. The burden can be reduced. In addition, compared to the case where the same high-strength concrete as the vertical member is used for the intersection and low-strength concrete is used for the horizontal member other than the intersection, it is not necessary to install a stop formwork, so the workability is good. Is.
また、本発明の少なくともいくつかの実施形態に係る耐震設計構造の建物(10)は、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材(12)とを備える耐震設計構造の建物であって、前記水平部材に於ける前記鉛直部材間に位置する交差部(13)は、前記所定の水平方向に於いて、前記交差部に隣接する前記水平部材の部分による拘束効果を受け、前記鉛直部材の圧縮強度(σB1)は、前記水平部材の圧縮強度(σB)よりも大きく、地震時に於ける前記拘束効果の影響を考慮して前記水平部材の圧縮強度(σB)を補正して算出された、前記交差部の等価圧縮強度(σB')が、前記鉛直部材の圧縮強度(σB1)よりも大きいことを特徴とする。 Further, the building (10) having the seismic design structure according to at least some embodiments of the present invention is oriented so as to be orthogonal to the horizontal member (11) made of concrete extending in a predetermined horizontal direction. A building with a seismic design structure that extends in the vertical direction, is coupled to the upper and lower surfaces of the horizontal member, and has a pair of vertical members (12) made of concrete and has a higher compressive strength than the horizontal member. The intersection (13) located between the vertical members in the horizontal member is subject to the restraining effect of the portion of the horizontal member adjacent to the intersection in the predetermined horizontal direction. the compressive strength of the vertical member (sigma B1), the greater than the compression strength of the horizontal member (sigma B), compressive strength in consideration of the influence of in the restraining effect during an earthquake the horizontal member (sigma B) The equivalent compression strength (σ B ′) of the intersection calculated by correction is larger than the compression strength (σ B1 ) of the vertical member.
この構成によれば、建物は、所定の耐震性能を有し、かつ交差部の強度が過小評価されていないため、交差部に垂直部材と同じ高強度コンクリートを使う必要がない。そのため、材料コスト抑制でき、収縮ひび割れを防止するための施工管理の負担を軽減でき、また、止め型枠を設置する必要がないため施工性が良好である。 According to this configuration, the building has a given seismic performance and the strength of the intersection is not underestimated, so it is not necessary to use the same high-strength concrete as the vertical member for the intersection. Therefore, the material cost can be suppressed, the burden of construction management for preventing shrinkage and cracking can be reduced, and the workability is good because it is not necessary to install a stop form.
この発明によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。 According to the present invention, seismic design can be performed without underestimating the strength of the intersection, so that the material cost can be suppressed as compared with the case where the same high-strength concrete as the vertical member is used for the horizontal member, and the construction management can be performed. The burden can be reduced. In addition, compared to the case where the same high-strength concrete as the vertical member is used for the intersection and low-strength concrete is used for the horizontal member other than the intersection, it is not necessary to install a stop formwork, so the workability is good. Is.
以下、図面を参照して、実施形態に係る建物10の設計方法について説明する。図1に示すように、建物10は、水平方向に延在する鉄筋コンクリート造の床スラブ11と、鉛直方向に延在し、床スラブ11の上下面に結合され、床スラブ11よりも高い圧縮強度を有するコンクリートが使用された鉄筋コンクリート造の壁12とを備える。下層階の壁12と上層階の壁12とは互いに上下方向に整合した位置に配置される。建物10は、例えば板状集合住宅のように、建物の長手方向に対して直交する複数の壁12が配置されていることが好適である。地震によって建物10に生じる慣性力(地震力)は、図1中の矢印で示すように、建物10が地面に固定された状態における水平力のように作用する。建物10を床レベルに質量が集中しているものとみなし、壁12に平行な水平力が各階の床レベルに作用するものとして設計する。この地震力によって、図1中の建物10の右下部に集中する圧縮束が形成されるため上下方向にも力が生じ、床スラブ11と壁12との交差部13(図3参照)には、上下方向に圧縮力を受ける領域と引張力を受ける領域とが生じる。
Hereinafter, the design method of the
図2は、建物10のある階に於ける中間部分の横断面図であり、壁12の両端は、柱14に接合している。図中の太い矢印は、地震力を示す。壁12の地震力を受ける側には、上下方向(Z方向)に引張力が作用し、その反対側には上下方向に圧縮力が作用する。圧縮力が作用する領域に於いて、床スラブ11と壁12との交差部13(図3参照)は、上下方向に圧縮されるため、図2中の細い矢印で示すように、壁12と直交する水平方向(X方向)に拡がろうとする。しかしながら互いにX方向に隣接する壁12間の距離は地震時も変化しないため、床スラブ11の交差部13に隣接する部分によって、交差部13の変形が抑制される。
FIG. 2 is a cross-sectional view of an intermediate portion on a floor of the
このような地震時の力の作用は、互いにX方向に隣接する壁12間の中心線でX方向の変形が拘束された図3に示す構造と等価といえる。本実施形態は、この床スラブ11による交差部13への拘束効果を考慮して、交差部13のコンクリート強度を算出して、耐震設計を行うものである。
It can be said that the action of such a force during an earthquake is equivalent to the structure shown in FIG. 3 in which the deformation in the X direction is constrained by the center line between the
図4に示すように、床スラブ11のコンクリート圧縮強度をσB、壁12の圧縮強度をσB1とし、図5のフローチャートを参照しながら、設計手順について説明する。
As shown in FIG. 4, the concrete compressive strength of the
まず、壁12のコンクリート圧縮強度σB1、並びに、床及び壁12の形状等の基本データを入力する(ST(ステップ)1)。
First, basic data such as the concrete compressive strength σ B1 of the
次に床スラブ11の有無を確認する(ST2)。床スラブ11がない場合は、本実施形態に係る設計方法は適用されない。床スラブ11がある場合は、床スラブ11のコンクリート圧縮強度σBを入力する(ST3)。
Next, the presence or absence of the
次に、図3に示す交差部13の拘束状態を、図6に示す仮想の拘束ばね15に置き換えて、拘束ばね15のばね定数kを算出する(ST4)。図6に於いて、太い矢印は地震力によって生じる上下方向の圧縮力を示し、破線は、この圧縮力によって変形した交差部13の形状を模式的に示す。交差部13のZ方向の変位をΔz、X方向の片側に拡がる変位を1/2Δxとすると、拘束ばね15によってΔxの大きさが抑えられる。例えば、拘束ばね15を、図7に於いて薄いドットパターンで示した、床スラブ11に於ける等脚台形の領域の弾性を表すものとして設定することができる。図7のA図、B図及びC図は、それぞれ、壁12が柱14に接合していないもの、壁12の両端に柱14が接合しているもの、及び、壁12の両端に柱14が接合し、かつ柱14から壁12に直交する方向に梁16が延出しているものを示すが、いずれの形態に於いても、同様の算出方法で拘束ばね15のばね定数kを算出することができる。なお、図7に図示される壁12及び柱14は断面であるが、断面を示すためのハッチングは省略している。
Next, the restraint state of the
台形の一方の底辺は、交差部13との境界部分であり、交差部13からX方向の圧縮力を受ける。台形の他方の底辺は、互いに隣接する壁12間の中線であり、弾性部分を支持する支持部17である。壁12及び交差部13には、曲げ圧縮領域に、図7中に濃いドットパターンで示したせん断破壊判定領域18が設定され、その壁12に沿った水平方向(Y方向)の長さはlscである。台形の交差部13側の底辺の位置は、平面視で、せん断破壊判定領域18に隣接する部分に対応する。せん断破壊判定領域18は、壁12及び交差部13に於いて、地震力を受ける側とは反対側の端部から、地震力を受ける側に向かって壁12のY方向長さの1/3〜1/2程度までの領域である。X方向(壁12から支持部17に向かう方向、台形の高さ方向)と台形の脚とのなす角θは、0°以上45°以下であり、支持部17側の底辺の長さlBは、交差部13側の底辺の長さlsc以上である。なお、建物10の端部側に設けられた壁12に於いて、他の壁12がない側の拘束ばね15に関しては、スラブ端に設けた梁19(図2参照)や、X方向への床スラブ11の変形を拘束するために壁12に平行な水平方向(Y方向)に延在する曲げ補強筋20(図2参照)を設置し、これらを拘束ばね15によって表される床スラブ11の台形の弾性部の支持部17としてもよい。
One base of the trapezoid is a boundary portion with the
拘束ばね15のばね定数kは、上記の台形状の板にX方向に圧縮力が作用するときのたわみに基づいて算出する。まず、X方向(台形の高さ方向)の微小区間のたわみを求め、これをX方向に積分して全体のたわみを求める。ここで、X方向の圧縮力は、対象領域の全体に、均等に加わっているものとみなして計算する。次に、圧縮力を全体のたわみで割ってばね定数kを算出する。以上の計算に基づくばね定数kは、次式によって表される。なお、壁12の左右の仕様(スラブ厚ts、スパンhs、ヤング係数Ecなど)が異なる場合は、それぞれのばね定数kを算出し、平均値を用いる。
ω:設計上の安全率(1.0以下)
ts:床スラブ11の厚さ
lB:支持部17側の底辺の長さ
lsc:壁12及び交差部13の曲げ圧縮領域に於けるせん断破壊判定領域の長さ(交差部13側の底辺の長さ)
hs:壁12から支持部17までの距離(台形の高さ)
Ec:床スラブ11のヤング係数
The spring constant k of the
t s : Thickness of the floor slab 11 l B : Length of the base on the
h s : Distance from
E c : Young's modulus of
次に、図5に示すように、拘束ばね15から交差部13に作用する側圧σrを算定する(ST5)。まず、交差部13のX方向に拡がる変位Δxを求める。変位Δxは、次式によって表される。
ν:コンクリートのポアソン比
εz:圧縮ひずみ(交差部13のZ方向の変位(Δz)/床スラブ11の厚さ(ts))
tw:壁12の厚さ
Next, as shown in FIG. 5, the lateral pressure σ r acting on the
t w : Thickness of
次にΔxとばね定数kとから側圧σrを求める。側圧σrは、次式によって表される。
αs:床スラブ11の状況による係数。壁12がx方向の両側から拘束される場合(壁12に対してx方向の両側に床スラブ11等がある場合)αs=2、片側からのみ拘束される場合(壁12に対してx方向の片側にのみ床スラブ11等がある場合)αs=1。
Next, the lateral pressure σ r is obtained from Δx and the spring constant k. The lateral pressure σ r is expressed by the following equation.
次に、交差部13の等価圧縮強度σB'を算定する(ST6)。交差部13は、床スラブ11からの側圧σrによる拘束効果によって材料強度(床スラブ11のコンクリート圧縮強度σB)よりも強度が高くなる。等価圧縮強度σB'は、この拘束効果を考慮して材料強度を補正した強度である。拘束されたコンクリートの圧縮強度が高くなることは公知であり、その算定方法は種々提案されている。等価圧縮強度σB'は、それらのいずれかの算定方法により算出することができる。例えば、次式によって算定することができる。
σB:床スラブ11のコンクリート圧縮強度(交差部13の材料強度)
Then, to calculate the equivalent compressive strength of the intersecting
次に、等価圧縮強度σB'と壁12のコンクリート圧縮強度σB1との大小を比較する(ST7)。 Next, compare the magnitude of the concrete compressive strength sigma B1 equivalent compressive strength sigma B 'and the wall 12 (ST7).
等価圧縮強度σB'が、壁12のコンクリート圧縮強度σB1以上の場合、地震力が加わったとき、交差部13よりも先に壁12(母材)で破壊が生じる。そこで、耐震設計の計算上の交差部13の圧縮強度を壁12の圧縮強度の値に設定して設計する(ST8)。すなわち、設計上、壁12と交差部13とから耐震壁21が形成されると考えたときに、耐震壁21全体の圧縮強度を、交差部13の等価圧縮強度σB'と壁12のコンクリート圧縮強度σB1との内、小さいほうの圧縮強度である壁12のコンクリート圧縮強度σB1とみなして設計する。
Equivalent compressive strength sigma B 'is not less than the concrete compressive strength sigma B1 walls 12, when the seismic force is applied, breakdown occurs in the wall 12 (base material) before the
等価圧縮強度σB'が、壁12のコンクリート圧縮強度σB1より小さいと判断した場合、地震力が加わったとき、壁12(母材)よりも先に交差部13で破壊が生じる。このような交差部破壊型で設計するか否かを判断する(ST9)。交差部破壊型で設計する場合は、耐震設計の計算上の壁12の圧縮強度を等価圧縮強度σB'の値に設定して設計する(ST10)。すなわち、壁12と交差部13とからなる耐震壁21全体の圧縮強度を、交差部13の等価圧縮強度σB'と壁12のコンクリート圧縮強度σB1との内、小さいほうの圧縮強度である交差部13の等価圧縮強度σB'とみなして設計する。交差部破壊型で設計しない場合は、床スラブ11のコンクリート圧縮強度σBの値を大きくして、ST3からやり直す。
Equivalent compressive strength sigma B 'is, if it is determined that the
なお、類型化された形状の床スラブ11及び壁12に対して、図8に示すグラフのような床スラブ11のコンクリート圧縮強度σBと等価圧縮強度σB'との対応関係を示すグラフや表を予め作成しておき、ST3に於いては、等価圧縮強度σB'が壁12のコンクリート圧縮強度σB1以上になると推定される値を床スラブ11のコンクリート圧縮強度σBに設定してもよい。
Incidentally, with respect to the
下端側が基礎梁に接合し、上端側が加力梁に接合した、長さ1200mm、高さ900mmの壁板(横筋D6@85mm、縦筋D6@50mm)を試験体として、本発明の実施例と比較例とについて試験を行った。比較例1は、壁板全体が同一のコンクリートで打設された。比較例2は、壁板の脚部に高さ50mmの低強度層を設けたが、壁板本体と同じ厚さであり、床スラブに相当する部分は設けなかった。実施例1〜4は、壁板の脚部に高さ50mmの低強度層を設け、低強度層は、壁板と直交する方向に300mmの長さを有するスラブであり、壁板の両側に床スラブがある状態に対応するものとした。実施例1〜4のスラブには、スラブを基礎梁に定着させるスラブ筋(D6@100mm)を設け、さらに、実施例2〜4のスラブには、壁板と直交する方向に延在するU字拘束筋を設けた。実施例2のU字拘束筋は、基礎梁に定着しておらず、実施例3及び4のU字拘束筋は、両端部が下方に向けて屈曲させて基礎梁に定着させた。表1に試験体の性状を示す。
数1〜数4に基づき、実施例1〜4の等価圧縮強度σB'を算出した。等価圧縮強度σB'の算出に当たって、設計上の安全率ωは1.0、lscは壁板の長さの1/3である400mm、拘束ばねによって表されるスラブの台形部分の高さ方向と脚との角度θ(図7参照)は45°、ポアソン比νは0.4(塑性域を考慮)、圧縮ひずみεzは2000マイクロとした。実施例1〜4の全ての試験体に於いて、等価圧縮強度σB'は、壁板本体の圧縮強度σB1より大きかった。また、壁体本体の材料強度に基づく強度、低強度層の材料強度に基づく強度を計算した。
Based on
試験体に地震力に対応する壁板と平行な水平力を加えた。水平力は変位漸増の正負繰り返し加力であった。実験結果及び計算結果を表2に示す。
実施例1〜4に於いては、等価圧縮強度σB'は、壁板本体の圧縮強度σB1より大きかったため、本発明によれば、壁板本体と低強度層とを合わせた壁板全体の圧縮強度を、壁体本体の圧縮強度σB1とみなせる(図5のST8)。実施例1〜4について、実験値の最大荷重と壁板本体の強度とを比較すると、実験値の最大荷重の方が大きく、実施形態による耐震設計方法の安全性が示された。 Is In Examples 1-4, 'the equivalent compressive strength sigma B, for greater than the compressive strength sigma B1 wallboard body, according to the present invention, the entire wallboard combining the wallboard body and low-strength layer Can be regarded as the compressive strength σ B1 of the wall body (ST8 in FIG. 5). Comparing the maximum load of the experimental values and the strength of the wall plate body with respect to Examples 1 to 4, the maximum load of the experimental values was larger, indicating the safety of the seismic design method according to the embodiment.
また、比較例1及び2は、曲げ強度よりも小さい値で破壊したため、破壊形式はせん断破壊と判断されるが、実施例1〜4は、曲げ強度よりも大きい値で破壊したため、破壊形式は曲げ破壊と判断される。 Further, in Comparative Examples 1 and 2, since the fracture was performed at a value smaller than the bending strength, the fracture type was judged to be shear fracture, but in Examples 1 to 4, the fracture type was determined to be fractured at a value larger than the bending strength. It is judged to be bending fracture.
以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。壁と床スラブとの交差部に代えて、柱と床スラブの交差部や、壁と梁との交差部、又は柱と梁との交差部に本発明を適用してもよい。拘束ばねによって表される床スラブの弾性部部分の形状を変更してもよい。また、本発明は、上記実施形態の各ステップに対応する手段としてコンピュータを機能させるためのプログラムに適用してもよい。 Although the description of the specific embodiment is completed above, the present invention can be widely modified without being limited to the above embodiment. Instead of the intersection of the wall and the floor slab, the present invention may be applied to the intersection of the column and the floor slab, the intersection of the wall and the beam, or the intersection of the column and the beam. The shape of the elastic portion of the floor slab represented by the restraint spring may be changed. Further, the present invention may be applied to a program for operating a computer as a means corresponding to each step of the above embodiment.
10:建物
11:床スラブ(水平部材)
12:壁(鉛直部材)
13:交差部
14:柱
15:拘束ばね
16:X方向に延在する梁
17:支持部
18:せん断破壊判定領域
19:Y方向に延在する梁
20:曲げ補強筋
21:耐震壁
10: Building 11: Floor slab (horizontal member)
12: Wall (vertical member)
13: Intersection 14: Column 15: Restraint spring 16: Beam extending in the X direction 17: Support part 18: Shear failure determination region 19: Beam extending in the Y direction 20: Bending reinforcement 21: Shear wall
Claims (7)
前記鉛直部材の圧縮強度(σB1)を設定するステップと、
前記水平部材の圧縮強度(σB)を設定するステップと、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換えるステップと、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定するステップと、
前記水平部材の圧縮強度(σB)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σB')を算定するステップと、
前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記水平部材の圧縮強度(σB)を大きくして、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上となるように設定して設計するステップとを備えることを特徴とする建物の耐震設計方法。 A concrete horizontal member extending in a predetermined horizontal direction, extending in the vertical direction so as to be orthogonal to the predetermined horizontal direction, being coupled to the upper and lower surfaces of the horizontal member, and having a higher compression than the horizontal member. It is a method of seismic design of a building equipped with a pair of upper and lower vertical members made of concrete, which has strength.
The step of setting the compressive strength (σ B1 ) of the vertical member and
The step of setting the compressive strength (σ B ) of the horizontal member and
The portion of the horizontal member adjacent to the intersection located between the vertical members in the horizontal member suppresses the intersection from expanding in the predetermined horizontal direction due to the vertical compressive force generated by the earthquake. Steps to replace the function to be with a virtual restraint spring,
Using the spring constant of the restraint spring, a step of calculating the lateral pressure acting on the intersection in the predetermined horizontal direction when receiving an seismic force, and
A step of calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraint effect due to the lateral pressure.
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, designed to set the compressive strength of the intersection of the value of compressive strength (sigma B1) of said vertical member, 'If is smaller than the compressive strength of the vertical member (sigma B1), to increase the compressive strength of the horizontal member (σ B), the equivalent compressive strength (sigma B the equivalent compressive strength (σ B)') is A seismic design method for a building, which comprises a step of setting and designing the vertical member so as to have a compressive strength (σ B1 ) or more.
前記鉛直部材の圧縮強度(σB1)を設定するステップと、
前記水平部材の圧縮強度(σB)を設定するステップと、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換えるステップと、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定するステップと、
前記水平部材の圧縮強度(σB)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σB')を算定するステップと、
前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記鉛直部材の圧縮強度を前記等価圧縮強度(σB')の値に設定して設計するステップとを備えることを特徴とする建物の耐震設計方法。 A concrete horizontal member extending in a predetermined horizontal direction, extending in the vertical direction so as to be orthogonal to the predetermined horizontal direction, being coupled to the upper and lower surfaces of the horizontal member, and having a higher compression than the horizontal member. It is a method of seismic design of a building equipped with a pair of upper and lower vertical members made of concrete, which has strength.
The step of setting the compressive strength (σ B1 ) of the vertical member and
The step of setting the compressive strength (σ B ) of the horizontal member and
The portion of the horizontal member adjacent to the intersection located between the vertical members in the horizontal member suppresses the intersection from expanding in the predetermined horizontal direction due to the vertical compressive force generated by the earthquake. Steps to replace the function to be with a virtual restraint spring,
Using the spring constant of the restraint spring, a step of calculating the lateral pressure acting on the intersection in the predetermined horizontal direction when receiving an seismic force, and
A step of calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraint effect due to the lateral pressure.
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, designed to set the compressive strength of the intersection of the value of compressive strength (sigma B1) of said vertical member, When the equivalent compressive strength (σ B ') is smaller than the compressive strength (σ B1 ) of the vertical member, the step of designing by setting the compressive strength of the vertical member to the value of the equivalent compressive strength (σ B '). Seismic design method of a building characterized by being equipped with.
前記拘束ばねを、前記所定の水平方向に互いに隣接する前記鉛直部材間の中心線から前記交差部に至る部分に対応する前記水平部材の部分の弾性を表すものとして設定して、前記拘束ばねの前記ばね定数を求めることを特徴とする請求項1又は2に記載の耐震設計方法。 A plurality of sets of the vertical members are arranged in the predetermined horizontal direction.
The restraint spring is set as representing the elasticity of the portion of the horizontal member corresponding to the portion from the center line between the vertical members adjacent to each other in the predetermined horizontal direction to the intersection, and the restraint spring is set. The seismic design method according to claim 1 or 2, wherein the spring constant is obtained.
前記水平部材が床スラブをなし、
前記拘束ばねを、平面視にて、前記交差部に於ける地震力による曲げ圧縮領域の所定の範囲及び前記中心線を底辺とし、前記壁から前記中心線に向かう方向と脚とのなす角が0°以上45°以下である等脚台形部分の弾性を表すものとして設定することを特徴とする請求項3に記載の耐震設計方法。 The vertical member forms a wall,
The horizontal member forms a floor slab,
In a plan view, the restraint spring has a predetermined range of a bending compression region due to seismic force at the intersection and the center line as the base, and the angle formed by the direction from the wall toward the center line and the leg is The seismic design method according to claim 3, wherein the seismic design method is set to represent the elasticity of an isosceles trapezoidal portion having a temperature of 0 ° or more and 45 ° or less.
前記水平部材の圧縮強度(σB)を設定するステップでは、前記表又はグラフに基づき、前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上となるように前記水平部材の圧縮強度(σB)を設定することを特徴とする請求項1〜4のいずれか一項に記載の耐震設計方法。 Further provided with a step of creating a table or graph showing the correspondence between the compressive strength (σ B ) of the horizontal member and the equivalent compressive strength (σ B ').
In the step of setting the compressive strength (σ B ) of the horizontal member, the horizontal member is set so that the equivalent compressive strength (σ B ') is equal to or higher than the compressive strength (σ B1 ) of the vertical member based on the table or graph. The seismic design method according to any one of claims 1 to 4, wherein the compressive strength (σ B ) of the member is set.
前記鉛直部材の圧縮強度(σB1)の入力を受け付ける手段と、
前記水平部材の圧縮強度(σB)の入力を受け付ける手段と、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換える手段と、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定する手段と、
前記水平部材の圧縮強度(σB)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σB')を算定する手段と、
前記等価圧縮強度(σB')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定する手段
としてコンピュータを機能させるためのプログラム。 A concrete horizontal member extending in a predetermined horizontal direction and a concrete structure orthogonal to the predetermined horizontal direction, coupled to the upper and lower surfaces of the horizontal member in an intersecting direction, and having a higher strength than the horizontal member. It is a program for seismic design of a building equipped with a set of upper and lower vertical members.
A means for receiving an input of the compression strength (σ B1 ) of the vertical member,
A means for receiving an input of the compression strength (σ B ) of the horizontal member,
A virtual constraint on the function of the horizontal member portion adjacent to the intersection located between the vertical members in the horizontal member to prevent the intersection from expanding in a predetermined horizontal direction due to seismic force. Means to replace with springs
A means for calculating the lateral pressure acting on the intersection in the predetermined horizontal direction when a seismic force is applied by using the spring constant of the restraint spring.
A means for calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure.
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, the computer as a means for setting the compressive strength of the intersection of the value of compressive strength (sigma B1) of the vertical member A program to make it work.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016195634A JP6773509B2 (en) | 2016-10-03 | 2016-10-03 | Building seismic design methods and programs for seismic design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016195634A JP6773509B2 (en) | 2016-10-03 | 2016-10-03 | Building seismic design methods and programs for seismic design |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018059281A JP2018059281A (en) | 2018-04-12 |
JP6773509B2 true JP6773509B2 (en) | 2020-10-21 |
Family
ID=61908761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016195634A Active JP6773509B2 (en) | 2016-10-03 | 2016-10-03 | Building seismic design methods and programs for seismic design |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6773509B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3135951B2 (en) * | 1991-09-27 | 2001-02-19 | 株式会社長谷工コーポレーション | Structural design system of building frame |
JP2000356041A (en) * | 1999-06-17 | 2000-12-26 | Nishimatsu Constr Co Ltd | Method for placing concrete |
JP2004197524A (en) * | 2002-12-20 | 2004-07-15 | Misawa Homes Co Ltd | Design system, designed method, computer program, and record medium |
JP5379270B2 (en) * | 2012-06-25 | 2013-12-25 | 電気化学工業株式会社 | Reinforced concrete member design support apparatus, design support method and program |
-
2016
- 2016-10-03 JP JP2016195634A patent/JP6773509B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018059281A (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Prakash et al. | Seismic performance of circular RC columns subjected to axial force, bending, and torsion with low and moderate shear | |
Musmar | Analysis of shear wall with openings using solid65 element | |
JP7196886B2 (en) | Steel beam with floor slab | |
Teran-Gilmore et al. | Preliminary design of low-rise buildings stiffened with buckling-restrained braces by a displacement-based approach | |
JP6773509B2 (en) | Building seismic design methods and programs for seismic design | |
KR101528972B1 (en) | Wall for seismic retrofit and construction methods of the wall | |
Sen et al. | Displacement-based seismic design of flat slab-shear wall buildings | |
Kim et al. | Flexural capacity of the composite beam using angle as a shear connector | |
Pisode et al. | Comparative assessment of seismic fragility of RC frame buildings designed for older and revised Indian standards | |
JP5050088B2 (en) | Reinforced concrete beam design method and reinforced concrete beam | |
Kristianto et al. | Confinement of Reinforced-Concrete Columns with NonCode Compliant Confining Reinforcement plus Supplemental Pen-Binder | |
Astawa et al. | Ductile Structure Framework of Earthquake Resistant of Highrise Building on Exterior Beam-Column Joint with the Partial Prestressed Concrete Beam-Column Reinforced Concrete | |
Giannopoulos | Seismic Assessment of RC Building according to FEMA 356 and Eurocode 8 | |
JP2019019664A (en) | High-rise building and precast pre-stressed concrete column | |
Kotsovou et al. | Improving the design of earthquake resistant reinforced concrete exterior beam-column joints | |
JP5399649B2 (en) | Evaluation method of bending strength of reinforced concrete beams | |
Tripathi et al. | Non-linear cyclic response of concrete walls with different transverse reinforcement detailing | |
Huang et al. | Nonlinear pushover analysis of infilled concrete frames | |
Kian et al. | Plastic hinge length and inelastic rotational capacity of reinforced concrete shear walls detailed with Self-Centering reinforcement | |
Ahmad et al. | Recycling of damaged RC frames: Replacing crumbled concrete and installing steel haunches below/above the beam at connections | |
Meng et al. | Performance and strength analysis of concrete-encased steel plate walls under tensile-flexural-shear load | |
Gramblička et al. | Transverse reinforcement in reinforced concrete columns | |
Masajedian et al. | Progressive collapse resistance of composite steel frame structures under corner column removal | |
Megget et al. | Seismic performance of external reinforced concrete beam-column joints | |
Cardoso | Deep beams reinforcement, national and Eurocode 2 design provisions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200923 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6773509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |