JP2018056189A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
JP2018056189A
JP2018056189A JP2016187159A JP2016187159A JP2018056189A JP 2018056189 A JP2018056189 A JP 2018056189A JP 2016187159 A JP2016187159 A JP 2016187159A JP 2016187159 A JP2016187159 A JP 2016187159A JP 2018056189 A JP2018056189 A JP 2018056189A
Authority
JP
Japan
Prior art keywords
esd protection
semiconductor integrated
integrated circuit
circuit device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016187159A
Other languages
Japanese (ja)
Other versions
JP6792391B2 (en
Inventor
健一 能村
Kenichi Nomura
健一 能村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016187159A priority Critical patent/JP6792391B2/en
Publication of JP2018056189A publication Critical patent/JP2018056189A/en
Application granted granted Critical
Publication of JP6792391B2 publication Critical patent/JP6792391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit device capable of reducing variation of S parameters in the used frequency band, while protecting all circuits becoming protection object in the semiconductor integrated circuit device from surge voltage.SOLUTION: An ESD protection circuit 2 for protecting an internal circuit 6, connected between a power supply terminal 3 and a ground terminal 4, from a surge voltage applied to the power supply terminal 3 includes an ESD protection element 10 connected between the power supply terminal 3 and the ground terminal 4, and a series connection of a resistor 11 and a capacitor 12 connected between the power supply terminal 3 and the ground terminal 4. The capacitor 12 has such a capacitance value that the resonance frequency of a resonance circuit, consisting of the inductances 8, 9 of a wire and wiring, and the synthetic capacitance between the opposite terminals of the ESD protection circuit 2, is out of use frequency band.SELECTED DRAWING: Figure 1

Description

本発明は、RF回路(高周波回路)を含む内部回路と、該内部回路をサージ電圧から保護するESD保護回路とを備えた半導体集積回路装置に関する。   The present invention relates to a semiconductor integrated circuit device including an internal circuit including an RF circuit (high frequency circuit) and an ESD protection circuit that protects the internal circuit from a surge voltage.

一般的に、半導体集積回路装置は静電気に対して脆弱であるため、内部回路を電源端子等に印加されるサージ電圧から保護するためのESD(ElectroStatic Discharge)保護素子を設ける場合が多い。ESD保護素子は、電源端子等にサージ電圧が印加されたときに自身に電流を流すことで、保護対象の内部回路に過電流が流れることを防止する機能を有する。   In general, since a semiconductor integrated circuit device is vulnerable to static electricity, an ESD (ElectroStatic Discharge) protection element for protecting an internal circuit from a surge voltage applied to a power supply terminal or the like is often provided. The ESD protection element has a function of preventing an overcurrent from flowing in an internal circuit to be protected by causing a current to flow through itself when a surge voltage is applied to a power supply terminal or the like.

図6は、ESD保護素子にPN接合ダイオードを用いた従来の半導体集積回路装置の一例を示す回路図である。同図に示す半導体集積回路装置100は、電源5に接続された電源端子3と、接地に接続された接地端子4と、電源端子3と接地端子4の間に接続された内部回路6と、内部回路6を電源端子3に印加されるサージ電圧から保護するためのESD保護回路200と、を備える。内部回路6は、RF回路61及びRF回路61に対してバイアス設定等を行うDC回路62を含む。ESD保護回路200は、電源端子3と接地端子4の間に接続され、2つのPN接合ダイオードが向かい合わせに接続されたESD保護素子201を有する。   FIG. 6 is a circuit diagram showing an example of a conventional semiconductor integrated circuit device using a PN junction diode as an ESD protection element. The semiconductor integrated circuit device 100 shown in FIG. 1 includes a power supply terminal 3 connected to a power supply 5, a ground terminal 4 connected to ground, an internal circuit 6 connected between the power supply terminal 3 and the ground terminal 4, And an ESD protection circuit 200 for protecting the internal circuit 6 from a surge voltage applied to the power supply terminal 3. The internal circuit 6 includes an RF circuit 61 and a DC circuit 62 that performs bias setting for the RF circuit 61. The ESD protection circuit 200 includes an ESD protection element 201 connected between the power supply terminal 3 and the ground terminal 4 and having two PN junction diodes connected to face to face.

図6に示すように、ESD保護素子201にPN接合ダイオードを用いた場合、PN接合ダイオードの両端子間に寄生容量が発生する。この寄生容量が後述するインダクタンスと共に共振回路(即ち、LC共振回路)を構成し、これが半導体集積回路装置100の使用周波数帯で不都合な事態を引き起こしてしまう。   As shown in FIG. 6, when a PN junction diode is used for the ESD protection element 201, a parasitic capacitance is generated between both terminals of the PN junction diode. This parasitic capacitance forms a resonance circuit (that is, an LC resonance circuit) together with an inductance described later, and this causes an inconvenient situation in the use frequency band of the semiconductor integrated circuit device 100.

一般に、半導体集積回路装置では、各端子からワイヤーボンディングして半導体チップ内の複数の回路(上述したRF回路61やDC回路62等)と接続することが行われる。このため、半導体集積回路装置では、各端子へのワイヤーとともに、半導体チップ内外の配線がインダクタンスを持つことになる。図6に示す半導体集積回路装置100では、電源端子3からESD保護回路200を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンスをインダクタンス8,9で表している。   In general, in a semiconductor integrated circuit device, a plurality of circuits (such as the RF circuit 61 and the DC circuit 62 described above) in a semiconductor chip are connected by wire bonding from each terminal. For this reason, in the semiconductor integrated circuit device, the wiring inside and outside the semiconductor chip has inductance as well as the wire to each terminal. In the semiconductor integrated circuit device 100 shown in FIG. 6, inductances of wires and wirings in a path extending from the power supply terminal 3 to the ground terminal 4 through the ESD protection circuit 200 are represented by inductances 8 and 9.

半導体集積回路装置100のESD保護素子201の両端子間の寄生容量と、半導体集積回路装置100の電源端子3からESD保護回路200を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9とにより、電源端子3と接地端子4との間に接続されたESD保護素子201は共振回路となる。この共振回路の共振周波数付近では電源端子3と接地端子4との間のインピーダンスが大きく変動する。   Parasitic capacitance between both terminals of the ESD protection element 201 of the semiconductor integrated circuit device 100, and inductances 8 of wires and wirings in a path extending from the power supply terminal 3 of the semiconductor integrated circuit device 100 to the ground terminal 4 through the ESD protection circuit 200, 9, the ESD protection element 201 connected between the power supply terminal 3 and the ground terminal 4 becomes a resonance circuit. In the vicinity of the resonance frequency of this resonance circuit, the impedance between the power supply terminal 3 and the ground terminal 4 varies greatly.

半導体集積回路装置100では、内部回路6のRF回路61とDC回路62が完全に分離されていれば特に問題にはならないが、電源端子3や接地端子4の配線がRF回路61に接続されている場合や、RF回路61とDC回路62の距離が近く空間結合をする場合などは、前述のインピーダンス変動がRF回路61の特性に影響を与えてしまう。その影響とは、例えばRF回路61内の高周波増幅器(図示略)の接地端子のインピーダンスが高くなって発振を引き起こしたり、使用周波数帯域内でSパラメータが大きく変動する点が発生したりすることである。なお、この対策として、RF回路61とDC回路62を分離するために接地端子4を増やしたり、空間結合を防ぐために距離を広げたりするなどが考えられるが、いずれも回路規模の拡大に繋がるというデメリットがある。   In the semiconductor integrated circuit device 100, there is no particular problem as long as the RF circuit 61 and the DC circuit 62 of the internal circuit 6 are completely separated, but the wiring of the power supply terminal 3 and the ground terminal 4 is connected to the RF circuit 61. If the RF circuit 61 and the DC circuit 62 are close to each other and are spatially coupled, the impedance fluctuation described above affects the characteristics of the RF circuit 61. The influence is, for example, that the impedance of the ground terminal of a high-frequency amplifier (not shown) in the RF circuit 61 becomes high and causes oscillation, or the point that the S parameter greatly fluctuates within the used frequency band. is there. As measures against this, it is conceivable to increase the number of ground terminals 4 in order to separate the RF circuit 61 and the DC circuit 62, or to increase the distance in order to prevent spatial coupling. There are disadvantages.

一方、特許文献1に記載された集積回路化高周波増幅器では、共振によるインピーダンス変動が発振を引き起こす対策として、共振の経路に抵抗を追加している。それにより抵抗の共振周波数付近での安定係数が高くなって発振を抑制している。特許文献1では、ESD保護素子の寄生容量では無く、半導体集積回路内部の接地容量と配線のインダクタンスによる共振を想定しているが、その解決策は図6に示す従来の半導体集積回路装置100にも適用することができる。   On the other hand, in the integrated circuit high-frequency amplifier described in Patent Document 1, a resistor is added to the resonance path as a measure for causing oscillation due to impedance fluctuation due to resonance. As a result, the stability coefficient near the resonance frequency of the resistor is increased to suppress oscillation. In Patent Document 1, it is assumed that resonance is caused not by the parasitic capacitance of the ESD protection element but by the ground capacitance inside the semiconductor integrated circuit and the inductance of the wiring, but the solution is to the conventional semiconductor integrated circuit device 100 shown in FIG. Can also be applied.

図7は、図6に示す従来の半導体集積回路装置100に、特許文献1に記載された解決策を適用した半導体集積回路装置100Aを示す回路図である。同図に示すように、電源端子3と接地端子4の間に接続されたESD保護回路200Aは、ESD保護素子201と直列接続された抵抗202を有している。ESD保護素子201とインダクタンス8,9からからなる共振回路に抵抗202を接続することで共振回路のQ値が低下するので、共振周波数付近でのインピーダンスの変動が小さくなる。   FIG. 7 is a circuit diagram showing a semiconductor integrated circuit device 100A in which the solution described in Patent Document 1 is applied to the conventional semiconductor integrated circuit device 100 shown in FIG. As shown in the figure, the ESD protection circuit 200 </ b> A connected between the power supply terminal 3 and the ground terminal 4 has a resistor 202 connected in series with the ESD protection element 201. Since the Q value of the resonance circuit is lowered by connecting the resistor 202 to the resonance circuit composed of the ESD protection element 201 and the inductances 8 and 9, the fluctuation of impedance near the resonance frequency is reduced.

特開2006-339837号公報JP 2006-339837 A

しかしながら、上述したような共振回路に抵抗202を接続する方法では、インピーダンスの変動は小さくなるが、それでも一定程度の変動が残るため、使用周波数帯域内でSパラメータが大きく変動することがなくなるものの、依然として変動は残ってしまう。また、接続した抵抗202はサージ電流が流れる経路上にあるため、ESD保護素子201により保護されないなどの課題があった。なお、この課題は、特に半導体集積回路装置の材料としてガリウムヒ素(GaAs)を用いた場合で、且つ高周波領域で用いた場合に顕著になる。   However, in the method of connecting the resistor 202 to the resonance circuit as described above, the fluctuation in impedance is small, but a certain degree of fluctuation still remains, so that the S parameter does not fluctuate greatly within the used frequency band. The fluctuation still remains. Further, since the connected resistor 202 is on a path through which a surge current flows, there is a problem that it is not protected by the ESD protection element 201. This problem becomes prominent particularly when gallium arsenide (GaAs) is used as a material of the semiconductor integrated circuit device and when it is used in a high frequency region.

本発明は、上記事情に鑑みてなされたものであり、使用周波数帯域でSパラメータの変動を小さくできるとともに、半導体集積回路装置内の保護対象となる全ての回路をサージ電圧から保護することができる半導体集積回路装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can reduce the variation of the S parameter in the operating frequency band and can protect all the circuits to be protected in the semiconductor integrated circuit device from the surge voltage. An object of the present invention is to provide a semiconductor integrated circuit device.

本発明は、電源に接続された電源端子と、接地に接続された接地端子と、前記電源端子と前記接地端子の間に接続された内部回路と、前記内部回路を前記電源端子に印加されるサージ電圧から保護するためのESD保護回路と、を備えた半導体集積回路装置であって、前記ESD保護回路は、前記電源端子と前記接地端子の間に接続されたESD保護素子と、前記電源端子と前記接地端子の間に接続され、直列接続された抵抗及びキャパシタと、を有し、前記電源端子から前記ESD保護回路を介して前記接地端子へ続く経路のインダクタンスと、前記ESD保護回路の両端子間の合成容量からなる共振回路の共振周波数が使用周波数帯域外となるように前記キャパシタの容量を選択したことを特徴とする半導体集積回路装置を提供する。   The present invention includes a power supply terminal connected to a power supply, a ground terminal connected to ground, an internal circuit connected between the power supply terminal and the ground terminal, and the internal circuit applied to the power supply terminal. An ESD protection circuit for protecting from a surge voltage, wherein the ESD protection circuit includes an ESD protection element connected between the power supply terminal and the ground terminal, and the power supply terminal And a resistor and a capacitor connected in series, and an inductance of a path that leads from the power supply terminal to the ground terminal via the ESD protection circuit, and both ends of the ESD protection circuit Provided is a semiconductor integrated circuit device characterized in that the capacitance of the capacitor is selected so that the resonance frequency of the resonance circuit composed of the combined capacitance between the children is out of the use frequency band.

また、本発明は、上記の半導体集積回路装置であって、前記内部回路は、高周波回路を含むことを特徴とする半導体集積回路装置を提供する。   According to another aspect of the present invention, there is provided the semiconductor integrated circuit device, wherein the internal circuit includes a high frequency circuit.

また、本発明は、上記の半導体集積回路装置であって、前記ESD保護素子は、2つのPN接合ダイオードが向かい合わせに接続されたものであることを特徴とする半導体集積回路装置を提供する。   The present invention also provides a semiconductor integrated circuit device according to the above-described semiconductor integrated circuit device, wherein the ESD protection element is formed by connecting two PN junction diodes facing each other.

また、本発明は、電源に接続された電源端子と、接地に接続された接地端子と、前記電源端子と前記接地端子の間に接続された内部回路と、前記内部回路を前記電源端子に印加されるサージ電圧から保護するためのESD保護回路と、を備えた半導体集積回路装置であって、前記ESD保護回路は、前記電源端子に接続された第1のESD保護素子と、前記第1のESD保護素子と前記接地端子の間に接続された第2のESD保護素子と、前記第1のESD保護素子と前記第2のESD保護素子の接続点と前記接地端子の間に接続された抵抗と、を有し、前記電源端子から前記ESD保護回路を介して前記接地端子へ続く経路のインダクタンスと、前記ESD保護回路の両端子間の合成容量からなる共振回路の共振周波数が使用周波数帯域外となるように前記第2のESD保護素子の寄生容量を選択したことを特徴とする半導体集積回路装置を提供する。   The present invention also provides a power supply terminal connected to a power supply, a ground terminal connected to ground, an internal circuit connected between the power supply terminal and the ground terminal, and applying the internal circuit to the power supply terminal. An ESD protection circuit for protecting against a surge voltage generated, wherein the ESD protection circuit includes a first ESD protection element connected to the power supply terminal, and the first protection circuit. A second ESD protection element connected between the ESD protection element and the ground terminal; a resistor connected between a connection point of the first ESD protection element and the second ESD protection element and the ground terminal; And the resonance frequency of the resonance circuit including the inductance of the path extending from the power supply terminal to the ground terminal via the ESD protection circuit and the combined capacitance between both terminals of the ESD protection circuit is outside the use frequency band. It said selected parasitic capacitance of the second ESD protection element so as to provide a semiconductor integrated circuit device according to claim.

また、本発明は、上記の半導体集積回路装置であって、前記内部回路は、高周波回路を含むことを特徴とする半導体集積回路装置を提供する。   According to another aspect of the present invention, there is provided the semiconductor integrated circuit device, wherein the internal circuit includes a high frequency circuit.

また、本発明は、上記の半導体集積回路装置であって、前記第1のESD保護素子及び前記第2のESD保護素子は、それぞれ2つのPN接合ダイオードが向かい合わせに接続されたものであることを特徴とする半導体集積回路装置を提供する。   Also, the present invention is the above-described semiconductor integrated circuit device, wherein the first ESD protection element and the second ESD protection element are each formed by connecting two PN junction diodes facing each other. A semiconductor integrated circuit device is provided.

本発明によれば、ワイヤー及び装置内外の配線が持つインダクタンスとESD保護素子の寄生容量からなる共振回路の共振周波数を使用周波数外に移動させることができる共に、共振のQ値を低下させることができるので、使用周波数帯域でSパラメータの変動を小さくできるとともに、半導体集積回路装置内の保護対象となる全ての回路をサージ電圧から保護することができる。この効果は、半導体集積回路装置の材料としてガリウムヒ素(GaAs)を用いた場合で、且つ高周波領域で用いた場合に顕著に現れる。   According to the present invention, the resonance frequency of the resonance circuit composed of the inductance of the wire and the wiring inside and outside the device and the parasitic capacitance of the ESD protection element can be moved out of the use frequency, and the resonance Q value can be reduced. Therefore, the variation of the S parameter can be reduced in the used frequency band, and all the circuits to be protected in the semiconductor integrated circuit device can be protected from the surge voltage. This effect is prominent when gallium arsenide (GaAs) is used as the material of the semiconductor integrated circuit device and when it is used in a high frequency region.

本発明の第1の実施形態に係る半導体集積回路装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a semiconductor integrated circuit device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体集積回路装置の反射特性と従来の半導体集積回路装置の反射特性を比較した図である。It is the figure which compared the reflection characteristic of the semiconductor integrated circuit device which concerns on the 1st Embodiment of this invention, and the reflection characteristic of the conventional semiconductor integrated circuit device. 本発明の第1の実施形態に係る半導体集積回路装置のESD保護回路と従来の半導体集積回路装置のESD保護回路のそれぞれを、RF回路として高周波増幅器を有する半導体集積回路装置に適用したときの通過特性を比較した図である。Passing when each of the ESD protection circuit of the semiconductor integrated circuit device according to the first embodiment of the present invention and the ESD protection circuit of the conventional semiconductor integrated circuit device is applied to a semiconductor integrated circuit device having a high frequency amplifier as an RF circuit. It is the figure which compared the characteristic. 本発明の第2の実施形態に係る半導体集積回路装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the semiconductor integrated circuit device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る半導体集積回路装置の反射特性と従来の半導体集積回路装置の反射特性を比較した図である。It is the figure which compared the reflection characteristic of the semiconductor integrated circuit device which concerns on the 2nd Embodiment of this invention, and the reflection characteristic of the conventional semiconductor integrated circuit device. ESD保護素子にPN接合ダイオードを用いた従来の半導体集積回路装置の一例を示す回路図である。It is a circuit diagram which shows an example of the conventional semiconductor integrated circuit device which used the PN junction diode for the ESD protection element. 図6に示す従来の半導体集積回路装置に特許文献1に記載された解決策を適用した半導体集積回路装置を示す回路図である。FIG. 7 is a circuit diagram showing a semiconductor integrated circuit device in which the solution described in Patent Document 1 is applied to the conventional semiconductor integrated circuit device shown in FIG. 6.

以下、本発明に係る半導体集積回路装置を具体的に開示した実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments that specifically disclose a semiconductor integrated circuit device according to the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態に係る半導体集積回路装置について説明する。
図1は、本発明の第1の実施形態に係る半導体集積回路装置1の構成を示す回路図である。なお、図1において前述した図6に示した従来の半導体集積回路装置100と共通する素子については同一の符号を付している。また、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
(First embodiment)
A semiconductor integrated circuit device according to a first embodiment of the present invention will be described.
FIG. 1 is a circuit diagram showing a configuration of a semiconductor integrated circuit device 1 according to the first embodiment of the present invention. In FIG. 1, elements common to the conventional semiconductor integrated circuit device 100 shown in FIG. Further, members, arrangements, and the like described below do not limit the present invention, and various modifications can be made within the scope of the gist of the present invention.

図1において、本実施形態に係る半導体集積回路装置1は、電源5に接続された電源端子3と、接地に接続された接地端子4と、電源端子3と接地端子4の間に接続された内部回路6と、内部回路6を電源端子3に印加されるサージ電圧から保護するためのESD保護回路2と、を備える。内部回路6は、RF回路61及びRF回路61に対してバイアス設定等を行うDC回路62を含む。ESD保護回路2は、電源端子3と接地端子4の間に接続されたESD保護素子10と、電源端子3と接地端子4の間に接続され、直列接続された抵抗11及びキャパシタ12と、を備える。   In FIG. 1, the semiconductor integrated circuit device 1 according to the present embodiment is connected between a power supply terminal 3 connected to a power supply 5, a ground terminal 4 connected to ground, and between the power supply terminal 3 and the ground terminal 4. An internal circuit 6 and an ESD protection circuit 2 for protecting the internal circuit 6 from a surge voltage applied to the power supply terminal 3 are provided. The internal circuit 6 includes an RF circuit 61 and a DC circuit 62 that performs bias setting for the RF circuit 61. The ESD protection circuit 2 includes an ESD protection element 10 connected between the power supply terminal 3 and the ground terminal 4, and a resistor 11 and a capacitor 12 connected between the power supply terminal 3 and the ground terminal 4 and connected in series. Prepare.

ESD保護素子10は、2つのPN接合ダイオードが向かい合わせに接続されたものである。即ち、2つのPN接合ダイオードのカソード同士が接続されたものである。なお、2つのPN接合ダイオードのアノード同士が接続されたものであってもよく、また、単一のPN接合ダイオード(例えば、図1における下側のPN接合ダイオードのみ)であってもよい。ESD保護回路2のキャパシタ12は、電源端子3からESD保護回路2を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9と、ESD保護回路2の両端子間の合成容量(ESD保護素子10の両端子間に発生する寄生容量とキャパシタ12との合成容量)とからなる共振回路(即ち、LC共振回路)の共振周波数が使用周波数帯域外となる容量値を有する。また、ESD保護回路2の抵抗11は、電源端子3からESD保護回路2を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9とESD保護回路2の両端子間の合成容量とからなる共振回路の共振によるSパラメータの変動が十分小さくなる抵抗値を有する。   The ESD protection element 10 is formed by connecting two PN junction diodes facing each other. That is, the cathodes of two PN junction diodes are connected to each other. The anodes of two PN junction diodes may be connected to each other, or a single PN junction diode (for example, only the lower PN junction diode in FIG. 1) may be used. The capacitor 12 of the ESD protection circuit 2 has a combined capacitance (ESD) between the inductances 8 and 9 of the wires and wires in the path extending from the power supply terminal 3 to the ground terminal 4 through the ESD protection circuit 2 and both terminals of the ESD protection circuit 2. The resonance frequency of the resonance circuit (that is, the LC resonance circuit) including the parasitic capacitance generated between both terminals of the protection element 10 and the capacitor 12 has a capacitance value that is outside the use frequency band. The resistance 11 of the ESD protection circuit 2 includes a combined capacitance between the inductances 8 and 9 of the wires and wirings extending from the power supply terminal 3 to the ground terminal 4 via the ESD protection circuit 2 and both terminals of the ESD protection circuit 2. The resistance value is such that the fluctuation of the S parameter due to resonance of the resonance circuit consisting of is sufficiently small.

ESD保護回路2のESD保護素子10を電源端子3と接地端子4の間に接続したことで、電源端子3に印加されたサージ電圧により生じる電流は、ESD保護素子10を介して接地端子4に流れる。これにより、内部回路6と、ESD保護回路2の抵抗11及びキャパシタ12がサージ電圧から保護される。   By connecting the ESD protection element 10 of the ESD protection circuit 2 between the power supply terminal 3 and the ground terminal 4, the current generated by the surge voltage applied to the power supply terminal 3 is supplied to the ground terminal 4 via the ESD protection element 10. Flowing. Thereby, the internal circuit 6 and the resistor 11 and the capacitor 12 of the ESD protection circuit 2 are protected from the surge voltage.

電源端子3から接地端子4を見たインピーダンスは、電源端子3からESD保護回路2を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9とESD保護回路2の寄生容量とで構成される共振回路のインピーダンスになるため、特に共振周波数付近で大きく変動する。ここで、ESD保護回路2のキャパシタ12の容量を大きくすると、前記共振回路の共振周波数が低周波数に移動するので、使用周波数帯域外になるようにキャパシタ12の容量を選択する。   The impedance when the ground terminal 4 is viewed from the power terminal 3 is composed of the inductances 8 and 9 of the wires and wirings extending from the power terminal 3 to the ground terminal 4 via the ESD protection circuit 2 and the parasitic capacitance of the ESD protection circuit 2. Since the impedance of the resonance circuit is changed, it fluctuates greatly particularly near the resonance frequency. Here, if the capacitance of the capacitor 12 of the ESD protection circuit 2 is increased, the resonance frequency of the resonance circuit moves to a low frequency, so the capacitance of the capacitor 12 is selected so that it is outside the use frequency band.

また、ESD保護回路2の抵抗11によってESD保護回路2の寄生容量のQ値が低下し、ひいては前記共振回路のQ値が低下する。このとき抵抗11の値は、使用周波数におけるESD保護素子10のインピーダンスに対して、抵抗11とキャパシタ12からなる直列回路のインピーダンスが大きくなり過ぎないように選択する。即ち、前記共振回路の共振によるSパラメータの変動が十分小さくなるように抵抗11の抵抗値を選択する。   Further, the Q value of the parasitic capacitance of the ESD protection circuit 2 is lowered by the resistor 11 of the ESD protection circuit 2, and consequently, the Q value of the resonance circuit is lowered. At this time, the value of the resistor 11 is selected so that the impedance of the series circuit including the resistor 11 and the capacitor 12 does not become too large with respect to the impedance of the ESD protection element 10 at the operating frequency. That is, the resistance value of the resistor 11 is selected so that the fluctuation of the S parameter due to the resonance of the resonance circuit becomes sufficiently small.

図2は、電源端子3から接地端子4を見た反射特性を従来の半導体集積回路装置100と比較した図である。同図において、実線で示す曲線C1は、第1の実施形態に係る半導体集積回路装置1の反射特性であり、点線で示す曲線C2は、図6に示す従来の半導体集積回路装置100の反射特性である。従来の半導体集積回路装置100の共振周波数(略5000MHz)と比較して、第1の実施形態に係る半導体集積回路装置1の共振周波数(略3000MHz)は低周波数であり、かつ周波数依存による変動が小さくなっている。   FIG. 2 is a diagram comparing the reflection characteristics when the ground terminal 4 is viewed from the power supply terminal 3 with the conventional semiconductor integrated circuit device 100. In the figure, a curve C1 indicated by a solid line is the reflection characteristic of the semiconductor integrated circuit device 1 according to the first embodiment, and a curve C2 indicated by a dotted line is the reflection characteristic of the conventional semiconductor integrated circuit device 100 shown in FIG. It is. Compared to the resonance frequency (approximately 5000 MHz) of the conventional semiconductor integrated circuit device 100, the resonance frequency (approximately 3000 MHz) of the semiconductor integrated circuit device 1 according to the first embodiment is a low frequency and fluctuates due to frequency dependence. It is getting smaller.

使用周波数は4900MHz〜5900MHzであり、この使用周波数帯内に従来の半導体集積回路装置100の共振周波数が入っているが、第1の実施形態に係る半導体集積回路装置1の共振周波数は、従来の半導体集積回路装置100の共振周波数よりも低くなる。また、第1の実施形態に係る半導体集積回路装置1では、ESD保護回路2の抵抗11によって、共振回路のQ値が低くなる。   The use frequency is 4900 MHz to 5900 MHz, and the resonance frequency of the conventional semiconductor integrated circuit device 100 is within this use frequency band. The resonance frequency of the semiconductor integrated circuit device 1 according to the first embodiment is It becomes lower than the resonance frequency of the semiconductor integrated circuit device 100. In the semiconductor integrated circuit device 1 according to the first embodiment, the Q value of the resonance circuit is lowered by the resistor 11 of the ESD protection circuit 2.

なお、図3は、第1の実施形態に係る半導体集積回路装置1のESD保護回路2と図6に示す従来の半導体集積回路装置100のESD保護回路200のそれぞれを、RF回路として高周波増幅器を有する半導体集積回路装置に適用したときの通過特性を比較した図である。同図において、実線で示す曲線C3は、第1の実施形態に係る半導体集積回路装置1のESD保護回路2を適用したときの通過特性であり、点線で示す曲線C4は、図6に示す従来の半導体集積回路装置100のESD保護回路200を適用したときの通過特性である。従来の半導体集積回路装置100のESD保護回路200では、使用周波数(4900MHz〜5900MHz)帯内においてSパラメータの変動が大きくなっているが、第1の実施形態に係る半導体集積回路装置1のESD保護回路2では、使用周波数帯より低周波数側でSパラメータに変動が生じているものの、その変動が小さくなっている。   FIG. 3 shows a high-frequency amplifier that uses the ESD protection circuit 2 of the semiconductor integrated circuit device 1 according to the first embodiment and the ESD protection circuit 200 of the conventional semiconductor integrated circuit device 100 shown in FIG. 6 as RF circuits. It is the figure which compared the passage characteristic when it applies to the semiconductor integrated circuit device which has. In the figure, a curve C3 indicated by a solid line is a pass characteristic when the ESD protection circuit 2 of the semiconductor integrated circuit device 1 according to the first embodiment is applied, and a curve C4 indicated by a dotted line is the conventional curve C4 shown in FIG. This is a pass characteristic when the ESD protection circuit 200 of the semiconductor integrated circuit device 100 is applied. In the ESD protection circuit 200 of the conventional semiconductor integrated circuit device 100, although the fluctuation of the S parameter is large in the operating frequency (4900 MHz to 5900 MHz) band, the ESD protection of the semiconductor integrated circuit device 1 according to the first embodiment. In the circuit 2, although the S parameter fluctuates on the lower frequency side than the operating frequency band, the fluctuation is small.

以上説明したように、第1の実施形態に係る半導体集積回路装置1によれば、電源端子3からESD保護回路2を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9と、ESD保護回路2の両端子間の合成容量からなる共振回路の共振周波数(略3000MHz)を使用周波数帯(4900MHz〜5900MHz)より低周波数へ移動させる共に、共振のQ値を低下させるので、使用周波数帯域でSパラメータの変動を小さくできるとともに、半導体集積回路装置1内の保護対象となる全ての回路(RF回路61、DC回路62、抵抗11、キャパシタ12)をサージ電圧から保護することができる。この効果は、高周波領域で用いた場合で、半導体集積回路装置1の材料としてガリウムヒ素(GaAs)を用いた場合に顕著に現れる。   As described above, according to the semiconductor integrated circuit device 1 according to the first embodiment, the wires 8 and the wiring inductances 8 and 9 extending from the power supply terminal 3 to the ground terminal 4 through the ESD protection circuit 2, Since the resonance frequency (approximately 3000 MHz) of the resonance circuit composed of the combined capacitance between both terminals of the ESD protection circuit 2 is moved to a lower frequency than the use frequency band (4900 MHz to 5900 MHz), the resonance Q value is lowered. The fluctuation of the S parameter can be reduced in the band, and all the circuits (RF circuit 61, DC circuit 62, resistor 11, capacitor 12) to be protected in the semiconductor integrated circuit device 1 can be protected from the surge voltage. This effect is noticeable when gallium arsenide (GaAs) is used as the material of the semiconductor integrated circuit device 1 when used in the high frequency region.

(第2の実施形態)
本発明の第2の実施形態に係る半導体集積回路装置について説明する。
図4は、本発明の第2の実施形態に係る半導体集積回路装置15の構成を示す回路図である。なお、図4において前述した図6に示した従来の半導体集積回路装置100及び第1の実施形態に係る半導体集積回路装置1と共通する素子については同一の符号を付している。また、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
(Second Embodiment)
A semiconductor integrated circuit device according to the second embodiment of the present invention will be described.
FIG. 4 is a circuit diagram showing a configuration of a semiconductor integrated circuit device 15 according to the second embodiment of the present invention. 4, elements common to the conventional semiconductor integrated circuit device 100 shown in FIG. 6 and the semiconductor integrated circuit device 1 according to the first embodiment are denoted by the same reference numerals. Further, members, arrangements, and the like described below do not limit the present invention, and various modifications can be made within the scope of the gist of the present invention.

図4において、第2の実施形態に係る半導体集積回路装置15は、ESD保護回路16の構成が異なる以外、第1の実施形態に係る半導体集積回路装置1と同一の構成となっている。ESD保護回路16は、一端が電源端子3に接続された第1のESD保護素子10と、第1のESD保護素子10の他端と接地端子4の間に接続された第2のESD保護素子13と、第1のESD保護素子10と第2のESD保護素子13の接続点と接地端子4の間に接続された抵抗14と、を有する。第1のESD保護素子10及び第2のESD保護素子13は、それぞれ2つのPN接合ダイオードが向かい合わせに接続されたものである。即ち、第1のESD保護素子10及び第2のESD保護素子13は、それぞれ2つのPN接合ダイオードのカソード同士が接続されたものである。なお、それぞれ2つのPN接合ダイオードのアノード同士が接続されたものであってもよく、また、単一のPN接合ダイオードであってもよい。   In FIG. 4, the semiconductor integrated circuit device 15 according to the second embodiment has the same configuration as the semiconductor integrated circuit device 1 according to the first embodiment, except that the configuration of the ESD protection circuit 16 is different. The ESD protection circuit 16 includes a first ESD protection element 10 having one end connected to the power supply terminal 3, and a second ESD protection element connected between the other end of the first ESD protection element 10 and the ground terminal 4. 13, and a resistor 14 connected between a connection point between the first ESD protection element 10 and the second ESD protection element 13 and the ground terminal 4. The first ESD protection element 10 and the second ESD protection element 13 are each formed by connecting two PN junction diodes facing each other. That is, each of the first ESD protection element 10 and the second ESD protection element 13 is formed by connecting the cathodes of two PN junction diodes. Each of the anodes of two PN junction diodes may be connected to each other, or a single PN junction diode may be used.

第2の実施形態に係る半導体集積回路装置15では、電源端子3からESD保護回路16を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9とESD保護回路16の両端子間の寄生容量とからなる共振回路の共振周波数が使用周波数帯域外となるように、第2のESD保護素子13の寄生容量が選択されている。また、前記共振回路の共振によるSパラメータの変動が十分小さくなるように抵抗14の抵抗値が選択されている。   In the semiconductor integrated circuit device 15 according to the second embodiment, the inductances 8 and 9 of the wires and wires in the path extending from the power supply terminal 3 to the ground terminal 4 through the ESD protection circuit 16 and the terminals of the ESD protection circuit 16 are connected. The parasitic capacitance of the second ESD protection element 13 is selected so that the resonance frequency of the resonance circuit including the parasitic capacitance is outside the use frequency band. Further, the resistance value of the resistor 14 is selected so that the fluctuation of the S parameter due to the resonance of the resonance circuit becomes sufficiently small.

ESD保護回路16の第1のESD保護素子10と第2のESD保護素子13を電源端子3と接地端子4の間に接続したことで、電源端子3に印加されたサージ電圧により生じる電流は、第1,第2のESD保護素子10,13を介して接地端子4に流れる。これにより、内部回路6と、ESD保護回路16の抵抗14がサージ電圧から保護される。   By connecting the first ESD protection element 10 and the second ESD protection element 13 of the ESD protection circuit 16 between the power supply terminal 3 and the ground terminal 4, the current generated by the surge voltage applied to the power supply terminal 3 is: It flows to the ground terminal 4 through the first and second ESD protection elements 10 and 13. Thereby, the internal circuit 6 and the resistor 14 of the ESD protection circuit 16 are protected from the surge voltage.

電源端子3からESD保護回路16を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9とESD保護回路16の寄生容量とが共振回路を構成するため、電源端子3から接地端子4を見たインピーダンスは、特にその共振周波数付近で大きく変動する。ここで、第2のESD保護素子13の寄生容量を小さくすると前記共振回路の共振周波数が高周波数に移動するため、使用周波数帯域外になるように第2のESD保護素子13の寄生容量を選択する。寄生容量を小さくする調整方法としては、ESD保護素子13のアノード幅を小さくする、あるいはESD保護素子の段数を増やすなどが考えられる。また、抵抗14によってESD保護回路16の寄生容量のQ値が低下し、ひいては前記共振回路のQ値が低下する。このとき抵抗14の値は、使用周波数における第2のESD保護素子13のインピーダンスに対して、小さくなり過ぎないように選択する。   Since the inductances 8 and 9 of the wires and wires in the path extending from the power supply terminal 3 to the ground terminal 4 via the ESD protection circuit 16 and the parasitic capacitance of the ESD protection circuit 16 constitute a resonance circuit, the power supply terminal 3 to the ground terminal 4 The impedance seen by fluctuates greatly especially near the resonance frequency. Here, if the parasitic capacitance of the second ESD protection element 13 is reduced, the resonance frequency of the resonance circuit moves to a higher frequency, so the parasitic capacitance of the second ESD protection element 13 is selected so that it is outside the use frequency band. To do. As an adjustment method for reducing the parasitic capacitance, it is conceivable to reduce the anode width of the ESD protection element 13 or increase the number of stages of the ESD protection element. Further, the Q value of the parasitic capacitance of the ESD protection circuit 16 is lowered by the resistor 14, and as a result, the Q value of the resonance circuit is lowered. At this time, the value of the resistor 14 is selected so as not to be too small with respect to the impedance of the second ESD protection element 13 at the operating frequency.

このように第2の実施形態に係る半導体集積回路装置15の共振周波数は、図6に示す従来の半導体集積回路装置100の共振周波数よりも高くなる。また、第2の実施形態に係る半導体集積回路装置15では、ESD保護回路16の抵抗14によって、共振回路のQ値が低くなる。   Thus, the resonance frequency of the semiconductor integrated circuit device 15 according to the second embodiment is higher than the resonance frequency of the conventional semiconductor integrated circuit device 100 shown in FIG. In the semiconductor integrated circuit device 15 according to the second embodiment, the Q value of the resonance circuit is lowered by the resistor 14 of the ESD protection circuit 16.

図5は、電源端子3から接地端子4を見た反射特性を従来の半導体集積回路装置100と比較した図である。同図において、実線で示す曲線C5は、第2の実施形態に係る半導体集積回路装置15の反射特性であり、点線で示す曲線C2は、図6に示す従来の半導体集積回路装置100の反射特性である。従来の半導体集積回路装置100の共振周波数(略5000MHz)と比較して、第2の実施形態に係る半導体集積回路装置15の共振周波数(略6500MHz)は高周波数であり、かつ周波数依存による変動が小さくなっている。   FIG. 5 is a diagram comparing the reflection characteristics when the ground terminal 4 is viewed from the power supply terminal 3 with the conventional semiconductor integrated circuit device 100. In the figure, a curve C5 indicated by a solid line is the reflection characteristic of the semiconductor integrated circuit device 15 according to the second embodiment, and a curve C2 indicated by a dotted line is the reflection characteristic of the conventional semiconductor integrated circuit device 100 shown in FIG. It is. Compared to the resonance frequency (approximately 5000 MHz) of the conventional semiconductor integrated circuit device 100, the resonance frequency (approximately 6500 MHz) of the semiconductor integrated circuit device 15 according to the second embodiment is a high frequency and fluctuates depending on the frequency. It is getting smaller.

使用周波数は、4900MHz〜5900MHzであり、この使用周波数帯内に従来の半導体集積回路装置100の共振周波数が入っているが、第2の実施形態に係る半導体集積回路装置15の共振周波数は、従来の半導体集積回路装置100の共振周波数よりも高くなる。また、第2の実施形態に係る半導体集積回路装置15では、ESD保護回路16の抵抗14によって、共振回路のQ値が低くなる。   The use frequency is 4900 MHz to 5900 MHz, and the resonance frequency of the conventional semiconductor integrated circuit device 100 is included in this use frequency band, but the resonance frequency of the semiconductor integrated circuit device 15 according to the second embodiment is the conventional one. The resonance frequency of the semiconductor integrated circuit device 100 becomes higher. In the semiconductor integrated circuit device 15 according to the second embodiment, the Q value of the resonance circuit is lowered by the resistor 14 of the ESD protection circuit 16.

以上説明したように、第2の実施形態に係る半導体集積回路装置15によれば、電源端子3からESD保護回路16を介して接地端子4へ続く経路のワイヤー及び配線のインダクタンス8,9と、ESD保護回路16の両端子間の寄生容量とからなる共振回路の共振周波数(略6500MHz)を使用周波数帯(4900MHz〜5900MHz)より高周波数へ移動させる共に、共振のQ値を低下させるので、使用周波数帯域でSパラメータの変動を小さくできるとともに、半導体集積回路装置15内の保護対象となる全ての回路(RF回路61、DC回路62、抵抗14)をサージ電圧から保護することができる。この効果は、高周波領域で用いた場合で、半導体集積回路装置15の材料としてガリウムヒ素(GaAs)を用いた場合に顕著に現れる。   As described above, according to the semiconductor integrated circuit device 15 according to the second embodiment, the wires 8 and the wiring inductances 8 and 9 extending from the power supply terminal 3 to the ground terminal 4 through the ESD protection circuit 16, Since the resonance frequency (approximately 6500 MHz) of the resonance circuit composed of the parasitic capacitance between both terminals of the ESD protection circuit 16 is moved to a higher frequency from the use frequency band (4900 MHz to 5900 MHz), the resonance Q value is lowered. The variation of the S parameter can be reduced in the frequency band, and all the circuits (RF circuit 61, DC circuit 62, resistor 14) to be protected in the semiconductor integrated circuit device 15 can be protected from the surge voltage. This effect is noticeable when gallium arsenide (GaAs) is used as the material of the semiconductor integrated circuit device 15 when used in the high frequency region.

以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   While various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、高周波回路を含む内部回路と、該内部回路をサージ電圧から保護するESD保護回路とを備えた半導体集積回路装置に有用である。   The present invention is useful for a semiconductor integrated circuit device including an internal circuit including a high-frequency circuit and an ESD protection circuit that protects the internal circuit from a surge voltage.

1,15:半導体集積回路装置
2,16:ESD保護回路
3:電源端子
4:接地端子
5:電源
6:内部回路
8,9:ワイヤー及び配線のインダクタンス
10:ESD保護素子(第1のESD保護素子)
11,14:抵抗
12:キャパシタ
13:第2のESD保護素子
61:RF回路
62:DC回路
DESCRIPTION OF SYMBOLS 1,15: Semiconductor integrated circuit device 2, 16: ESD protection circuit 3: Power supply terminal 4: Grounding terminal 5: Power supply 6: Internal circuit 8, 9: Wire and wiring inductance 10: ESD protection element (first ESD protection) element)
DESCRIPTION OF SYMBOLS 11, 14: Resistance 12: Capacitor 13: 2nd ESD protection element 61: RF circuit 62: DC circuit

Claims (6)

電源に接続された電源端子と、
接地に接続された接地端子と、
前記電源端子と前記接地端子の間に接続された内部回路と、
前記内部回路を前記電源端子に印加されるサージ電圧から保護するためのESD保護回路と、を備えた半導体集積回路装置であって、
前記ESD保護回路は、
前記電源端子と前記接地端子の間に接続されたESD保護素子と、
前記電源端子と前記接地端子の間に接続され、直列接続された抵抗及びキャパシタと、を有し、
前記電源端子から前記ESD保護回路を介して前記接地端子へ続く経路のインダクタンスと、前記ESD保護回路の両端子間の合成容量からなる共振回路の共振周波数が使用周波数帯域外となるように前記キャパシタの容量を選択したことを特徴とする半導体集積回路装置。
A power terminal connected to the power source;
A ground terminal connected to ground, and
An internal circuit connected between the power supply terminal and the ground terminal;
An ESD protection circuit for protecting the internal circuit from a surge voltage applied to the power supply terminal, and a semiconductor integrated circuit device comprising:
The ESD protection circuit is
An ESD protection element connected between the power supply terminal and the ground terminal;
A resistor and a capacitor connected between the power supply terminal and the ground terminal and connected in series;
The capacitor so that a resonance frequency of a resonance circuit including an inductance of a path continuing from the power supply terminal to the ground terminal via the ESD protection circuit and a combined capacitance between both terminals of the ESD protection circuit is out of a use frequency band. A semiconductor integrated circuit device, wherein the capacitance of the semiconductor integrated circuit device is selected.
請求項1に記載の半導体集積回路装置であって、
前記内部回路は、高周波回路を含むことを特徴とする半導体集積回路装置。
The semiconductor integrated circuit device according to claim 1,
The semiconductor integrated circuit device, wherein the internal circuit includes a high frequency circuit.
請求項1又は請求項2に記載の半導体集積回路装置であって、
前記ESD保護素子は、2つのPN接合ダイオードが向かい合わせに接続されたものであることを特徴とする半導体集積回路装置。
A semiconductor integrated circuit device according to claim 1 or 2, wherein
2. The semiconductor integrated circuit device according to claim 1, wherein the ESD protection element is formed by connecting two PN junction diodes facing each other.
電源に接続された電源端子と、
接地に接続された接地端子と、
前記電源端子と前記接地端子の間に接続された内部回路と、
前記内部回路を前記電源端子に印加されるサージ電圧から保護するためのESD保護回路と、を備えた半導体集積回路装置であって、
前記ESD保護回路は、
前記電源端子に接続された第1のESD保護素子と、
前記第1のESD保護素子と前記接地端子の間に接続された第2のESD保護素子と、
前記第1のESD保護素子と前記第2のESD保護素子の接続点と前記接地端子の間に接続された抵抗と、を有し、
前記電源端子から前記ESD保護回路を介して前記接地端子へ続く経路のインダクタンスと、前記ESD保護回路の両端子間の合成容量からなる共振回路の共振周波数が使用周波数帯域外となるように前記第2のESD保護素子の寄生容量を選択したことを特徴とする半導体集積回路装置。
A power terminal connected to the power source;
A ground terminal connected to ground, and
An internal circuit connected between the power supply terminal and the ground terminal;
An ESD protection circuit for protecting the internal circuit from a surge voltage applied to the power supply terminal, and a semiconductor integrated circuit device comprising:
The ESD protection circuit is
A first ESD protection element connected to the power supply terminal;
A second ESD protection element connected between the first ESD protection element and the ground terminal;
A resistor connected between a connection point of the first ESD protection element and the second ESD protection element and the ground terminal;
The resonance frequency of the resonance circuit including the inductance of the path from the power supply terminal to the ground terminal via the ESD protection circuit and the combined capacitance between both terminals of the ESD protection circuit is out of the use frequency band. 2. A semiconductor integrated circuit device, wherein a parasitic capacitance of the ESD protection element is selected.
請求項4に記載の半導体集積回路装置であって、
前記内部回路は、高周波回路を含むことを特徴とする半導体集積回路装置。
The semiconductor integrated circuit device according to claim 4,
The semiconductor integrated circuit device, wherein the internal circuit includes a high frequency circuit.
請求項4又は請求項5に記載の半導体集積回路装置であって、
前記第1のESD保護素子及び前記第2のESD保護素子は、それぞれ2つのPN接合ダイオードが向かい合わせに接続されたものであることを特徴とする半導体集積回路装置。
A semiconductor integrated circuit device according to claim 4 or 5, wherein
The semiconductor integrated circuit device, wherein each of the first ESD protection element and the second ESD protection element is formed by connecting two PN junction diodes facing each other.
JP2016187159A 2016-09-26 2016-09-26 Semiconductor integrated circuit equipment Active JP6792391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187159A JP6792391B2 (en) 2016-09-26 2016-09-26 Semiconductor integrated circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187159A JP6792391B2 (en) 2016-09-26 2016-09-26 Semiconductor integrated circuit equipment

Publications (2)

Publication Number Publication Date
JP2018056189A true JP2018056189A (en) 2018-04-05
JP6792391B2 JP6792391B2 (en) 2020-11-25

Family

ID=61836167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187159A Active JP6792391B2 (en) 2016-09-26 2016-09-26 Semiconductor integrated circuit equipment

Country Status (1)

Country Link
JP (1) JP6792391B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528759A (en) * 1991-07-25 1993-02-05 Hitachi Ltd Semiconductor device
JPH10200051A (en) * 1997-01-14 1998-07-31 Canon Inc Semiconductor integrated circuit
US20100309594A1 (en) * 2009-06-05 2010-12-09 Fujitsu Semiconductor Limited Integrated circuit device
US20160172846A1 (en) * 2014-12-11 2016-06-16 Denso Corporation Electronic device
JP2016115724A (en) * 2014-12-11 2016-06-23 株式会社デンソー Electronic apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528759A (en) * 1991-07-25 1993-02-05 Hitachi Ltd Semiconductor device
KR930003381A (en) * 1991-07-25 1993-02-24 가나이 쯔또무 Semiconductor integrated circuit with voltage limiter circuit
US5383080A (en) * 1991-07-25 1995-01-17 Hitachi, Ltd. Semiconductor integrated circuit having voltage limiter circuit
JPH10200051A (en) * 1997-01-14 1998-07-31 Canon Inc Semiconductor integrated circuit
KR19980070469A (en) * 1997-01-14 1998-10-26 미따라이후지오 Semiconductor integrated circuit
US6353353B1 (en) * 1997-01-14 2002-03-05 Canon Kabushiki Kaisha Integrated semiconductor circuit with improved power supply control
US20100309594A1 (en) * 2009-06-05 2010-12-09 Fujitsu Semiconductor Limited Integrated circuit device
JP2010283182A (en) * 2009-06-05 2010-12-16 Fujitsu Semiconductor Ltd Integrated circuit device
US20160172846A1 (en) * 2014-12-11 2016-06-16 Denso Corporation Electronic device
JP2016115724A (en) * 2014-12-11 2016-06-23 株式会社デンソー Electronic apparatus

Also Published As

Publication number Publication date
JP6792391B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP4896137B2 (en) ESD protection circuit
JP6316512B1 (en) Semiconductor device
US10453810B2 (en) Integrated passive device for RF power amplifier package
US7948329B2 (en) Oscillator gain circuit and method
US20080239601A1 (en) Semiconductor device
US20100309594A1 (en) Integrated circuit device
JPH1167486A (en) Esd protection circuit and package including esd protection circuit
JP2006114618A (en) High frequency integrated circuit
US20240039275A1 (en) Transient voltage absorbing element and transient voltage absorbing circuit
CN112042115B (en) Amplifying circuit
JP6792391B2 (en) Semiconductor integrated circuit equipment
US8305718B2 (en) Low parasitic capacitance electrostatic discharge protection circuit
TW201926726A (en) Transient voltage suppressor
US6031704A (en) Electrostatic protection circuit in a semiconductor device
US10833064B2 (en) ESD protection circuit and integrated circuit for broadband circuit
CN107810550B (en) Protective bond wire in integrated circuit package
US9780085B1 (en) Electrostatic discharge protection apparatus
JP2013106325A (en) Amplification circuit and light reception circuit
US7113050B1 (en) Integrated circuit with oscillator and electrostatic discharge protection
US20220060160A1 (en) Radiofrequency Power Amplifier
JP2005123533A (en) Electrostatic discharge protective circuit
JP2009170626A (en) High frequency esd protection circuit
US9287700B1 (en) Protection Circuit
US11508834B2 (en) Compound semiconductor device
JP2010021961A (en) Amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6792391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250