JP2018057228A - Vehicle battery controller - Google Patents

Vehicle battery controller Download PDF

Info

Publication number
JP2018057228A
JP2018057228A JP2016193803A JP2016193803A JP2018057228A JP 2018057228 A JP2018057228 A JP 2018057228A JP 2016193803 A JP2016193803 A JP 2016193803A JP 2016193803 A JP2016193803 A JP 2016193803A JP 2018057228 A JP2018057228 A JP 2018057228A
Authority
JP
Japan
Prior art keywords
battery
battery group
charge amount
remaining capacity
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016193803A
Other languages
Japanese (ja)
Other versions
JP6756219B2 (en
Inventor
加藤 孝弘
Takahiro Kato
孝弘 加藤
剛史 下永田
Takashi Shimonagata
剛史 下永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2016193803A priority Critical patent/JP6756219B2/en
Publication of JP2018057228A publication Critical patent/JP2018057228A/en
Application granted granted Critical
Publication of JP6756219B2 publication Critical patent/JP6756219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle battery controller capable of effectively extending a drivable distance of a vehicle to improve travel performance of the vehicle by performing efficient battery discharge control according to residual capacity of each battery when a plurality of batteries are connected in parallel.SOLUTION: When determination means 30 determines that total residual capacity E1r of a maximum charge amount battery group G1 is equal to or larger than prescribed capacity, a vehicle battery controller preferentially uses the maximum charge amount battery group G1. When it is determined that the total residual capacity E1r of the maximum charge amount battery group G1 is less than the prescribed capacity, the vehicle battery controller preferentially uses a battery group whose total residual capacity is less than the maximum charge amount battery group G1 and whose total residual capacity is larger than the prescribed capacity among a plurality of battery groups.SELECTED DRAWING: Figure 3

Description

本発明は、車両用バッテリの制御装置に関し、詳しくは、電動車両において外部電源によりバッテリの充電を行う際の車両用バッテリの制御技術に関する。   The present invention relates to a vehicle battery control device, and more particularly, to a vehicle battery control technique when an external power source charges a battery in an electric vehicle.

近年、PHEV車(プラグインハイブリッド電動車両)やEV車(電動車両)では、車両の航続距離を延長するために、充電可能な電気容量が大容量となるバッテリ(電池)を搭載する必要性が高まっている。しかしながら、バッテリを構成する個別のバッテリセル自体のエネルギ密度を劇的に高めることは難しい。   In recent years, in PHEV vehicles (plug-in hybrid electric vehicles) and EV vehicles (electric vehicles), in order to extend the cruising range of the vehicle, it is necessary to mount a battery (battery) having a large chargeable electric capacity. It is growing. However, it is difficult to dramatically increase the energy density of the individual battery cells themselves constituting the battery.

そこで、バッテリの容量を増やすために、複数個のバッテリを並列接続したバッテリモジュールを形成することが行われている。そして、特許文献1には、並列接続した2つのバッテリ間に電圧差があるとき、電圧が低い側のバッテリ、すなわち、バッテリの充電容量である残容量(以下、SOC(State of Charge)とも称する)が少ない側のバッテリのみを充電するようにした車両用バッテリの制御装置が開示されている。これにより、2つのバッテリ間の電圧差が解消され、各バッテリの電極に接続されるコンタクタ(電磁接触器)を閉接することができる。   Therefore, in order to increase the capacity of the battery, a battery module in which a plurality of batteries are connected in parallel is formed. In Patent Document 1, when there is a voltage difference between two batteries connected in parallel, the battery on the lower voltage side, that is, the remaining capacity (hereinafter referred to as SOC (State of Charge)) which is the charging capacity of the battery is also referred to. A vehicle battery control device is disclosed in which only the battery on the side with a small amount of () is charged. Thereby, the voltage difference between two batteries is eliminated, and the contactor (electromagnetic contactor) connected to the electrode of each battery can be closed.

国際公開第2013/042165号International Publication No. 2013/042165

特許文献1に記載されるように、並列接続されるバッテリの数が2つの場合には、一般に、残容量の多いバッテリを優先的に使用する制御を行えばよく、バッテリ放電制御は比較的容易である。しかし、車両の航続距離を延長するべく、3つ以上のバッテリを並列接続した場合、各バッテリの残容量に応じて効率のよいバッテリ放電制御を行うのは難しい。各バッテリの残容量のバランスが不均一となった場合、バッテリ間に接続された上記コンタクタを電圧差により閉接できないため、各バッテリの放充電が制限され、車両の走行性能の悪化を招くおそれがある。   As described in Patent Document 1, when the number of batteries connected in parallel is two, in general, it is only necessary to preferentially use a battery with a large remaining capacity, and battery discharge control is relatively easy. It is. However, when three or more batteries are connected in parallel to extend the cruising distance of the vehicle, it is difficult to perform efficient battery discharge control according to the remaining capacity of each battery. If the balance of the remaining capacity of each battery becomes uneven, the contactor connected between the batteries cannot be closed and closed due to the voltage difference, so that the charging / discharging of each battery is restricted, and the running performance of the vehicle may be deteriorated. There is.

本発明はこのような問題の少なくとも一部を解決するためになされたもので、その目的とするところは、複数個のバッテリを並列接続した場合に各バッテリの残容量に応じて効率のよいバッテリ放電制御を行うことで、車両の航続距離を効果的に延長し、車両の走行性能を向上することができる、車両用バッテリの制御装置を提供することにある。   The present invention has been made to solve at least some of these problems, and an object of the present invention is to provide an efficient battery according to the remaining capacity of each battery when a plurality of batteries are connected in parallel. An object of the present invention is to provide a vehicle battery control device that can effectively extend the cruising distance of a vehicle and improve the running performance of the vehicle by performing discharge control.

本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様又は適用例として実現することができる。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following aspects or application examples.

(1)本適用例に係る車両用バッテリの制御装置は、互いに並列に接続される少なくとも複数個のバッテリを放電する車両用バッテリの制御装置であって、各バッテリに充電されている電気量である残容量を検出し、各残容量に基づいて各バッテリを複数のバッテリ群に分類する分類手段と、分類手段により残容量が最も多いバッテリとして分類された最大充電量バッテリ群の総残容量を算出するバッテリ群総残容量算出手段と、第1のバッテリ群の総残容量が車両を走行させるために必要最低限の所定容量以上か否かを判定する判定手段とを含み、判定手段により、最大充電量バッテリ群の総残容量が所定容量以上であると判定されたとき、最大充電量バッテリ群を優先使用し、最大充電量バッテリ群の総残容量が所定容量未満であると判定されたとき、複数のバッテリ群のうち、総残容量が最大充電量バッテリ群未満となるバッテリ群であって、総残容量が所定容量よりも大となるバッテリ群を優先使用する。 (1) The vehicle battery control device according to this application example is a vehicle battery control device that discharges at least a plurality of batteries connected in parallel to each other, and the amount of electricity charged in each battery. Classifying means for detecting a certain remaining capacity and classifying each battery into a plurality of battery groups based on each remaining capacity, and the total remaining capacity of the battery group with the maximum charge amount classified as the battery having the largest remaining capacity by the classifying means. A battery group total remaining capacity calculating means for calculating; and a determining means for determining whether or not the total remaining capacity of the first battery group is equal to or greater than a predetermined minimum capacity necessary for running the vehicle, When it is determined that the total remaining capacity of the maximum charge amount battery group is equal to or greater than the predetermined capacity, the maximum charge amount battery group is preferentially used, and the total remaining capacity of the maximum charge amount battery group is determined to be less than the predetermined capacity. When, among the plurality of battery groups, the total remaining capacity is a battery group to be less than the maximum charge amount of the battery groups, a total remaining capacity is preferentially using battery group becomes larger than a predetermined capacity.

前記適用例を用いる本発明によれば、複数個のバッテリを並列接続した場合に各バッテリの残容量に応じて効率のよいバッテリ放電制御を行うことで、車両の航続距離を効果的に延長し、車両の走行性能を向上することができる。   According to the present invention using the application example, when a plurality of batteries are connected in parallel, efficient battery discharge control is performed according to the remaining capacity of each battery, thereby effectively extending the cruising distance of the vehicle. The driving performance of the vehicle can be improved.

本発明の一実施形態に係るバッテリ制御部を備えた電動車両の概略構成図である。It is a schematic block diagram of the electric vehicle provided with the battery control part which concerns on one Embodiment of this invention. 図1の高電圧バッテリの構成を示した模式図である。It is the schematic diagram which showed the structure of the high voltage battery of FIG. 図1のECUが実行するバッテリ放電制御のフローチャートである。It is a flowchart of the battery discharge control which ECU of FIG. 1 performs.

以下、本発明の一実施形態を図面に基づき説明する。
図1は本発明の一実施形態に係る車両用バッテリの制御装置を備える電気自動車のシステム構成図であり、同図に基づき説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of an electric vehicle including a vehicle battery control device according to an embodiment of the present invention, and will be described with reference to FIG.

図1に示す車両1は、走行駆動源としてのモータ2を備える電気自動車のトラックである。モータ2は例えば永久磁石同期電動機のように発電機としても作動可能な電動機である。モータ2の出力軸はプロペラシャフト3を介して差動装置4が連結され、差動装置4には駆動軸5を介して左右の駆動輪6が連結されている。   A vehicle 1 shown in FIG. 1 is an electric vehicle truck including a motor 2 as a travel drive source. The motor 2 is an electric motor that can also operate as a generator, such as a permanent magnet synchronous motor. The output shaft of the motor 2 is connected to a differential device 4 via a propeller shaft 3, and left and right drive wheels 6 are connected to the differential device 4 via a drive shaft 5.

モータ2にはインバータ・コンバータ(以下、単にインバータという)10及びジャンクションボックス11を介して高電圧バッテリ(車両用バッテリ)12が接続されている。高電圧バッテリ12に蓄えられた直流電力はインバータ10により交流電力に変換されてモータ2に供給され、モータ2が発生した駆動力は駆動輪6に伝達されて車両1を走行させる。   A high voltage battery (vehicle battery) 12 is connected to the motor 2 via an inverter / converter (hereinafter simply referred to as an inverter) 10 and a junction box 11. The DC power stored in the high voltage battery 12 is converted into AC power by the inverter 10 and supplied to the motor 2, and the driving force generated by the motor 2 is transmitted to the drive wheels 6 to cause the vehicle 1 to travel.

また、例えば車両1の減速時や降坂路での走行時(回生走行時)には、駆動輪6側からの逆駆動によりモータ2が発電機として作動する(回生運転)。モータ2が発生した負側の駆動力は制動力として駆動輪6側に伝達されると共に、モータ2が発電した交流電力がインバータ10で直流電力に変換されて、ジャンクションボックス11を介して高電圧バッテリ12に充電される。   For example, when the vehicle 1 decelerates or travels on a downhill road (regenerative travel), the motor 2 operates as a generator (regenerative operation) by reverse driving from the drive wheels 6 side. The negative driving force generated by the motor 2 is transmitted to the driving wheel 6 side as a braking force, and the AC power generated by the motor 2 is converted into DC power by the inverter 10, and a high voltage is supplied via the junction box 11. The battery 12 is charged.

高電圧バッテリ12は、例えばリチウムイオンバッテリであり、駆動源であるモータ2等に用いる走行用のバッテリである。高電圧バッテリ12は、性能を発揮するのに適正な所定の作動温度範囲を有している。ジャンクションボックス11は、車両に搭載された各種電気機器と接続されている。当該ジャンクションボックス11の内部には、電路の断接を行う各種コンタクタ(電磁接触器)が設けられており、当該コンタクタの断接を行うことで、各種電気機器への電力の供給及び遮断を制御可能である。   The high voltage battery 12 is, for example, a lithium ion battery, and is a traveling battery used for the motor 2 that is a drive source. The high voltage battery 12 has a predetermined operating temperature range appropriate for performance. The junction box 11 is connected to various electric devices mounted on the vehicle. Inside the junction box 11, various contactors (electromagnetic contactors) for connecting and disconnecting electric circuits are provided. By connecting and disconnecting the contactors, the supply and disconnection of electric power to various electric devices are controlled. Is possible.

ジャンクションボックス11には、クーラコンプレッサや、パワーステアリング装置のポンプ等の高電圧補機類16が接続されている。高電圧補機類16は高電圧バッテリ12からの電力供給を受けることでそれぞれ作動する。さらに、ジャンクションボックス11には、DC−DCコンバータ17を介して低電圧バッテリ18も接続されている。   The junction box 11 is connected to a high voltage auxiliary machine 16 such as a cooler compressor and a pump of a power steering device. The high voltage auxiliary machines 16 operate by receiving power supply from the high voltage battery 12. Further, a low voltage battery 18 is also connected to the junction box 11 via a DC-DC converter 17.

DC−DCコンバータ17は、ジャンクションボックス11を介して低電圧バッテリ18に供給される電力の降圧を行う電圧変換器である。低電圧バッテリ18は、例えば鉛バッテリであり、蓄えられる電力は高電圧バッテリ12よりも低電圧であるが、高電圧バッテリ12よりも広い作動温度範囲を有している。当該低電圧バッテリ18は、例えばECU30への電源供給、コンタクタ―等の制御電源等の電力供給に用いられる。   The DC-DC converter 17 is a voltage converter that steps down power supplied to the low voltage battery 18 via the junction box 11. The low voltage battery 18 is, for example, a lead battery, and the stored electric power has a lower voltage than the high voltage battery 12, but has a wider operating temperature range than the high voltage battery 12. The low voltage battery 18 is used, for example, for power supply to the ECU 30 and power supply such as a control power supply for a contactor.

また、ジャンクションボックス11には、外部電源20と接続可能であり、この外部電源20から高電圧バッテリ12及び低電圧バッテリ18の充電が可能な充電器19が接続されている。外部電源20は例えば家庭用の100V、200Vの普通充電や、急速充電、非接触充電等がある。本実施形態では1つの充電器19を示しているが、充電器19を外部電源20に対応して複数設けてもよい。   The junction box 11 can be connected to an external power source 20 and is connected to a charger 19 that can charge the high voltage battery 12 and the low voltage battery 18 from the external power source 20. The external power source 20 includes, for example, 100V and 200V ordinary charging for home use, quick charging, non-contact charging, and the like. Although one charger 19 is shown in the present embodiment, a plurality of chargers 19 may be provided corresponding to the external power source 20.

また、車両1には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM、RAMなど)、中央処理装置(CPU)、タイマカウンタなどを備えたECU(判定手段)30が搭載されている。本実施形態におけるECU30は主に高電圧バッテリ12の充電を制御する制御ユニットであるが、車両1にはこの他にも種々のECUが設けられていてもよい。   Further, the vehicle 1 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs and control maps, a central processing unit (CPU), an ECU (determination unit) equipped with a timer counter, etc. Means) 30 is mounted. The ECU 30 in the present embodiment is a control unit that mainly controls the charging of the high-voltage battery 12, but the vehicle 1 may be provided with various other ECUs.

ここで、ECU30は、高電圧バッテリ12、充電器19、車速センサ31等と電気的に接続されている。また、ECU30の内部には、SOC検出・分類部(分類手段)32、バッテリ群総残容量算出部(バッテリ群総残容量算出手段)33等を有している。   Here, the ECU 30 is electrically connected to the high voltage battery 12, the charger 19, the vehicle speed sensor 31, and the like. The ECU 30 also includes an SOC detection / classification unit (classification unit) 32, a battery group total remaining capacity calculation unit (battery group total remaining capacity calculation unit) 33, and the like.

図2は、高電圧バッテリ12の構成を示した模式図である。高電圧バッテリ12は、バッテリセルである例えば6つのバッテリB1〜B6を互いに並列に接続したバッテリモジュールとして形成されている。SOC検出・分類部32は、各バッテリB1〜B6に充電されている電気量である残容量(SOC)をそれぞれ検出し、各残容量に基づいてバッテリB1〜B6を複数のバッテリ群に分類する。バッテリ群の分類基準は、各バッテリB1〜B6の残容量が比較的近い値であり、具体的にはジャンクションボックス11の内部の上述したコンタクタの閉接が可能な範囲の比較的小さな電圧差(例えば10V程度以内)となる場合に同じバッテリ群に分類される。   FIG. 2 is a schematic diagram showing the configuration of the high voltage battery 12. The high voltage battery 12 is formed as a battery module in which, for example, six batteries B1 to B6 that are battery cells are connected in parallel to each other. The SOC detection / classification unit 32 detects the remaining capacity (SOC), which is the amount of electricity charged in each of the batteries B1 to B6, and classifies the batteries B1 to B6 into a plurality of battery groups based on the remaining capacity. . The battery group classification standard is such that the remaining capacities of the batteries B1 to B6 are relatively close to each other. Specifically, the battery group has a relatively small voltage difference within a range in which the contactor within the junction box 11 can be closed. For example, it is classified into the same battery group.

図2の場合、各バッテリB1〜B6の充電状態は、バッテリB1及びB2のSOCが最も高いSOC-H(%)であり、バッテリB6のSOCが最も低いSOC-L(%)であり、バッテリB3〜B5のSOCは、SOC-L(%)とSOC-H(%)の間のSOC-M(%)となっている。したがって、各バッテリB1〜B6は、SOC検出・分類部32により、最大充電量バッテリ群、中間充電量バッテリ群、最小充電量バッテリ群G1〜G3のいずれかに分類されている。最大充電量バッテリ群G1には残容量が最も多いバッテリB1、B2が分類され、中間充電量バッテリ群G2には残容量が次に多いバッテリB3、B4、B5が分類され、最小充電量バッテリ群G3には残容量が最も少ないバッテリB6が分類されている。   In the case of FIG. 2, the charging states of the batteries B1 to B6 are SOC-H (%) in which the SOCs of the batteries B1 and B2 are the highest, and SOC-L (%) in which the SOC of the battery B6 is the lowest. The SOC of B3 to B5 is SOC-M (%) between SOC-L (%) and SOC-H (%). Therefore, each of the batteries B1 to B6 is classified by the SOC detection / classification unit 32 into one of the maximum charge amount battery group, the intermediate charge amount battery group, and the minimum charge amount battery group G1 to G3. The batteries B1 and B2 with the largest remaining capacity are classified into the maximum charge amount battery group G1, and the batteries B3, B4 and B5 with the next largest remaining capacity are classified into the intermediate charge amount battery group G2, and the minimum charge amount battery group The battery B6 having the smallest remaining capacity is classified as G3.

なお、図示はされないが、中間充電量バッテリ群G2に該当するバッテリにおいて、充電量の異なる複数のバッテリ群が含まれる場合、充電量の多い順に第1中間充電量バッテリ群G2、第2中間充電量バッテリ群G4、第3中間充電量バッテリ群G5、というように分類することができる。   Although not shown, when a battery corresponding to the intermediate charge amount battery group G2 includes a plurality of battery groups having different charge amounts, the first intermediate charge amount battery group G2 and the second intermediate charge are arranged in descending order of charge amount. Amount battery group G4, third intermediate charge amount battery group G5, and so on.

バッテリ群総残容量算出部33は、最大充電量バッテリ群、中間充電量バッテリ群、最小充電量バッテリ群G1〜G3の総残容量E1r〜E3rをそれぞれ算出する。これら総残容量E1r〜E3rに基づいて、それぞれ車両1が走行するための動力P1〜P3を出力可能である。   The battery group total remaining capacity calculation unit 33 calculates total remaining capacity E1r to E3r of the maximum charge amount battery group, the intermediate charge amount battery group, and the minimum charge amount battery group G1 to G3, respectively. Based on these total remaining capacities E1r to E3r, powers P1 to P3 for driving the vehicle 1 can be output, respectively.

以下、図3のフローチャートを参照して本実施形態に係るバッテリ放電制御について詳しく説明する。なお、以下の説明では、総残容量E1r〜E3rは、E2r、E1r、E3rの順に大きく、動力P1〜P3は、P2、P1、P3の順に大きい前提とする。先ず、車速センサ31を介して車両1の走行が開始されたとき、ECU30はバッテリ放電制御をスタートする。   Hereinafter, the battery discharge control according to the present embodiment will be described in detail with reference to the flowchart of FIG. 3. In the following description, it is assumed that the total remaining capacity E1r to E3r is larger in the order of E2r, E1r, and E3r, and the powers P1 to P3 are larger in the order of P2, P1, and P3. First, when traveling of the vehicle 1 is started via the vehicle speed sensor 31, the ECU 30 starts battery discharge control.

ECU30はステップS1において、バッテリ群総残容量算出部33で取得した最大充電量バッテリ群G1の総残容量E1rに基づく動力P1が車両1を走行可能な最低動力Pmin以上か否かを判定する。最低動力Pminは、車両1を高電圧バッテリ12の電力により走行させる際、車両1をその性能を確保しながら走行可能な必要最低限の電気量に相当する所定の電気容量(所定容量)に基づいて決定される。   In step S <b> 1, the ECU 30 determines whether or not the power P <b> 1 based on the total remaining capacity E <b> 1 r of the maximum charge amount battery group G <b> 1 acquired by the battery group total remaining capacity calculation unit 33 is equal to or greater than the minimum power Pmin that can travel the vehicle 1. The minimum power Pmin is based on a predetermined electric capacity (predetermined capacity) corresponding to the minimum amount of electricity that can travel while ensuring the performance of the vehicle 1 when the vehicle 1 is driven by the power of the high voltage battery 12. Determined.

当該判定結果が偽(No)であるとき、すなわち、最大充電量バッテリ群G1で発生可能な動力P1が最低動力Pmin未満となるとき、ステップS2に移行する。一方、当該判定結果が真(Yes)であるとき、すなわち、最大充電量バッテリ群G1で発生可能な動力P1が最低動力Pmin以上となるとき、ステップS3に移行して最大充電量バッテリ群G1の使用を選択し、本制御をリターンする。   When the determination result is false (No), that is, when the power P1 that can be generated in the maximum charge amount battery group G1 is less than the minimum power Pmin, the process proceeds to step S2. On the other hand, when the determination result is true (Yes), that is, when the power P1 that can be generated in the maximum charge amount battery group G1 is equal to or greater than the minimum power Pmin, the process proceeds to step S3 and the maximum charge amount battery group G1. Select use and return to this control.

この場合、各バッテリ群G1〜G3のうち、最も多いSOCのバッテリB1、B2が分類された最大充電量バッテリ群G1により車両1を走行させることが可能であることが判明した。このため、高いSOCのバッテリー群から使用することで各バッテリ群G1〜G3、ひいては各バッテリB1〜B6の残容量のバランスを極力均一にして揃え、各バッテリB1〜B6間に接続されたコンタクタを電圧差により閉接できない不具合を極力解消し、車両1の走行性能を向上するべく、残容量が最も多いバッテリB1、B2が分類された最大充電量バッテリ群G1から優先的に使用される。   In this case, it has been found that the vehicle 1 can be driven by the maximum charge amount battery group G1 in which the batteries B1 and B2 having the largest SOC among the battery groups G1 to G3 are classified. For this reason, by using a battery group with a high SOC, the balance of the remaining capacity of each battery group G1 to G3, and hence each battery B1 to B6 is made as uniform as possible, and contactors connected between the batteries B1 to B6 are arranged. In order to eliminate problems that cannot be closed due to a voltage difference as much as possible and improve the running performance of the vehicle 1, the batteries B1 and B2 having the largest remaining capacity are preferentially used from the group of maximum charge amount batteries G1 classified.

ステップS2では、バッテリ群総残容量算出部33で取得した中間充電量バッテリ群G2の総残容量E2rに基づく動力P2が車両1を走行可能な最低動力Pmin以上か否かを判定する。当該判定結果が真(Yes)であるとき、すなわち、中間充電量バッテリ群G2で発生可能な動力P2が最低動力Pmin以上となるとき、ステップS4に移行して中間充電量バッテリ群G2の使用を選択肢し、本制御をリターンする。一方、当該判定結果が偽(No)であるとき、すなわち、中間充電量バッテリ群G2で発生可能な動力P2が最低動力Pmin未満となるとき、ステップS3に移行して最大充電量バッテリ群G1の使用を選択肢し、本制御をリターンする。   In step S <b> 2, it is determined whether or not the power P <b> 2 based on the total remaining capacity E <b> 2 r of the intermediate charge amount battery group G <b> 2 acquired by the battery group total remaining capacity calculation unit 33 is equal to or greater than the minimum power Pmin that can travel the vehicle 1. When the determination result is true (Yes), that is, when the power P2 that can be generated in the intermediate charge amount battery group G2 is equal to or greater than the minimum power Pmin, the process proceeds to step S4 to use the intermediate charge amount battery group G2. Select and return to this control. On the other hand, when the determination result is false (No), that is, when the power P2 that can be generated in the intermediate charge amount battery group G2 is less than the minimum power Pmin, the process proceeds to step S3, and the maximum charge amount battery group G1. Select use and return to this control.

各バッテリ群G1〜G3のうち、最大充電量バッテリ群G1に加え、最大充電量バッテリ群G1の次に残容量が多いバッテリB3〜B5が分類された中間充電量バッテリ群G2によっても、車両1を走行させることが不可能であることが判明した場合、各バッテリ群G1〜G3、ひいては各バッテリB1〜B6の残容量のバランスを極力均一にして揃えて車両1の走行性能を向上するべく、残容量が最も多いバッテリB1、B2が分類された最大充電量バッテリ群G1が優先的に使用される。   Of the battery groups G1 to G3, in addition to the maximum charge amount battery group G1, the intermediate charge amount battery group G2 in which the batteries B3 to B5 having the remaining remaining capacity next to the maximum charge amount battery group G1 are also classified. In order to improve the running performance of the vehicle 1 by making the balance of the remaining capacities of the battery groups G1 to G3 and thus the batteries B1 to B6 as uniform as possible. The maximum charge amount battery group G1 in which the batteries B1 and B2 having the largest remaining capacity are classified is preferentially used.

これに対し、最大充電量バッテリ群G1の次に残容量が多いバッテリB3〜B5が分類された中間充電量バッテリ群G2によれば、車両1を走行させることが可能であることが判明した場合、最大充電量バッテリ群G1の次に残容量が多いバッテリB3〜B5が分類された中間充電量バッテリ群G2が優先的に使用される。   On the other hand, when the intermediate charge amount battery group G2 in which the batteries B3 to B5 having the second largest remaining capacity after the maximum charge amount battery group G1 are classified is found to be able to travel the vehicle 1. The intermediate charge amount battery group G2 in which the batteries B3 to B5 having the remaining remaining capacity next to the maximum charge amount battery group G1 are classified is used preferentially.

以上のように本実施形態では、3つ以上の例えば6つのバッテリB1〜B6を並列接続して高電圧バッテリ12を形成した場合、各バッテリB1〜B6の残容量(SOC)に応じて、各バッテリB1〜B6を各バッテリ群G1〜G3に分類し、これらバッテリ群G1〜G3を使用する順番を変えることで、効率のよいバッテリ放電を行うことができる。   As described above, in the present embodiment, when three or more, for example, six batteries B1 to B6 are connected in parallel to form the high voltage battery 12, each of the batteries B1 to B6 has a remaining capacity (SOC). By classifying the batteries B1 to B6 into the battery groups G1 to G3 and changing the order of using these battery groups G1 to G3, efficient battery discharge can be performed.

具体的には、本実施形態のバッテリ放電制御では、ステップS1、S2にて、車両1の最低動力Pminを確保可能か否かに基づく判定を行う。これにより、最も多い残容量のバッテリB1、B2が分類された最大充電量バッテリ群G1、最も少ない残容量のバッテリB3〜B5が分類された中間充電量バッテリ群G2の何れを優先的に放電させて使用するかを的確に見極めたバッテリ放電制御を行うことができるため、車両1の航続距離を効果的に延長し、車両1の走行性能を向上することができる。   Specifically, in the battery discharge control of the present embodiment, determination is made based on whether or not the minimum power Pmin of the vehicle 1 can be secured in steps S1 and S2. As a result, either the maximum charge amount battery group G1 in which the batteries B1 and B2 having the largest remaining capacity are classified or the intermediate charge amount battery group G2 in which the batteries B3 to B5 having the smallest remaining capacity are classified is discharged with priority. Therefore, it is possible to effectively extend the cruising distance of the vehicle 1 and improve the running performance of the vehicle 1.

また、中間充電量バッテリ群において、充電量の異なる複数のバッテリ群が存在しており、充電量の多い順に第1中間充電量バッテリ群G2、第2中間充電量バッテリ群G4、第3中間充電量バッテリ群G5、というように分類される場合においても、上述したロジックを拡張して適用することができる。即ち、最大充電量バッテリ群G1で発生可能な動力P1が最低動力Pmin以上となる場合は、最大充電量バッテリ群G1が優先的に使用され、かつ、最大充電量バッテリ群G1で発生可能な動力P1が最低動力Pmin未満となる場合であって、複数の中間バッテリ群の中で車両1を走行可能とする総残容量を有するバッテリ群は存在する場合、そのバッテリ群が優先的に使用される。   Further, in the intermediate charge amount battery group, there are a plurality of battery groups having different charge amounts, and the first intermediate charge amount battery group G2, the second intermediate charge amount battery group G4, and the third intermediate charge in descending order of the charge amount. Even in the case of classification such as the quantity battery group G5, the above-described logic can be extended and applied. That is, when the power P1 that can be generated by the maximum charge amount battery group G1 is equal to or greater than the minimum power Pmin, the maximum charge amount battery group G1 is preferentially used and the power that can be generated by the maximum charge amount battery group G1. When P1 is less than the minimum power Pmin and there is a battery group having a total remaining capacity that allows the vehicle 1 to travel among a plurality of intermediate battery groups, the battery group is preferentially used. .

以上で本発明に係る車両用バッテリの制御装置の実施形態についての説明を終えるが、実施形態は上記実施形態に限られるものではない。   Although the description of the embodiment of the vehicle battery control device according to the present invention has been completed, the embodiment is not limited to the above embodiment.

上記実施形態のバッテリ放電制御では、最大充電量バッテリ群G1、中間充電量バッテリ群G2の何れかを優先的に放電する判定を行っている。しかし、これに限らず、最小充電量バッテリ群G3を優先的に放電する制御を行うようにしても良い。具体的には、バッテリ放電制御のステップS1では、判定結果が偽(No)であるとき、すなわち、最大充電量バッテリ群G1で発生可能な動力P1が最低動力Pmin未満となるときは、最大充電量バッテリ群G1以外を放電すればよく、中間充電量バッテリ群G2の代わりに最小充電量バッテリ群G3を優先的に放電してもよい。なお、この場合の最小充電量バッテリ群G3は、その総残容量E3rが最大充電量バッテリ群G1の総残容量E1r未満であるが、総残容量E3rは最低動力Pminに基づく所定容量よりも大となることが条件である。   In the battery discharge control of the above embodiment, determination is made to preferentially discharge either the maximum charge amount battery group G1 or the intermediate charge amount battery group G2. However, the present invention is not limited to this, and control for preferentially discharging the minimum charge amount battery group G3 may be performed. Specifically, in step S1 of the battery discharge control, when the determination result is false (No), that is, when the power P1 that can be generated in the maximum charge amount battery group G1 is less than the minimum power Pmin, the maximum charge is performed. The battery other than the amount battery group G1 may be discharged, and the minimum charge amount battery group G3 may be discharged preferentially instead of the intermediate charge amount battery group G2. In this case, the minimum charge amount battery group G3 has a total remaining capacity E3r less than the total remaining capacity E1r of the maximum charge amount battery group G1, but the total remaining capacity E3r is larger than a predetermined capacity based on the minimum power Pmin. Is a condition.

また、上記実施形態のバッテリ放電制御は、複数個(3つ以上)のバッテリを並列接続して高電圧バッテリ12を形成した場合に適用可能であり、高電圧バッテリ12を構成するバッテリの数や、バッテリ群の分類数は上記実施形態に限定されるものではない。   Further, the battery discharge control of the above embodiment is applicable when a plurality of (three or more) batteries are connected in parallel to form the high voltage battery 12, and the number of batteries constituting the high voltage battery 12 The number of classifications of the battery group is not limited to the above embodiment.

1 車両
12 高電圧バッテリ(車両用バッテリ)
30 ECU(判定手段、制御装置)
32 SOC検出・分類部(分類手段)
33 バッテリ群総残容量算出部(バッテリ群総残容量算出手段)
B1〜B6 バッテリ
G1 最大充電量バッテリ群(バッテリ群)
G2 中間充電量バッテリ群(バッテリ群)
G3 最小充電量バッテリ群(バッテリ群)
1 Vehicle 12 High Voltage Battery (Vehicle Battery)
30 ECU (determination means, control device)
32 SOC detection / classification unit (classification means)
33 battery group total remaining capacity calculation unit (battery group total remaining capacity calculation means)
B1 to B6 Battery G1 Maximum charge amount battery group (battery group)
G2 Intermediate charge battery group (battery group)
G3 Minimum charge battery group (battery group)

Claims (1)

互いに並列に接続される少なくとも複数個のバッテリを放電する車両用バッテリの制御装置であって、
前記各バッテリに充電されている残容量を検出し、前記各残容量に基づいて前記各バッテリを複数のバッテリ群に分類する分類手段と、
前記分類手段により前記残容量が最も多い前記バッテリとして分類された最大充電量バッテリ群最大充電量バッテリ群の総残容量を算出するバッテリ群総残容量算出手段と、
前記第1のバッテリ群の総残容量が前記車両を走行させるために必要最低限の所定容量以上か否かを判定する判定手段と
を含み、
前記判定手段により、前記最大充電量バッテリ群の総残容量が前記所定容量以上であると判定されたとき、前記最大充電量バッテリ群を優先使用し、前記最大充電量バッテリ群の総残容量が前記所定容量未満であると判定されたとき、前記複数のバッテリ群のうち、総残容量が前記最大充電量バッテリ群未満となるバッテリ群であって、総残容量が前記所定容量よりも大となるバッテリ群を優先使用する、ことを特徴とする車両用バッテリの制御装置。
A vehicle battery control device for discharging at least a plurality of batteries connected in parallel to each other,
Classification means for detecting a remaining capacity charged in each battery and classifying each battery into a plurality of battery groups based on each remaining capacity;
A battery group total remaining capacity calculating means for calculating a total remaining capacity of the maximum charge amount battery group maximum charge amount battery group classified as the battery having the largest remaining capacity by the classification means;
Determining means for determining whether or not a total remaining capacity of the first battery group is equal to or greater than a predetermined predetermined capacity necessary for running the vehicle;
When the determination means determines that the total remaining capacity of the maximum charge amount battery group is equal to or greater than the predetermined capacity, the maximum charge amount battery group is preferentially used, and the total remaining capacity of the maximum charge amount battery group is When it is determined that the capacity is less than the predetermined capacity, the battery group in which the total remaining capacity is less than the maximum charge amount battery group among the plurality of battery groups, and the total remaining capacity is larger than the predetermined capacity. A battery battery control device characterized by preferentially using a battery group.
JP2016193803A 2016-09-30 2016-09-30 Vehicle battery controller Active JP6756219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193803A JP6756219B2 (en) 2016-09-30 2016-09-30 Vehicle battery controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193803A JP6756219B2 (en) 2016-09-30 2016-09-30 Vehicle battery controller

Publications (2)

Publication Number Publication Date
JP2018057228A true JP2018057228A (en) 2018-04-05
JP6756219B2 JP6756219B2 (en) 2020-09-16

Family

ID=61836085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193803A Active JP6756219B2 (en) 2016-09-30 2016-09-30 Vehicle battery controller

Country Status (1)

Country Link
JP (1) JP6756219B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707382A (en) * 2019-10-18 2020-01-17 瑞浦能源有限公司 Lithium ion battery matching method
CN111098758A (en) * 2020-01-02 2020-05-05 安徽锐能科技有限公司 Equalization method, circuit and storage medium based on SOH
DE102024100458A1 (en) 2023-02-06 2024-08-08 Isuzu Motors Limited CONTROL DEVICE AND VEHICLE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101771A1 (en) * 2011-01-26 2012-08-02 株式会社 日立製作所 Electric vehicle battery system
JP2014514692A (en) * 2011-03-21 2014-06-19 エルジー・ケム・リミテッド Battery pack connection control apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101771A1 (en) * 2011-01-26 2012-08-02 株式会社 日立製作所 Electric vehicle battery system
JP2014514692A (en) * 2011-03-21 2014-06-19 エルジー・ケム・リミテッド Battery pack connection control apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707382A (en) * 2019-10-18 2020-01-17 瑞浦能源有限公司 Lithium ion battery matching method
CN111098758A (en) * 2020-01-02 2020-05-05 安徽锐能科技有限公司 Equalization method, circuit and storage medium based on SOH
DE102024100458A1 (en) 2023-02-06 2024-08-08 Isuzu Motors Limited CONTROL DEVICE AND VEHICLE

Also Published As

Publication number Publication date
JP6756219B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US11745619B2 (en) Multiple chemistry battery systems for electric vehicles
CN103269898B (en) Elec. vehicle and control method thereof
CN103192729B (en) Elec. vehicle
CN104781101B (en) Charge-discharge system
US11362524B2 (en) Battery system and a method for use in the battery system
CN106208187A (en) Electric vehicle
JP7081959B2 (en) Vehicle power system
JP2007159236A (en) Vehicle power supply device and vehicle
JP5796457B2 (en) Battery system and battery system control method
CN106956599A (en) The self-loopa charge and discharge device and power assembly system of electric automobile
JP2018107922A (en) Controller of battery for vehicle
CN103947073A (en) Charging and discharging control device, charging control method, discharging control method, and program
JP6756219B2 (en) Vehicle battery controller
JP7010191B2 (en) Secondary battery system and charge control method for secondary batteries
JP2012050281A (en) Battery charging system of electric vehicle
CN103843219B (en) The power-supply system of motor vehicle and control method thereof
CN107031427A (en) Electrical storage device, conveying equipment and control method
CN113632339B (en) Control device for vehicle
Vafacipour et al. Technical assessment of utilizing an electrical variable transmission system in hybrid electric vehicles
WO2016081988A1 (en) Power management for an electric drive system
CN107482274B (en) Fuel cell system
US20220085639A1 (en) Vehicular power supply device
JP2018182866A (en) Battery system and electrical powered vehicle
JP2015116098A (en) Output control unit and output control method of capacitor
JP6322417B2 (en) Voltage fluctuation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200810

R150 Certificate of patent or registration of utility model

Ref document number: 6756219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250