JP6816512B2 - How to design a wall with pillars on both sides and a wall with pillars on both sides - Google Patents

How to design a wall with pillars on both sides and a wall with pillars on both sides Download PDF

Info

Publication number
JP6816512B2
JP6816512B2 JP2017000439A JP2017000439A JP6816512B2 JP 6816512 B2 JP6816512 B2 JP 6816512B2 JP 2017000439 A JP2017000439 A JP 2017000439A JP 2017000439 A JP2017000439 A JP 2017000439A JP 6816512 B2 JP6816512 B2 JP 6816512B2
Authority
JP
Japan
Prior art keywords
wall
columns
sides
strength
shear strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017000439A
Other languages
Japanese (ja)
Other versions
JP2018109317A (en
Inventor
栗田 康平
康平 栗田
安彦 増田
安彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2017000439A priority Critical patent/JP6816512B2/en
Publication of JP2018109317A publication Critical patent/JP2018109317A/en
Application granted granted Critical
Publication of JP6816512B2 publication Critical patent/JP6816512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、両側柱付き壁の設計方法及び両側柱付き壁に関する。 The present invention relates to a method for designing a wall with pillars on both sides and a wall with pillars on both sides.

特許文献1には、既設躯体の柱と梁によって囲まれた開口部に耐力壁を設置する方法が開示されている。具体的には、開口部の内周面に多数のスタッドジベルを設置し、その開口部に壁筋を配筋し、その開口部の内周部にスパイラル筋を配筋し、その開口部内にコンクリートを打設する。この場合、壁と周囲の柱梁との接合強度が高く、壁は柱や壁と一体成形物とみなせる。 Patent Document 1 discloses a method of installing a bearing wall in an opening surrounded by columns and beams of an existing skeleton. Specifically, a large number of stud gibber are installed on the inner peripheral surface of the opening, wall reinforcement is arranged in the opening, spiral reinforcement is arranged in the inner circumference of the opening, and the inside of the opening is reinforced. Place concrete. In this case, the joint strength between the wall and the surrounding columns and beams is high, and the wall can be regarded as an integrally molded product with the columns and walls.

特許3633814号公報Japanese Patent No. 3633814

ところで、開口部に施工する壁を薄型化するために、その壁のコンクリートに高強度ものを選定することが考えられる。そのため、壁のコンクリートの強度は既設躯体のコンクリートの強度に等しくないのが一般的である。壁が柱梁と一体成形物とみなすので、その一体成形物の強度評価を行う場合、壁と柱梁のうち強度の低い方のコンクリートの圧縮強度を用いてその一体成形物のせん断終局強度を算出する。壁と柱梁のうち強度の高い方のコンクリートの圧縮強度を用いずに、強度の低い方のコンクリートの圧縮強度を用いたのは壁と柱梁の強度を過大評価しないためである。
ところが、壁と柱梁のうち強度の低い方のコンクリートの圧縮強度を用いてその一体成形物のせん断終局強度を算出すると、その計算値は実際のせん断終局強度からかけ離れたものとなってしまう。
そこで、本発明は上記事情に鑑みてなされたものであり、本発明の目的は、壁とその両側の柱とからなる両側柱付き壁のせん断終局強度の計算値を過大評価せず、且つ実際のせん断終局強度に近い値を求められるようにすることである。
By the way, in order to make the wall to be constructed at the opening thinner, it is conceivable to select a high-strength concrete for the wall. Therefore, the strength of concrete on the wall is generally not equal to the strength of concrete on the existing skeleton. Since the wall is regarded as an integrally molded product with the column and beam, when evaluating the strength of the integrally molded product, the compressive strength of the concrete with the lower strength of the wall and the column and beam is used to determine the ultimate shear strength of the integrally molded product. calculate. The reason why the compressive strength of the concrete with the lower strength is used instead of the compressive strength of the concrete with the higher strength of the wall and the beam is to not overestimate the strength of the wall and the beam.
However, when the ultimate shear strength of the integrally molded product is calculated using the compressive strength of the concrete having the lower strength of the wall and the beam, the calculated value is far from the actual ultimate shear strength.
Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is not to overestimate the calculated value of the ultimate shear strength of the wall with columns on both sides, which is composed of the wall and the columns on both sides thereof, and actually. It is to be able to obtain a value close to the ultimate shear strength of.

上記課題を解決するために、本発明の態様は、建築物の既設躯体の隣り合う柱とそれら柱の間に架設された梁とによって囲まれた領域に構築される壁及び前記柱のコンクリートの圧縮強度をそれぞれの水平断面積で重み付けした加重平均を求め、前記柱及び前記壁によって構成される両側柱付き壁のせん断終局強度を前記加重平均から求めることを特徴とする両側柱付き壁の設計方法である。 In order to solve the above problems, an embodiment of the present invention is for a wall constructed in an area surrounded by adjacent columns of an existing skeleton of a building and a beam erected between the columns and concrete of the columns. Design of a wall with double-sided columns, characterized in that a weighted average obtained by weighting the compressive strength with each horizontal cross-sectional area is obtained, and the ultimate shear strength of the wall with double-sided columns composed of the column and the wall is obtained from the weighted average. The method.

本発明によれば、壁及び柱のコンクリートの加重平均から両側柱付き壁のせん断終局強度を求めたので、求めたせん断終局強度は実際のせん断終局強度と比較しても過大評価したものでない。更に、求めたせん断終局強度は実際のせん断終局強度に近い値となる。 According to the present invention, since the ultimate shear strength of the wall with columns on both sides is obtained from the weighted average of the concrete of the wall and the column, the obtained ultimate shear strength is not overestimated even when compared with the actual ultimate shear strength. Further, the obtained ultimate shear strength is a value close to the actual ultimate shear strength.

図1は、評価される両側柱付き壁の正面図である。FIG. 1 is a front view of the wall with pillars on both sides to be evaluated. 図2は、II−II断面図である。FIG. 2 is a sectional view taken along line II-II. 図3は、開口を有する両側柱付き壁の正面図である。FIG. 3 is a front view of a wall with columns on both sides having openings. 図4は、評価される両側柱付き壁よりも上階を示した概略図である。FIG. 4 is a schematic view showing the floor above the wall with pillars on both sides to be evaluated. 図5は、試験体の柱梁の配筋図である。FIG. 5 is a bar arrangement diagram of the columns and beams of the test body. 図6は、試験体の後打ちアンカーの配置図である。FIG. 6 is a layout drawing of a post-striking anchor of the test piece. 図7は、試験体の壁の配筋図である。FIG. 7 is a bar arrangement diagram of the wall of the test body. 図8は、実験装置の正面図である。FIG. 8 is a front view of the experimental device. 図9は、載荷履歴の説明図である。FIG. 9 is an explanatory diagram of the loading history. 図10は、実験結果及び計算結果を示したグラフである。FIG. 10 is a graph showing experimental results and calculation results. 図11は、壁が既設壁と増設壁の積層体である場合の両側柱付き壁の水平断面図である。FIG. 11 is a horizontal sectional view of a wall with columns on both sides when the wall is a laminated body of an existing wall and an extension wall.

以下、図面を参照して、本発明の実施形態について説明する。以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are provided with various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.

1.両側柱付き壁について
図1は、建築物の評価対象階の両側柱付き壁5を建築物の柱梁架構1とともに示す図である。柱梁架構1は建築物の既設躯体の隣り合う柱2,2と隣り合う梁3,3とからなる。柱2,2が鉛直に立設され、梁3,3が柱2,2間に水平に架設され、これにより柱梁架構1が矩形枠状に設けられている。柱2,2及び梁3,3は鉄筋コンクリート造又は鉄骨鉄筋コンクリート造である。
1. 1. About the wall with columns on both sides FIG. 1 is a diagram showing the wall 5 with columns on both sides of the evaluation target floor of the building together with the column-beam frame 1 of the building. The column-beam frame 1 is composed of adjacent columns 2 and 2 and adjacent beams 3 and 3 of the existing frame of the building. The columns 2 and 2 are erected vertically, and the beams 3 and 3 are erected horizontally between the columns 2 and 2, whereby the column-beam frame 1 is provided in a rectangular frame shape. The columns 2 and 2 and the beams 3 and 3 are made of reinforced concrete or steel-framed reinforced concrete.

壁4が既設の柱梁架構1の内側に構築されることによって、柱梁架構1が壁4によって補強される。壁4の上端及び下端が梁3,3にそれぞれ接合され、壁4の両側の側部が柱2,2にそれぞれ接合されている。壁4は鉄筋コンクリート造である。壁4の壁筋はダブル配筋又はシングル配筋である。ダブル配筋とは、格子状に配筋された縦筋と横筋との組が壁4の厚さ方向に二組あることいい、シングル配筋とは、その組が一組であることをいう。 By constructing the wall 4 inside the existing column-beam frame 1, the column-beam frame 1 is reinforced by the wall 4. The upper end and the lower end of the wall 4 are joined to the beams 3 and 3, respectively, and the side portions on both sides of the wall 4 are joined to the columns 2 and 2, respectively. The wall 4 is made of reinforced concrete. The wall reinforcement of the wall 4 is a double reinforcement or a single reinforcement. Double bar arrangement means that there are two sets of vertical bars and horizontal bars arranged in a grid pattern in the thickness direction of the wall 4, and single bar arrangement means that the set is one set. ..

壁4のコンクリートの圧縮強度は柱2,2及び梁3,3のコンクリートの圧縮強度に等しくない。例えば、柱2,2及び梁3,3のコンクリートが普通コンクリートであり、壁4のコンクリートが高強度コンクリートであり、壁4のコンクリートは柱2,2及び梁3のコンクリートよりも高圧縮強度である。逆に、壁4のコンクリートが柱2,2及び梁3のコンクリートのよりも低圧縮強度であってもよい。なお、壁4とその両側の柱2,2とからなる構造体を「両側柱付き壁5」という。 The compressive strength of the concrete of the wall 4 is not equal to the compressive strength of the concrete of the columns 2, 2 and the beams 3, 3. For example, the concrete of columns 2, 2 and beams 3 and 3 is ordinary concrete, the concrete of wall 4 is high-strength concrete, and the concrete of wall 4 has higher compressive strength than the concrete of columns 2, 2 and beams 3. is there. On the contrary, the concrete of the wall 4 may have a lower compressive strength than the concrete of the columns 2, 2 and the beam 3. A structure composed of a wall 4 and columns 2 and 2 on both sides thereof is referred to as a "wall 5 with columns on both sides".

壁4は、予め施工された柱梁架構1の内側に構築されるものである。具体的には、建築物の躯体が既設躯体であり、その既設躯体の柱梁架構1の内側に壁4が新たに増設されたものである。 The wall 4 is constructed inside the column-beam frame 1 constructed in advance. Specifically, the skeleton of the building is an existing skeleton, and a wall 4 is newly added to the inside of the column-beam frame 1 of the existing skeleton.

壁4の構築の際には、アンカー筋工法によって壁4が柱2,2及び梁3,3に接合される。ここで、アンカー筋工法とは、柱梁架構1の内周面に後打ちアンカーを設けて、壁筋を配筋し、更に型枠を設置した上で、壁4のコンクリートを打設する工法である。 When constructing the wall 4, the wall 4 is joined to the columns 2, 2 and the beams 3, 3 by the anchor reinforcement method. Here, the anchor reinforcement method is a method in which a post-casting anchor is provided on the inner peripheral surface of the column-beam frame 1, wall reinforcements are arranged, a formwork is installed, and then concrete is placed on the wall 4. Is.

2.両側柱付き壁の評価方法・設計方法
評価対象階の両側柱付き壁5の評価方法・設計方法について説明する。
両側柱付き壁5のせん断終局強度Qsuを算出することによって、両側柱付き壁5を評価する。ただし、図3に示すように壁4が1又は複数の開口6を有する場合、式(2)によって求められる開口6による低減率γを次式(1)に乗じて算定する。
2. 2. Evaluation method / design method of the wall with pillars on both sides The evaluation method / design method of the wall 5 with pillars on both sides of the evaluation target floor will be described.
The wall 5 with columns on both sides is evaluated by calculating the ultimate shear strength Q su of the wall 5 with columns on both sides. However, when the wall 4 has one or a plurality of openings 6 as shown in FIG. 3, the reduction rate γ due to the openings 6 obtained by the equation (2) is calculated by multiplying the following equation (1).

上記の式(1)において、Fcは、壁4,柱2,2のコンクリートの圧縮強度をそれぞれの水平断面積で重み付けした加重平均である。具体的には、Fcは次式(3)の通りである。 In the above equation (1), F c is a weighted average obtained by weighting the compressive strength of the concrete of the walls 4, columns 2 and 2 by their respective horizontal cross-sectional areas. Specifically, F c is as shown in the following equation (3).

両側柱付き壁5に作用するせん断力が以上のように算出したせん断終局強度Qsu未満であれば、両側柱付き壁5が終局的なせん断破壊をしないことがわかる。つまり、両側柱付き壁5のせん断終局強度Qsuが所定の目標値以上であれば、両側柱付き壁5の設計が適切であることが分かる。目標値とは、両側柱付き壁5に作用すると想定される最大せん断力であり、例えば地震時に両側柱付き壁5に作用すると想定されるせん断力である。従って、両側柱付き壁5のせん断終局強度Qsuが所定の目標値以上になるように、両側柱付き壁5を設計・構築する。例えば、建築物の躯体が既設躯体であるので、柱2の設計変更によって両側柱付き壁5のせん断終局強度Qsuの向上を図ることが困難であるので、壁4のコンクリートの種類及び強度を選定することによって、両側柱付き壁5のせん断終局強度Qsuが所定の目標値以上になるように両側柱付き壁5を設計し、その設計に従って壁4を構築する。 If the shear force acting on the walls 5 with columns on both sides is less than the ultimate shear strength Q su calculated as described above, it can be seen that the walls 5 with columns on both sides do not undergo ultimate shear failure. That is, if the ultimate shear strength Q su of the wall 5 with columns on both sides is equal to or higher than a predetermined target value, it can be seen that the design of the wall 5 with columns on both sides is appropriate. The target value is the maximum shearing force that is expected to act on the walls 5 with columns on both sides, and is, for example, the shearing force that is expected to act on the walls 5 with columns on both sides during an earthquake. Therefore, the wall 5 with columns on both sides is designed and constructed so that the ultimate shear strength Q su of the wall 5 with columns on both sides is equal to or higher than a predetermined target value. For example, since the skeleton of the building is an existing skeleton, it is difficult to improve the ultimate shear strength Q su of the wall 5 with columns on both sides by changing the design of the column 2, so the type and strength of the concrete of the wall 4 should be changed. By selecting, the wall 5 with columns on both sides is designed so that the ultimate shear strength Q su of the wall 5 with columns on both sides is equal to or higher than a predetermined target value, and the wall 4 is constructed according to the design.

上述のように壁4,柱2,2のコンクリートの圧縮強度をそれぞれの水平断面積で重み付けして得られる加重平均Fcを利用して、両側柱付き壁5のせん断終局強度Qsuを算出したので、せん断終局強度Qsuは両側柱付き壁5の実際のせん断終局強度に近い値となる。よって、両側柱付き壁5の強度評価を正確に行える。 As described above, the ultimate shear strength Q su of the wall 5 with columns on both sides is calculated using the weighted average F c obtained by weighting the compressive strength of the concrete of the walls 4, columns 2 and 2 by their respective horizontal cross-sectional areas. Therefore, the ultimate shear strength Q su is close to the actual ultimate shear strength of the wall 5 with columns on both sides. Therefore, the strength of the wall 5 with columns on both sides can be accurately evaluated.

加重平均Fcを用いて算出したせん断終局強度Qsuは両側柱付き壁5の実際のせん断終局強度よりも低いので、せん断終局強度Qsuを用いた両側柱付き壁5の強度評価は安全側に見積もったものである。つまり、せん断終局強度Qsuを用いた評価は、両側柱付き壁5の強度を過大評価したものではなく、適切なものである。なお、加重平均Fcを用いて算出したせん断終局強度Qsuは両側柱付き壁5の実際のせん断終局強度よりも低いことについては、後述する。 Since the ultimate shear strength Q su calculated using the weighted average F c is lower than the actual ultimate shear strength of the wall 5 with columns on both sides, the strength evaluation of the wall 5 with columns on both sides using the ultimate shear strength Q su is on the safe side. It is estimated in. That is, the evaluation using the ultimate shear strength Q su is not an overestimation of the strength of the wall 5 with columns on both sides, but is appropriate. It should be noted that the ultimate shear strength Q su calculated using the weighted average F c is lower than the actual ultimate shear strength of the wall 5 with columns on both sides, which will be described later.

3.両側柱付き壁の評価方法(比較例)
比較例では、式(1)中のFcをFc’に代えた上で、両側柱付き壁5のせん断終局強度Qsu’を算出することによって、両側柱付き壁5を評価する。Fc’は、柱2のコンクリートの圧縮強度と壁4のコンクリートの圧縮強度のうち低い方である。柱2,壁4のコンクリートのうち低い方の圧縮強度Fc’を式(1)に当て嵌めたのは、両側柱付き壁5を安全側に評価するためである。従って、圧縮強度Fc’から求めたせん断終局強度Qsu’は、両側柱付き壁5の実際のせん断終局強度よりもとても小さく見積もった値となる。
3. 3. Evaluation method for walls with pillars on both sides (comparative example)
In the comparative example, 'on which instead, Ultimate Shear Strength Q su bilateral pillar with walls 5' and F c in the formula (1) F c by calculating, evaluating the both side pillars with walls 5. F c'is the lower of the compressive strength of the concrete of the column 2 and the compressive strength of the concrete of the wall 4. Column 2, the a lower compressive strength F c of 'out of the concrete wall 4 fitted to equation (1) is to evaluate the both side pillars with walls 5 on the safe side. Therefore, the compressive strength F c 'Ultimate Shear Strength Q su obtained from' becomes so small estimated value than the actual ultimate shear strength of both side pillars with walls 5.

4.加重平均Fcを用いた評価の妥当性についての検討
(1)実験
以下の条件A〜Eに相当する5体の試験体10を作製した。図5は試験体10の柱2,2及び梁3,3の配筋図であり、図6は壁4を施工する際のアンカー筋工法に用いる後打ちアンカーの配置図であり、図7は壁4の配筋図である。
4. Examination of validity of evaluation using weighted average F c (1) Experiment Five test bodies 10 corresponding to the following conditions A to E were prepared. FIG. 5 is a bar arrangement diagram of columns 2 and 2 and beams 3 and 3 of the test body 10, FIG. 6 is a layout diagram of post-casting anchors used in the anchor bar construction method when constructing the wall 4, and FIG. It is a reinforcement diagram of a wall 4.

試験体10の作製手順は以下の通りである。柱2,2及び梁3,3を水平に横置きになるように、柱2,2及び梁3,3の配筋及び型枠を設置し、コンクリートを打設した。その後、上側の梁3と下側の梁3との間に配置したPC鋼棒を緊張することによって、後述のように実験時に負荷する軸力Nの7割程度の軸力を柱2に負荷した。その後、後打ちアンカーの打ち込み、壁筋・スパイラル筋の配筋及び型枠の建て込みを経て、壁4のコンクリートを打設した。 The procedure for preparing the test body 10 is as follows. Reinforcement and formwork of columns 2, 2 and beams 3, 3 were installed so that columns 2, 2 and beams 3, 3 were placed horizontally, and concrete was cast. After that, by tensioning the PC steel rods arranged between the upper beam 3 and the lower beam 3, an axial force of about 70% of the axial force N applied at the time of the experiment is applied to the column 2 as described later. did. After that, the concrete of the wall 4 was poured through the driving of the post-casting anchor, the arrangement of the wall reinforcement and the spiral reinforcement, and the building of the formwork.

試験体10は1層1スパンであり、その縮尺率は約1/3とした。
柱2は、せん断破壊型として設計・計画した。上側の梁3は、加力に対して主筋の降伏やひび割れを防止する剛梁として設計・計画した。下側の梁3にも十分な耐力と剛性をもたせた。柱2,2及び梁3,3のコンクリートの目標圧縮強度は18N/mm2とし、実測した圧縮強度は表1の通りである。
壁4の配筋は在来工法とほぼ同様とした。壁4の周辺部には、後打ちアンカー及び割裂防止用のスパイラル筋を配置した。縦アンカー筋は有機系ガラスカプセル型とし、横アンカー筋は有機系注入型とした。また、柱2,2及び梁3,3の内面を粗面化して、柱2,2及び梁3,3に対する壁4のコンクリートの接合強度高めた。壁4のコンクリートの目標圧縮強度については、条件Aを18 N/mm2、条件B,Dを36 N/mm2、条件C,Eを45 N/mm2とし、実測した圧縮強度は表1の通りである。
Specimen 10 had one layer and one span, and its scale was about 1/3.
Column 2 was designed and planned as a shear failure type. The upper beam 3 was designed and planned as a rigid beam that prevents the main bar from yielding and cracking due to the applied force. The lower beam 3 is also provided with sufficient yield strength and rigidity. The target compressive strength of the concrete of columns 2 and 2 and beams 3 and 3 is 18 N / mm 2 , and the measured compressive strength is as shown in Table 1.
The reinforcement of the wall 4 was almost the same as the conventional method. Post-striking anchors and spiral muscles for preventing splitting were arranged around the wall 4. The vertical anchor muscle was an organic glass capsule type, and the horizontal anchor muscle was an organic injection type. Further, the inner surfaces of the columns 2 and 2 and the beams 3 and 3 were roughened to increase the joint strength of the concrete of the wall 4 with respect to the columns 2 and 2 and the beams 3 and 3. Regarding the target compressive strength of the concrete of the wall 4, condition A is 18 N / mm 2 , conditions B and D are 36 N / mm 2 , conditions C and E are 45 N / mm 2 , and the measured compressive strength is Table 1. It is a street.

図8は、試験体10にせん断力を載荷するための実験装置20である。
まず、試験体10を実験装置20に設置し、PC鋼棒の緊張による初期軸力を漸減させつつ、鉛直油圧ジャッキ21によって柱2,2の圧縮軸力を軸力N(表1参照)にまで漸増させた。軸力Nは、柱2,2及び梁3,3のコンクリートの圧縮強度に対して0.125程度の比率である。この軸力は、実際の建物の自重によって軸力が柱に生じるので、それを考慮したものである。なお、PC鋼棒の緊張による初期軸力から鉛直油圧ジャッキ21による軸力に移行した後には、PC鋼材を撤去した。
FIG. 8 is an experimental device 20 for loading a shearing force on the test body 10.
First, the test piece 10 is installed in the experimental device 20, and the compression axial force of the columns 2 and 2 is changed to the axial force N (see Table 1) by the vertical hydraulic jack 21 while gradually reducing the initial axial force due to the tension of the PC steel rod. Was gradually increased. The axial force N is a ratio of about 0.125 to the compressive strength of the concrete of the columns 2, 2 and the beams 3, 3. This axial force is taken into consideration because the axial force is generated in the column by the actual weight of the building. After shifting from the initial axial force due to the tension of the PC steel rod to the axial force due to the vertical hydraulic jack 21, the PC steel material was removed.

水平加力用油圧ジャッキ22を用いて上側の梁3に片側からの圧縮力を負荷することによって、両側柱付き壁5にせん断力を付与した。具体的には、層間変形角R=δ/h(δ:加力高さの水平変位、h:下側の梁3の天端からの加力高さ(h=1040mm))で求められる目標所定値R=0.5×10-3rad.で1サイクル、R=1.0×10-3rad.(1/1000)、2.0×10-3rad.(1/500)、4.0×10-3rad.(1/250)、6.0×10-3rad.(1/167)で各2サイクルずつ繰り返す正負交番繰返して載荷し、その後は両側柱付き壁5が破壊するまで正側に載荷した。その載荷履歴を図9に示す。
そして、両側柱付き壁5の破壊時のせん断力をせん断終局強度とした。その結果を表2及び図10に示す。
A shearing force was applied to the wall 5 with columns on both sides by applying a compressive force from one side to the upper beam 3 using the hydraulic jack 22 for horizontal force. Specifically, story drift R = δ / h (δ: horizontal displacement of the force application height, h a: Loading from crest of the lower beam 3 height (h a = 1040mm)) determined in Target value to be set R = 0.5 × 10 -3 rad. 1 cycle, R = 1.0 × 10 -3 rad. (1/1000), 2.0 × 10 -3 rad. (1/500), 4.0 × 10 -3 At rad. (1/250) and 6.0 × 10 -3 rad. (1/167), the positive and negative alternations were repeatedly loaded by repeating 2 cycles each, and then loaded on the positive side until the walls 5 with pillars on both sides were destroyed. The loading history is shown in FIG.
Then, the shearing force at the time of fracture of the wall 5 with columns on both sides was defined as the ultimate shear strength. The results are shown in Table 2 and FIG.

(2)実施例
上述の実験の条件A〜Eと同一の条件で、壁4,柱2,2のコンクリートの圧縮強度をそれぞれの水平断面積で重み付けして、それらの加重平均Fcを算出した(表3参照)。算出した加重平均Fcを式(1)に当て嵌めて、両側柱付き壁5のせん断終局強度Qsuを算出した。その結果を表2に示す。
(2) Example Under the same conditions as the above-mentioned experimental conditions A to E, the compressive strengths of the concrete of the walls 4, columns 2 and 2 are weighted by their respective horizontal cross-sectional areas, and their weighted average F c is calculated. (See Table 3). The calculated weighted average F c was applied to Eq. (1) to calculate the ultimate shear strength Q su of the wall 5 with columns on both sides. The results are shown in Table 2.

(3)比較例
上述の条件A〜Eで、式(1)中のFcをFc’に代えた上で、両側柱付き壁5のせん断終局強度Qsu’を算出した。その結果を表2及び図10に示す。条件A〜EにおけるFc’を表3に示す。
(3) In Comparative Example above conditions A-E, 'on which place of the shear ultimate strength of both side pillars with walls 5 Q su' the F c in the formula (1) F c were calculated. The results are shown in Table 2 and FIG. Table 3 shows the F c 'in conditions A-E.

(4)検討結果
表2及び図10から明らかなように、条件A〜条件Eの何れにおいても、加重平均Fcから算出したせん断終局強度Qsuは実験値よりも低い。そのため、せん断終局強度Qsuを用いた両側柱付き壁5の強度評価は安全側に評価したものである。
(4) Examination results As is clear from Table 2 and FIG. 10, the ultimate shear strength Q su calculated from the weighted average F c is lower than the experimental value under any of the conditions A to E. Therefore, the strength evaluation of the wall 5 with columns on both sides using the ultimate shear strength Q su is evaluated on the safe side.

また、条件A〜条件Eの何れにおいても、加重平均Fcから算出したせん断終局強度Qsuは、Fc’から算出したせん断終局強度Qsu’と比較しても、実験値に近い。よって、せん断終局強度Qsuによって両側柱付き壁5の強度評価を正確に行える。 Further, under any of the conditions A to E, the ultimate shear strength Q su calculated from the weighted average F c is close to the experimental value even when compared with the ultimate shear strength Q su'calculated from F c '. Therefore, the strength of the wall 5 with columns on both sides can be accurately evaluated by the ultimate shear strength Q su .

5.他の評価式
(A) 式(1)の代わりに次の式(4)に対して加重平均Fcを当て嵌めて、両側柱付き壁5のせん断終局強度Qsuを求めてもよい。式(5)中のFcをFc’に代えた上で、両側柱付き壁5のせん断終局強度Qsu’を算出した場合と比較して、式(4)を利用して加重平均Fcから算出したせん断終局強度Qsuは実際のせん断終局強度に近い。また、せん断終局強度Qsuは実際のせん断終局強度よりも低いので、せん断終局強度Qsuによる強度評価は安全側に評価したものである。
5. Instead of the other evaluation formulas (A) and (1), the weighted average F c may be applied to the following formula (4) to obtain the ultimate shear strength Q su of the wall 5 with columns on both sides. 'On which instead, Ultimate Shear Strength Q su bilateral pillar with walls 5' and F c in the formula (5) F c as compared with the case of calculating the weighted average F utilizing equation (4) The ultimate shear strength Q su calculated from c is close to the actual ultimate shear strength. Moreover, since the ultimate shear strength Q su is lower than the actual ultimate shear strength, the strength evaluation based on the ultimate shear strength Q su is evaluated on the safe side.

(B) 式(1)の代わりに次の式(5)に対して加重平均Fcを当て嵌めて、両側柱付き壁5のせん断終局強度Qsuを求めてもよい。式(5)を利用して加重平均Fcから算出したせん断終局強度Qsuも実際のせん断終局強度に近い。 (B) Instead of equation (1), a weighted average F c may be applied to the following equation (5) to obtain the ultimate shear strength Q su of the wall 5 with columns on both sides. The ultimate shear strength Q su calculated from the weighted average F c using Eq. (5) is also close to the actual ultimate shear strength.

(C) 図11の水平断面図に示すように、壁4が既設壁4aと増設壁4bの積層体である場合、加重平均Fcを次式(6)により計算する。 (C) As shown in the horizontal sectional view of FIG. 11, when the wall 4 is a laminated body of the existing wall 4a and the additional wall 4b, the weighted average F c is calculated by the following equation (6).

この場合、式(6)によって求めた加重平均Fcを当て嵌める式は式(1)、(4)、(5)の何れであってもよい。式(1)、(4)、(5)の中では、式(4)が好ましい。 In this case, the equation to which the weighted average F c obtained by the equation (6) is applied may be any of the equations (1), (4), and (5). Among the formulas (1), (4) and (5), the formula (4) is preferable.

柱2及び既設壁4aが既に施工されたものであるため、増設壁4bのコンクリートの種類及び強度を選定することによって、式(1)、(4)又は(5)によって計算したせん断終局強度Qsuが所定の目標値以上になるように両側柱付き壁5を設計し、その設計に従って増設壁4bを構築する。 Since the column 2 and the existing wall 4a have already been constructed, the ultimate shear strength Q calculated by the equations (1), (4) or (5) by selecting the type and strength of the concrete of the extension wall 4b. The wall 5 with pillars on both sides is designed so that su is equal to or more than a predetermined target value, and the additional wall 4b is constructed according to the design.

1…柱梁架構, 2…柱, 3…梁, 4…壁, 5…両側柱付き壁 1 ... Column-beam frame, 2 ... Pillar, 3 ... Beam, 4 ... Wall, 5 ... Wall with columns on both sides

Claims (3)

建築物の既設躯体の隣り合う柱とそれら柱の間に架設された梁とによって囲まれた領域に構築される壁及び前記柱のコンクリートの圧縮強度をそれぞれの水平断面積で重み付けした加重平均を求め、前記柱及び前記壁によって構成される両側柱付き壁のせん断終局強度を前記加重平均から求めることを特徴とする両側柱付き壁の設計方法。 A weighted average of the compressive strength of the concrete of the walls and columns constructed in the area surrounded by adjacent columns of the existing skeleton of the building and the beams erected between the columns, weighted by their respective horizontal cross-sectional areas. A method for designing a wall with double-sided columns, which is obtained, and the ultimate shear strength of the wall with double-sided columns composed of the column and the wall is obtained from the weighted average. 前記加重平均を次式(1)に当て嵌めることによって前記両側柱付き壁のせん断終局強度を求めることを特徴とする請求項1に記載の両側柱付き壁の設計方法。
The method for designing a wall with both columns according to claim 1, wherein the ultimate shear strength of the wall with both columns is obtained by applying the weighted average to the following equation (1).
請求項1又は2に記載の設計方法によって設計された両側柱付き壁。 A wall with pillars on both sides designed by the design method according to claim 1 or 2.
JP2017000439A 2017-01-05 2017-01-05 How to design a wall with pillars on both sides and a wall with pillars on both sides Active JP6816512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017000439A JP6816512B2 (en) 2017-01-05 2017-01-05 How to design a wall with pillars on both sides and a wall with pillars on both sides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000439A JP6816512B2 (en) 2017-01-05 2017-01-05 How to design a wall with pillars on both sides and a wall with pillars on both sides

Publications (2)

Publication Number Publication Date
JP2018109317A JP2018109317A (en) 2018-07-12
JP6816512B2 true JP6816512B2 (en) 2021-01-20

Family

ID=62844344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000439A Active JP6816512B2 (en) 2017-01-05 2017-01-05 How to design a wall with pillars on both sides and a wall with pillars on both sides

Country Status (1)

Country Link
JP (1) JP6816512B2 (en)

Also Published As

Publication number Publication date
JP2018109317A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
Elremaily et al. Experimental behavior of steel beam to CFT column connections
Park et al. Embedded steel column-to-foundation connection for a modular structural system
Cheng et al. Seismic behavior of steel beams and CFT column moment-resisting connections with floor slabs
Gao et al. Cyclic loading test for interior precast SRC beam-column joints with and without slab
Zhou et al. Cyclic testing of square tubed-reinforced-concrete column to RC beam joints
Massone et al. Load–Deformation responses of slender structural steel reinforced concrete walls
Ji et al. Cyclic shear behavior of composite walls with encased steel braces
Wijaya et al. Experimental study on wall-frame connection of confined masonry wall
Esmaeili et al. Introducing an easy-install precast concrete beam-to-column connection strengthened by steel box and peripheral plates
Hossain et al. Axial load behaviour of pierced profiled composite walls with strength enhancement devices
Lee et al. Structural performance of welded built-up square CFST stub columns
Qin et al. Experimental cyclic behavior of connection to double-skin composite wall with truss connector
JP2012012788A (en) Steel beam with slab
Taufiq et al. Composite columns using perforated cold formed steel sections
Kapoi Experimental performance of concrete masonry shear walls under in-plane loading
Li et al. Seismic behaviour of a novel hollow-core precast shear wall with cast-in-situ boundary elements
Jeddi et al. Behaviour of double-sleeve TubeBolt moment connections in CFT columns under cyclic loading
Vellasco et al. Semi-rigid composite frames with perfobond and T-rib connectors Part 1: Full scale tests
Dwivedi et al. Voided slab design
JP6816512B2 (en) How to design a wall with pillars on both sides and a wall with pillars on both sides
JP2012158917A (en) Shear capacity calculation method and prestressed concrete beam
JP2012007348A (en) Floor slab
Astawa et al. Ductile Structure Framework of Earthquake Resistant of Highrise Building on Exterior Beam-Column Joint with the Partial Prestressed Concrete Beam-Column Reinforced Concrete
Chiluwal et al. Design recommendations for helical pile anchorages subjected to cyclic load reversals
JP2011021433A (en) Cone-type failure portion-reinforcing structure, building with the same, and method for computing increment of failure strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6816512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150