JP6773509B2 - Building seismic design methods and programs for seismic design - Google Patents

Building seismic design methods and programs for seismic design Download PDF

Info

Publication number
JP6773509B2
JP6773509B2 JP2016195634A JP2016195634A JP6773509B2 JP 6773509 B2 JP6773509 B2 JP 6773509B2 JP 2016195634 A JP2016195634 A JP 2016195634A JP 2016195634 A JP2016195634 A JP 2016195634A JP 6773509 B2 JP6773509 B2 JP 6773509B2
Authority
JP
Japan
Prior art keywords
compressive strength
intersection
vertical
horizontal member
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016195634A
Other languages
Japanese (ja)
Other versions
JP2018059281A (en
Inventor
小坂 英之
英之 小坂
寛 江頭
寛 江頭
健太郎 松永
健太郎 松永
圭祐 南
圭祐 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2016195634A priority Critical patent/JP6773509B2/en
Publication of JP2018059281A publication Critical patent/JP2018059281A/en
Application granted granted Critical
Publication of JP6773509B2 publication Critical patent/JP6773509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本開示は、建物の耐震設計方法及び耐震設計するためのプログラムに関する。特に、鉛直部材と水平部材との交差部の強度を評価した上で耐震設計を行う方法及びプログラムに関する。 This disclosure relates to seismic design methods and programs for seismic design of buildings. In particular, the present invention relates to a method and a program for performing seismic design after evaluating the strength of the intersection between the vertical member and the horizontal member.

コンクリート造の建物では、梁と床スラブや、壁又は柱と床スラブのように、互いに隣接しながらもコンクリートに必要とされる強度が異なる部分がある。 In concrete buildings, there are parts that are adjacent to each other but have different strengths required for concrete, such as beams and floor slabs and walls or columns and floor slabs.

このようなコンクリートの隣接構造の内、梁と床スラブの場合、床スラブが梁に及ぼす影響を考慮して梁の上部から側方に延出する床スラブに有効幅を設定し、梁を、有効幅部分の床スラブが一体となったT形梁とみなして曲げモーメントの計算を行う設計方法が一般的である。また、例えば、特許文献1では、せん断力についても梁をT形梁とみなして計算する方法が提案されている。 In the case of beams and floor slabs in such an adjacent structure of concrete, the effective width is set for the floor slab extending from the top of the beam to the side in consideration of the influence of the floor slab on the beam, and the beam is set. A general design method is to calculate the bending moment by regarding the floor slab of the effective width portion as an integrated T-beam. Further, for example, Patent Document 1 proposes a method of calculating the shear force by regarding the beam as a T-shaped beam.

特開2006−97320号公報Japanese Unexamined Patent Publication No. 2006-97320

しかしながら、壁や柱のような垂直部材と床スラブや梁のような水平部材との交差部に関しては、梁と床スラブとのように両部材の影響を考慮した設計方法がなかった。異なる強度のコンクリートが介在する場合には、安全を確保するための措置として低い方のコンクリート強度で部材強度を計算することが一般的である。 However, for the intersection of a vertical member such as a wall or a column and a horizontal member such as a floor slab or a beam, there is no design method considering the influence of both members like a beam and a floor slab. When concretes of different strengths intervene, it is common to calculate the member strength with the lower concrete strength as a measure to ensure safety.

例えば、図9に示すように、床スラブ1と壁2,3との交差部4が、床スラブ1が下層階の壁2と上層階の壁3との間を貫通するように形成される場合、下層階の壁2のコンクリート強度をA、床スラブ1のコンクリート強度をB、上層階の壁3のコンクリート強度をCとすると、通常は、床自体に必要なコンクリート強度は、壁に必要なコンクリート強度よりも低いため、B<A=Cとなる。また、一般に、コンクリート強度が高いほどヤング係数は高いので、図の破線で示すように、壁2,3よりも床スラブ1が大きくひずむ。上層階及び下層階の壁2,3並びに交差部4を含む耐震壁の設計に於いて、床スラブ1の両端が自由端で床スラブのひずみを拘束するものがない場合には、上層階及び下層階の壁2,3よりも先に交差部4が破壊する。 For example, as shown in FIG. 9, the intersection 4 between the floor slab 1 and the walls 2 and 3 is formed so that the floor slab 1 penetrates between the wall 2 on the lower floor and the wall 3 on the upper floor. In this case, assuming that the concrete strength of the wall 2 on the lower floor is A, the concrete strength of the floor slab 1 is B, and the concrete strength of the wall 3 on the upper floor is C, the concrete strength required for the floor itself is usually required for the wall. Since it is lower than the concrete strength, B <A = C. Further, in general, the higher the concrete strength, the higher the Young's modulus. Therefore, as shown by the broken line in the figure, the floor slab 1 is distorted more than the walls 2 and 3. In the design of the earthquake-resistant wall including the walls 2 and 3 of the upper floor and the lower floor and the intersection 4, if both ends of the floor slab 1 are free ends and there is nothing to restrain the strain of the floor slab, the upper floor and the floor slab The intersection 4 is destroyed before the walls 2 and 3 on the lower floors.

交差部が先に破壊することを避けるため、床スラブに、壁や柱と同じ高強度コンクリートを使用すると、材料コストが増加するとともに、収縮ひび割れを防ぐための施工管理の負担が増大する。 Using the same high-strength concrete as walls and columns for floor slabs to prevent intersections from breaking first increases material costs and increases the burden of construction management to prevent shrinkage cracks.

また、交差部に壁や柱と同じ高強度コンクリートを使用し、床に低強度のコンクリートを使用して、交差部での破壊を防止するためには、壁や柱の周りにコンクリートの止め型枠を設置してコンクリートを打ち分ける必要があり、施工性が悪い。 Also, use the same high-strength concrete as the walls and columns at the intersections, and use low-strength concrete for the floor, and in order to prevent destruction at the intersections, concrete stoppers around the walls and columns It is necessary to install a frame and separate the concrete, resulting in poor workability.

上記問題を鑑み、本発明は、水平部材と垂直部材との交差部を有する建物に於いて、材料コストを抑制し、施工管理の負担が小さく、施工性のよい建物を設計できる耐震設計方法及びその耐震設計のためのプログラムを提供することを目的とする。 In view of the above problems, the present invention provides a seismic design method capable of designing a building having an intersection between a horizontal member and a vertical member, which can suppress the material cost, reduce the burden of construction management, and have good workability. The purpose is to provide a program for its seismic design.

本発明の少なくともいくつかの実施形態に係る建物(10)の耐震設計方法は、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材(12)とを備える建物の耐震設計方法であって、前記鉛直部材の圧縮強度(σB1)を設定するステップと、前記水平部材の圧縮強度(σ)を設定するステップと、前記水平部材に於ける前記鉛直部材間に位置する交差部(13)に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばね(15)に置き換えるステップと、前記拘束ばねのばね定数(k)を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧(σ)を算定するステップと、前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定するステップと、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記水平部材の圧縮強度(σ)を大きくして、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように設定して設計するステップとを備えることを特徴とする。なお、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定して設計してもよい。ここで、「水平部材」とは、床スラブや梁等のように水平方向に延在する部材を言い、「鉛直部材」は、壁や柱等のように鉛直方向に延在する部材を言う。 The seismic design method of the building (10) according to at least some embodiments of the present invention is vertical to a concrete horizontal member (11) extending in a predetermined horizontal direction so as to be orthogonal to the predetermined horizontal direction. It is a seismic design method for a building including a pair of vertical members (12) made of concrete, which extend in the direction, are connected to the upper and lower surfaces of the horizontal member, and have a higher compressive strength than the horizontal member. The step of setting the compressive strength (σ B1 ) of the vertical member, the step of setting the compressive strength (σ B ) of the horizontal member, and the intersection located between the vertical members in the horizontal member ( A step of replacing the function of the portion of the horizontal member adjacent to 13) to prevent the intersection from expanding in the predetermined horizontal direction by receiving a vertical compressive force generated by an earthquake with a virtual restraint spring (15). And the step of calculating the lateral pressure (σ r ) acting on the intersection in the predetermined horizontal direction when the seismic force is received by using the spring constant (k) of the restraining spring, and the horizontal member. By correcting the compression strength (σ B ) of the above in consideration of the restraining effect of the lateral pressure, the step of calculating the equivalent compression strength (σ B ') of the intersection and the equivalent compression strength (σ B ') are When the compression strength of the vertical member (σ B1 ) or more, the compression strength of the intersection is set to the value of the compression strength (σ B1 ) of the vertical member for design, and the equivalent compression strength (σ B ′) is If the less than the compression strength of the vertical member (sigma B1), to increase the compressive strength of the horizontal member (σ B), the equivalent compressive strength (σ B ') compressive strength of the vertical member (sigma B1) It is characterized by including a step of setting and designing as described above. When the equivalent compressive strength (σ B ') is smaller than the compressive strength (σ B1 ) of the vertical member, the compression strength of the vertical member is set to the value of the equivalent compressive strength (σ B ') for design. You may. Here, the "horizontal member" refers to a member extending in the horizontal direction such as a floor slab or a beam, and the "vertical member" refers to a member extending in the vertical direction such as a wall or a pillar. ..

この構成によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、収縮ひび割れを防止するための施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。 According to this configuration, seismic design can be performed without underestimating the strength of the intersection, so the material cost can be suppressed and shrinkage cracks can be prevented compared to the case where the same high-strength concrete as the vertical member is used for the horizontal member. The burden of construction management to prevent it can be reduced. In addition, compared to the case where the same high-strength concrete as the vertical member is used for the intersection and low-strength concrete is used for the horizontal member other than the intersection, it is not necessary to install a stop formwork, so the workability is good. Is.

本発明の少なくともいくつかの実施形態に係る建物の耐震設計方法は、上記構成に於いて、前記鉛直部材が、前記所定の水平方向に複数組配列され、前記拘束ばねを、前記所定の水平方向に互いに隣接する前記鉛直部材間の中心線から前記交差部に至る部分に対応する前記水平部材の部分の弾性を表すものとして設定して、前記拘束ばねの前記ばね定数を求めることを特徴とする。特に、前記鉛直部材が壁をなし、前記水平部材が床スラブをなす場合には、前記拘束ばねを、平面視にて、前記交差部に於ける地震力による曲げ圧縮領域の所定の範囲及び前記中心線を底辺とし、前記壁から前記中心線に向かう方向と脚とのなす角が0°以上45°以下である等脚台形部分の弾性を表すものとして設定することができる。 In the seismic design method for a building according to at least some embodiments of the present invention, in the above configuration, a plurality of sets of the vertical members are arranged in the predetermined horizontal direction, and the restraint springs are arranged in the predetermined horizontal direction. It is characterized in that the spring constant of the restraining spring is obtained by setting it as representing the elasticity of the portion of the horizontal member corresponding to the portion extending from the center line between the vertical members adjacent to each other to the intersection. .. In particular, when the vertical member forms a wall and the horizontal member forms a floor slab, the restraining spring is used in a predetermined range of a bending compression region due to seismic force at the intersection in a plan view. It can be set to represent the elasticity of the isosceles trapezoidal portion in which the center line is the base and the angle between the wall and the leg is 0 ° or more and 45 ° or less.

この構成によれば、拘束ばねのばね定数を容易に求めることができる。 According to this configuration, the spring constant of the restraint spring can be easily obtained.

本発明の少なくともいくつかの実施形態に係る建物の耐震設計方法は、上記構成に於いて、前記水平部材の圧縮強度(σ)と、前記等価圧縮強度(σ')との対応関係を示す表又はグラフを作成するステップを更に備え、前記水平部材の圧縮強度(σ)を設定するステップでは、前記表又はグラフに基づき、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように前記水平部材の圧縮強度(σ)を設定することを特徴とする。 The seismic design method for a building according to at least some embodiments of the present invention has a correspondence relationship between the compressive strength (σ B ) of the horizontal member and the equivalent compressive strength (σ B ') in the above configuration. In the step of setting the compression strength (σ B ) of the horizontal member, which further comprises a step of creating the table or graph shown, the equivalent compression strength (σ B ') is the compression of the vertical member based on the table or graph. It is characterized in that the compressive strength (σ B ) of the horizontal member is set so as to be equal to or higher than the strength (σ B1 ).

この構成によれば、水平部材に必要な圧縮強度を容易に把握でき、設計計算のやり直しを抑制することができる。 According to this configuration, the compressive strength required for the horizontal member can be easily grasped, and the re-design calculation can be suppressed.

また、本発明の少なくともいくつかの実施形態に係る建物(10)の耐震設計をするためのプログラムは、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交し、前記水平部材の上下面に交差方向に結合され、かつ前記水平部材よりも高強度であるコンクリート造の上下1組の鉛直部材(12)とを備える建物の耐震設計をするためのプログラムであって、前記鉛直部材の圧縮強度(σB1)の入力を受け付ける手段(ST1)と、前記水平部材の圧縮強度(σ)の入力を受け付ける手段(ST3)と、前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばね(15)に置き換える手段(ST4)と、前記拘束ばねのばね定数(k)を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧(σ)を算定する手段(ST5)と、前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定する手段(ST6)と、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定する手段(ST8)としてコンピュータを機能させる。さらに、プログラムは、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上とするために前記水平部材の圧縮強度(σ)を再入力するか、又は、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定するかの選択を受け付ける手段(ST9)としてコンピュータを機能させてもよい。 In addition, the program for seismic design of the building (10) according to at least some embodiments of the present invention includes a concrete horizontal member (11) extending in a predetermined horizontal direction and the predetermined horizontal direction. For seismic design of a building provided with a pair of upper and lower vertical members (12) made of concrete, which are orthogonal to the horizontal member, are coupled to the upper and lower surfaces of the horizontal member in an intersecting direction, and have higher strength than the horizontal member. In the program, a means (ST1) for accepting an input of the compressive strength (σ B1 ) of the vertical member, a means (ST3) for accepting an input of the compressive strength (σ B ) of the horizontal member, and the horizontal member. The virtual restraint spring (15) has a function of suppressing the intersection from expanding in a predetermined horizontal direction by receiving an earthquake force by the portion of the horizontal member adjacent to the intersection located between the vertical members. A means for calculating the lateral pressure (σ r ) acting in the predetermined horizontal direction on the intersection when a seismic force is applied by using the replacement means (ST4) and the spring constant (k) of the restraint spring. (ST5) and means (ST6) for calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure. the case equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, means for setting the compressive strength of the intersection of the value of compressive strength (sigma B1) of the vertical member (ST8 ) To make the computer work. Further, in the program, when the equivalent compressive strength (σ B ′) is smaller than the compressive strength (σ B1 ) of the vertical member, the equivalent compressive strength (σ B ′) is the compressive strength (σ B1 ) of the vertical member. Means for accepting the choice of re-entering the compressive strength (σ B ) of the horizontal member or setting the compressive strength of the vertical member to the value of the equivalent compressive strength (σ B ') in order to achieve the above. The computer may function as (ST9).

この構成によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。 According to this configuration, seismic design can be performed without underestimating the strength of the intersection, so material costs can be suppressed and construction management can be performed compared to the case where the same high-strength concrete as the vertical member is used for the horizontal member. The burden can be reduced. In addition, compared to the case where the same high-strength concrete as the vertical member is used for the intersection and low-strength concrete is used for the horizontal member other than the intersection, it is not necessary to install a stop formwork, so the workability is good. Is.

また、本発明の少なくともいくつかの実施形態に係る耐震設計構造の建物(10)は、所定の水平方向に延在するコンクリート造の水平部材(11)と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材(12)とを備える耐震設計構造の建物であって、前記水平部材に於ける前記鉛直部材間に位置する交差部(13)は、前記所定の水平方向に於いて、前記交差部に隣接する前記水平部材の部分による拘束効果を受け、前記鉛直部材の圧縮強度(σB1)は、前記水平部材の圧縮強度(σ)よりも大きく、地震時に於ける前記拘束効果の影響を考慮して前記水平部材の圧縮強度(σ)を補正して算出された、前記交差部の等価圧縮強度(σ')が、前記鉛直部材の圧縮強度(σB1)よりも大きいことを特徴とする。 Further, the building (10) having the seismic design structure according to at least some embodiments of the present invention is oriented so as to be orthogonal to the horizontal member (11) made of concrete extending in a predetermined horizontal direction. A building with a seismic design structure that extends in the vertical direction, is coupled to the upper and lower surfaces of the horizontal member, and has a pair of vertical members (12) made of concrete and has a higher compressive strength than the horizontal member. The intersection (13) located between the vertical members in the horizontal member is subject to the restraining effect of the portion of the horizontal member adjacent to the intersection in the predetermined horizontal direction. the compressive strength of the vertical member (sigma B1), the greater than the compression strength of the horizontal member (sigma B), compressive strength in consideration of the influence of in the restraining effect during an earthquake the horizontal member (sigma B) The equivalent compression strength (σ B ′) of the intersection calculated by correction is larger than the compression strength (σ B1 ) of the vertical member.

この構成によれば、建物は、所定の耐震性能を有し、かつ交差部の強度が過小評価されていないため、交差部に垂直部材と同じ高強度コンクリートを使う必要がない。そのため、材料コスト抑制でき、収縮ひび割れを防止するための施工管理の負担を軽減でき、また、止め型枠を設置する必要がないため施工性が良好である。 According to this configuration, the building has a given seismic performance and the strength of the intersection is not underestimated, so it is not necessary to use the same high-strength concrete as the vertical member for the intersection. Therefore, the material cost can be suppressed, the burden of construction management for preventing shrinkage and cracking can be reduced, and the workability is good because it is not necessary to install a stop form.

この発明によれば、交差部の強度を過小評価することなく、耐震設計を行えるため、水平部材に垂直部材と同じ高強度コンクリートを使用する場合に比べて、材料コストを抑制でき、施工管理の負担を軽減できる。また、交差部に垂直部材と同じ高強度コンクリートを使用し、交差部以外の水平部材には低強度のコンクリートを使用する場合に比べて、止め型枠を設置する必要がないため施工性が良好である。 According to the present invention, seismic design can be performed without underestimating the strength of the intersection, so that the material cost can be suppressed as compared with the case where the same high-strength concrete as the vertical member is used for the horizontal member, and the construction management can be performed. The burden can be reduced. In addition, compared to the case where the same high-strength concrete as the vertical member is used for the intersection and low-strength concrete is used for the horizontal member other than the intersection, it is not necessary to install a stop formwork, so the workability is good. Is.

実施形態に係る建物の模式的な縦断面図Schematic vertical cross-sectional view of the building according to the embodiment 実施形態に係る建物の模式的な一部断面平面図Schematic partial cross-sectional plan view of the building according to the embodiment 実施形態に係る壁及び床スラブと等価な構造を模式的に示す図The figure which shows typically the structure equivalent to the wall and floor slab which concerns on embodiment. 実施形態に係る壁及び床スラブの材料の強度を示す縦断面図Longitudinal section showing the strength of the material of the wall and floor slab according to the embodiment. 実施形態に係る設計方法のフローチャートFlow chart of the design method according to the embodiment 実施形態に係る壁及び床スラブに於いて、交差部に対する床スラブの影響を等価な拘束ばねに置き換えたモデル図A model diagram in which the influence of the floor slab on the intersection is replaced with an equivalent restraint spring in the wall and floor slab according to the embodiment. 実施形態に係る床スラブの弾性部分の内、拘束ばねとして設定される部分を示す一部断面平面図Partial sectional plan view showing a part set as a restraint spring in the elastic part of the floor slab according to the embodiment. 実施形態に係る床スラブのコンクリート強度と側圧考慮時のコンクリート強度との関係を示すグラフGraph showing the relationship between the concrete strength of the floor slab according to the embodiment and the concrete strength when the lateral pressure is taken into consideration. 従来技術に係る壁及び床スラブの設計方法を説明するための縦断面図Vertical cross-sectional view for explaining the design method of the wall and floor slab according to the prior art.

以下、図面を参照して、実施形態に係る建物10の設計方法について説明する。図1に示すように、建物10は、水平方向に延在する鉄筋コンクリート造の床スラブ11と、鉛直方向に延在し、床スラブ11の上下面に結合され、床スラブ11よりも高い圧縮強度を有するコンクリートが使用された鉄筋コンクリート造の壁12とを備える。下層階の壁12と上層階の壁12とは互いに上下方向に整合した位置に配置される。建物10は、例えば板状集合住宅のように、建物の長手方向に対して直交する複数の壁12が配置されていることが好適である。地震によって建物10に生じる慣性力(地震力)は、図1中の矢印で示すように、建物10が地面に固定された状態における水平力のように作用する。建物10を床レベルに質量が集中しているものとみなし、壁12に平行な水平力が各階の床レベルに作用するものとして設計する。この地震力によって、図1中の建物10の右下部に集中する圧縮束が形成されるため上下方向にも力が生じ、床スラブ11と壁12との交差部13(図3参照)には、上下方向に圧縮力を受ける領域と引張力を受ける領域とが生じる。 Hereinafter, the design method of the building 10 according to the embodiment will be described with reference to the drawings. As shown in FIG. 1, the building 10 has a reinforced concrete floor slab 11 extending in the horizontal direction and a floor slab 11 extending in the vertical direction and bonded to the upper and lower surfaces of the floor slab 11, and has a higher compressive strength than the floor slab 11. It is provided with a reinforced concrete wall 12 in which the concrete having the above is used. The lower floor wall 12 and the upper floor wall 12 are arranged at positions that are vertically aligned with each other. It is preferable that the building 10 has a plurality of walls 12 orthogonal to the longitudinal direction of the building, such as a plate-shaped apartment house. The inertial force (seismic force) generated in the building 10 by the earthquake acts like a horizontal force when the building 10 is fixed to the ground, as shown by the arrows in FIG. The building 10 is considered to have mass concentrated on the floor level, and the horizontal force parallel to the wall 12 is designed to act on the floor level of each floor. Due to this seismic force, a compressive bundle concentrated in the lower right part of the building 10 in FIG. 1 is formed, so that a force is also generated in the vertical direction, and the intersection 13 between the floor slab 11 and the wall 12 (see FIG. 3) is affected. , A region that receives a compressive force in the vertical direction and a region that receives a tensile force are generated.

図2は、建物10のある階に於ける中間部分の横断面図であり、壁12の両端は、柱14に接合している。図中の太い矢印は、地震力を示す。壁12の地震力を受ける側には、上下方向(Z方向)に引張力が作用し、その反対側には上下方向に圧縮力が作用する。圧縮力が作用する領域に於いて、床スラブ11と壁12との交差部13(図3参照)は、上下方向に圧縮されるため、図2中の細い矢印で示すように、壁12と直交する水平方向(X方向)に拡がろうとする。しかしながら互いにX方向に隣接する壁12間の距離は地震時も変化しないため、床スラブ11の交差部13に隣接する部分によって、交差部13の変形が抑制される。 FIG. 2 is a cross-sectional view of an intermediate portion on a floor of the building 10, and both ends of the wall 12 are joined to columns 14. Thick arrows in the figure indicate seismic force. A tensile force acts in the vertical direction (Z direction) on the side of the wall 12 that receives the seismic force, and a compressive force acts in the vertical direction on the opposite side. In the region where the compressive force acts, the intersection 13 (see FIG. 3) between the floor slab 11 and the wall 12 is compressed in the vertical direction, so that the wall 12 and the wall 12 are as shown by the thin arrows in FIG. It tries to spread in the horizontal direction (X direction) that is orthogonal to each other. However, since the distance between the walls 12 adjacent to each other in the X direction does not change even during an earthquake, the deformation of the intersection 13 is suppressed by the portion of the floor slab 11 adjacent to the intersection 13.

このような地震時の力の作用は、互いにX方向に隣接する壁12間の中心線でX方向の変形が拘束された図3に示す構造と等価といえる。本実施形態は、この床スラブ11による交差部13への拘束効果を考慮して、交差部13のコンクリート強度を算出して、耐震設計を行うものである。 It can be said that the action of such a force during an earthquake is equivalent to the structure shown in FIG. 3 in which the deformation in the X direction is constrained by the center line between the walls 12 adjacent to each other in the X direction. In this embodiment, the concrete strength of the intersection 13 is calculated in consideration of the restraining effect of the floor slab 11 on the intersection 13, and the seismic design is performed.

図4に示すように、床スラブ11のコンクリート圧縮強度をσ、壁12の圧縮強度をσB1とし、図5のフローチャートを参照しながら、設計手順について説明する。 As shown in FIG. 4, the concrete compressive strength of the floor slab 11 is σ B , the compressive strength of the wall 12 is σ B1, and the design procedure will be described with reference to the flowchart of FIG.

まず、壁12のコンクリート圧縮強度σB1、並びに、床及び壁12の形状等の基本データを入力する(ST(ステップ)1)。 First, basic data such as the concrete compressive strength σ B1 of the wall 12 and the shapes of the floor and the wall 12 are input (ST (step) 1).

次に床スラブ11の有無を確認する(ST2)。床スラブ11がない場合は、本実施形態に係る設計方法は適用されない。床スラブ11がある場合は、床スラブ11のコンクリート圧縮強度σを入力する(ST3)。 Next, the presence or absence of the floor slab 11 is confirmed (ST2). If there is no floor slab 11, the design method according to this embodiment does not apply. If there is a floor slab 11, the concrete compression strength σ B of the floor slab 11 is input (ST3).

次に、図3に示す交差部13の拘束状態を、図6に示す仮想の拘束ばね15に置き換えて、拘束ばね15のばね定数kを算出する(ST4)。図6に於いて、太い矢印は地震力によって生じる上下方向の圧縮力を示し、破線は、この圧縮力によって変形した交差部13の形状を模式的に示す。交差部13のZ方向の変位をΔz、X方向の片側に拡がる変位を1/2Δxとすると、拘束ばね15によってΔxの大きさが抑えられる。例えば、拘束ばね15を、図7に於いて薄いドットパターンで示した、床スラブ11に於ける等脚台形の領域の弾性を表すものとして設定することができる。図7のA図、B図及びC図は、それぞれ、壁12が柱14に接合していないもの、壁12の両端に柱14が接合しているもの、及び、壁12の両端に柱14が接合し、かつ柱14から壁12に直交する方向に梁16が延出しているものを示すが、いずれの形態に於いても、同様の算出方法で拘束ばね15のばね定数kを算出することができる。なお、図7に図示される壁12及び柱14は断面であるが、断面を示すためのハッチングは省略している。 Next, the restraint state of the intersection 13 shown in FIG. 3 is replaced with the virtual restraint spring 15 shown in FIG. 6, and the spring constant k of the restraint spring 15 is calculated (ST4). In FIG. 6, the thick arrow indicates the vertical compressive force generated by the seismic force, and the broken line schematically shows the shape of the intersection 13 deformed by the compressive force. Assuming that the displacement of the intersection 13 in the Z direction is Δz and the displacement spreading to one side in the X direction is 1 / 2Δx, the magnitude of Δx is suppressed by the restraint spring 15. For example, the restraint spring 15 can be set to represent the elasticity of the isosceles trapezoidal region of the floor slab 11, which is shown in the thin dot pattern in FIG. In FIGS. A, B, and C of FIG. 7, the wall 12 is not joined to the pillar 14, the pillar 14 is joined to both ends of the wall 12, and the pillar 14 is joined to both ends of the wall 12, respectively. The beam 16 extends from the column 14 in the direction orthogonal to the wall 12, and the spring constant k of the restraint spring 15 is calculated by the same calculation method in any form. be able to. The walls 12 and pillars 14 shown in FIG. 7 have cross sections, but hatching for showing the cross sections is omitted.

台形の一方の底辺は、交差部13との境界部分であり、交差部13からX方向の圧縮力を受ける。台形の他方の底辺は、互いに隣接する壁12間の中線であり、弾性部分を支持する支持部17である。壁12及び交差部13には、曲げ圧縮領域に、図7中に濃いドットパターンで示したせん断破壊判定領域18が設定され、その壁12に沿った水平方向(Y方向)の長さはlscである。台形の交差部13側の底辺の位置は、平面視で、せん断破壊判定領域18に隣接する部分に対応する。せん断破壊判定領域18は、壁12及び交差部13に於いて、地震力を受ける側とは反対側の端部から、地震力を受ける側に向かって壁12のY方向長さの1/3〜1/2程度までの領域である。X方向(壁12から支持部17に向かう方向、台形の高さ方向)と台形の脚とのなす角θは、0°以上45°以下であり、支持部17側の底辺の長さlは、交差部13側の底辺の長さlsc以上である。なお、建物10の端部側に設けられた壁12に於いて、他の壁12がない側の拘束ばね15に関しては、スラブ端に設けた梁19(図2参照)や、X方向への床スラブ11の変形を拘束するために壁12に平行な水平方向(Y方向)に延在する曲げ補強筋20(図2参照)を設置し、これらを拘束ばね15によって表される床スラブ11の台形の弾性部の支持部17としてもよい。 One base of the trapezoid is a boundary portion with the intersection 13, and receives a compressive force in the X direction from the intersection 13. The other base of the trapezoid is the midline between the walls 12 adjacent to each other and is the support portion 17 that supports the elastic portion. In the wall 12 and the intersection 13, a shear failure determination region 18 shown by a dark dot pattern in FIG. 7 is set in the bending compression region, and the length in the horizontal direction (Y direction) along the wall 12 is l. It is sc . The position of the base of the trapezoidal intersection 13 side corresponds to the portion adjacent to the shear failure determination region 18 in a plan view. The shear failure determination region 18 is 1/3 of the length of the wall 12 in the Y direction from the end of the wall 12 and the intersection 13 opposite to the side receiving the seismic force toward the side receiving the seismic force. The area is up to about 1/2. The angle θ between the X direction (the direction from the wall 12 toward the support portion 17 and the height direction of the trapezoid) and the trapezoidal legs is 0 ° or more and 45 ° or less, and the length l B of the base on the support portion 17 side. Is greater than or equal to the length l sc of the base on the intersection 13 side. Regarding the restraint spring 15 on the side where there is no other wall 12 in the wall 12 provided on the end side of the building 10, the beam 19 (see FIG. 2) provided at the slab end and the X direction. In order to restrain the deformation of the floor slab 11, bending reinforcing bars 20 (see FIG. 2) extending in the horizontal direction (Y direction) parallel to the wall 12 are installed, and these are represented by the restraining spring 15. The floor slab 11 The support portion 17 of the trapezoidal elastic portion may be used.

拘束ばね15のばね定数kは、上記の台形状の板にX方向に圧縮力が作用するときのたわみに基づいて算出する。まず、X方向(台形の高さ方向)の微小区間のたわみを求め、これをX方向に積分して全体のたわみを求める。ここで、X方向の圧縮力は、対象領域の全体に、均等に加わっているものとみなして計算する。次に、圧縮力を全体のたわみで割ってばね定数kを算出する。以上の計算に基づくばね定数kは、次式によって表される。なお、壁12の左右の仕様(スラブ厚t、スパンh、ヤング係数Eなど)が異なる場合は、それぞれのばね定数kを算出し、平均値を用いる。

Figure 0006773509
k:ばね定数
ω:設計上の安全率(1.0以下)
:床スラブ11の厚さ
:支持部17側の底辺の長さ
sc:壁12及び交差部13の曲げ圧縮領域に於けるせん断破壊判定領域の長さ(交差部13側の底辺の長さ)
:壁12から支持部17までの距離(台形の高さ)
:床スラブ11のヤング係数 The spring constant k of the restraint spring 15 is calculated based on the deflection when a compressive force acts on the trapezoidal plate in the X direction. First, the deflection of a minute section in the X direction (the height direction of the trapezoid) is obtained, and this is integrated in the X direction to obtain the total deflection. Here, the compressive force in the X direction is calculated assuming that it is evenly applied to the entire target area. Next, the compressive force is divided by the total deflection to calculate the spring constant k. The spring constant k based on the above calculation is expressed by the following equation. If the left and right specifications of the wall 12 (slab thickness t s , span h s , Young's modulus E c, etc.) are different, the spring constants k for each are calculated and the average value is used.
Figure 0006773509
k: Spring constant ω: Design safety factor (1.0 or less)
t s : Thickness of the floor slab 11 l B : Length of the base on the support portion 17 side l sc : Length of the shear failure determination region in the bending compression region of the wall 12 and the intersection 13 (on the intersection 13 side) Bottom length)
h s : Distance from wall 12 to support 17 (height of trapezoid)
E c : Young's modulus of floor slab 11

次に、図5に示すように、拘束ばね15から交差部13に作用する側圧σを算定する(ST5)。まず、交差部13のX方向に拡がる変位Δxを求める。変位Δxは、次式によって表される。

Figure 0006773509
Δx:X方向に拡がる変位
ν:コンクリートのポアソン比
ε:圧縮ひずみ(交差部13のZ方向の変位(Δz)/床スラブ11の厚さ(t))
:壁12の厚さ Next, as shown in FIG. 5, the lateral pressure σ r acting on the intersection 13 from the restraint spring 15 is calculated (ST5). First, the displacement Δx that spreads in the X direction of the intersection 13 is obtained. The displacement Δx is expressed by the following equation.
Figure 0006773509
[Delta] x: displacement extends in the X direction [nu: Poisson's ratio of the concrete epsilon z: Compression strain (Z-direction displacement of the intersection 13 (Δz) / thickness of the floor slab 11 (t s))
t w : Thickness of wall 12

次にΔxとばね定数kとから側圧σを求める。側圧σは、次式によって表される。

Figure 0006773509
σ:側圧
α:床スラブ11の状況による係数。壁12がx方向の両側から拘束される場合(壁12に対してx方向の両側に床スラブ11等がある場合)α=2、片側からのみ拘束される場合(壁12に対してx方向の片側にのみ床スラブ11等がある場合)α=1。 Next, the lateral pressure σ r is obtained from Δx and the spring constant k. The lateral pressure σ r is expressed by the following equation.
Figure 0006773509
σ r : Lateral pressure α s : Coefficient according to the situation of the floor slab 11. When the wall 12 is restrained from both sides in the x direction (when there are floor slabs 11 and the like on both sides in the x direction with respect to the wall 12) α s = 2, when restrained only from one side (x with respect to the wall 12) If there is a floor slab 11 etc. on only one side of the direction) α s = 1.

次に、交差部13の等価圧縮強度σ'を算定する(ST6)。交差部13は、床スラブ11からの側圧σによる拘束効果によって材料強度(床スラブ11のコンクリート圧縮強度σ)よりも強度が高くなる。等価圧縮強度σ'は、この拘束効果を考慮して材料強度を補正した強度である。拘束されたコンクリートの圧縮強度が高くなることは公知であり、その算定方法は種々提案されている。等価圧縮強度σ'は、それらのいずれかの算定方法により算出することができる。例えば、次式によって算定することができる。

Figure 0006773509
σ':等価圧縮強度
σ:床スラブ11のコンクリート圧縮強度(交差部13の材料強度) Then, to calculate the equivalent compressive strength of the intersecting portion 13 σ B '(ST6). The intersection 13 has a strength higher than the material strength (concrete compression strength σ B of the floor slab 11) due to the restraining effect of the lateral pressure σ r from the floor slab 11. Equivalent compressive strength sigma B 'is the intensity of the material strength was corrected in consideration of the constraint effects. It is known that the compressive strength of restrained concrete is increased, and various calculation methods have been proposed. Equivalent compressive strength sigma B 'can be calculated by any of them calculation methods. For example, it can be calculated by the following formula.
Figure 0006773509
σ B ': Equivalent compressive strength σ B : Concrete compressive strength of floor slab 11 (material strength of intersection 13)

次に、等価圧縮強度σ'と壁12のコンクリート圧縮強度σB1との大小を比較する(ST7)。 Next, compare the magnitude of the concrete compressive strength sigma B1 equivalent compressive strength sigma B 'and the wall 12 (ST7).

等価圧縮強度σ'が、壁12のコンクリート圧縮強度σB1以上の場合、地震力が加わったとき、交差部13よりも先に壁12(母材)で破壊が生じる。そこで、耐震設計の計算上の交差部13の圧縮強度を壁12の圧縮強度の値に設定して設計する(ST8)。すなわち、設計上、壁12と交差部13とから耐震壁21が形成されると考えたときに、耐震壁21全体の圧縮強度を、交差部13の等価圧縮強度σ'と壁12のコンクリート圧縮強度σB1との内、小さいほうの圧縮強度である壁12のコンクリート圧縮強度σB1とみなして設計する。 Equivalent compressive strength sigma B 'is not less than the concrete compressive strength sigma B1 walls 12, when the seismic force is applied, breakdown occurs in the wall 12 (base material) before the intersection 13. Therefore, the compression strength of the intersection 13 in the calculation of the seismic design is set to the value of the compression strength of the wall 12 (ST8). That is, design, when considering the shear wall 21 from the wall 12 and the intersecting portion 13. are formed, the compressive strength of the entire shear walls 21, concrete equivalent compressive strength sigma B 'and the wall 12 of the intersection 13 among the compressive strength sigma B1, designed regarded as concrete compressive strength sigma B1 wall 12 is a compression strength of the smaller.

等価圧縮強度σ'が、壁12のコンクリート圧縮強度σB1より小さいと判断した場合、地震力が加わったとき、壁12(母材)よりも先に交差部13で破壊が生じる。このような交差部破壊型で設計するか否かを判断する(ST9)。交差部破壊型で設計する場合は、耐震設計の計算上の壁12の圧縮強度を等価圧縮強度σ'の値に設定して設計する(ST10)。すなわち、壁12と交差部13とからなる耐震壁21全体の圧縮強度を、交差部13の等価圧縮強度σ'と壁12のコンクリート圧縮強度σB1との内、小さいほうの圧縮強度である交差部13の等価圧縮強度σ'とみなして設計する。交差部破壊型で設計しない場合は、床スラブ11のコンクリート圧縮強度σの値を大きくして、ST3からやり直す。 Equivalent compressive strength sigma B 'is, if it is determined that the wall 12 of concrete compressive strength sigma B1 smaller than when the seismic force is applied, the wall 12 broken at the intersection 13 before the (base material) occurs. It is determined whether or not to design with such an intersection destruction type (ST9). When designing with the intersection fracture type, the compression strength of the wall 12 in the seismic design is set to the value of the equivalent compression strength σ B '(ST10). In other words, the compressive strength of the entire shear wall 21 consisting of wall 12 and the intersection 13. Of the concrete compressive strength sigma B1 equivalent compressive strength sigma B 'and the wall 12 of the intersection 13 is the compressive strength of the smaller designing regarded as equivalent compressive strength sigma B 'of intersection 13. If the design is not for the intersection fracture type, increase the value of the concrete compression strength σ B of the floor slab 11 and start over from ST3.

なお、類型化された形状の床スラブ11及び壁12に対して、図8に示すグラフのような床スラブ11のコンクリート圧縮強度σと等価圧縮強度σ'との対応関係を示すグラフや表を予め作成しておき、ST3に於いては、等価圧縮強度σ'が壁12のコンクリート圧縮強度σB1以上になると推定される値を床スラブ11のコンクリート圧縮強度σに設定してもよい。 Incidentally, with respect to the floor slab 11 and the wall 12 of typified shape, Ya graph showing a relationship between the concrete compressive strength of the floor slab 11 sigma B equivalent compressive strength sigma B ', such as the graph shown in FIG. 8 Table prepared in advance, and is at the ST3, the equivalent compressive strength sigma B 'is set a value that is estimated to be more concrete compressive strength sigma B1 wall 12 concrete compressive strength sigma B of the floor slab 11 May be good.

下端側が基礎梁に接合し、上端側が加力梁に接合した、長さ1200mm、高さ900mmの壁板(横筋D6@85mm、縦筋D6@50mm)を試験体として、本発明の実施例と比較例とについて試験を行った。比較例1は、壁板全体が同一のコンクリートで打設された。比較例2は、壁板の脚部に高さ50mmの低強度層を設けたが、壁板本体と同じ厚さであり、床スラブに相当する部分は設けなかった。実施例1〜4は、壁板の脚部に高さ50mmの低強度層を設け、低強度層は、壁板と直交する方向に300mmの長さを有するスラブであり、壁板の両側に床スラブがある状態に対応するものとした。実施例1〜4のスラブには、スラブを基礎梁に定着させるスラブ筋(D6@100mm)を設け、さらに、実施例2〜4のスラブには、壁板と直交する方向に延在するU字拘束筋を設けた。実施例2のU字拘束筋は、基礎梁に定着しておらず、実施例3及び4のU字拘束筋は、両端部が下方に向けて屈曲させて基礎梁に定着させた。表1に試験体の性状を示す。

Figure 0006773509
A wall plate (horizontal bar D6 @ 85 mm, vertical bar D6 @ 50 mm) having a length of 1200 mm and a height of 900 mm, in which the lower end side is joined to the foundation beam and the upper end side is joined to the force beam, is used as an embodiment of the present invention. A test was conducted with a comparative example. In Comparative Example 1, the entire wall plate was cast with the same concrete. In Comparative Example 2, a low-strength layer having a height of 50 mm was provided on the legs of the wall plate, but the thickness was the same as that of the wall plate main body, and a portion corresponding to the floor slab was not provided. In Examples 1 to 4, a low-strength layer having a height of 50 mm is provided on the leg portion of the wall plate, and the low-strength layer is a slab having a length of 300 mm in a direction orthogonal to the wall plate, and is provided on both sides of the wall plate. It corresponds to the state where there is a floor slab. The slabs of Examples 1 to 4 are provided with slab bars (D6 @ 100 mm) for fixing the slab to the foundation beam, and the slabs of Examples 2 to 4 are U extending in a direction orthogonal to the wall plate. A character restraint muscle was provided. The U-shaped restraint bar of Example 2 was not fixed to the foundation beam, and both ends of the U-shaped restraint bar of Examples 3 and 4 were bent downward and fixed to the foundation beam. Table 1 shows the properties of the test piece.
Figure 0006773509

数1〜数4に基づき、実施例1〜4の等価圧縮強度σ'を算出した。等価圧縮強度σ'の算出に当たって、設計上の安全率ωは1.0、lscは壁板の長さの1/3である400mm、拘束ばねによって表されるスラブの台形部分の高さ方向と脚との角度θ(図7参照)は45°、ポアソン比νは0.4(塑性域を考慮)、圧縮ひずみεは2000マイクロとした。実施例1〜4の全ての試験体に於いて、等価圧縮強度σ'は、壁板本体の圧縮強度σB1より大きかった。また、壁体本体の材料強度に基づく強度、低強度層の材料強度に基づく強度を計算した。 Based on equations 1 4, to calculate the equivalent compressive strength sigma B 'of Example 1-4. In calculating the equivalent compressive strength σ B ', the design safety factor ω is 1.0, l sc is 400 mm, which is 1/3 of the length of the wall plate, and the height of the trapezoidal part of the slab represented by the restraint spring. The angle θ between the direction and the leg (see FIG. 7) was 45 °, the Poisson's ratio ν was 0.4 (considering the plastic region), and the compressive strain ε z was 2000 micron. In all tests of Examples 1-4, an equivalent compression strength sigma B 'was greater than the compressive strength sigma B1 wallboard body. In addition, the strength based on the material strength of the wall body and the strength based on the material strength of the low-strength layer were calculated.

試験体に地震力に対応する壁板と平行な水平力を加えた。水平力は変位漸増の正負繰り返し加力であった。実験結果及び計算結果を表2に示す。

Figure 0006773509
A horizontal force parallel to the wall plate corresponding to the seismic force was applied to the test piece. The horizontal force was a positive / negative repeated force of increasing displacement. Table 2 shows the experimental results and calculation results.
Figure 0006773509

実施例1〜4に於いては、等価圧縮強度σ'は、壁板本体の圧縮強度σB1より大きかったため、本発明によれば、壁板本体と低強度層とを合わせた壁板全体の圧縮強度を、壁体本体の圧縮強度σB1とみなせる(図5のST8)。実施例1〜4について、実験値の最大荷重と壁板本体の強度とを比較すると、実験値の最大荷重の方が大きく、実施形態による耐震設計方法の安全性が示された。 Is In Examples 1-4, 'the equivalent compressive strength sigma B, for greater than the compressive strength sigma B1 wallboard body, according to the present invention, the entire wallboard combining the wallboard body and low-strength layer Can be regarded as the compressive strength σ B1 of the wall body (ST8 in FIG. 5). Comparing the maximum load of the experimental values and the strength of the wall plate body with respect to Examples 1 to 4, the maximum load of the experimental values was larger, indicating the safety of the seismic design method according to the embodiment.

また、比較例1及び2は、曲げ強度よりも小さい値で破壊したため、破壊形式はせん断破壊と判断されるが、実施例1〜4は、曲げ強度よりも大きい値で破壊したため、破壊形式は曲げ破壊と判断される。 Further, in Comparative Examples 1 and 2, since the fracture was performed at a value smaller than the bending strength, the fracture type was judged to be shear fracture, but in Examples 1 to 4, the fracture type was determined to be fractured at a value larger than the bending strength. It is judged to be bending fracture.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。壁と床スラブとの交差部に代えて、柱と床スラブの交差部や、壁と梁との交差部、又は柱と梁との交差部に本発明を適用してもよい。拘束ばねによって表される床スラブの弾性部部分の形状を変更してもよい。また、本発明は、上記実施形態の各ステップに対応する手段としてコンピュータを機能させるためのプログラムに適用してもよい。 Although the description of the specific embodiment is completed above, the present invention can be widely modified without being limited to the above embodiment. Instead of the intersection of the wall and the floor slab, the present invention may be applied to the intersection of the column and the floor slab, the intersection of the wall and the beam, or the intersection of the column and the beam. The shape of the elastic portion of the floor slab represented by the restraint spring may be changed. Further, the present invention may be applied to a program for operating a computer as a means corresponding to each step of the above embodiment.

10:建物
11:床スラブ(水平部材)
12:壁(鉛直部材)
13:交差部
14:柱
15:拘束ばね
16:X方向に延在する梁
17:支持部
18:せん断破壊判定領域
19:Y方向に延在する梁
20:曲げ補強筋
21:耐震壁
10: Building 11: Floor slab (horizontal member)
12: Wall (vertical member)
13: Intersection 14: Column 15: Restraint spring 16: Beam extending in the X direction 17: Support part 18: Shear failure determination region 19: Beam extending in the Y direction 20: Bending reinforcement 21: Shear wall

Claims (7)

所定の水平方向に延在するコンクリート造の水平部材と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材とを備える建物の耐震設計方法であって、
前記鉛直部材の圧縮強度(σB1)を設定するステップと、
前記水平部材の圧縮強度(σ)を設定するステップと、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換えるステップと、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定するステップと、
前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定するステップと、
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記水平部材の圧縮強度(σ)を大きくして、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように設定して設計するステップとを備えることを特徴とする建物の耐震設計方法。
A concrete horizontal member extending in a predetermined horizontal direction, extending in the vertical direction so as to be orthogonal to the predetermined horizontal direction, being coupled to the upper and lower surfaces of the horizontal member, and having a higher compression than the horizontal member. It is a method of seismic design of a building equipped with a pair of upper and lower vertical members made of concrete, which has strength.
The step of setting the compressive strength (σ B1 ) of the vertical member and
The step of setting the compressive strength (σ B ) of the horizontal member and
The portion of the horizontal member adjacent to the intersection located between the vertical members in the horizontal member suppresses the intersection from expanding in the predetermined horizontal direction due to the vertical compressive force generated by the earthquake. Steps to replace the function to be with a virtual restraint spring,
Using the spring constant of the restraint spring, a step of calculating the lateral pressure acting on the intersection in the predetermined horizontal direction when receiving an seismic force, and
A step of calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraint effect due to the lateral pressure.
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, designed to set the compressive strength of the intersection of the value of compressive strength (sigma B1) of said vertical member, 'If is smaller than the compressive strength of the vertical member (sigma B1), to increase the compressive strength of the horizontal member (σ B), the equivalent compressive strength (sigma B the equivalent compressive strength (σ B)') is A seismic design method for a building, which comprises a step of setting and designing the vertical member so as to have a compressive strength (σ B1 ) or more.
所定の水平方向に延在するコンクリート造の水平部材と、前記所定の水平方向に直交するように鉛直方向に延在し、前記水平部材の上下面に結合され、かつ前記水平部材よりも高い圧縮強度を有する、コンクリート造の上下1組の鉛直部材とを備える建物の耐震設計方法であって、
前記鉛直部材の圧縮強度(σB1)を設定するステップと、
前記水平部材の圧縮強度(σ)を設定するステップと、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震によって生じる鉛直方向の圧縮力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換えるステップと、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定するステップと、
前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定するステップと、
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定して設計し、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定して設計するステップとを備えることを特徴とする建物の耐震設計方法。
A concrete horizontal member extending in a predetermined horizontal direction, extending in the vertical direction so as to be orthogonal to the predetermined horizontal direction, being coupled to the upper and lower surfaces of the horizontal member, and having a higher compression than the horizontal member. It is a method of seismic design of a building equipped with a pair of upper and lower vertical members made of concrete, which has strength.
The step of setting the compressive strength (σ B1 ) of the vertical member and
The step of setting the compressive strength (σ B ) of the horizontal member and
The portion of the horizontal member adjacent to the intersection located between the vertical members in the horizontal member suppresses the intersection from expanding in the predetermined horizontal direction due to the vertical compressive force generated by the earthquake. Steps to replace the function to be with a virtual restraint spring,
Using the spring constant of the restraint spring, a step of calculating the lateral pressure acting on the intersection in the predetermined horizontal direction when receiving an seismic force, and
A step of calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraint effect due to the lateral pressure.
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, designed to set the compressive strength of the intersection of the value of compressive strength (sigma B1) of said vertical member, When the equivalent compressive strength (σ B ') is smaller than the compressive strength (σ B1 ) of the vertical member, the step of designing by setting the compressive strength of the vertical member to the value of the equivalent compressive strength (σ B '). Seismic design method of a building characterized by being equipped with.
前記鉛直部材が、前記所定の水平方向に複数組配列され、
前記拘束ばねを、前記所定の水平方向に互いに隣接する前記鉛直部材間の中心線から前記交差部に至る部分に対応する前記水平部材の部分の弾性を表すものとして設定して、前記拘束ばねの前記ばね定数を求めることを特徴とする請求項1又は2に記載の耐震設計方法。
A plurality of sets of the vertical members are arranged in the predetermined horizontal direction.
The restraint spring is set as representing the elasticity of the portion of the horizontal member corresponding to the portion from the center line between the vertical members adjacent to each other in the predetermined horizontal direction to the intersection, and the restraint spring is set. The seismic design method according to claim 1 or 2, wherein the spring constant is obtained.
前記鉛直部材が壁をなし、
前記水平部材が床スラブをなし、
前記拘束ばねを、平面視にて、前記交差部に於ける地震力による曲げ圧縮領域の所定の範囲及び前記中心線を底辺とし、前記壁から前記中心線に向かう方向と脚とのなす角が0°以上45°以下である等脚台形部分の弾性を表すものとして設定することを特徴とする請求項3に記載の耐震設計方法。
The vertical member forms a wall,
The horizontal member forms a floor slab,
In a plan view, the restraint spring has a predetermined range of a bending compression region due to seismic force at the intersection and the center line as the base, and the angle formed by the direction from the wall toward the center line and the leg is The seismic design method according to claim 3, wherein the seismic design method is set to represent the elasticity of an isosceles trapezoidal portion having a temperature of 0 ° or more and 45 ° or less.
前記水平部材の圧縮強度(σ)と、前記等価圧縮強度(σ')との対応関係を示す表又はグラフを作成するステップを更に備え、
前記水平部材の圧縮強度(σ)を設定するステップでは、前記表又はグラフに基づき、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上となるように前記水平部材の圧縮強度(σ)を設定することを特徴とする請求項1〜4のいずれか一項に記載の耐震設計方法。
Further provided with a step of creating a table or graph showing the correspondence between the compressive strength (σ B ) of the horizontal member and the equivalent compressive strength (σ B ').
In the step of setting the compressive strength (σ B ) of the horizontal member, the horizontal member is set so that the equivalent compressive strength (σ B ') is equal to or higher than the compressive strength (σ B1 ) of the vertical member based on the table or graph. The seismic design method according to any one of claims 1 to 4, wherein the compressive strength (σ B ) of the member is set.
所定の水平方向に延在するコンクリート造の水平部材と、前記所定の水平方向に直交し、前記水平部材の上下面に交差方向に結合され、かつ前記水平部材よりも高強度であるコンクリート造の上下1組の鉛直部材とを備える建物の耐震設計をするためのプログラムであって、
前記鉛直部材の圧縮強度(σB1)の入力を受け付ける手段と、
前記水平部材の圧縮強度(σ)の入力を受け付ける手段と、
前記水平部材に於ける前記鉛直部材間に位置する交差部に隣接する前記水平部材の部分による、前記交差部が地震力を受けて前記所定の水平方向に拡がることを抑制する機能を仮想の拘束ばねに置き換える手段と、
前記拘束ばねのばね定数を用いて、地震力を受けたときに前記交差部に対して前記所定の水平方向に作用する側圧を算定する手段と、
前記水平部材の圧縮強度(σ)を前記側圧による拘束効果を考慮して補正することにより、前記交差部の等価圧縮強度(σ')を算定する手段と、
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上の場合、前記交差部の圧縮強度を前記鉛直部材の圧縮強度(σB1)の値に設定する手段
としてコンピュータを機能させるためのプログラム。
A concrete horizontal member extending in a predetermined horizontal direction and a concrete structure orthogonal to the predetermined horizontal direction, coupled to the upper and lower surfaces of the horizontal member in an intersecting direction, and having a higher strength than the horizontal member. It is a program for seismic design of a building equipped with a set of upper and lower vertical members.
A means for receiving an input of the compression strength (σ B1 ) of the vertical member,
A means for receiving an input of the compression strength (σ B ) of the horizontal member,
A virtual constraint on the function of the horizontal member portion adjacent to the intersection located between the vertical members in the horizontal member to prevent the intersection from expanding in a predetermined horizontal direction due to seismic force. Means to replace with springs
A means for calculating the lateral pressure acting on the intersection in the predetermined horizontal direction when a seismic force is applied by using the spring constant of the restraint spring.
A means for calculating the equivalent compressive strength (σ B ') of the intersection by correcting the compressive strength (σ B ) of the horizontal member in consideration of the restraining effect due to the lateral pressure.
Wherein when the equivalent compressive strength (σ B ') is compressive strength (sigma B1) or of the vertical member, the computer as a means for setting the compressive strength of the intersection of the value of compressive strength (sigma B1) of the vertical member A program to make it work.
前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)よりも小さい場合、前記等価圧縮強度(σ')が前記鉛直部材の圧縮強度(σB1)以上とするために前記水平部材の圧縮強度(σ)を再入力するか、又は、前記鉛直部材の圧縮強度を前記等価圧縮強度(σ')の値に設定するかの選択を受け付ける手段としてコンピュータを機能させることを更に含むことを特徴とする請求項6に記載のプログラム。 When the equivalent compressive strength (σ B ') is smaller than the compressive strength (σ B1 ) of the vertical member, the equivalent compressive strength (σ B ') is set to be equal to or higher than the compressive strength (σ B1 ) of the vertical member. Make the computer function as a means of accepting the choice of re-entering the compressive strength (σ B ) of the horizontal member or setting the compressive strength of the vertical member to the value of the equivalent compressive strength (σ B '). The program according to claim 6, further comprising:
JP2016195634A 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design Active JP6773509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016195634A JP6773509B2 (en) 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016195634A JP6773509B2 (en) 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design

Publications (2)

Publication Number Publication Date
JP2018059281A JP2018059281A (en) 2018-04-12
JP6773509B2 true JP6773509B2 (en) 2020-10-21

Family

ID=61908761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016195634A Active JP6773509B2 (en) 2016-10-03 2016-10-03 Building seismic design methods and programs for seismic design

Country Status (1)

Country Link
JP (1) JP6773509B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135951B2 (en) * 1991-09-27 2001-02-19 株式会社長谷工コーポレーション Structural design system of building frame
JP2000356041A (en) * 1999-06-17 2000-12-26 Nishimatsu Constr Co Ltd Method for placing concrete
JP2004197524A (en) * 2002-12-20 2004-07-15 Misawa Homes Co Ltd Design system, designed method, computer program, and record medium
JP5379270B2 (en) * 2012-06-25 2013-12-25 電気化学工業株式会社 Reinforced concrete member design support apparatus, design support method and program

Also Published As

Publication number Publication date
JP2018059281A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
Prakash et al. Seismic performance of circular RC columns subjected to axial force, bending, and torsion with low and moderate shear
Musmar Analysis of shear wall with openings using solid65 element
JP7196886B2 (en) Steel beam with floor slab
Teran-Gilmore et al. Preliminary design of low-rise buildings stiffened with buckling-restrained braces by a displacement-based approach
JP6773509B2 (en) Building seismic design methods and programs for seismic design
KR101528972B1 (en) Wall for seismic retrofit and construction methods of the wall
Sen et al. Displacement-based seismic design of flat slab-shear wall buildings
Kim et al. Flexural capacity of the composite beam using angle as a shear connector
Pisode et al. Comparative assessment of seismic fragility of RC frame buildings designed for older and revised Indian standards
JP5050088B2 (en) Reinforced concrete beam design method and reinforced concrete beam
Kristianto et al. Confinement of Reinforced-Concrete Columns with NonCode Compliant Confining Reinforcement plus Supplemental Pen-Binder
Astawa et al. Ductile Structure Framework of Earthquake Resistant of Highrise Building on Exterior Beam-Column Joint with the Partial Prestressed Concrete Beam-Column Reinforced Concrete
Giannopoulos Seismic Assessment of RC Building according to FEMA 356 and Eurocode 8
JP2019019664A (en) High-rise building and precast pre-stressed concrete column
Kotsovou et al. Improving the design of earthquake resistant reinforced concrete exterior beam-column joints
JP5399649B2 (en) Evaluation method of bending strength of reinforced concrete beams
Tripathi et al. Non-linear cyclic response of concrete walls with different transverse reinforcement detailing
Huang et al. Nonlinear pushover analysis of infilled concrete frames
Kian et al. Plastic hinge length and inelastic rotational capacity of reinforced concrete shear walls detailed with Self-Centering reinforcement
Ahmad et al. Recycling of damaged RC frames: Replacing crumbled concrete and installing steel haunches below/above the beam at connections
Meng et al. Performance and strength analysis of concrete-encased steel plate walls under tensile-flexural-shear load
Gramblička et al. Transverse reinforcement in reinforced concrete columns
Masajedian et al. Progressive collapse resistance of composite steel frame structures under corner column removal
Megget et al. Seismic performance of external reinforced concrete beam-column joints
Cardoso Deep beams reinforcement, national and Eurocode 2 design provisions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250