JP2018059091A - Method for producing prepreg - Google Patents

Method for producing prepreg Download PDF

Info

Publication number
JP2018059091A
JP2018059091A JP2017191194A JP2017191194A JP2018059091A JP 2018059091 A JP2018059091 A JP 2018059091A JP 2017191194 A JP2017191194 A JP 2017191194A JP 2017191194 A JP2017191194 A JP 2017191194A JP 2018059091 A JP2018059091 A JP 2018059091A
Authority
JP
Japan
Prior art keywords
prepreg
viscosity
temperature
resin composition
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017191194A
Other languages
Japanese (ja)
Inventor
嘉範 金澤
Yoshinori Kanazawa
嘉範 金澤
泰弘 舩生
Yasuhiro Funao
泰弘 舩生
良明 高橋
Yoshiaki Takahashi
良明 高橋
祐介 大森
Yusuke Omori
祐介 大森
弘泰 川合
Hiroyasu Kawai
弘泰 川合
卓朗 小久保
Takuro Kokubo
卓朗 小久保
山本 寛樹
Hiroki Yamamoto
寛樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Challenge Co Ltd
Original Assignee
Challenge Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Challenge Co Ltd filed Critical Challenge Co Ltd
Publication of JP2018059091A publication Critical patent/JP2018059091A/en
Priority to JP2022118101A priority Critical patent/JP7362852B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing prepreg capable of obtaining prepreg which can suppress formation of pinholes of a surface of a molded product.SOLUTION: A method for producing a prepreg formed by impregnating a reinforced-fiber with a matrix resin includes a decompression heating step of decompressing a laminate 1 in which a prepreg 18 formed by impregnating a reinforced-fiber base material with a matrix resin composition is sandwiched between a first sheet 10 and a second sheet 16 with a relative pressure of -101.0 to -98.0kPa while heating the laminate at 65-85°C.SELECTED DRAWING: Figure 2

Description

本発明は、プリプレグの製造方法に関する。   The present invention relates to a method for producing a prepreg.

強化繊維とマトリックス樹脂組成物で形成された繊維強化複合材料からなる成形品は、軽量で優れた機械特性を有するため、航空機や車両等の様々な用途で広く用いられている。このような成形品の製造には、強化繊維基材にマトリックス樹脂組成物を含浸した、中間基材であるシート状のプリプレグが広く用いられている。プリプレグを複数枚積層した後、加熱加圧して成形することにより成形品が得られる。特に、成形品の最外層に強化繊維を織物としたクロスプリプレグを用いると、優れた意匠性を有する繊維強化複合材料を得ることができる。   A molded article made of a fiber reinforced composite material formed of a reinforced fiber and a matrix resin composition is lightweight and has excellent mechanical properties, and thus is widely used in various applications such as aircraft and vehicles. In the production of such molded articles, sheet-like prepregs, which are intermediate substrates, in which a reinforcing fiber substrate is impregnated with a matrix resin composition are widely used. After a plurality of prepregs are laminated, a molded product is obtained by heating and pressing to mold. In particular, when a cross prepreg having reinforced fibers as a woven fabric is used for the outermost layer of the molded product, a fiber reinforced composite material having excellent design properties can be obtained.

プリプレグの製造方法としては、例えば以下の方法が挙げられる。
強化繊維を製織したクロス材等の強化繊維基材の少なくとも一方の面に、離型紙等にマトリックス樹脂を塗布して形成した樹脂膜を積層し、これを加熱しながら押圧ロールで押圧してマトリックス樹脂組成物を強化繊維基材に含浸させることによりプリプレグを得る。
Examples of the method for producing the prepreg include the following methods.
A resin film formed by applying a matrix resin to a release paper or the like is laminated on at least one surface of a reinforcing fiber base material such as a cloth material woven with reinforcing fibers, and is pressed with a pressure roll while heating the matrix. A prepreg is obtained by impregnating the reinforcing fiber base with the resin composition.

得られたプリプレグを用いたオートクレーブ成形では、一般に成形型内にプリプレグを複数枚積層して用いる。
しかし、前記方法で得たプリプレグを用いる場合、成形品においてプリプレグの型面側の表面にピンホールが形成されることがある。成形品表面にピンホールが形成されると、意匠性が低下する。また、成形後に塗装を行う場合はピンホールの径が拡大して意匠性の低下の問題がより顕著となる。
In autoclave molding using the obtained prepreg, a plurality of prepregs are generally laminated in a mold.
However, when the prepreg obtained by the above method is used, pinholes may be formed on the mold surface side of the prepreg in the molded product. When pinholes are formed on the surface of the molded product, the design properties are degraded. Further, when coating is performed after molding, the diameter of the pinhole is enlarged, and the problem of deterioration in design properties becomes more prominent.

成形品表面にピンホールが生じたときには、フィラー等を含むマスキング材によって該ピンホールを埋めることも行われている。しかし、この方法では、プリプレグに形成された各ピンホールを個別に埋める作業を行う必要があるため、作業が煩雑で時間がかかるうえ、コストも高くなる。
こうしたピンホールによる外観低下を抑制するために、特許文献1には、カーボンブラックを含有したマトリックス樹脂からなるクロスプリプレグが開示されている。
When a pinhole is generated on the surface of the molded product, the pinhole is also filled with a masking material containing a filler or the like. However, in this method, since it is necessary to individually fill each pinhole formed in the prepreg, the work is complicated and time consuming, and the cost increases.
In order to suppress such appearance degradation due to pinholes, Patent Document 1 discloses a cross prepreg made of a matrix resin containing carbon black.

特開2014−162858号公報JP 2014-162858 A

しかし、カーボンブラックは、発生するピンホールを目立たせなくする効果はあるが、実際にはピンホールの発生自体を抑制することはできない。
本発明は、特別な添加剤を使用しなくても、成形品の表面のピンホール形成を抑制できるプリプレグが得られるプリプレグの製造方法を提供することを目的とする。
However, carbon black has the effect of making the generated pinholes inconspicuous, but in reality, the generation of pinholes cannot be suppressed.
An object of this invention is to provide the manufacturing method of the prepreg from which the prepreg which can suppress the pinhole formation of the surface of a molded article is obtained, without using a special additive.

本発明は、以下の構成を有する。
[1]強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、下記温度Tから10〜35℃低い温度で減圧しながら加熱する減圧加熱工程を有する、プリプレグの製造方法。
温度T:前記マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定において最低粘度(Pa・s)を示す温度。
[2]強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、減圧しながら65〜85℃で加熱する減圧加熱工程を有する、プリプレグの製造方法。
[3]強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、温度T未満で、かつマトリックス樹脂組成物の粘度が下記粘度μPa・sより大きくμ+65Pa・s以下を示す温度で減圧しながら加熱する減圧加熱工程を有する、プリプレグの製造方法。
温度T:前記マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定において最低粘度(Pa・s)を示す温度。
粘度μ:前記マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定における最低粘度(Pa・s)。
[4]前記昇温粘度測定において連続的に測定される前記マトリックス樹脂組成物の粘度が、T−35℃からT−10℃までの温度範囲で0.5〜65Pa・sの範囲内である、[1]に記載のプリプレグの製造方法。
[5]前記積層体を真空バギングすることにより減圧する、[1]〜[4]のいずれかに記載のプリプレグの製造方法。
[6]前記強化繊維基材がクロス材である、[1]〜[5]のいずれかに記載のプリプレグの製造方法。
[7]前記減圧加熱工程の相対圧力が−101.0〜−98.0kPaである、[1]〜[6]のいずれかに記載のプリプレグの製造方法。
The present invention has the following configuration.
[1] heating the prepreg impregnated with the matrix resin composition into the reinforcing fiber base material laminate sandwiched between the first sheet and the second sheet, while reducing the pressure at 10 to 35 ° C. lower temperature from below the temperature T A The manufacturing method of a prepreg which has a pressure reduction heating process to do.
Temperature T A : Temperature showing the lowest viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while the matrix resin composition is heated from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min. .
[2] A reduced pressure heating step of heating a laminated body in which a prepreg impregnated with a matrix resin composition into a reinforcing fiber substrate is sandwiched between a first sheet and a second sheet at 65 to 85 ° C. while reducing the pressure, A method for producing a prepreg.
[3] enhance the fiber base prepreg obtained by impregnating a matrix resin composition laminated body sandwiched between the first sheet and the second sheet, the viscosity following viscosity below the temperature T A, and the matrix resin composition having a vacuum heating step of heating while reducing the pressure at the temperature indicated below mu a greater than Pa · s μ a + 65Pa · s, the production method of the prepreg.
Temperature T A : Temperature showing the lowest viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while the matrix resin composition is heated from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min. .
Viscosity μ A : Minimum viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while the matrix resin composition is heated from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min.
[4] The viscosity of the matrix resin composition said to be continuously measured during the Atsushi Nobori viscosity measurement is in the range of 0.5~65Pa · s in a temperature range of T A -35 ° C. until T A -10 ° C. The method for producing a prepreg according to [1].
[5] The method for producing a prepreg according to any one of [1] to [4], wherein the laminate is decompressed by vacuum bagging.
[6] The method for producing a prepreg according to any one of [1] to [5], wherein the reinforcing fiber base material is a cloth material.
[7] The method for producing a prepreg according to any one of [1] to [6], wherein a relative pressure in the reduced pressure heating step is −101.0 to −98.0 kPa.

本発明のプリプレグの製造方法によれば、特別な添加剤を使用しなくても、成形品の表面のピンホール形成を抑制できるプリプレグが得られる。   According to the method for producing a prepreg of the present invention, a prepreg capable of suppressing the formation of pinholes on the surface of a molded product can be obtained without using a special additive.

本発明のプリプレグの製造方法の含浸工程を示す断面図である。It is sectional drawing which shows the impregnation process of the manufacturing method of the prepreg of this invention. 本発明のプリプレグの製造方法における真空加熱工程の一例を示した断面図である。It is sectional drawing which showed an example of the vacuum heating process in the manufacturing method of the prepreg of this invention. 本発明のプリプレグの製造方法における真空加熱工程の一例を示した断面図である。It is sectional drawing which showed an example of the vacuum heating process in the manufacturing method of the prepreg of this invention. 本発明のプリプレグの製造方法における真空加熱工程の一例を示した斜視図である。It is the perspective view which showed an example of the vacuum heating process in the manufacturing method of the prepreg of this invention. 実験例1におけるマトリックス樹脂組成物の昇温粘度測定の結果を示したグラフである。3 is a graph showing the results of temperature-rising viscosity measurement of a matrix resin composition in Experimental Example 1.

本発明のプリプレグの製造方法は、強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、減圧しながら特定の温度で加熱する減圧加熱工程を有する方法である。減圧加熱工程を行うことにより、成形品の表面のピンホールの形成を抑制できるプリプレグが得られる。
以下、本発明のプリプレグの製造方法の一例を示して説明する。
The method for producing a prepreg of the present invention is a reduced pressure in which a laminated body in which a prepreg impregnated with a matrix resin composition in a reinforcing fiber substrate is sandwiched between a first sheet and a second sheet is heated at a specific temperature while reducing the pressure. It is a method having a heating step. By performing the reduced pressure heating step, a prepreg capable of suppressing the formation of pinholes on the surface of the molded product is obtained.
Hereinafter, an example of the manufacturing method of the prepreg of the present invention will be described and described.

本実施形態のプリプレグの製造方法は、下記の含浸工程及び減圧加熱工程を有する。
含浸工程:強化繊維基材に、第一及び/又は第二のシート上に塗工されたマトリックス樹脂組成物のフィルム(樹脂膜)を積層した後に加熱押圧し、前記マトリックス樹脂組成物を前記強化繊維基材に含浸して積層体を形成する。
減圧加熱工程:強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、減圧しながら特定の温度で加熱する。
The manufacturing method of the prepreg of this embodiment has the following impregnation process and pressure reduction heating process.
Impregnation step: The matrix resin composition film (resin film) coated on the first and / or second sheet is laminated on the reinforcing fiber base and then heated and pressed to strengthen the matrix resin composition. A fiber base material is impregnated to form a laminate.
Reduced pressure heating step: A laminate in which a prepreg impregnated with a matrix resin composition in a reinforcing fiber substrate is sandwiched between a first sheet and a second sheet is heated at a specific temperature while reducing the pressure.

(含浸工程)
例えば、図1(A)に示すように、帯状の長尺の第一のシート10を一方向に搬送しながら、第一のシート10上にマトリックス樹脂組成物を連続的に塗工し、樹脂膜12を形成する。第一のシート10としては、特に限定されず、プリプレグの製造に通常用いられる公知の離型紙やフィルムを使用することができる。フィルムとしては、例えば、耐熱性、延伸特性に優れているポリエチレンテレフタレート等の樹脂フィルムが挙げられる。含浸時の加熱において伸びがなく、ロールへの貼付がないことから、離型紙が好ましい。
マトリックス樹脂組成物を塗工する方法は、特に限定されず、公知の塗工方法を採用できる。
(Impregnation process)
For example, as shown in FIG. 1 (A), a matrix resin composition is continuously applied onto the first sheet 10 while the strip-shaped long first sheet 10 is conveyed in one direction, A film 12 is formed. It does not specifically limit as the 1st sheet | seat 10, The well-known release paper and film normally used for manufacture of a prepreg can be used. Examples of the film include a resin film such as polyethylene terephthalate which is excellent in heat resistance and stretching characteristics. Release paper is preferred because it does not stretch during heating during impregnation and does not stick to a roll.
The method for coating the matrix resin composition is not particularly limited, and a known coating method can be employed.

マトリックス樹脂組成物は、熱硬化性樹脂でも熱可塑性樹脂でもよいが、樹脂の含浸性が優れており、機械物性の発現しやすい熱硬化性樹脂が好ましい。熱硬化性樹脂としては、プリプレグに用いられる公知の熱硬化性樹脂を使用することができ、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ウレタン系樹脂、尿素性樹脂、等が挙げられる。なかでも、熱硬化性樹脂としては、成形品の機械物性の観点から、エポキシ樹脂が好ましい。熱硬化性樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。   The matrix resin composition may be a thermosetting resin or a thermoplastic resin, but is preferably a thermosetting resin that has excellent resin impregnation properties and easily exhibits mechanical properties. As a thermosetting resin, the well-known thermosetting resin used for a prepreg can be used, For example, an epoxy resin, a phenol resin, an unsaturated polyester resin, a urethane type resin, a urea resin, etc. are mentioned. Especially, as a thermosetting resin, an epoxy resin is preferable from a viewpoint of the mechanical physical property of a molded article. As a thermosetting resin, 1 type may be used independently and 2 or more types may be used together.

マトリックス樹脂組成物には、必要に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、非繊維状フィラー、導電性フィラー、離型剤、界面活性剤等の添加剤を配合してもよい。添加剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。   For matrix resin compositions, flame retardants, weather resistance improvers, antioxidants, heat stabilizers, UV absorbers, plasticizers, lubricants, colorants, compatibilizers, non-fibrous fillers, conductive materials You may mix | blend additives, such as a property filler, a mold release agent, and surfactant. As an additive, 1 type may be used independently and 2 or more types may be used together.

次いで、図1(B)に示すように、樹脂膜12上に強化繊維基材14を配置する。
強化繊維基材の形態としては、例えば、多数の長尺の強化繊維を一方向に引き揃えたUDシート(一方向シート)、強化繊維を製織して織物としたクロス材、強化繊維からなる不織布等が挙げられる。なかでも、成形品の意匠性の観点では、クロス材が好ましい。クロス材は、必要な方向に強化繊維を配置した一方向性織物、平織、朱子織、綾織などの二方向性織物、三軸織、ノンクリンプ織物、などのいずれの織組織のクロス材であってもよいが、特に、意匠性に優れた平織や、意匠性及び加工性に優れた綾織の使用が好ましい。強化繊維基材としては、1種を単独で使用してもよく、2種以上を併用してもよい。
Next, as shown in FIG. 1B, the reinforcing fiber base material 14 is disposed on the resin film 12.
As the form of the reinforcing fiber base, for example, a UD sheet (unidirectional sheet) in which a large number of long reinforcing fibers are aligned in one direction, a cloth material made by weaving reinforcing fibers into a woven fabric, and a nonwoven fabric made of reinforcing fibers Etc. Among these, a cloth material is preferable from the viewpoint of the design properties of the molded product. The cloth material is a cloth material of any woven structure such as a unidirectional woven fabric in which reinforcing fibers are arranged in a required direction, a bi-directional woven fabric such as plain weave, satin weave, twill weave, triaxial woven fabric, non-crimp woven fabric, etc. However, it is particularly preferable to use plain weave excellent in design and twill weave excellent in design and workability. As a reinforced fiber base material, 1 type may be used independently and 2 or more types may be used together.

強化繊維基材を構成する強化繊維としては、例えば、炭素繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等が挙げられる。なかでも、強化繊維としては、比強度、比弾性率に優れる点から、炭素繊維が好ましい。強化繊維としては、1種を単独で使用してもよく、2種以上を併用してもよい。   Examples of the reinforcing fiber constituting the reinforcing fiber base include carbon fiber, aramid fiber, silicon carbide fiber, alumina fiber, boron fiber, tungsten carbide fiber, and glass fiber. Among these, carbon fibers are preferable as the reinforcing fibers because they are excellent in specific strength and specific elastic modulus. As reinforcing fiber, 1 type may be used independently and 2 or more types may be used together.

強化繊維基材の目付は、70〜800g/mが好ましく、150〜250g/mがより好ましい。強化繊維基材の目付が前記範囲内であれば、マトリックス樹脂組成物の含浸性が良好である。70g/m以上であれば、より外観良好な成形品が得られる。150g/m以上であれば、安価に表面平滑な成形品を得ることができる。800g/m以下であれば、強化繊維基材の加工が容易になる。 Basis weight of the reinforcing fiber base material is preferably from 70~800g / m 2, 150~250g / m 2 is more preferable. If the basis weight of the reinforcing fiber base is within the above range, the impregnation property of the matrix resin composition is good. If it is 70 g / m 2 or more, a molded article having a better appearance can be obtained. If it is 150 g / m 2 or more, a molded article having a smooth surface can be obtained at low cost. If it is 800 g / m 2 or less, the processing of the reinforcing fiber substrate becomes easy.

さらに、第二のシート16上にマトリックス樹脂組成物を塗工して樹脂膜12を形成し、図1(C)に示すように、強化繊維基材14上に第二のシート16及び樹脂膜12を積層し、第一のシート10、樹脂膜12、強化繊維基材14、樹脂膜12及び第二のシート16の前駆積層体1Aを得る。第二のシート16としては、プリプレグの製造に通常用いられる公知の離型紙やフィルムを使用できる。フィルムとしては、例えば、耐熱性、延伸特性に優れているポリエチレンテレフタレート等の樹脂フィルムが挙げられる。   Furthermore, the matrix resin composition is applied onto the second sheet 16 to form the resin film 12, and the second sheet 16 and the resin film are formed on the reinforcing fiber base 14 as shown in FIG. 12 are laminated to obtain a precursor laminate 1A of the first sheet 10, the resin film 12, the reinforcing fiber substrate 14, the resin film 12, and the second sheet 16. As the 2nd sheet | seat 16, the well-known release paper and film normally used for manufacture of a prepreg can be used. Examples of the film include a resin film such as polyethylene terephthalate which is excellent in heat resistance and stretching characteristics.

次いで、押圧ロールを通過させる等によって前駆積層体1Aを厚さ方向に押圧し、樹脂膜12を形成するマトリックス樹脂組成物を強化繊維基材14に含浸させる。これにより、図1(D)に示すように、プリプレグ18が第一のシート10と第二のシート16に挟まれた積層体1が得られる。   Next, the precursor laminate 1 </ b> A is pressed in the thickness direction by passing a pressing roll or the like, and the reinforcing fiber substrate 14 is impregnated with the matrix resin composition forming the resin film 12. As a result, as shown in FIG. 1D, the laminate 1 in which the prepreg 18 is sandwiched between the first sheet 10 and the second sheet 16 is obtained.

プリプレグの製造に用いた第一のシート及び第二のシートは、続く減圧加熱工程に先立ち、必要に応じて別のシート(図示せず)に貼り替えてもよい。当該別のシートとしては、プリプレグの製造に通常用いられる公知の離型紙やフィルムを使用できる。フィルムとしては、例えば、ポリエチレンフィルム等のポリオレフィンフィルムが挙げられる。
減圧加熱工程の前に、第一及び/又は第二のシートを貼り替えた場合には、以降の工程において、プリプレグの両面に貼付されているシートを、各々第一及び第二のシートとして扱う。
Prior to the subsequent reduced pressure heating step, the first sheet and the second sheet used for the production of the prepreg may be replaced with another sheet (not shown) as necessary. As the other sheet, a known release paper or film usually used for prepreg production can be used. Examples of the film include a polyolefin film such as a polyethylene film.
When the first and / or second sheets are replaced before the reduced pressure heating step, the sheets attached to both surfaces of the prepreg are handled as the first and second sheets, respectively, in the subsequent steps. .

(減圧加熱工程)
例えば、成形品に応じたサイズに積層体1を切断し、切断後の積層体1に対して、相対圧力で−101.0〜−98.0kPaで減圧しながら、昇温速度1〜10℃/分で65℃〜85℃まで加熱し、5〜30分保持する。これにより、成形品の表面のピンホールの形成を抑制できるプリプレグが得られる。
(Reduced pressure heating process)
For example, the laminated body 1 is cut into a size corresponding to a molded product, and the temperature rise rate is 1 to 10 ° C. while the relative pressure is reduced to −101.0 to −98.0 kPa with respect to the laminated body 1 after cutting. Heat to 65-85 ° C./min and hold for 5-30 minutes. Thereby, the prepreg which can suppress formation of the pinhole on the surface of a molded article is obtained.

積層体1の減圧は、真空バギングにより行うことが好ましい。具体的には、例えば、図2に示すように、積層体1を真空バッグ50(バグフィルム)で覆い、シールテープでシールしてバギングしてから、減圧用バルブ52を通じて内部の空気を抜き出して減圧し、真空バギングを行う。なお、積層体1は2枚以上を積層して用いてもよい。
この状態で、積層体1を収容した真空バッグ50を加熱炉等の加熱設備で加熱することで、積層体1を加熱することができる。
Decompression of the laminate 1 is preferably performed by vacuum bagging. Specifically, for example, as shown in FIG. 2, the laminated body 1 is covered with a vacuum bag 50 (bag film), sealed with a sealing tape and bagged, and then the internal air is extracted through a pressure reducing valve 52. Depressurize and vacuum bagging. The laminate 1 may be used by laminating two or more.
In this state, the laminated body 1 can be heated by heating the vacuum bag 50 containing the laminated body 1 with heating equipment such as a heating furnace.

なお、積層体を減圧する方法は、図2に例示した形態には限定されない。例えば、図3及び図4に例示した真空バギング装置100を用いて真空バギングを行う方法であってもよい。真空バギング装置100は、矩形状の一対の第1の枠体102及び第2の枠体104を備えている。第1の枠体102の第2の枠体104側には、開口部を覆うように可撓性、伸縮性があるゴムシート106が取り付けられており、第1の枠体102とゴムシート106は接着一体化されている。第2の枠体104の第1の枠体102側には、開口部を覆うように可撓性、伸縮性があるゴムシート108が取り付けられており、第2の枠体104とゴムシート108は接着一体化されている。   The method for depressurizing the laminate is not limited to the form illustrated in FIG. For example, a method of performing vacuum bagging using the vacuum bagging apparatus 100 illustrated in FIGS. 3 and 4 may be used. The vacuum bagging apparatus 100 includes a pair of rectangular first frame body 102 and second frame body 104. A flexible and stretchable rubber sheet 106 is attached to the second frame 104 side of the first frame 102 so as to cover the opening, and the first frame 102 and the rubber sheet 106 are attached. Are bonded and integrated. A flexible and stretchable rubber sheet 108 is attached to the second frame body 104 on the first frame body 102 side so as to cover the opening, and the second frame body 104 and the rubber sheet 108 are attached. Are bonded and integrated.

真空バギング装置100では、第1の枠体102と第2の枠体104を近接させ、一対のゴムシート106,108で積層体1を挟んだ状態で、減圧用バルブ110を通じて互いのゴムシート106,108の間の空気を抜き出して減圧することで、真空バギングできるようになっている。この状態の真空バギング装置100を加熱炉等の加熱設備で加熱することで、積層体1を加熱することができる。   In the vacuum bagging apparatus 100, the first frame body 102 and the second frame body 104 are brought close to each other and the laminated body 1 is sandwiched between the pair of rubber sheets 106 and 108. , 108 is extracted and decompressed to enable vacuum bagging. The laminated body 1 can be heated by heating the vacuum bagging apparatus 100 in this state with heating equipment such as a heating furnace.

また、本発明においては、真空バギング以外に、箱体中に積層体を設置した状態で、該箱体内の空気を抜き出して減圧することで減圧を行ってもよい。   Further, in the present invention, in addition to vacuum bagging, the pressure may be reduced by extracting and reducing the pressure in the box in a state where the laminated body is installed in the box.

加熱温度は、温度T(℃)から10〜35℃低い温度である。すなわち、減圧加熱工程の加熱温度をT(℃)とすると、T−35≦T≦T−10である。加熱温度Tは、T−30≦T≦T−10が好ましく、T−25≦T≦T−10がより好ましい。
温度T:マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定において最低粘度(Pa・s)を示す温度。
前記下限値以上であれば、処理時間が長くなり過ぎず、生産性が良好になる。加熱温度が前記上限値以下であれば、プリプレグのゲル化反応が過度に進行することを抑制できるため、後工程における曲げ加工不良や成形型への、或いはプリプレグ相互の貼り付け不良といった不具合が生じることを抑制できる。加熱温度がT−25≦T≦T−10の範囲内であれば、短時間で外観品位が特に良好な成形品が得られる。
The heating temperature is 10 to 35 ° C. lower than the temperature T A (° C.). That is, if the heating temperature in the reduced pressure heating step is T (° C.), T A −35 ≦ T ≦ T A −10. The heating temperature T is preferably T A −30 ≦ T ≦ T A −10 and more preferably T A −25 ≦ T ≦ T A −10.
Temperature T A : A temperature showing the lowest viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while heating the matrix resin composition from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min.
If it is more than the said lower limit, processing time will not become long too much and productivity will become favorable. If the heating temperature is equal to or lower than the above upper limit value, excessive progress of the prepreg gelation reaction can be suppressed, resulting in defects such as bending failure in the post-process and poor bonding between the prepregs. This can be suppressed. When the heating temperature is within the range of T A −25 ≦ T ≦ T A −10, a molded product with particularly good appearance quality can be obtained in a short time.

また、加熱温度の上限値は、前記T未満で、かつマトリックス樹脂組成物の粘度が下記粘度μPa・sより大きい値を示す温度が好ましく、μ+1Pa・sを示す温度がより好ましく、μ+2Pa・sを示す温度が更に好ましい。
加熱温度の下限値は、前記T未満で、かつマトリックス樹脂組成物の粘度が下記粘度μ+65Pa・sを示す温度が好ましく、μ+50Pa・sを示す温度がより好ましく、μ+30Pa・sを示す温度が更に好ましく、μ+20Pa・sを示す温度が特に好ましい。
粘度μ:マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定における最低粘度(Pa・s)。
前記範囲内であれば、マトリックス樹脂組成物の流動性が良いため、短時間で外観品位が良好な成形品が得られる。
The upper limit of the heating temperature, the less than T A, and the temperature is preferably showing a larger value following viscosity μ A Pa · s viscosity of the matrix resin composition, more preferably the temperature is showing a μ A + 1Pa · s , Μ A +2 Pa · s is more preferable.
The lower limit of the heating temperature, the less than T A, and the temperature is preferably exhibits the following viscosity μ A + 65Pa · s viscosity of the matrix resin composition, more preferably the temperature is showing a μ A + 50Pa · s, μ A + 30Pa · A temperature indicating s is more preferable, and a temperature indicating μ A +20 Pa · s is particularly preferable.
Viscosity μ A : The lowest viscosity (Pa · s) in temperature rising viscosity measurement in which the viscosity is continuously measured while heating the matrix resin composition from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min.
If it is in the said range, since the fluidity | liquidity of a matrix resin composition is good, a molded article with a favorable external appearance quality is obtained in a short time.

加熱温度は、130℃で硬化する熱硬化性樹脂の場合、65〜85℃が好ましく、70〜85℃がより好ましく、75〜85℃がさらに好ましい。加熱温度が65℃以上であれば、処理時間が長くなり過ぎず、生産性が良好になる。加熱温度が85℃以下であれば、プリプレグのゲル化反応が過度に進行することを抑制できるため、後工程における曲げ加工不良や成形型への、或いはプリプレグ相互の貼り付け不良といった不具合が生じることを抑制できる。加熱温度が75℃以上85℃以下であれば、短時間で外観品位が特に良好な成形品が得られる。   In the case of a thermosetting resin that cures at 130 ° C, the heating temperature is preferably 65 to 85 ° C, more preferably 70 to 85 ° C, and even more preferably 75 to 85 ° C. If heating temperature is 65 degreeC or more, processing time will not become long too much and productivity will become favorable. If the heating temperature is 85 ° C. or lower, it is possible to suppress excessive progress of the prepreg gelation reaction, resulting in problems such as a bending failure in the post-process and a poor adhesion between the prepregs or between the prepregs. Can be suppressed. When the heating temperature is 75 ° C. or higher and 85 ° C. or lower, a molded product having a particularly good appearance quality can be obtained in a short time.

昇温粘度測定において連続的に測定されるマトリックス樹脂組成物の粘度は、T−35℃からT−10℃までの温度範囲で0.5〜65Pa・s、T−30℃からT−10℃までの温度範囲で0.5〜50Pa・s、T−25℃からT−10℃までの温度範囲で0.5〜20Pa・sの範囲内であることが好ましい。
前記範囲内であれば、マトリックス樹脂組成物の硬化反応が開始せず、かつマトリックス樹脂組成物が適度な流動性を示すため、短時間で外観品位が特に良好な成形品が得られる。
T viscosity of the matrix resin composition is continuously measured during the Atsushi Nobori viscosity measurements, 0.5~65Pa · s in a temperature range of T A -35 ° C. until T A -10 ° C., the T A -30 ° C. 0.5~50Pa · s in the temperature range of up to a -10 ° C., preferably in the range of 0.5~20Pa · s in a temperature range of T a -25 ° C. until T a -10 ° C..
Within the above range, the curing reaction of the matrix resin composition does not start, and the matrix resin composition exhibits an appropriate fluidity, so that a molded article having a particularly good appearance quality can be obtained in a short time.

昇温粘度測定において連続的に測定されるマトリックス樹脂組成物の粘度は、65〜85℃の温度範囲で粘度μとの差が0Pa・sより大きく50Pa・s以下であることが好ましく、70〜85℃の温度範囲で粘度μとの差が0Pa・sより大きく30Pa・s以下であることがより好ましく、75〜85℃の温度範囲で粘度μとの差が0Pa・sより大きく15Pa・s以下であることがさらに好ましい。
昇温粘度測定において連続的に測定されるマトリックス樹脂組成物の粘度は、T−35℃からT−10℃までの温度範囲で粘度μとの差が0Pa・sより大きく65Pa・s以下であることが好ましく、T−30℃からT−10℃までの温度範囲で粘度μとの差が0Pa・sより大きく30Pa・s以下であることがより好ましく、T−25℃からT−10℃までの温度範囲で粘度μとの差が0Pa・sより大きく15Pa・s以下であることがさらに好ましい。
マトリックス樹脂組成物の粘度が前記温度範囲で前記粘度範囲であることで、マトリックス樹脂組成物の硬化が開始せず、かつ、マトリックス樹脂組成物が適度な流動性を示すため、本発明の効果が最も得られやすい。
The viscosity of the matrix resin composition is continuously measured during the Atsushi Nobori viscosity measurement is preferably the difference between the viscosity mu A is equal to or less than the greater than 50Pa · s 0Pa · s in the temperature range of 65 to 85 ° C., 70 more preferably the difference is less than greater 30 Pa · s than 0 Pa · s and a viscosity mu a at a temperature in the range of to 85 ° C., the difference between the viscosity mu a in the temperature range of 75-85 ° C. is greater than 0 Pa · s More preferably, it is 15 Pa · s or less.
The viscosity of the matrix resin composition is continuously measured during the Atsushi Nobori viscosity measurements, T A -35 large difference between the viscosity mu A is from 0 Pa · s at a temperature ranging from ° C. to T A -10 ℃ 65Pa · s preferably less, more preferably the difference between the viscosity mu a is not more than 0 Pa · s greater than 30 Pa · s in a temperature range of T a -30 ° C. until T a -10 ℃, T a -25 the difference between the viscosity mu a in the temperature range up to T a -10 ° C. from ° C. is further preferably less large 15 Pa · s than 0 Pa · s.
Since the viscosity of the matrix resin composition is within the above-mentioned temperature range and the viscosity range does not start, the matrix resin composition does not start and the matrix resin composition exhibits appropriate fluidity. The easiest to obtain.

加熱時間は、加熱温度に応じて適宜設定すればよく、5〜30分が好ましく、10〜20分がより好ましい。加熱時間が前記下限値以上であれば、安定した品質のプリプレグを得ることができ、前記上限値以下であれば、生産性が良好になる。   What is necessary is just to set a heating time suitably according to heating temperature, 5 to 30 minutes are preferable and 10 to 20 minutes are more preferable. If the heating time is equal to or greater than the lower limit value, a stable quality prepreg can be obtained, and if the heating time is equal to or less than the upper limit value, the productivity is improved.

減圧加熱工程における加熱と減圧は、同時に開始してもよく、いずれか一方を先に開始してもよい。操作が簡便である点から、積層体に対して減圧を行った状態で、加熱を開始する方法が好ましい。   Heating and pressure reduction in the reduced pressure heating step may be started simultaneously, or one of them may be started first. From the viewpoint that the operation is simple, a method of starting heating in a state where the laminated body is depressurized is preferable.

昇温速度は、1℃/分〜10℃/分が好ましい。1℃/分以上であれば、良好な生産性で成形品を得られる。10℃/分以下であれば、ヒーターの能力が過大にならないことにより、設備投資が過大にならず、電力消費量が多くなり過ぎないため、経済性に優れる。
減圧加熱工程においては、必要に応じて真空バギングした積層体1を加熱炉に投入して、室温から昇温を開始しても、必要に応じて真空バギングした積層体1を加熱保持温度に設定した加熱炉に投入してもよい。
The heating rate is preferably 1 ° C./min to 10 ° C./min. If it is 1 degreeC / min or more, a molded article can be obtained with favorable productivity. If it is 10 degrees C / min or less, since the capability of a heater does not become excessive, capital investment does not become excessive and power consumption does not increase too much, so that it is excellent in economic efficiency.
In the reduced pressure heating process, the laminated body 1 vacuum bagged as required is put into a heating furnace, and even if the temperature rise is started from room temperature, the laminated body 1 vacuum bagged is set to the heating holding temperature as necessary. May be put into a heated furnace.

減圧は、相対圧力で−101.0〜−98.0kPaとなるよう行うことが好ましい。−98.0kPa以下であれば、良好な外観の成形品を得ることができる。   The decompression is preferably performed so that the relative pressure is −101.0 to −98.0 kPa. If it is −98.0 kPa or less, a molded article having a good appearance can be obtained.

図2及び図3に例示した真空バギングにおける積層体1の数は1枚であったが、2枚以上を積層した状態で減圧処理してもよい。真空バギングにおいて積層される積層体の数が多くなるほど、その厚み方向の中央部に配置された積層体のプリプレグによる、成形品のピンホール形成を抑制する効果が小さくなる。そのため、複数の積層体を積層して真空バギングを行う場合の積層体の数は、積層体の面積にもよるが、2〜8が好ましく、2〜4が特に好ましい。
2枚以上であれば生産性が良好となり、8枚以下であれば伝熱が良好になるため、安定した品質のプリプレグを得ることができる。
The number of the stacked bodies 1 in the vacuum bagging illustrated in FIGS. 2 and 3 is one, but the decompression process may be performed in a state where two or more are stacked. As the number of stacked bodies stacked in the vacuum bagging increases, the effect of suppressing the formation of pinholes in the molded product due to the prepreg of the stacked body disposed in the central portion in the thickness direction becomes smaller. Therefore, the number of stacked bodies when a plurality of stacked bodies are stacked and vacuum bagging is performed depends on the area of the stacked body, but is preferably 2 to 8, and particularly preferably 2 to 4.
If the number is two or more, the productivity is good, and if the number is eight or less, the heat transfer is good, so that a prepreg having a stable quality can be obtained.

本発明の製造方法で得られたプリプレグは、成形品の製造に使用できる。成形品の製造方法としては、公知の方法を採用することができ、例えば、オートクレーブ成形、真空バッグ成形、プレス成形等が挙げられる。本発明のプリプレグの製造方法は、オートクレーブ成形によって成形品を製造する場合に特に有用である。
オートクレーブ成形では、例えば、減圧加熱工程後に真空バッグ50から取り出した積層体1を成形品の形状に応じて切断する。次いで、積層体1から第一のシート10及び第二のシート16を取り除いたプリプレグ18を、成形型に貼り付ける。さらに所定の枚数のプリプレグ18を積層し、樹脂フィルム等でバギングして減圧し、オートクレーブに入れて加熱及び加圧を行うことで、成形品を得る。
The prepreg obtained by the production method of the present invention can be used for the production of a molded product. As a method for producing a molded product, a known method can be employed, and examples thereof include autoclave molding, vacuum bag molding, and press molding. The method for producing a prepreg of the present invention is particularly useful when a molded product is produced by autoclave molding.
In the autoclave molding, for example, the laminated body 1 taken out from the vacuum bag 50 after the reduced pressure heating process is cut according to the shape of the molded product. Next, the prepreg 18 from which the first sheet 10 and the second sheet 16 are removed from the laminate 1 is attached to a mold. Further, a predetermined number of prepregs 18 are laminated, bagged with a resin film or the like, depressurized, put into an autoclave, and heated and pressurized to obtain a molded product.

以上説明したように、本発明のプリプレグの製造方法は、プリプレグが第一のシートと第二のシートで挟まれた積層体を特定の温度で加熱しながら減圧する減圧加熱工程を有する。減圧加熱工程を行うことで、成形品表面のピンホール形成を抑制できるプリプレグが得られる。
強化繊維基材にクロス材を用いると、UDシートに比べてマトリックス樹脂組成物が含浸されにくく、プリプレグにボイドやピンホールが発生しやすいため、成形品表面にもピンホールが形成されやすくなる傾向がある。しかし、本発明の製造方法では、強化繊維基材にクロス材を用いた場合でも、成形品の表面のピンホール形成を抑制できるプリプレグが得られる。
As described above, the method for producing a prepreg of the present invention includes a reduced-pressure heating step in which the prepreg is depressurized while heating the laminated body sandwiched between the first sheet and the second sheet at a specific temperature. By performing the reduced pressure heating step, a prepreg capable of suppressing the formation of pinholes on the surface of the molded product is obtained.
When a cloth material is used for the reinforcing fiber base, the matrix resin composition is less likely to be impregnated than the UD sheet, and voids and pinholes are likely to occur in the prepreg, so that pinholes tend to be formed on the surface of the molded product. There is. However, in the production method of the present invention, a prepreg capable of suppressing the formation of pinholes on the surface of a molded product can be obtained even when a cloth material is used for the reinforcing fiber substrate.

減圧加熱工程を行って得たプリプレグを用いることで、成形品表面のピンホール形成が抑制される要因としては、必ずしも明らかではないが、以下のことが考えられる。
マトリックス樹脂組成物を強化繊維基材に含浸して得たプリプレグは、減圧加熱工程においてマトリックス樹脂組成物が流動し、プリプレグ表面のピンホールやボイドが低減される。このことが、該プリプレグを用いて製造される成形品表面にピンホールが生じることが抑制される要因の一つであると考えられる。
また、減圧加熱工程においてマトリックス樹脂組成物が軟化することで、プリプレグの形状が変化し、プリプレグ表面の凹み、特にクリンプ部が浅くなると考えられる。これにより、プリプレグにおける成形型と接する面の凹みに抱き込まれた空気が、成形時の減圧によって吸引除去されやすくなることも、成形品表面のピンホール形成が抑制される要因であると考えられる。
Although it is not necessarily clear as a factor by which the pinhole formation on the surface of a molded article is suppressed by using the prepreg obtained by performing a pressure reduction heating process, the following things can be considered.
In the prepreg obtained by impregnating the reinforcing fiber base material with the matrix resin composition, the matrix resin composition flows in the reduced pressure heating step, and pinholes and voids on the prepreg surface are reduced. This is considered to be one of the factors that suppress the generation of pinholes on the surface of a molded product produced using the prepreg.
Further, it is considered that the shape of the prepreg changes due to softening of the matrix resin composition in the reduced pressure heating step, and the dent on the prepreg surface, particularly the crimp portion, becomes shallow. As a result, the air trapped in the dent of the surface in contact with the mold in the prepreg is likely to be sucked and removed by the reduced pressure during molding, which is considered to be a factor that suppresses the formation of pinholes on the surface of the molded product. .

なお、本発明のプリプレグの製造方法は、前記した方法には限定されない。例えば、含浸工程においては、強化繊維基材の片面側からマトリックス樹脂組成物を含浸させてもよい。   In addition, the manufacturing method of the prepreg of this invention is not limited to an above described method. For example, in the impregnation step, the matrix resin composition may be impregnated from one side of the reinforcing fiber base.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
[マトリックス樹脂組成物の昇温粘度測定]
以下のようにマトリックス樹脂組成物の昇温粘度測定を行った。得られた測定結果の30℃における粘度をマトリックス樹脂組成物の「30℃時の粘度」とした。さらに得られた測定結果において25℃から200℃までの温度範囲で最低粘度を示す温度を「温度T」とした。
装置:AR−G2(ティー・エー・インスツルメント社製)
使用プレート:35mmΦパラレルプレート
プレートギャップ:0.5mm
測定周波数:10rad/秒
昇温速度:2℃/分
ストレス:3000dynes/cm
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by the following description.
[Measurement of temperature rise viscosity of matrix resin composition]
The temperature rising viscosity of the matrix resin composition was measured as follows. The viscosity at 30 ° C. of the obtained measurement result was defined as “viscosity at 30 ° C.” of the matrix resin composition. Furthermore, in the obtained measurement result, the temperature showing the lowest viscosity in the temperature range from 25 ° C. to 200 ° C. was defined as “temperature T A ”.
Device: AR-G2 (manufactured by TA Instruments)
Use plate: 35mmΦ parallel plate Plate gap: 0.5mm
Measurement frequency: 10 rad / sec Temperature rising rate: 2 ° C./min Stress: 3000 dynes / cm 2

[成形外観評価]
各実施例及び比較例にて得られた成形品の成形型側表面を目視で評価した。
(評価基準)
塗装前の成形外観評価は以下の基準に従って行った。
◎:ピンホールが殆どない。
○:ピンホールが少ない。
×:ピンホールがかなり多い。
[Form appearance evaluation]
The mold side surface of the molded product obtained in each example and comparative example was visually evaluated.
(Evaluation criteria)
The molded appearance evaluation before coating was performed according to the following criteria.
A: There are almost no pinholes.
○: There are few pinholes.
X: There are many pinholes.

[使用材料]
TR3523:三菱レイヨン株式会社製クロスプリプレグ 商品名:TR3523 320GMP。
TR3110:三菱レイヨン株式会社製クロスプリプレグ 商品名:TR3110 320GMP。
TRK510:三菱レイヨン株式会社製クロスプリプレグ 商品名:TRK510 321GMP。
[Materials used]
TR3523: Cross prepreg manufactured by Mitsubishi Rayon Co., Ltd. Trade name: TR3523 320GMP.
TR3110: Cross prepreg manufactured by Mitsubishi Rayon Co., Ltd. Trade name: TR3110 320GMP.
TRK510: Cross prepreg manufactured by Mitsubishi Rayon Co., Ltd. Trade name: TRK510 321GMP.

[実施例1]
クロス材にエポキシ樹脂組成物を含浸したプリプレグ(三菱レイヨン株式会社製、商品名:TR3523 320GMP)の離型紙とポリエチレンフィルムを剥離せずに2枚積層し、ブリーザークロス(オー・エス・イー株式会社製、商品名:OSE−135)を配置してから、ポリプロピレンバッグ(東レフィルム加工株式会社製、商品名:RAYFAN NO、品番50 TYPE1600RT 1524mm)で覆った。次に、シールテープ(日本シーカ株式会社製、商品名:VG635)でポリプロピレンバッグをシールしてバギングした。前述のシールテープでシールしたポリプロピレンバッグを真空ポンプ(株式会社大阪空気機械製作所製、油回転式KV−2S)で減圧した状態でオートクレーブ(芦田製作所製、オートクレーブ ACA)内に入れ、加熱した。オートクレーブ処理中は、真空ポンプ(株式会社大阪空気機械製作所製、油回転式KV−3S)で−101.0〜98.0kPaの範囲内で減圧を継続した。減圧度は真空度測定機器(株式会社キーエンス社製、デジタル圧力センサ AP−31A)にて測定した。この減圧加熱工程における加熱は、25℃から3.3℃/分で70℃まで昇温させた後、70℃で30分保持し、2℃/分で降温させることで行った。
次いで、得られたプリプレグを300mm×300mmのサイズに切断した後、離型紙とポリエチレンフィルムを剥離してから1枚を成形型に積層し、さらに、300mm×300mmのサイズに切断したプリプレグ(三菱レイヨン株式会社製、商品名:TRK510 321GMP)の離型紙とポリエチレンフィルムを剥離してから1枚積層した後、同様のポリプロピレンフィルムでバギングして減圧し、オートクレーブに入れて加熱及び加圧を行って成形品を得た。加熱は25℃から1.4℃/分で80℃まで昇温させた後、80℃で30分保持してから1.4℃/分で130℃まで昇温し、70分保持してから2.0℃/分で降温させることで行った。加圧は昇温開始とともに開始し、20kPa/分で昇圧させた後、600kPaで185分保持してから3分間で−100kPaの減圧速度で減圧して大気圧に戻すことで行った。
得られた成形品について、成形外観評価を行った。結果を表1に示す。
[Example 1]
Two sheets of prepreg (trade name: TR3523 320GMP, manufactured by Mitsubishi Rayon Co., Ltd.) impregnated with an epoxy resin composition in a cloth material are laminated without peeling, and a breather cloth (OS Corporation) After the product, product name: OSE-135) was placed, it was covered with a polypropylene bag (manufactured by Toray Film Processing Co., Ltd., product name: RAYFAN NO, product number 50 TYPE1600RT 1524 mm). Next, the polypropylene bag was sealed with a sealing tape (trade name: VG635, manufactured by Nippon Sika Co., Ltd.) and bagged. The polypropylene bag sealed with the above-mentioned sealing tape was placed in an autoclave (Iwata Seisakusho, Autoclave ACA) in a state where the pressure was reduced by a vacuum pump (Osaka Air Machinery Co., Ltd., oil rotary KV-2S), and heated. During the autoclave treatment, the pressure reduction was continued within a range of -101.0 to 98.0 kPa with a vacuum pump (Osaka Air Machinery Co., Ltd., oil rotary KV-3S). The degree of reduced pressure was measured with a vacuum degree measuring device (manufactured by Keyence Corporation, digital pressure sensor AP-31A). The heating in the reduced pressure heating step was performed by raising the temperature from 25 ° C. to 70 ° C. at 3.3 ° C./min, holding at 70 ° C. for 30 minutes, and lowering the temperature at 2 ° C./min.
Next, the obtained prepreg was cut into a size of 300 mm × 300 mm, and then the release paper and the polyethylene film were peeled off, and then one sheet was laminated on a mold. Further, the prepreg (Mitsubishi Rayon was cut into a size of 300 mm × 300 mm). After peeling off the release paper and the polyethylene film (trade name: TRK510 321GMP) manufactured by Co., Ltd., one sheet was laminated, then bagged with the same polypropylene film, depressurized, placed in an autoclave, heated and pressurized to form I got a product. After heating from 25 ° C. to 80 ° C. at 1.4 ° C./minute, hold at 80 ° C. for 30 minutes, then increase to 1.4 ° C./minute to 130 ° C. and hold for 70 minutes. The temperature was lowered at 2.0 ° C./min. The pressurization was started at the start of the temperature rise, and after increasing the pressure at 20 kPa / min, the pressure was maintained at 600 kPa for 185 minutes, and then the pressure was reduced at a pressure reduction rate of −100 kPa for 3 minutes to return to the atmospheric pressure.
The molded product thus obtained was evaluated for molding appearance. The results are shown in Table 1.

[実施例2〜4、比較例4]
プリプレグの減圧加熱工程の条件を表1に示すように変更した以外は、実施例1と同様にしてプリプレグを減圧加熱処理し、実施例1と同様に積層して成形品を得た。得られた成形品について、実施例1と同様に、成形外観評価を行った。結果を表1に示す。
[Examples 2 to 4, Comparative Example 4]
Except that the conditions of the prepreg reduced pressure heating step were changed as shown in Table 1, the prepreg was subjected to reduced pressure heating treatment in the same manner as in Example 1, and was laminated in the same manner as in Example 1 to obtain a molded product. The molded product thus obtained was evaluated for molding appearance in the same manner as in Example 1. The results are shown in Table 1.

[比較例1]
プリプレグの減圧加熱工程を行わなかった以外は、実施例1と同様にプリプレグを積層して成形品を得た。得られた成形品について、実施例1と同様に、成形外観評価を行った。結果を表1に示す。
[Comparative Example 1]
A prepreg was laminated to obtain a molded product in the same manner as in Example 1, except that the prepreg was not subjected to the reduced pressure heating step. The molded product thus obtained was evaluated for molding appearance in the same manner as in Example 1. The results are shown in Table 1.

[比較例2]
バギングを行わず、減圧処理を行わなかった以外は、実施例1と同様にしてプリプレグを加熱処理し、実施例1と同様に積層して成形品を得た。得られた成形品について、実施例1と同様に、成形外観評価を行った。結果を表1に示す。
[Comparative Example 2]
The prepreg was heat-treated in the same manner as in Example 1 except that bagging was not performed and the decompression process was not performed, and a molded product was obtained by laminating in the same manner as in Example 1. The molded product thus obtained was evaluated for molding appearance in the same manner as in Example 1. The results are shown in Table 1.

[比較例3]
三菱レイヨン株式会社製クロスプリプレグ(商品名:TR3523 320GMP)の代わりに三菱レイヨン株式会社製クロスプリプレグ(商品名:TR3110 320GMP)を用い、プリプレグの減圧加熱工程で真空バッグを用いず、加熱処理にホットプレス(高木金属工業株式会社製、型式XS−E)を用いて加圧し、85℃で10分間加熱した以外は、実施例1と同様にしてプリプレグを加熱処理し、実施例1と同様に積層して成形品を得た。得られた成形品について、実施例1と同様に、成形外観評価を行った。結果を表1に示す。
[Comparative Example 3]
A cross prepreg manufactured by Mitsubishi Rayon Co., Ltd. (trade name: TR3110 320GMP) is used in place of the cross prepreg manufactured by Mitsubishi Rayon Co., Ltd. (trade name: TR3110 320GMP). The prepreg was heat-treated in the same manner as in Example 1 except that it was pressurized using a press (manufactured by Takagi Metal Industry Co., Ltd., model XS-E) and heated at 85 ° C. for 10 minutes. As a result, a molded product was obtained. The molded product thus obtained was evaluated for molding appearance in the same manner as in Example 1. The results are shown in Table 1.

なお、表1における「VH」とは、減圧加熱工程を行う工法であることを意味する。   In addition, “VH” in Table 1 means a method of performing a reduced pressure heating process.

Figure 2018059091
Figure 2018059091

表1に示すように、減圧加熱工程を行って得たプリプレグを用いた実施例1〜4では、減圧加熱工程を行っていないプリプレグを用いた比較例1〜3に比べて、成形品表面のピンホールが抑制されていた。また、比較例4では、減圧加熱工程の温度が低かったため、成形外観が良くなかった。   As shown in Table 1, in Examples 1 to 4 using the prepreg obtained by performing the reduced pressure heating process, compared to Comparative Examples 1 to 3 using the prepreg not performing the reduced pressure heating process, Pinholes were suppressed. Moreover, in the comparative example 4, since the temperature of the pressure reduction heating process was low, the molded appearance was not good.

[実験例1]
実施例1で用いたTR3523 320GMPのマトリックス樹脂組成物であるエポキシ樹脂組成物について、25℃から130℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定を行った。その結果を図5に示す。
粘度μは2.3Pa・s、温度Tは98.4℃、温度T−35℃の粘度は62.8Pa・s、温度T−10℃の粘度は3.5Pa・s、65℃の粘度は50.1Pa・s、85℃の粘度は5.2Pa・sであった。
[Experimental Example 1]
Temperature rising viscosity measurement for continuously measuring the viscosity of the epoxy resin composition, which is a matrix resin composition of TR3523 320GMP used in Example 1, from 25 ° C. to 130 ° C. at a heating rate of 2 ° C./min. Went. The result is shown in FIG.
Viscosity mu A is 2.3Pa · s, the temperature T A is 98.4 ° C., a temperature T A -35 viscosity ° C. is 62.8Pa · s, the temperature T A -10 viscosity ° C. is 3.5 Pa · s, 65 The viscosity at 5 ° C. was 50.1 Pa · s, and the viscosity at 85 ° C. was 5.2 Pa · s.

1 積層体
1A 前駆積層体
10 第一のシート
12 樹脂膜
14 強化繊維基材
16 第二のシート
18 プリプレグ
50 真空バッグ
52 減圧用バルブ
100 真空バギング装置
102 第1の枠体
104 第2の枠体
106 ゴムシート
108 ゴムシート
110 減圧用バルブ
DESCRIPTION OF SYMBOLS 1 Laminated body 1A Precursor laminated body 10 1st sheet | seat 12 Resin film | membrane 14 Reinforcement fiber base material 16 2nd sheet | seat 18 Prepreg 50 Vacuum bag 52 Pressure reducing valve 100 Vacuum bagging apparatus 102 1st frame body 104 2nd frame body 106 Rubber sheet 108 Rubber sheet 110 Pressure reducing valve

Claims (7)

強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、下記温度Tから10〜35℃低い温度で減圧しながら加熱する減圧加熱工程を有する、プリプレグの製造方法。
温度T:前記マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定において最低粘度(Pa・s)を示す温度。
Heating under reduced pressure to a prepreg obtained by impregnating a matrix resin composition into the reinforcing fiber base material laminate sandwiched between the first sheet and the second sheet is heated while reducing the pressure at 10 to 35 ° C. lower temperature from below the temperature T A The manufacturing method of a prepreg which has a process.
Temperature T A : Temperature showing the lowest viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while the matrix resin composition is heated from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min. .
強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、減圧しながら65〜85℃で加熱する減圧加熱工程を有する、プリプレグの製造方法。   Manufacture of a prepreg having a reduced pressure heating step of heating a laminated body in which a prepreg impregnated with a matrix resin composition into a reinforcing fiber substrate is sandwiched between a first sheet and a second sheet at 65 to 85 ° C. while reducing the pressure. Method. 強化繊維基材にマトリックス樹脂組成物を含浸したプリプレグが第一のシートと第二のシートで挟まれた積層体を、温度T未満で、かつマトリックス樹脂組成物の粘度が下記粘度μPa・sより大きくμ+65Pa・s以下を示す温度で減圧しながら加熱する減圧加熱工程を有する、プリプレグの製造方法。
温度T:前記マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定において最低粘度(Pa・s)を示す温度。
粘度μ:前記マトリックス樹脂組成物を25℃から200℃まで昇温速度2℃/分で昇温しながら粘度を連続的に測定する昇温粘度測定における最低粘度(Pa・s)。
Strengthen the fiber base prepreg obtained by impregnating a matrix resin composition laminated body sandwiched between the first sheet and the second sheet, the temperature T is less than A, and the viscosity is below the viscosity mu A Pa of the matrix resin composition -The manufacturing method of a prepreg which has a pressure reduction heating process heated while depressurizing at the temperature which shows more than (micro | micron | A) + 65Pa * s more than s.
Temperature T A : Temperature showing the lowest viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while the matrix resin composition is heated from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min. .
Viscosity μ A : Minimum viscosity (Pa · s) in the temperature rising viscosity measurement in which the viscosity is continuously measured while the matrix resin composition is heated from 25 ° C. to 200 ° C. at a temperature rising rate of 2 ° C./min.
前記昇温粘度測定において連続的に測定される前記マトリックス樹脂組成物の粘度が、T−35℃からT−10℃までの温度範囲で0.5〜65Pa・sの範囲内である、請求項1に記載のプリプレグの製造方法。 The viscosity of the matrix resin composition is continuously measured in the Atsushi Nobori viscosity measurement is in the range of 0.5~65Pa · s in a temperature range of T A -35 ° C. until T A -10 ° C., The method for producing a prepreg according to claim 1. 前記積層体を真空バギングすることにより減圧する、請求項1〜4のいずれか一項に記載のプリプレグの製造方法。   The manufacturing method of the prepreg as described in any one of Claims 1-4 which pressure-reduces by vacuum bagging the said laminated body. 前記強化繊維基材がクロス材である、請求項1〜5のいずれか一項に記載のプリプレグの製造方法。   The manufacturing method of the prepreg as described in any one of Claims 1-5 whose said reinforcement fiber base material is a cloth material. 前記減圧加熱工程の相対圧力が−101.0〜−98.0kPaである、請求項1〜6のいずれか一項に記載のプリプレグの製造方法。   The manufacturing method of the prepreg as described in any one of Claims 1-6 whose relative pressure of the said pressure reduction heating process is -101.0--98.0kPa.
JP2017191194A 2016-09-30 2017-09-29 Method for producing prepreg Pending JP2018059091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022118101A JP7362852B2 (en) 2016-09-30 2022-07-25 Prepreg processing method and molded product manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016193757 2016-09-30
JP2016193757 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022118101A Division JP7362852B2 (en) 2016-09-30 2022-07-25 Prepreg processing method and molded product manufacturing method

Publications (1)

Publication Number Publication Date
JP2018059091A true JP2018059091A (en) 2018-04-12

Family

ID=61908243

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017191194A Pending JP2018059091A (en) 2016-09-30 2017-09-29 Method for producing prepreg
JP2022118101A Active JP7362852B2 (en) 2016-09-30 2022-07-25 Prepreg processing method and molded product manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022118101A Active JP7362852B2 (en) 2016-09-30 2022-07-25 Prepreg processing method and molded product manufacturing method

Country Status (1)

Country Link
JP (2) JP2018059091A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114026A (en) * 1982-12-20 1984-06-30 Shin Kobe Electric Mach Co Ltd Continuous manufacture of thermosetting resin plate
JPH01152020A (en) * 1987-12-10 1989-06-14 Yokohama Rubber Co Ltd:The Manufacture of frp molded product
JPH01235605A (en) * 1988-03-16 1989-09-20 Hitachi Chem Co Ltd Method for manufacturing prepreg

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114026A (en) * 1982-12-20 1984-06-30 Shin Kobe Electric Mach Co Ltd Continuous manufacture of thermosetting resin plate
JPH01152020A (en) * 1987-12-10 1989-06-14 Yokohama Rubber Co Ltd:The Manufacture of frp molded product
JPH01235605A (en) * 1988-03-16 1989-09-20 Hitachi Chem Co Ltd Method for manufacturing prepreg

Also Published As

Publication number Publication date
JP2022132657A (en) 2022-09-08
JP7362852B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP6737312B2 (en) Sandwich panel manufacturing method
CA2804586C (en) Method for manufacturing resin-based composite material
KR101726969B1 (en) Surface layer material for cushioning material and cushioning material for hot-pressing
CN1305657C (en) Cushioning material for hot pressing and process for producing the same
JP2018059091A (en) Method for producing prepreg
JP6717105B2 (en) Method for producing fiber-reinforced resin molding
JP2020513351A (en) Plastic composite core member and method of manufacturing the same
US9987832B2 (en) Honeycomb sandwich panel paint ready surface
CN107880295B (en) Multilayer prepreg structure and method for manufacturing same
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
TW201736106A (en) Buffer material for hot pressing
KR20220001413A (en) Forming method of carbon fiber reinforced plastic
JP4146817B2 (en) Manufacturing method of fiber reinforced laminate
JP2015147384A (en) Method for producing molding of fiber-reinforced composite material
CN105365336A (en) Method for manufacturing composite material with fabric grain effect
JP4274091B2 (en) Airtight reinforcement for cryogenic containers
KR20160044443A (en) Method for preparing a rubber laminate for forming artificial marble
JP2008055770A (en) Fiber-reinforced resin composite material
KR20060012348A (en) Composite material having micro-pore for reinforcing an ultra-low temporature liquefied gas contanier and manufacturing method thereof
JP2016112844A (en) Method for manufacturing sandwich structure and method for evaluating performance of prepreg
JP2017065093A (en) Method and device for producing resin-impregnated fiber molding
TW202024280A (en) Hot-pressing cushion material and method for manufacturing the same
JP2016535119A (en) Method for making highly finished surface articles made of advanced composite materials
JP2016535119A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426