JP2018055975A - Mixed anion compound iron-based superconducting wire material and manufacturing method therefor - Google Patents

Mixed anion compound iron-based superconducting wire material and manufacturing method therefor Download PDF

Info

Publication number
JP2018055975A
JP2018055975A JP2016191311A JP2016191311A JP2018055975A JP 2018055975 A JP2018055975 A JP 2018055975A JP 2016191311 A JP2016191311 A JP 2016191311A JP 2016191311 A JP2016191311 A JP 2016191311A JP 2018055975 A JP2018055975 A JP 2018055975A
Authority
JP
Japan
Prior art keywords
powder
superconducting wire
sheath
mixed
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016191311A
Other languages
Japanese (ja)
Other versions
JP6814007B2 (en
Inventor
陽一 神原
Yoichi Kanbara
陽一 神原
秀 岩▲崎▼
Hide Iwasaki
秀 岩▲崎▼
正憲 的場
Masanori Matoba
正憲 的場
優治郎 藤乘
Yujiro Tojo
優治郎 藤乘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2016191311A priority Critical patent/JP6814007B2/en
Publication of JP2018055975A publication Critical patent/JP2018055975A/en
Application granted granted Critical
Publication of JP6814007B2 publication Critical patent/JP6814007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting wire material high in critical temperature and critical current density and a manufacturing method therefor.SOLUTION: The superconducting wire material has a core part containing a perovskite related mixed anion type iron-based superconductor represented by a composition formula of ADFeAsO, where A represents one or more element selected from alkali earth metals Mg, Ca, Sr, Ba, D represents one or more element selected from transition metals Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, rear earths La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, an alkali earth metal Mg, a typical metal element Al, the core part charged into a metal sheath.SELECTED DRAWING: Figure 1

Description

本発明は、混合アニオン化合物鉄系超電導線材とその製造方法に関する。   The present invention relates to a mixed anion compound iron-based superconducting wire and a method for producing the same.

液体ヘリウムによる冷却を要しない高温超電導線材として、銅酸化物超電導線材が開発されており、中でもBi系超電導線材とY系超電導線材が実用化されている。
Bi系超電導線材は超電導体の結晶自体が配向し易い特徴を有するため、金属シースに多結晶試料を充填して縮径し、熱処理を行うというパウダーインチューブ法(Powder-in-tube法)により線材化が可能となる。
一方で20K程度の伝導冷却条件において磁場下での臨界電流特性はBi系超電導線材に比べ、Y系超電導線材が勝っている。ところが、Y系超電導線材は超電導体の結晶方位を厳密に揃えないと、臨界電流特性が低下する特徴があるため、成膜法などによる2軸配向化プロセスが必要となる。ところが、成膜法による2軸配向化プロセスは製造プロセスの肥大化、高コスト化につながる問題がある。20K程度の伝導冷却とは冷凍機を用いて到達できる冷却温度である。
このため、実用超電導線材を用いた超電導コイルの分野では20K以上の運転温度の高磁場下において、より高い臨界電流密度を示す超電導材料を用いた超電導線材が求められている。
Copper oxide superconducting wires have been developed as high-temperature superconducting wires that do not require cooling with liquid helium, and Bi-based superconducting wires and Y-based superconducting wires have been put into practical use.
Bi-based superconducting wire has the characteristic that the superconductor crystal itself is easily oriented. Therefore, the powder-in-tube method (Powder-in-tube method) in which a polycrystalline sheath is filled with a polycrystalline sample, the diameter is reduced, and heat treatment is performed. Wire materialization is possible.
On the other hand, the Y-based superconducting wire is superior in the critical current characteristics under a magnetic field under the conduction cooling condition of about 20K compared to the Bi-based superconducting wire. However, the Y-based superconducting wire has a characteristic that the critical current characteristic is deteriorated unless the crystal orientation of the superconductor is strictly aligned, and therefore a biaxial orientation process such as a film forming method is required. However, the biaxial orientation process by the film forming method has problems that lead to enlargement of the manufacturing process and high cost. Conductive cooling of about 20K is a cooling temperature that can be reached using a refrigerator.
For this reason, in the field of superconducting coils using a practical superconducting wire, a superconducting wire using a superconducting material exhibiting a higher critical current density under a high magnetic field at an operating temperature of 20 K or more is required.

近年、銅酸化物超電導体とは異なる高温超電導体として、鉄を中心とした鉄系混合アニオン化合物が発見された。
この種の鉄系超電導体として、56K程度の臨界温度(Tc)を示すZrCuSiAs型の結晶構造をもつ1111系化合物、38K程度のTcを示すThCrSi型結晶構造をもつ122系化合物、15K程度のTcを示すα‐PbO型結晶構造をもつ11系化合物など、異なる結晶構造を有する多くの超電導体が見つかっている。
このうち、Tcの高い1111系化合物や122系化合物については、銅酸化物超電導体に匹敵する高い上部臨界磁場(Hc)を示すため、線材への応用を目指しPIT法によるシース線材作製や、PLD法等の成膜法により超電導膜を積層したテープ線材の作製が試みられている(特許文献1参照)。
In recent years, iron-based mixed anion compounds centered on iron have been discovered as high-temperature superconductors different from copper oxide superconductors.
As this type of iron-based superconductor, a 1111 series compound having a ZrCuSiAs type crystal structure exhibiting a critical temperature (Tc) of about 56K, a 122 series compound having a ThCr 2 Si 2 type crystal structure exhibiting a Tc of about 38K, 15K Many superconductors having different crystal structures have been found, such as 11-based compounds having an α-PbO type crystal structure exhibiting a degree of Tc.
Among these, 1111 series compounds and 122 series compounds with high Tc show a high upper critical magnetic field (Hc 2 ) comparable to copper oxide superconductors, so that sheath wire preparation by PIT method aiming at application to wire, An attempt has been made to produce a tape wire in which superconducting films are laminated by a film forming method such as a PLD method (see Patent Document 1).

また、Nb−TiやNbSnなどの液体ヘリウム冷却が必要な低温超電導体では、永久電流モードを実現可能な超電導コイルが市販されている。しかしながら、銅酸化物超電導線材あるいは鉄系高温超電導線材を長尺化した超電導コイルにあっては、未だ永久電流モードが実現されていないのが現状である。
従来の高温超電導線材において永久電流モードを実現できない原因は、超電導体の結晶粒同士の粒間において生じる超電導電流を阻害する弱結合(ウィークリンク)を生じることが原因とされている。
この問題を解決できる1つの技術として、PIT法と称される線材作製プロセスにより製造可能な超電導材料による超電導線材の長尺化とその接合方法が重要であると考えられている。
For low-temperature superconductors that require liquid helium cooling such as Nb—Ti and Nb 3 Sn, superconducting coils that can realize a permanent current mode are commercially available. However, in a superconducting coil obtained by lengthening a copper oxide superconducting wire or an iron-based high-temperature superconducting wire, a permanent current mode has not yet been realized.
The reason why the permanent current mode cannot be realized in the conventional high-temperature superconducting wire is that weak coupling (weak link) that inhibits the superconducting current generated between the crystal grains of the superconductor is caused.
As one technique that can solve this problem, it is considered that the superconducting wire is made long by a superconducting material that can be manufactured by a wire manufacturing process called a PIT method and the joining method thereof is important.

特開2014−227329号公報JP 2014-227329 A

特許文献1に記載の従来の混合アニオン化合物鉄系超電導体の線材化では、線材加工と線材の熱処理時に生じる超電導体の化学組成変化により超電導転移温度の著しい低下が避けられなかった。
そこで本発明者らは、PIT法を適用して超電導線材を製造する場合に有望な鉄系超電導体の候補として、30K程度の超電導転移温度を有し、臨界磁場が200Tを超えると報告されているSrVFeAsO3-δなる組成の混合アニオン化合物鉄系超電導体を選択し、線材化の研究を行った。現状では本発明者の知る限り、このような組成の混合アニオン化合物鉄系超電導体を用いて超電導線材の製造に成功したという報告はなされていない。
In the conventional mixed anion compound iron-based superconductor described in Patent Document 1, the superconducting transition temperature is inevitably lowered due to a change in the chemical composition of the superconductor generated during wire processing and heat treatment of the wire.
Therefore, the present inventors have reported that a superconducting transition temperature of about 30K and a critical magnetic field exceeds 200T as a promising iron-based superconductor candidate in the case of manufacturing a superconducting wire by applying the PIT method. A mixed anion compound iron-based superconductor having a composition of Sr 2 VFeAsO 3 -δ was selected, and research into wire was conducted. As far as the present inventors know, there has been no report that the superconducting wire has been successfully produced using the mixed anion compound iron-based superconductor having such a composition.

そこで、本発明者が上述の混合アニオン化合物鉄系超電導体を用い、PIT法に従って超電導線材の製造について試験したところ以下の知見を得ることができた。
混合アニオン化合物鉄系超電導体の原料粉末からなる超電導コアをAgの内部シースとFeの外部シースで覆う構造を採用し、この超電導コアを熱処理した。その結果、熱処理時にAsがシース側に拡散してしまい、超電導コアに含まれるべきAsが不足し、超電導コアに生成するべき超電導体の化学組成が崩れることを確認できた。また、PIT法による製造条件を種々検討したところ、混合アニオン化合物鉄系超電導体の一部のものは、熱処理による化学変化に対し臨界温度の変化を鈍感にすることが可能なことを確認できた。
Then, when this inventor tested about manufacture of a superconducting wire according to PIT method using the above-mentioned mixed anion compound iron system superconductor, the following knowledge was able to be acquired.
A structure in which a superconducting core made of a raw material powder of a mixed anion compound iron-based superconductor was covered with an Ag inner sheath and an Fe outer sheath was employed, and the superconducting core was heat-treated. As a result, it was confirmed that As diffused to the sheath side during the heat treatment, As to be contained in the superconducting core was insufficient, and the chemical composition of the superconductor to be generated in the superconducting core was destroyed. Moreover, when various manufacturing conditions by the PIT method were examined, it was confirmed that some of the mixed anion compound iron-based superconductors can be insensitive to changes in critical temperature with respect to chemical changes due to heat treatment. .

本発明は、前記の課題に鑑みなされたものであって、線材熱処理による化学変化に対し臨界温度の変化を鈍感にすることが可能な混合アニオン化合物鉄系超電導体を用いた超電導線材とその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a superconducting wire using a mixed anion compound iron-based superconductor capable of desensitizing a change in critical temperature with respect to a chemical change caused by a wire heat treatment, and its manufacture It aims to provide a method.

本発明は、上記課題を解決する手段として、以下の構成を有する。
(1)本発明の超電導線材は、ADFeAsO3-δ(Aはアルカリ土類金属Mg、Ca、Sr、Baの中から選択される1種または2種以上の元素を示し、Dは遷移金属Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Au、希土類La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、アルカリ土類金属Mg、典型金属元素Alの中から選択される1種または2種以上の元素を示す。)なる組成式で示される混合アニオン型鉄系超電導体を含むコア部が金属シースの内部に充填されたことを特徴とする。
DFeAsO3-δなる組成式で示される鉄系超電導体を含むコア部を金属シースの内部に充填した構造の超電導線材であるならば、20K程度の臨界温度を示すとともに、優れた臨界電流密度を示す超電導線材を提供できる。
The present invention has the following configuration as means for solving the above problems.
(1) The superconducting wire of the present invention is A 2 DFeAsO 3 -δ (A represents one or more elements selected from the alkaline earth metals Mg, Ca, Sr and Ba, and D represents a transition. Metals Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, rare earth One or two selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, alkaline earth metal Mg, and typical metal element Al The core portion containing the mixed anion type iron superconductor represented by the composition formula is filled in the metal sheath.
A superconducting wire having a structure in which a core containing an iron-based superconductor represented by the composition formula of A 2 DFeAsO 3 -δ is filled in a metal sheath has a critical temperature of about 20 K and an excellent critical current. A superconducting wire exhibiting a density can be provided.

(2)本発明において、前記組成式における酸素欠損量を示すδの値を0<δ<0.2の範囲で選択できる。
超電導線材のコア部に適用する鉄系超電導体としてADFeAsO3-δなる組成式で示されるものを適用することができ、酸素欠損量を示すδの値を0<δ<0.2の範囲とすることで、臨界温度の高い、臨界電流密度の高い超電導線材を得ることができる。
(2) In the present invention, the value of δ indicating the amount of oxygen vacancies in the composition formula can be selected within the range of 0 <δ <0.2.
As the iron-based superconductor applied to the core portion of the superconducting wire, one represented by the composition formula of A 2 DFeAsO 3 -δ can be applied, and the value of δ indicating the oxygen deficiency is 0 <δ <0.2. By setting the range, a superconducting wire having a high critical temperature and a high critical current density can be obtained.

(3)本発明において、前記金属シースがCuシース、Feシース、CuとFeの複合材シース、Agシース、AgとFeの複合材シースのうち、いずれかからなるものを選択できる。
超電導コアを取り囲む金属シースとしてこれらの金属からなるシースを適用することができ、金属シースで超電導コアを覆った安定性の良好な臨界温度の高い、臨界電流密度の高い超電導線材を得ることができる。
(3) In the present invention, the metal sheath can be selected from any one of a Cu sheath, an Fe sheath, a composite sheath of Cu and Fe, an Ag sheath, and a composite sheath of Ag and Fe.
A sheath made of these metals can be applied as a metal sheath surrounding the superconducting core, and a superconducting wire with high critical temperature and high critical current density can be obtained by covering the superconducting core with the metal sheath. .

(4)本発明において、臨界温度(Tc)の測定値と、10K〜20Kにおける臨界電流密度の測定値(Jc)との関係において、Jc(0){1−(T/Tc)}…(1)式の関係から求められる0Kにおける臨界電流密度が25A/cm以上の超電導線材を得ることができる。 (4) In the present invention, in the relationship between the measured value of the critical temperature (Tc) and the measured value (Jc) of the critical current density at 10K to 20K, Jc (0) {1- (T / Tc) 2 } It is possible to obtain a superconducting wire having a critical current density at 0 K of 25 A / cm 2 or more obtained from the relationship of the formula (1).

(5)本発明の製造方法は、ADFeAsO3-δ(Aはアルカリ土類金属Mg、Ca、Sr、Baの中から選択される1種または2種以上の元素を示し、Dは遷移金属Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Au、希土類La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、アルカリ土類金属Mg、典型金属元素Alの中から選択される1種または2種以上の元素を示す。)なる組成式で示される混合アニオン型鉄系超電導体を金属シースの内部に設けた超電導線材を製造するに際し、
元素Aの単体粉末あるいは酸化物粉末と元素Dの単体粉末あるいは酸化物粉末とFeの単体粉末あるいは酸化物粉末とAsの単体粉末あるいは酸化物粉末を各元素が前記組成式で示される割合あるいは前記組成式に近似した割合になるように混合して原料混合粉末を得、この原料混合粉末を仮焼きして仮焼き粉末を得、この仮焼き粉末を金属チューブの内部に充填した後、前記金属チューブを圧縮して金属シースとその内部に圧縮充填されたコア部を有する圧縮体を得るとともに、前記圧縮体を本焼成して前記コア部内にADFeAsO3-δなる組成式で示される超電導体を生成することを特徴とする。
DFeAsO3-δで示される組成比となるように原料粉末を配合した原料混合粉末を仮焼きして仮焼き粉末を得、この仮焼き粉末を金属シースに充填して圧縮した圧縮体を本焼成することにより、原料粉末に含まれて近接配置された成分どうしが反応してADFeAsO3-δで示される超電導体を生成することができ、目的の超電導コアを備えた超電導線材が得られる。
(5) The production method of the present invention comprises A 2 DFeAsO 3 -δ (A represents one or more elements selected from the alkaline earth metals Mg, Ca, Sr and Ba, and D represents a transition. Metals Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, rare earth One or two selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, alkaline earth metal Mg, and typical metal element Al When producing a superconducting wire having a mixed anion type iron-based superconductor represented by a composition formula:
Element A single powder or oxide powder and element D single powder or oxide powder and Fe single powder or oxide powder and As single powder or oxide powder, the ratio of each element represented by the above composition formula or the above The raw material mixed powder is obtained by mixing so that the ratio is close to the composition formula, and the raw material mixed powder is calcined to obtain a calcined powder. After the calcined powder is filled inside the metal tube, the metal The tube is compressed to obtain a compressed body having a metal sheath and a core portion that is compressed and filled therein, and the compressed body is subjected to main firing and superconductivity represented by a composition formula of A 2 DFeAsO 3 -δ in the core portion. It is characterized by generating a body.
A raw material mixed powder in which raw material powders were blended so as to have a composition ratio represented by A 2 DFeAsO 3-δ was calcined to obtain a calcined powder, and a compressed body obtained by filling the calcined powder in a metal sheath and compressing the calcined powder By performing the main firing, the components placed in close proximity in the raw material powder can react to generate a superconductor represented by A 2 DFeAsO 3 -δ , and a superconducting wire having a target superconducting core is obtained. can get.

(6)本発明において、前記本焼成温度を800〜1030℃、前記本焼成時間を16時間以内とすることが好ましい。
800〜1030℃の焼成温度で本焼成し、本焼成時間を16時間以内とすることで超電導コアに含まれている元素の金属シース側への拡散を低く抑制できる。このため、超電導コアにおける特定元素の不足を抑制しつつ組成の整った超電導体を含む超電導コアを有する超電導線材を製造できる。
(6) In this invention, it is preferable that the said baking temperature shall be 800-1030 degreeC and the said baking time shall be less than 16 hours.
The main baking is performed at a baking temperature of 800 to 1030 ° C., and the main baking time is set to 16 hours or less, so that diffusion of elements contained in the superconducting core to the metal sheath side can be suppressed to a low level. For this reason, it is possible to manufacture a superconducting wire having a superconducting core including a superconductor having a well-structured composition while suppressing a shortage of a specific element in the superconducting core.

(7)本発明において、前記ADFeAsO3-δなる組成式で示される超電導体が、SrVFeAsO3-δなる組成式で示されるペロブスカイト関連混合アニオン型鉄系超電導体であることが好ましい。
SrVFeAsO3-δなる組成式で示されるペロブスカイト関連混合アニオン型鉄系超電導体であるならば、20K程度以上の臨界温度を示し、臨界電流密度の高い超電導線材を提供できる。
(7) In the present invention, the superconductor represented by the composition formula of A 2 DFeAsO 3 -δ is preferably a perovskite-related mixed anionic iron-based superconductor represented by a composition formula of Sr 2 VFeAsO 3 -δ. .
If it is a perovskite-related mixed anionic iron-based superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ , a superconducting wire having a critical temperature of about 20 K or higher and a high critical current density can be provided.

(8)本発明において、前記ADFeAsO3-δなる組成式で示される超電導体が、SrVFeAsO3-δなる組成式で示されるペロブスカイト関連混合アニオン型鉄系超電導体であり、前記一次混合粉末を得る場合、Srの酸化物粉末と、FeAs粉末と、Vの単体粉末またはVの酸化物粉末を混合して焼成することが好ましい。 (8) In the present invention, the superconductor represented by the composition formula A 2 DFeAsO 3 -δ is a perovskite-related mixed anionic iron-based superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ , When obtaining a mixed powder, it is preferable to mix Sr oxide powder, FeAs powder, V single powder or V oxide powder, and to fire.

本発明によれば、ADFeAsO3-δなる組成式で示される鉄系超電導体を含むコア部を金属シースの内部に充填した構造の超電導線材であるので、20K程度以上の臨界温度を示すとともに、優れた臨界電流密度を示すペロブスカイト関連混合アニオン型鉄系超電導線材を提供できる。 According to the present invention, since it is a superconducting wire having a structure in which a core containing an iron-based superconductor represented by the composition formula of A 2 DFeAsO 3 -δ is filled inside a metal sheath, it exhibits a critical temperature of about 20K or more. In addition, a perovskite-related mixed anionic iron-based superconducting wire exhibiting an excellent critical current density can be provided.

本発明に係る第1実施形態のペロブスカイト関連混合アニオン型鉄系超電導線材を示す横断面図。The cross-sectional view which shows the perovskite related mixed anionic iron-based superconducting wire of the first embodiment according to the present invention. 組成式SrVFeAsO3-δで表されるペロブスカイト関連混合アニオン型鉄系超電導体の結晶構造を示す説明図。Explanatory drawing which shows the crystal structure of the perovskite related mixed anionic iron-based superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ . 第1実施形態の超電導線材の製造工程について示すもので、(A)は原料粉末の混合工程を示す斜視図、(B)は原料混合粉末からなるペレットを示す斜視図、(C)は仮焼き用の焼成炉を示す斜視図、(D)は仮焼き後の焼成体を示す斜視図、(E)は仮焼き後の焼成体を粉砕混合する工程を示す斜視図、(F)は粉砕混合物をAgチューブに充填する工程を示す斜視図、(G)は圧延ロールでチューブを圧延している状態を示す斜視図、(H)は本焼成炉を示す斜視図。It shows about the manufacturing process of the superconducting wire of 1st Embodiment, (A) is a perspective view which shows the mixing process of raw material powder, (B) is a perspective view which shows the pellet which consists of raw material mixed powder, (C) is calcination (D) is a perspective view showing a fired body after calcination, (E) is a perspective view showing a step of pulverizing and mixing the fired body after calcination, and (F) is a pulverized mixture. The perspective view which shows the process which is filled with Ag tube, (G) is a perspective view which shows the state which is rolling the tube with a rolling roll, (H) is a perspective view which shows this baking furnace. SrVFeAsO3-δで表される組成比となるように原料粉末を配合して原料混合粉末を製造する工程について示す説明図。Explanatory diagram showing a step of manufacturing the raw material mixed powder was blended to prepare a raw material powder so as to have the composition ratio represented by Sr 2 VFeAsO 3-δ. 原料混合粉末に施す熱処理条件の一例を示すグラフ。The graph which shows an example of the heat processing conditions given to raw material mixed powder. 実施例においてFeのチューブの中にAgのチューブを挿入し、Agのチューブ内に包まれた混合アニオン型鉄系超電導体混合粉末を充填して製造された複合管を示す写真。The photograph which shows the composite pipe | tube manufactured by inserting the tube of Ag in the tube of Fe in the Example, and filling the mixed anion type iron superconductor mixed powder wrapped in the tube of Ag. 実施例において得られた超電導線材の一例を示す拡大断面写真。The expanded sectional photograph which shows an example of the superconducting wire obtained in the Example. 比較のために製造された超電導バルク体の低温域における抵抗変化を示すグラフ。The graph which shows the resistance change in the low temperature range of the superconducting bulk body manufactured for the comparison. 実施例において1時間、2時間、4時間、8時間、16時間、32時間、64時間、128時間のいずれかの焼成時間で製造された超電導線材において、超電導コアの一部と内部シースの一部に対しEDXライン分析を行った位置を示す組織写真。In the examples, in the superconducting wire manufactured at a firing time of 1 hour, 2 hours, 4 hours, 8 hours, 16 hours, 32 hours, 64 hours, or 128 hours, a part of the superconducting core and one of the inner sheaths The structure photograph which shows the position which performed the EDX line analysis with respect to the part. 図9に示す各焼成時間毎の超電導線材に対しSrについてEDXライン分析した結果を示す図。The figure which shows the result of having analyzed the EDX line about Sr with respect to the superconducting wire for every baking time shown in FIG. 図9に示す各焼成時間毎の超電導線材に対しVについてEDXライン分析した結果を示す図。The figure which shows the result of having conducted the EDX line analysis about V with respect to the superconducting wire for every baking time shown in FIG. 図9に示す各焼成時間毎の超電導線材に対しAgについてEDXライン分析した結果を示す図。The figure which shows the result of having analyzed the EDX line about Ag with respect to the superconducting wire for every baking time shown in FIG. 図9に示す各焼成時間毎の超電導線材に対しFeについてEDXライン分析した結果を示す図。The figure which shows the result of having conducted the EDX line analysis about Fe with respect to the superconducting wire for every baking time shown in FIG. 図9に示す各焼成時間毎の超電導線材に対しOについてEDXライン分析した結果を示す図。The figure which shows the result of having performed the EDX line analysis about O with respect to the superconducting wire for every baking time shown in FIG. 図9に示す各焼成時間毎の超電導線材に対しAsについてEDXライン分析した結果を示すグラフであり、横軸の0以下は銀シース部分に属し、横軸の0以上はコア部分に属することを示す図。FIG. 10 is a graph showing the result of EDX line analysis of As for the superconducting wire at each firing time shown in FIG. 9, where 0 or less on the horizontal axis belongs to the silver sheath part, and 0 or more on the horizontal axis belongs to the core part. FIG. 鉄からなる外部シースにおけるAs量のスポット分析について焼成時間に対するAs量の変化を示すグラフ。The graph which shows the change of As amount with respect to baking time about the spot analysis of As amount in the outer sheath which consists of iron. 1時間熱処理を行って得た超電導線材について、超電導コアと銀の内部シースの界面付近に対しEDX測定によりAs量対応カウント強度を求め、このカウント強度にについて50点に対し線形近似により近似直線の傾きaを求め、このaの値について位置依存性を示した図。For the superconducting wire obtained by heat treatment for 1 hour, an As-corresponding count strength was obtained by EDX measurement near the interface between the superconducting core and the silver inner sheath, and an approximate straight line was obtained by linear approximation with respect to this count strength for 50 points. The figure which calculated | required inclination a and showed position dependence about the value of this a. 1時間〜128時間熱処理を行って得た実施例の各超電導線材について、図17で求めた近似直線の傾きaの最大値または極大値付近の周囲を拡大表示したグラフであり、(a)は1時間焼成により得た超電導線材について示すグラフ、(b)は2時間焼成により得た超電導線材について示すグラフ、(c)は4時間焼成により得た超電導線材について示すグラフ、(d)は8時間焼成により得た超電導線材について示すグラフ、(e)は16時間焼成により得た超電導線材について示すグラフ、(f)は32時間焼成により得た超電導線材について示すグラフ、(g)は64時間焼成により得た超電導線材について示すグラフ、(h)は128時間焼成により得た超電導線材について示すグラフである。About each superconducting wire of the example obtained by performing heat treatment for 1 hour to 128 hours, it is the graph which expanded and displayed the circumference of the maximum value or the maximum value vicinity of the inclination a of the approximate straight line calculated | required in FIG. 17, (a) A graph showing a superconducting wire obtained by firing for 1 hour, (b) a graph showing a superconducting wire obtained by firing for 2 hours, (c) a graph showing a superconducting wire obtained by firing for 4 hours, (d) being 8 hours A graph showing a superconducting wire obtained by firing, (e) a graph showing a superconducting wire obtained by firing for 16 hours, (f) a graph showing a superconducting wire obtained by firing for 32 hours, and (g) by firing for 64 hours. The graph shown about the obtained superconducting wire, (h) is the graph shown about the superconducting wire obtained by baking for 128 hours. 1時間、2時間、4時間、8時間、16時間、32時間、64時間、128時間熱処理を行って得た各超電導線材について拡散を生じてAsの濃度勾配を生じている領域を示すグラフ。The graph which shows the area | region which produced the diffusion and produced the As concentration gradient about each superconducting wire obtained by performing heat processing for 1 hour, 2 hours, 4 hours, 8 hours, 16 hours, 32 hours, 64 hours, and 128 hours. (A)は比較のために製造した超電導バルク体のX線回折分析結果を示すグラフ、(B)は実施例において2時間焼成して得た超電導線材の超電導コアのX線回折分析結果を示すグラフ。(A) is a graph showing the result of X-ray diffraction analysis of a superconducting bulk material manufactured for comparison, and (B) is the result of X-ray diffraction analysis of a superconducting core of a superconducting wire obtained by firing for 2 hours in the examples. Graph. 実施例で製造した超電導線材において0−300Kにおける電気抵抗の温度依存性を示すグラフ。The graph which shows the temperature dependence of the electrical resistance in 0-300K in the superconducting wire manufactured in the Example. 実施例で製造した超電導線材において0−50Kにおける電気抵抗の温度依存性を示すグラフ。The graph which shows the temperature dependence of the electrical resistance in 0-50K in the superconducting wire manufactured in the Example. 実施例で製造した超電導線材において6−15Kにおける電気抵抗の温度依存性を示すグラフ。The graph which shows the temperature dependence of the electrical resistance in 6-15K in the superconducting wire manufactured in the Example. 実施例において製造された各超電導線材の0Kにおける臨界電流密度を計算で求めるためのグラフであり、上段は1時間焼成により製造した超電導線材について16Kと18Kにおける印加電圧と電流の関係を示し(試料につけた電極と電圧計の間の温度差に由来する熱起電力はV0として差し引いた。)、中段は2時間焼成により製造した超電導線材の17K、18Kの印加電圧と電流の関係、下段は4時間焼成により製造した超電導線材の13K、15Kの印加電圧と電流の関係を示すグラフ。It is a graph for calculating | requiring the critical current density in 0K of each superconducting wire manufactured in the Example by calculation, and the upper stage shows the relationship between the applied voltage and current in 16K and 18K about the superconducting wire manufactured by baking for 1 hour (sample) The thermoelectromotive force derived from the temperature difference between the electrode attached to the voltmeter and the voltmeter was subtracted as V0.), The middle row shows the relationship between the applied voltage and current at 17K and 18K of the superconducting wire produced by firing for 2 hours, the lower row is 4 The graph which shows the relationship between the applied voltage and electric current of 13K and 15K of the superconducting wire manufactured by time baking. 実施例で3種類の焼成時間により製造した超電導線材について0Kにおける臨界電流密度を見積もった結果を対比して示すグラフ。The graph which contrasts and shows the result of having estimated the critical current density in 0K about the superconducting wire manufactured by three types of baking time in the Example. 先の研究により求められているSrVFeAsO3-δで表されるペロブスカイト関連混合アニオン型鉄系超電導体の相図。The phase diagram of the perovskite related mixed anionic iron-based superconductor represented by Sr 2 VFeAsO 3 -δ required by the previous research.

以下、本発明の実施形態を挙げて本発明の詳細について説明する。
図1は本発明に係るペロブスカイト関連混合アニオン型鉄系超電導線材の横断面構造の一例を示すもので、この実施形態の超電導線材Aは、超電導体の結晶を内部に含む円形断面の超電導コア1と、この超電導コア1の外周を取り囲むチューブ状の金属製の内部シース2と、この内部シース2の外周を取り囲むチューブ状の金属製の外部シース3とからなる。
超電導線材Aの全体形状は長尺の線材であることが好ましいが、用途に応じた必要な長さの線材あるいは短尺の線材であっても良い。長尺の線材であれば超電導コイル用の巻線や送電線用途に使用することができ、短尺のものでも超電導線接続用の端子などの用途に適用することができるので、長さは問わない。
また、超電導線材Aの断面形状は図1に示すような断面円形状に限らず、矩形断面形状や十字型や四葉型などの異形断面形状であっても良い。更に、超電導コア1を内部シース2の内に1つのみ有する図1の単芯構造に限らず、内部シース2の内部に複数の超電導コアを有する多芯構造であっても良い。
Hereinafter, details of the present invention will be described with reference to embodiments of the present invention.
FIG. 1 shows an example of a cross-sectional structure of a perovskite-related mixed anionic iron-based superconducting wire according to the present invention. A superconducting wire A of this embodiment is a superconducting core 1 having a circular cross-section including a superconductor crystal inside. And a tube-shaped metal inner sheath 2 surrounding the outer periphery of the superconducting core 1 and a tube-shaped metal outer sheath 3 surrounding the outer periphery of the inner sheath 2.
The overall shape of the superconducting wire A is preferably a long wire, but may be a wire having a required length or a short wire depending on the application. Long wires can be used for windings for superconducting coils and power transmission lines, and even short ones can be used for applications such as terminals for connecting superconducting wires. .
Further, the cross-sectional shape of the superconducting wire A is not limited to the circular cross-section as shown in FIG. 1, but may be a rectangular cross-sectional shape or a modified cross-sectional shape such as a cross shape or a four-leaf shape. Furthermore, not only the single core structure of FIG. 1 having only one superconducting core 1 in the inner sheath 2, but also a multi-core structure having a plurality of superconducting cores in the inner sheath 2 may be used.

本実施形態の超電導コア1は、後述する製造工程において説明するようにADFeAsO3-δなる組成式で示される超電導体の構成元素を含む複数の原料粉末をシース材とともに圧延し、焼成してなる。原料粉末の圧密時に内部シース2と外部シース3も圧着一体化されるので、焼成後に得られる超電導コア1と内部シース2と外部シース3は相互に密着一体化されている。 The superconducting core 1 of the present embodiment is formed by rolling a plurality of raw material powders containing superconductor constituent elements represented by the composition formula of A 2 DFeAsO 3 -δ together with a sheath material and firing as described in the manufacturing process described later. It becomes. Since the inner sheath 2 and the outer sheath 3 are also pressed and integrated when the raw material powder is consolidated, the superconducting core 1, the inner sheath 2 and the outer sheath 3 obtained after firing are closely integrated with each other.

前記組成式ADFeAsO3-δにおいて、Aはアルカリ土類金属Mg、Ca、Sr、Baの中から選択される1種または2種以上の元素を示し、Dは遷移金属Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Au、希土類La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、アルカリ土類金属Mg、典型金属元素Alの中から選択される1種または2種以上の元素を示す。1つの具体例として、SrVFeAsO3-δなる組成式で示されるペロブスカイト関連混合アニオン型鉄系超電導体を例示することができるが、この他にCa(Al,Ti)FeAsOなる組成、Sr(Mg,Ti)FeAsOなる組成、CaAlFeAsOなる組成の鉄系超電導体を例示できる。 In the composition formula A 2 DFeAsO 3 -δ , A represents one or more elements selected from the alkaline earth metals Mg, Ca, Sr, Ba, and D represents the transition metals Sc, Ti, V , Cr, Mn, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, rare earth La, Ce, Pr, Indicates one or more elements selected from Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, alkaline earth metal Mg, and typical metal element Al . As one specific example, can be exemplified perovskite related mixed anionic-type iron-based superconductors represented by the composition formula comprising Sr 2 VFeAsO 3-δ, the addition to Ca 2 (Al, Ti) FeAsO 3 having a composition, An iron-based superconductor having a composition of Sr 2 (Mg, Ti) FeAsO 3 and a composition of Ca 2 AlFeAsO 3 can be exemplified.

組成式SrVFeAsO3-δで表される超電導体の結晶構造の一例を図2に示す。
図2に示す結晶構造は、層状ペロブスカイト構造のSrVO3-δ層をブロック層としてFeAs層を上下のブロック層でサンドイッチした結晶構造であり、この結晶構造の結晶格子定数はa=0.393nm、c=1.57nmであり、空間群P4/nmmに分類される結晶構造を有する化合物である。
An example of the crystal structure of the superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ is shown in FIG.
The crystal structure shown in FIG. 2 is a crystal structure in which an Sr 2 VO 3−δ layer having a layered perovskite structure is used as a block layer and an FeAs layer is sandwiched between upper and lower block layers, and the crystal lattice constant of this crystal structure is a = 0. The compound has a crystal structure of 393 nm, c = 1.57 nm, and is classified into the space group P4 / nmm.

図1に示す超電導コア1の周囲を取り囲む内部シース(金属シース)2はAg、Cu、Au、Feなどの良電気伝導性の金属材料あるいはこれら金属材料を主体とする合金からなり、内部シース2の周囲を取り囲む外部シース(金属シース)3はFe、Ag、Cu、Auなどの金属材料あるいはこれら金属材料を主体とする合金からなることが好ましい。なお、内部シース2は超電導体の結晶と隣接配置されるので、超電導体の安定化材として機能することが好ましく、特に電気伝導性の優れたAgやCuなどの金属材料からなることが好ましい。   An inner sheath (metal sheath) 2 surrounding the periphery of the superconducting core 1 shown in FIG. 1 is made of a metal material having good electrical conductivity such as Ag, Cu, Au, Fe, or an alloy mainly composed of these metal materials. The outer sheath (metal sheath) 3 surrounding the periphery of the metal is preferably made of a metal material such as Fe, Ag, Cu, Au, or an alloy mainly composed of these metal materials. Since the inner sheath 2 is disposed adjacent to the superconductor crystal, it preferably functions as a superconductor stabilizer, and is particularly preferably made of a metal material such as Ag or Cu having excellent electrical conductivity.

図3は図1に示す超電導線材Aの製造方法の一例工程を示すもので、まず、出発材料となる原料混合粉末を用意する。原料混合粉末は、例えば、ADFeAsO3-δなる組成式で示される目的の組成比となるように元素Aと元素DとFeとAsを含む原料の混合粉末である。
原料混合粉末を得る場合、元素Aの単体粉末あるいは酸化物粉末と、元素Dの単体粉末あるいは酸化物粉末と、Feの単体粉末あるいは酸化物粉末と、Asの単体粉末あるいは酸化物粉末を混合することができる。また、元素Aの単体粉末あるいは酸化物粉末と、元素Dの単体粉末あるいは酸化物粉末と、FeAs粉末を混合して原料混合粉末を得ることもできる。例えば、元素Aの酸化物粉末と、FeAs粉末と、元素Dの粉末または元素Dの酸化物粉末を混合して原料混合粉末を得ることができる。
なお、原料混合粉末を調整する場合、後の焼成時に昇華などの理由により消失する成分がある場合は、その成分を多く原料混合粉末に混入しておくことが好ましい。
例えば、酸素(O)やヒ素(As)は800〜1000℃焼成時に昇華するおそれがあるので、原料混合粉末中に前述の組成比の割合よりも0〜5原子%程度多く含有させておくことができる。酸素の割合を調整する場合は、例えば、原料のVとV酸化物の割合を調整することで実施できる。原料のVに対してV酸化物を増量すれば酸素の割合を増加できる。このため、本明細書においてADFeAsO3-δなる組成式で示される目的の組成比となるように元素Aと元素DとFeとAsを含む原料の混合粉末を得る場合、組成式で規定する割合に近似する割合としてこれらの元素を0〜5原子%程度多く配合する場合を含むものとする。なお、ADFeAsO3-δなる組成式において酸素含有量については2.5〜3.1の範囲を採用することが可能である。
FIG. 3 shows an example of a process for producing the superconducting wire A shown in FIG. 1, and first, a raw material mixed powder as a starting material is prepared. The raw material mixed powder is, for example, a mixed powder of raw materials including the element A, the element D, Fe, and As so as to have a target composition ratio represented by a composition formula of A 2 DFeAsO 3 -δ .
When obtaining a raw material mixed powder, a simple powder or oxide powder of element A, a simple powder or oxide powder of element D, a simple powder or oxide powder of Fe, and a simple powder or oxide powder of As are mixed. be able to. Alternatively, a raw material mixed powder can be obtained by mixing element A simple powder or oxide powder, element D simple powder or oxide powder, and FeAs powder. For example, an element A oxide powder, an FeAs powder, and an element D powder or an element D oxide powder can be mixed to obtain a raw material mixed powder.
In addition, when preparing a raw material mixed powder, when there exists a component lose | disappeared for reasons, such as sublimation, at the time of subsequent baking, it is preferable to mix many that component in a raw material mixed powder.
For example, oxygen (O) and arsenic (As) may be sublimated during firing at 800 to 1000 ° C., and therefore, the raw material mixed powder should contain about 0 to 5 atomic% more than the above-described composition ratio. Can do. When adjusting the ratio of oxygen, for example, it can be carried out by adjusting the ratio of V and V oxide of the raw material. If the amount of V oxide is increased with respect to V of the raw material, the proportion of oxygen can be increased. Therefore, when obtaining the mixed powder of raw material containing an element A and the element D and Fe and As so as to have the composition ratio of interest represented by A 2 DFeAsO 3-δ having the composition formula in the present specification, defined by the formula As a ratio that approximates the ratio, the case of adding these elements in an amount of about 0 to 5 atomic% is included. In the composition formula of A 2 DFeAsO 3 -δ, a range of 2.5 to 3.1 can be adopted as the oxygen content.

原料混合粉末の粒径は微細な方が望ましいが、微細に過ぎると粉末の製造が容易ではなくなり、粉末のハンドリングも容易ではなくなるので、平均粒径1〜30μmなどの範囲でできるだけ粒径が整った混合粉末とすることが好ましい。
原料混合粉末を得る場合、図3(A)に示すように必要量秤量した複数の原料粉末10、11をめのう乳鉢などの混合鉢12に収容して乳棒などの混合棒13で摺り合わせることで複数の粉末を混合粉砕することができる。勿論、工業的に原料混合粉末を大量処理する場合は、ボールミルやアトライタなどの混合装置を用いて大量の原料粉末を混合しても良い。
Although it is desirable that the particle size of the raw material mixed powder is fine, if it is too fine, it will not be easy to manufacture the powder, and handling of the powder will not be easy. It is preferable to use a mixed powder.
When obtaining the raw material mixed powder, as shown in FIG. 3 (A), a plurality of raw material powders 10 and 11 weighed in a necessary amount are housed in a mixing bowl 12 such as an agate mortar and rubbed with a mixing bar 13 such as a pestle. A plurality of powders can be mixed and pulverized. Of course, when a large amount of raw material mixed powder is processed industrially, a large amount of raw material powder may be mixed using a mixing device such as a ball mill or an attritor.

原料混合粉末を得る場合、一例として、図4に示すように、Sr(OH)・8HO粉末を900℃程度の温度で数時間〜数10時間程度、例えば10時間程度加熱してSrO粉末を得る。続いて、Fe粉末とAs粉末を混合して600℃程度の温度で数時間〜数10時間程度、例えば10時間程度加熱してFeAs粉末を得、先のSrO粉末とともにこれらの粉末にV粉末とV粉末を混合して組成式SrVFeAsO3-δで表される組成比になるように各粉末の配合量を調整することができる。 When obtaining the raw material mixed powder, as shown in FIG. 4, for example, as shown in FIG. 4, the Sr (OH) 2 .8H 2 O powder is heated at a temperature of about 900 ° C. for several hours to several tens of hours, for example, about 10 hours. Obtain a powder. Subsequently, the Fe powder and the As powder are mixed and heated at a temperature of about 600 ° C. for about several hours to several tens of hours, for example, about 10 hours to obtain FeAs powder, and together with the previous SrO powder, these powders and V powder V 2 O 5 powder can be adjusted amount of each powder so that the composition ratio expressed by the admixture composition formula Sr 2 VFeAsO 3-δ.

なお、Srの単体金属は粘度が高いので微細粉末とすることが容易ではない。このため、Srを含む原材料としては、純度の高いものが入手容易なSr(OH)・8HO粉末を利用し、この粉末を加熱脱水してSrO粉末とすることで微細粉末化を容易とすることができる。また、Sr(OH)・8HO粉末を焼成してSrO粉末とする場合、酸素以外の他の不要元素の混入が生じ難いのでSrO粉末の状態で原料粉末混合の配合に適用することが有利となる。また、FeAs粉末は脆いので微細粉末化が容易にできる。V粉末については高純度のものは高価であるので酸化物として広く入手可能なV粉末を用いることができるが、V粉末やVO粉末などの他の酸化物粉末を用いても良い。V粉末を多く用いると酸素の割合が多くなり過ぎるので、V粉末とV粉末の混合粉末を用いることが好ましい。
以上説明のように原料混合粉末を得る場合の各粉末配合の具体例を説明したが、原料混合粉末を得る場合の配合例はこの例に限らず、目的の組成比になるように各粉末を配合する方法を適宜選択すればよい。
In addition, since the single metal of Sr has a high viscosity, it is not easy to make it a fine powder. Therefore, as the raw material containing Sr, utilizing easy Sr (OH) 2 · 8H 2 O powder obtained is high purity, ease of fine powdered With SrO powder by heating and dehydrating the powder It can be. In addition, when Sr (OH) 2 .8H 2 O powder is baked to form SrO powder, it is difficult to mix other unnecessary elements other than oxygen, so that it can be applied to the mixing of raw material powder in the state of SrO powder. It will be advantageous. Further, since FeAs powder is brittle, it can be easily made into a fine powder. As for the V powder, high-purity ones are expensive, and thus V 2 O 5 powder that is widely available as an oxide can be used, but other oxide powders such as V 2 O 3 powder and VO 2 powder are used. May be. If a large amount of V 2 O 5 powder is used, the proportion of oxygen becomes too high, so it is preferable to use a mixed powder of V powder and V 2 O 5 powder.
As described above, specific examples of powder blending in the case of obtaining a raw material mixed powder have been described. However, the blending example in the case of obtaining a raw material mixed powder is not limited to this example. What is necessary is just to select the method of mix | blending suitably.

原料混合粉末を得たならば、この原料混合粉末をプレス装置などで加圧して例えば図3(B)に示すペレット状(円盤状)の圧縮体15を得る。この圧縮体15を必要個数揃えて図3(C)に示すオーブンなどの加熱炉16に収容して真空雰囲気中あるいはアルゴン等の不活性雰囲気中において500〜1150℃程度の高温に加熱して仮焼きする。
一例として、組成式SrVFeAsO3-δで表される超電導体を製造する場合に前述の原料混合粉末を用いると1050℃を超える温度で成分の一部が溶融するおそれがあるので、1050℃の仮焼き温度を上限とすることが好ましい。また、500℃未満の焼成温度では成分元素の反応が進まないので500℃以上とする必要がある。なお、仮焼き温度を低く設定し過ぎると反応に要する焼成時間が長くなり、仮焼き時間が長くなるので、実質的には800〜1050℃程度の温度範囲で仮焼きすることが好ましい。
When the raw material mixed powder is obtained, the raw material mixed powder is pressurized with a press device or the like to obtain, for example, a pellet-shaped (disk-shaped) compact 15 shown in FIG. The necessary number of the compressed bodies 15 are prepared and accommodated in a heating furnace 16 such as an oven shown in FIG. 3C and heated to a high temperature of about 500 to 1150 ° C. in a vacuum atmosphere or an inert atmosphere such as argon. Bake.
As an example, in the case of producing a superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ , if the above raw material mixed powder is used, a part of the components may be melted at a temperature exceeding 1050 ° C. It is preferable to make the calcining temperature of the upper limit. Further, since the reaction of the component elements does not proceed at a firing temperature of less than 500 ° C., it is necessary to set it to 500 ° C. or more. If the calcining temperature is set too low, the firing time required for the reaction becomes long and the calcining time becomes long. Therefore, it is preferable that the calcining is substantially performed in a temperature range of about 800 to 1050 ° C.

仮焼き後のペレット状の圧縮体17を図3(E)に示すめのう乳鉢などの混合鉢18に収容して乳棒などの混合棒19で摺り合わせて再度混合粉砕することで図3(F)に示すような最終混合粉末20を得ることができる。なお、ここで得た最終混合粉末20から再度ペレットを形成して粉砕混合し、仮焼きする処理を必要回数繰り返し施しても良い。
前記最終混合粉末20を図3(F)に示すように内部シースを構成する金属からなるチューブ21の内部に充填する。内部シース2をAgから構成する場合はAgのチューブ21を用いる。チューブ21に最終混合粉末20を充填したならば、外部シースを構成する金属からなる外チューブに全体を収容する。外部シース3をFeから構成する場合はFeの外チューブに収容する。あるいは、予めAgのチューブ21の外部にFeの外チューブを被せておいた複合管を用意し、この複合管に最終混合粉末20を充填しても良い。
The pellet-like compressed body 17 after calcination is accommodated in a mixing bowl 18 such as an agate mortar shown in FIG. 3 (E), rubbed with a mixing stick 19 such as a pestle, and mixed and pulverized again. The final mixed powder 20 as shown in FIG. Note that the final mixed powder 20 obtained here may be re-formed, pulverized and mixed, and pre-baked repeatedly.
As shown in FIG. 3F, the final mixed powder 20 is filled into a tube 21 made of metal constituting an inner sheath. When the inner sheath 2 is made of Ag, an Ag tube 21 is used. When the final mixed powder 20 is filled in the tube 21, the whole is accommodated in the outer tube made of metal constituting the outer sheath. When the outer sheath 3 is made of Fe, it is accommodated in an Fe outer tube. Alternatively, a composite tube in which an outer tube of Fe is covered in advance on the outside of the Ag tube 21 may be prepared, and the final mixed powder 20 may be filled in the composite tube.

次に、最終混合粉末20を充填したチューブ21を内部に収容した図3(G)に示す外チューブ22を圧延装置23にて圧延する。ここで用いる圧延装置23は、上下に配置された圧延ロール23A、23Aを有し、圧延ロール23A、23Aの長さ方向中央部外周に周溝23aが形成された装置である。本実施形態で図1に示す断面円形状の超電導線材Aを製造する場合に、圧延ロール23Aに設ける周溝23aは丸溝型の周溝で良い。なお、図3(G)では後述する実施例において矩形断面形状の超電導線材を得るための凹型の周溝23aが描かれている。
なお、断面矩形型の超電導線材を製造する場合は角溝型の周溝23aとすれば良く、周溝の幅を大きくして浅い周溝とすればシート状の超電導線材を製造することもできる。本願の明細書で記載する超電導線材とは断面丸型の線材や矩形断面形状の線材に限らず、シート状の線材も含む概念とするので、圧延ロール23A、23Aに形成する周溝23aの断面形状を工夫することで任意の断面形状の超電導線材を製造できる。
Next, the outer tube 22 shown in FIG. 3G in which the tube 21 filled with the final mixed powder 20 is accommodated is rolled by the rolling device 23. The rolling device 23 used here is a device that has rolling rolls 23A and 23A arranged above and below, and a circumferential groove 23a formed on the outer periphery of the center portion in the length direction of the rolling rolls 23A and 23A. When the superconducting wire A having a circular cross section shown in FIG. 1 is manufactured in this embodiment, the circumferential groove 23a provided in the rolling roll 23A may be a round groove type circumferential groove. In FIG. 3G, a concave circumferential groove 23a for obtaining a superconducting wire having a rectangular cross section is illustrated in an example described later.
In addition, when manufacturing a superconducting wire having a rectangular cross section, it is only necessary to use a square groove type peripheral groove 23a, and a sheet-like superconducting wire can be manufactured by increasing the width of the peripheral groove to a shallow peripheral groove. . The superconducting wire described in the specification of the present application is not limited to a wire having a round cross-section or a wire having a rectangular cross-section, but also includes a sheet-like wire, so the cross-section of the circumferential groove 23a formed in the rolling rolls 23A and 23A By devising the shape, a superconducting wire having an arbitrary cross-sectional shape can be manufactured.

図3(G)に示すように圧延装置23で加圧することで内部の最終混合粉末20は加圧されて棒状の圧密体となり、チューブ21を圧延した内部シース2で圧密体を覆い、更に外チューブ22を圧延した外部シース3で内部シース2を覆った構造の複合線材25が得られる。
この複合線材25を図3(H)に示すオーブンなどの加熱炉26に収容し、真空雰囲気中あるいはアルゴン等の不活性雰囲気中において(500〜1000)℃、より好ましくは800〜950℃に加熱する本焼成処理を行う。本焼成の温度は原料成分の溶融を防止するために、前述の仮焼き温度の望ましい上限1050℃より低い温度とすることが好ましい。また、銀からなるシースを用いる場合に銀の融点である961℃より高くすることができないので本焼成の場合の上限温度を950℃としている。
この本焼成処理によって原料混合粉末の圧密体の内部で必要な成分元素どうしの反応が進み、ADFeAsO3-δなる組成式で示される酸化物超電導体、例えば、組成式SrVFeAsO3-δなる組成式で表される図2に示す結晶構造の超電導体が生成し、図1に示す超電導コア1を備えた超電導線材Aが得られる。
As shown in FIG. 3 (G), the final mixed powder 20 inside is pressed into a rod-like compact by pressing with the rolling device 23, and the compact 21 is covered with the inner sheath 2 in which the tube 21 is rolled. A composite wire 25 having a structure in which the inner sheath 2 is covered with the outer sheath 3 obtained by rolling the tube 22 is obtained.
The composite wire 25 is housed in a heating furnace 26 such as an oven shown in FIG. 3 (H) and heated to (500 to 1000) ° C., more preferably 800 to 950 ° C. in a vacuum atmosphere or an inert atmosphere such as argon. The main firing process is performed. In order to prevent melting of the raw material components, it is preferable that the temperature of the main baking is lower than the desirable upper limit of 1050 ° C. of the calcining temperature. In addition, when a sheath made of silver is used, the upper limit temperature in the main firing is set to 950 ° C. because it cannot be higher than 961 ° C. which is the melting point of silver.
By this main calcination treatment, reaction between necessary component elements proceeds inside the compact of the raw material mixed powder, and an oxide superconductor represented by a composition formula of A 2 DFeAsO 3 -δ , for example, a composition formula Sr 2 VFeAsO 3- The superconductor having the crystal structure shown in FIG. 2 represented by the composition formula δ is generated, and the superconducting wire A including the superconducting core 1 shown in FIG. 1 is obtained.

本焼成時間は1分〜24時間程度の範囲が望ましく、1分〜16時間程度の範囲がより望ましく、1分〜8時間程度の範囲が最も望ましい。本焼成の時間と本焼成の温度の関係の一例を図5に示す。
図5は目的の本焼成温度を900℃に設定した場合の温度履歴の一例を示し、目的の温度例えば900℃に、常温から2時間程度かけて昇温し、上述の範囲の時間保持した後、加熱装置のヒーターへの通電を停止してから空冷する条件を記載している。常温から目的の温度まで昇温する場合、昇温速度は特に制限はない。例えば、900℃に加熱した加熱炉の外部に試料を保持しておき、加熱炉に試料を挿入して急速加熱する方法を用いても良い。
The main baking time is preferably in the range of about 1 minute to 24 hours, more preferably in the range of about 1 minute to 16 hours, and most preferably in the range of about 1 minute to 8 hours. An example of the relationship between the firing time and the firing temperature is shown in FIG.
FIG. 5 shows an example of a temperature history when the target main firing temperature is set to 900 ° C., after the temperature is raised from the normal temperature to about 900 ° C. over about 2 hours and held for the time in the above range. The conditions for air cooling after stopping energization of the heater of the heating device are described. When the temperature is raised from room temperature to the target temperature, the rate of temperature rise is not particularly limited. For example, a method may be used in which a sample is held outside a heating furnace heated to 900 ° C., and the sample is inserted into the heating furnace and rapidly heated.

本焼成時間が長い場合はADFeAsO3-δなる組成式で示される酸化物超電導体において特にAsが内部シース2側に拡散するか、内部シース2を通過して外部シース3側にまで拡散する。Asの拡散が進行すると超電導コア1の内部に含まれるAsの量が減少する結果、目的とするADFeAsO3-δなる組成式のFe系超電導体を生成するためのAs量が不足するので、超電導コア1の内部に生成するFe系超電導体の割合が減少するか、目的の組成から外れたAs量の少ない物質が多く生成されてしまうおそれがある。
前述の範囲の熱処理時間とすることで、目的の組成比のペロブスカイト関連混合アニオン型鉄系超電導体の生成割合が高くなり、生成するペロブスカイト関連混合アニオン型鉄系超電導体の量も増加する結果、臨界温度の高い、臨界電流密度の高い超電導線材Aを得ることができる。
When the main firing time is long, particularly in the oxide superconductor represented by the composition formula of A 2 DFeAsO 3 -δ , As diffuses to the inner sheath 2 side, or passes through the inner sheath 2 and diffuses to the outer sheath 3 side. To do. As the diffusion of As proceeds, the amount of As contained in the superconducting core 1 decreases. As a result, the amount of As for generating the Fe-based superconductor having the composition formula of A 2 DFeAsO 3 -δ is insufficient. The ratio of the Fe-based superconductor generated inside the superconducting core 1 may decrease, or a large amount of a substance with a small amount of As deviating from the target composition may be generated.
By setting the heat treatment time in the above range, the generation ratio of the perovskite-related mixed anionic iron-based superconductor having the target composition ratio is increased, and the amount of the perovskite-related mixed anionic iron-based superconductor to be generated is increased. A superconducting wire A having a high critical temperature and a high critical current density can be obtained.

以上説明の製造方法により得られた、例えば、組成式SrVFeAsO3-δで表される図2に示す結晶構造の超電導体を含む超電導コア1を有する超電導線材Aであるならば、Tc=20K前後の優れた臨界温度を示し、臨界電流密度の高い超電導線材Aを提供できる。
特に前述の製造方法ではチューブ21の内部に最終混合粉末20を充填してから圧縮し、熱処理するというPIT法により超電導線材Aを製造しているので、2軸配向制御を要する成膜法などのコストのかかる特別な方法を採用する必要がない。このため、本実施形態の製造方法によれば、優れた臨界温度を示し、臨界電流密度の高いペロブスカイト関連混合アニオン型鉄系超電導線材Aを成膜法で製造する場合に比べて低コストで製造できる特徴を有する。
また、上述の製造方法によれば、20K以上の高い臨界温度を示す組成式SrVFeAsO3-δで表されるペロブスカイト関連混合アニオン型鉄系超電導体の原料である最終混合粉末20をチューブ21の内部に充填し、圧縮してから焼成するというPIT法により製造しているので、臨界電流密度の高い超電導線材を提供できる。
For example, if the superconducting wire A has the superconducting core 1 including the superconductor having the crystal structure shown in FIG. 2 represented by the composition formula Sr 2 VFeAsO 3−δ obtained by the manufacturing method described above, Tc = A superconducting wire A having an excellent critical temperature around 20K and a high critical current density can be provided.
In particular, in the manufacturing method described above, the superconducting wire A is manufactured by the PIT method in which the final mixed powder 20 is filled into the tube 21 and then compressed and heat-treated. There is no need to adopt costly special methods. For this reason, according to the manufacturing method of the present embodiment, the perovskite-related mixed anionic iron-based superconducting wire A exhibiting an excellent critical temperature and having a high critical current density is manufactured at a lower cost compared to the case of manufacturing by a film forming method. It has the characteristics that can.
In addition, according to the above-described manufacturing method, the final mixed powder 20 that is a raw material of the perovskite-related mixed anionic iron-based superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ exhibiting a high critical temperature of 20 K or higher is added to the tube 21. The superconducting wire having a high critical current density can be provided because it is manufactured by the PIT method in which the inside is filled and compressed and then fired.

ペロブスカイト関連混合アニオン型鉄系超電導線材を製造するに際し、初めに前駆体としてSrO及びFeAsを合成した。
Sr(OH)8HO(1.374g)を900℃に10時間加熱して脱水し、SrO(0.5360g)粉末を得た。次に、Fe(3N、0.1444g)粉末とAs粉末を(6N、0.1938g)を秤量して混合し、混合粉末を真空雰囲気中において600℃で焼成し、FeAs(0.3382g)粉末を得た。焼成後のFeAs粉末をめのう乳鉢と乳棒を用いて粉砕し、FeAs粉砕物の粉末を得た。
SrO粉末(0.5360g)、FeAs粉末(0.3382g)、V粉末(0.0791g)、V粉末(0.0941g)を秤量して混合し、圧延によりペレット状に成形した後、真空雰囲気中で1050℃に加熱する仮焼きを行った。仮焼き時の加熱条件は、常温から30分間かけて1050℃まで昇温し、1050℃に40分間保持し、600℃になるまで80分間かけて降温し、600℃に降温後、大気中で放冷した。
In producing a perovskite-related mixed anionic iron-based superconducting wire, SrO and FeAs were first synthesized as precursors.
Sr (OH) 2 8H 2 O (1.374 g) was heated to 900 ° C. for 10 hours for dehydration to obtain SrO (0.5360 g) powder. Next, Fe (3N, 0.1444 g) powder and As powder (6N, 0.1938 g) are weighed and mixed, and the mixed powder is fired at 600 ° C. in a vacuum atmosphere to obtain FeAs (0.3382 g) powder. Got. The baked FeAs powder was pulverized using an agate mortar and pestle to obtain a pulverized FeAs powder.
SrO powder (0.5360 g), FeAs powder (0.3382 g), V powder (0.0791 g), V 2 O 5 powder (0.0941 g) were weighed and mixed, formed into a pellet by rolling, Calcination was performed by heating to 1050 ° C. in a vacuum atmosphere. The heating conditions at the time of calcining were as follows: normal temperature was raised to 1050 ° C. over 30 minutes, held at 1050 ° C. for 40 minutes, lowered to 600 ° C. over 80 minutes, lowered to 600 ° C., and then in the atmosphere Allowed to cool.

仮焼き後のペレットをめのう乳鉢と乳棒を用いて粉砕し、この粉砕物を最終混合粉末として、内径3.0mm、外径4.1mmのAgからなるチューブに充填し、このチューブの外方に内径4.1mm、外径6.0mmのFeからなるパイプを被せ、図6の写真に示す概形の複合体を得た。
この複合体を図3に(G)に示すような圧延ロールで圧延し、横断面略4角形状で対角線に沿う外径約1mmの圧延線材を得た。この圧延線材に対し、大気中において図5に示す温度履歴で本焼成(900℃加熱)した。昇温時間は常温から900℃となるまで2時間に設定し、900℃で所定時間加熱後、加熱炉の加熱ヒーターへの通電を停止し、600℃になるまで炉冷し、600℃になってから大気中に取り出して放冷した。
The calcined pellets are pulverized using an agate mortar and pestle, and the pulverized product is filled as a final mixed powder into a tube made of Ag having an inner diameter of 3.0 mm and an outer diameter of 4.1 mm. A pipe made of Fe having an inner diameter of 4.1 mm and an outer diameter of 6.0 mm was covered to obtain a composite having a general shape shown in the photograph of FIG.
This composite was rolled with a rolling roll as shown in FIG. 3 (G) to obtain a rolled wire rod having a substantially quadrangular cross section and an outer diameter of about 1 mm along the diagonal line. This rolled wire was subjected to main firing (heating at 900 ° C.) in the atmosphere with a temperature history shown in FIG. The temperature raising time is set to 2 hours from normal temperature to 900 ° C. After heating for a predetermined time at 900 ° C., the energization to the heater of the heating furnace is stopped, the furnace is cooled to 600 ° C., and becomes 600 ° C. Then, it was taken out into the atmosphere and allowed to cool.

同等の条件で複数の圧延線材を用意し、それぞれについて図5に示す温度履歴に従い、900℃に保持する時間を1時間、2時間、4時間、8時間、16時間、32時間、64時間、128時間のいずれかに設定して焼成し、複数の超電導線材を作成した。
得られた複数の超電導線材のうち、1時間本焼成した試料の断面写真を図7に示す。図7に示す断面構造の超電導線材は、中心部分に四葉型に圧縮加工された超電導コアを有し、その周囲をAgからなる薄い内部シース材が覆い、この内部シース材の周囲をFeからなる厚い外部シース材が覆った構造となっている。図7に示すようにこの4角柱状の超電導線材の対角部分の長さは約1mmである。
A plurality of rolled wire rods are prepared under the same conditions, and according to the temperature history shown in FIG. 5 for each, the time for holding at 900 ° C. is 1 hour, 2 hours, 4 hours, 8 hours, 16 hours, 32 hours, 64 hours, A plurality of superconducting wires were prepared by firing at any one of 128 hours.
FIG. 7 shows a cross-sectional photograph of a sample fired for one hour among the obtained plurality of superconducting wires. The superconducting wire having the cross-sectional structure shown in FIG. 7 has a superconducting core compressed into a four-leaf type at the center, and a thin inner sheath material made of Ag covers the periphery, and the periphery of the inner sheath material is made of Fe. The structure is covered with a thick outer sheath material. As shown in FIG. 7, the length of the diagonal portion of this quadrangular columnar superconducting wire is about 1 mm.

図8は上述の超電導線材を製造するためにAgのチューブに充填した最終混合粉末をペレット状に加圧成形し、そのペレットを900℃で本焼成して得た超電導バルク体の抵抗の温度依存性を示すグラフである。ここで前記粉砕物の粉末に対する本焼成の際の昇温時と降温時の温度履歴は先の実施例の場合と同等にしている。
図8に示すグラフから、ペレット状の超電導バルク体のTconsetは36.27Kであり、Tczeroは30.6Kであることがわかった。即ち、上述の最終混合粉末をペレット状に加工し、焼成して得られた超電導バルク体の臨界温度がこの種のFe系超電導体の臨界温度として知られている値に近似するので、前述の工程において超電導線材の製造に用いた最終混合粉末はFe系超電導体を製造するために望ましい組成比の最終混合粉末であることがわかる。
FIG. 8 shows the temperature dependence of the resistance of a superconducting bulk material obtained by press-molding the final mixed powder filled in an Ag tube into a pellet to produce the above-described superconducting wire and firing the pellet at 900 ° C. It is a graph which shows sex. Here, the temperature history at the time of temperature rise and temperature drop during the main firing of the powder of the pulverized product is set to be the same as in the previous embodiment.
From the graph shown in FIG. 8, Tc onset of pelletized bulk superconductor is 36.27K, it was found that Tc zero is 30.6K. That is, since the critical temperature of the superconducting bulk body obtained by processing the above-mentioned final mixed powder into a pellet and firing it approximates the value known as the critical temperature of this type of Fe-based superconductor. It can be seen that the final mixed powder used for manufacturing the superconducting wire in the process is a final mixed powder having a desirable composition ratio for manufacturing the Fe-based superconductor.

本焼成時間を1時間、2時間、4時間、8時間、16時間、32時間、64時間、128時間のいずれかに設定して得た超電導線材について、超電導コアの部分から内部シースの部分まで到達する図9に示す矩形領域(走査型電子顕微鏡:Hitchi, TM3030 Plus Miniscope にて表面観察して特定した領域)に沿ってEDX(エネルギー分散型蛍光X線分光装置:Brunker nano GmbH,Quantax 70)によるライン分析を元素毎に行った結果について、図10〜図15に示す。
図10はSrに関するEDXライン分析結果を示し、図11はVに関するEDXライン分析結果を示し、図12はAgに関するEDXライン分析結果を示し、図13はFeに関するEDXライン分析結果を示し、図14はOに関するEDXライン分析結果を示し、図15はAsに関するEDXライン分析結果を示す。
From the superconducting core part to the inner sheath part of the superconducting wire obtained by setting the main firing time to any one of 1, 2, 4, 8, 16, 32, 64, and 128 hours EDX (energy dispersive X-ray fluorescence spectrometer: Brunker nano GmbH, Quantax 70) along the rectangular area shown in FIG. 9 (scanning electron microscope: area specified by surface observation with Hitchi, TM3030 Plus Miniscope) The results of the line analysis performed for each element are shown in FIGS.
10 shows an EDX line analysis result for Sr, FIG. 11 shows an EDX line analysis result for V, FIG. 12 shows an EDX line analysis result for Ag, FIG. 13 shows an EDX line analysis result for Fe, and FIG. Shows the EDX line analysis results for O, and FIG. 15 shows the EDX line analysis results for As.

図10に示すSrの測定結果について、横軸に示す距離0(Distance:μm)の位置が超電導コアの部分と内部シースとの界面に相当し、0〜400μmの領域にSrが多く存在し、0〜−100μmの領域に殆どSrが存在しない。このため、0〜400μmの領域が超電導コアに該当し、0〜−100μmの領域が内部シースに対応する。
図10に示す測定結果から、Srについて、1〜128時間のいずれの焼成時間においても超電導コアの部分と内部シースとの間でSrは殆ど拡散していないと思われる。
図11に示す結果から、Vについて、1〜128時間のいずれの焼成時間においても超電導コアの部分と内部シースとの間でV含有量のバランスを変えるほど大量の拡散が生じたとは思われないことが判る。
In the measurement result of Sr shown in FIG. 10, the position of distance 0 (Distance: μm) shown on the horizontal axis corresponds to the interface between the superconducting core portion and the inner sheath, and there is a lot of Sr in the region of 0 to 400 μm. There is almost no Sr in the region of 0 to -100 μm. For this reason, the region of 0 to 400 μm corresponds to the superconducting core, and the region of 0 to −100 μm corresponds to the inner sheath.
From the measurement results shown in FIG. 10, it is considered that Sr hardly diffuses between the portion of the superconducting core and the inner sheath at any firing time of 1 to 128 hours.
From the results shown in FIG. 11, it is unlikely that a large amount of diffusion of V occurred so as to change the balance of the V content between the superconducting core portion and the inner sheath at any firing time of 1 to 128 hours. I understand that.

図12に示す結果から、Agについて、1〜128時間のいずれの焼成時間においても超電導コアの部分と内部シースとの間でAg含有量のバランスを変えるほど大量の拡散が生じたとは思われないことが判る。
図13に示す結果から、Feについて、0〜400μmの領域において多く、0〜−100μmの領域において少ないが、いずれの焼成時間でも0〜−100μmの領域にある程度存在していると推定できる。これは外部シースと超電導コアの両方にFeが含まれているので、それぞれの領域から内部シース側に微量のFe拡散がなされているとも推定できる。
図14に示す結果から、Oについては0〜400μmの領域において多く、0〜−100μmの領域において少ない結果が得られた。
From the results shown in FIG. 12, it is unlikely that Ag diffused so much that the balance of the Ag content was changed between the superconducting core portion and the inner sheath at any firing time of 1 to 128 hours. I understand that.
From the results shown in FIG. 13, it can be estimated that Fe is large in the region of 0 to 400 μm and small in the region of 0 to −100 μm, but is present to some extent in the region of 0 to −100 μm at any firing time. Since Fe is contained in both the outer sheath and the superconducting core, it can be estimated that a small amount of Fe is diffused from each region to the inner sheath side.
From the results shown in FIG. 14, for O, a large result was obtained in the region of 0 to 400 μm, and a small result was obtained in the region of 0 to −100 μm.

図15に示す結果から、Asについてはかなりの量の拡散がなされていることが想定される。焼成時間が16時間までの超電導線材はいずれも距離0の境界付近のAs濃度が急激に変化しているが、32時間以上の超電導線材では距離0付近のAs濃度の変化は緩やかになっている。これはAsが超電導コアからシース側に相当量拡散し、超電導コアと内部シースの境界部分にAsが拡散したことにより両層の境界部分に拡散層が生成し、この拡散層の幅が焼成時間の増加に応じて徐々に拡がったことを示唆している。
図15においてIAgはAg(内部シース)の部分の回折強さを示し、Icoreは超電導コアの部分の回折強さを示す。焼成時間が長いほど、両層の境界部分の幅が大きくなっていることがわかる。
From the results shown in FIG. 15, it is assumed that a considerable amount of diffusion is performed for As. The superconducting wire with a firing time of up to 16 hours has a rapid change in the As concentration near the boundary of the distance 0, but the change in As concentration near the distance 0 is moderate in the superconducting wire having a firing time of 32 hours or more. . This is because a considerable amount of As diffuses from the superconducting core to the sheath side, and As diffuses into the boundary portion between the superconducting core and the inner sheath, a diffusion layer is formed at the boundary portion between the two layers. It suggests that it gradually expanded with the increase of.
In FIG. 15, I Ag indicates the diffraction intensity of the Ag (inner sheath) portion, and I core indicates the diffraction intensity of the superconducting core portion. It can be seen that the longer the firing time, the greater the width of the boundary between both layers.

図15に示すAsのEDXラインスキャンに対して、Boltzmann−Matano解析を行う場合、得られたデータに沿ったなめらかなAs量の増加曲線を決定しなければならない。より正確なAs量の増加曲線を得るためには、拡散に寄与する区間の設定が必要である。この際、ノイズ対策として、Fe外部シースにおけるAs量のスポット分析の焼成時間に対する変化(図16)と矛盾のないように区間の設定を行った。則ち、Fe外部シースにおけるAs含有量と拡散に寄与する区間の長さは正の相関をもつと仮定した。図16は、鉄からなる外部シースにおけるAs量のスポット分析について焼成時間に対するAs量の変化を示すグラフである。   When the Boltzmann-Matano analysis is performed on the As EDX line scan shown in FIG. 15, a smooth As amount increase curve along the obtained data must be determined. In order to obtain a more accurate As amount increase curve, it is necessary to set a section that contributes to diffusion. At this time, as a noise countermeasure, the interval was set so as not to contradict the change in the amount of As in the Fe outer sheath with respect to the firing time of the spot analysis (FIG. 16). In other words, it was assumed that the As content in the Fe outer sheath and the length of the interval contributing to diffusion had a positive correlation. FIG. 16 is a graph showing a change in As amount with respect to firing time for spot analysis of As amount in an outer sheath made of iron.

Asに対するEDXラインスキャンのプロットに関して、銀シース側から1,2,3, ……..とプロット番号を付ける。あるプロット番号nのときに、nからn+49まで連続する50プロットに対して最小二乗法による線形近似を行い、このときに求まる近似直線の傾きaに対して、縦軸をa、横軸をn+49としてaの位置依存を図17に示す。このとき、強度変化によるピークをある一つに決定し、そのピークまわりで、傾きaが負から正になるプロット番号を強度変化開始プロット番号n、傾きaが正から負になるプロット番号を強度変化終了プロット番号nとした。また、強度変化開始位置XsをNs=nのときの位置、強度変化終了位置XをN=n−49のときの位置とした。 Regarding the plot of EDX line scan against As, 1, 2, 3, ... from the silver sheath side. . And plot number. For a certain plot number n, 50 approximate plots from n to n + 49 are linearly approximated by the least square method, and the vertical axis is a and the horizontal axis is n + 49 with respect to the slope a of the approximate straight line obtained at this time. FIG. 17 shows the position dependency of a. At this time, the peak due to the intensity change is determined to be one, and around that peak, the plot number where the slope a becomes negative to positive is set as the intensity change start plot number n s , and the plot number where the slope a becomes positive from negative is set. was a change in intensity end plot number n f. The position when the intensity change start position Xs Ns = n s, the intensity change end position X f and the position when the N f = n f -49.

図17において、傾きaの極大は複数観察されるが、これらのうち、最も大きいa= 0.00006の極大を示すa>0の構造をAsの濃度変化によるものと帰属する。このAsの濃度変化による構造を拡大したものが図18(a)である。このとき、n=106、n=161である。よって、N=106,N=112であり、X=−6.131、x=−1.053である。
図18(b)〜(h)に、焼成時間2h〜128hの結果を示す。焼成時間16h,64h、128hの結果では図に示す○印で囲む1の極大付近の構造をAsの濃度変化に帰属して結果をまとめたものが以下の表1である。
In FIG. 17, a plurality of local maxima of inclination a are observed. Among these, the structure of a> 0 showing the maximum of a = 0.00006 is attributed to the change in As concentration. FIG. 18A is an enlarged view of the structure due to this As concentration change. At this time, n s = 106 and n f = 161. Therefore, N s = 106, N f = 112, X s = −6.131, and x f = −1.053.
The result of baking time 2h-128h is shown to FIG.18 (b)-(h). Table 1 below summarizes the results of the firing times of 16h, 64h, and 128h by assigning the structure near the maximum of 1 surrounded by circles shown in the figure to the concentration change of As.

強度変化距離x−x(μm)は1hから8hまで焼成時間とともに大きくなっている。ところが、この方法では16h以上では焼成時間との正の相関がみられない。これは、図18(f)で見られるように、Asの濃度変化によるa>0の構造内において極小が出現する場合があることに起因する。この極小がa<0となる場合、正確なAsの濃度分布、則ち、正確なMatano面を得ることができない。これは、強度変化の傾きが緩やかになり、ノイズの効果が相対的に大きくなったことに起因する。 The intensity change distance x f −x s (μm) increases with the firing time from 1 h to 8 h. However, in this method, a positive correlation with the firing time is not observed at 16 hours or longer. This is because, as seen in FIG. 18 (f), a minimum may appear in the structure of a> 0 due to the change in As concentration. When this minimum is a <0, an accurate As concentration distribution, that is, an accurate Matano surface cannot be obtained. This is due to the fact that the gradient of the intensity change becomes gentle and the effect of noise becomes relatively large.

よって、以上のような問題点を解決する解析上の手段として、以下のような処理を行った。
強度変化による極大をとるa>の構造を一つではなく、図16の結果と矛盾しないように複数考慮し、拡散係数の算出に寄与する区間として用いる。
焼成時間16h、64hについて、図18(e)及び(g)の○印で囲む1に加え、○印で囲む2もそれぞれのAsの濃度変化による構造として帰属した。また、128hに関しては、○印で囲む0、1、2を同様に帰属した。このとき、処理の適用前後のそれぞれのパラメータの変化をまとめたものが表2、3である。この補正を行い、それぞれのx,xをAsのEDXラインスキャンデータに追加したものが図19である。これらの結果をまとめたものが以下の表4である。
Therefore, the following processing was performed as an analytical means for solving the above problems.
The structure of a> that takes the maximum due to the intensity change is not one, but is considered as a section that contributes to the calculation of the diffusion coefficient in consideration of a plurality so as not to contradict the result of FIG.
Regarding firing times 16h and 64h, in addition to 1 surrounded by circles in FIGS. 18 (e) and 18 (g), 2 surrounded by circles were also assigned as structures according to respective As concentration changes. For 128h, 0, 1, and 2 enclosed in circles were similarly assigned. At this time, Tables 2 and 3 summarize changes in parameters before and after application of the processing. FIG. 19 shows the result of performing this correction and adding the respective x s and x f to As EDX line scan data. Table 4 below summarizes these results.

図20はAgのチューブに充填する前の最終混合粉末の仮焼き粉末についてペレット状に成形して本焼成したものにおいて、X線回折パターンを求めた結果(図20(A)にバルクと表示)と、上述の実施例において本焼成時間を2時間に設定して得られた超電導線材の超電導コアについてX線回折パターンを求めた結果(図20(B)に2時間焼成線材と表示)を対比して示す。
図20(A)に示すバルクの試験結果と図20(B)に示す超電導コアの試験結果を対比すると、異相が示す回折ピークを除くと両者とも類似した回折ピークを得られたことがわかる。
よって実施例の超電導線材において超電導コアに形成されている物質は、鉄系超電導体であると推定できる。
FIG. 20 shows the result of obtaining the X-ray diffraction pattern of the calcined powder of the final mixed powder before filling into the Ag tube, which was formed into a pellet and subjected to main firing (indicated as bulk in FIG. 20A). And a result of obtaining an X-ray diffraction pattern for the superconducting core of the superconducting wire obtained by setting the main firing time to 2 hours in the above-described embodiment (displayed as a 2-hour fired wire in FIG. 20B). Show.
Comparing the bulk test results shown in FIG. 20A and the superconducting core test results shown in FIG. 20B, it can be seen that similar diffraction peaks were obtained except for the diffraction peaks exhibited by the different phases.
Therefore, it can be estimated that the substance formed in the superconducting core in the superconducting wire of the example is an iron-based superconductor.

図21は先に1時間焼成により製造した超電導線材と2時間焼成により製造した超電導線材と4時間焼成により製造した超電導線材と8時間焼成により製造した超電導線材と16時間焼成により製造した超電導線材について個々の線材の電気抵抗率の温度依存性(0−300K)を測定した結果を示す。図22は同等超電導線材の電気抵抗率の温度依存性(0−50K)を測定した結果を示す。図23は同等超電導線材の電気抵抗率の温度依存性(6−15K)を測定した結果を示す。これらの図の測定結果は、4端子法に従い、±50mA通電した場合の結果を示す。±の両方の電圧を印加することで配線抵抗やゼーベック系数に起因する熱電効果の影響を相殺して除去することができる。   FIG. 21 shows a superconducting wire produced by firing for 1 hour, a superconducting wire produced by firing for 2 hours, a superconducting wire produced by firing for 4 hours, a superconducting wire produced by firing for 8 hours, and a superconducting wire produced by firing for 16 hours. The result of having measured the temperature dependence (0-300K) of the electrical resistivity of each wire is shown. FIG. 22 shows the result of measuring the temperature dependence (0-50K) of the electrical resistivity of the equivalent superconducting wire. FIG. 23 shows the results of measuring the temperature dependence (6-15K) of the electrical resistivity of an equivalent superconducting wire. The measurement results in these figures show the results when ± 50 mA current is applied according to the 4-terminal method. By applying both ± voltages, the influence of the thermoelectric effect due to the wiring resistance and the Seebeck system number can be offset and removed.

図21、図22に示す結果から、1〜16時間のいずれの焼成時間で焼成した超電導線材であっても、電気抵抗がほぼ0となることを確認できた。なお、これらの図に示す電気抵抗値の状態から類推すると、焼成時間1〜8時間の超電導線材の方が焼成時間16時間の超電導線材よりも電気抵抗率の低下の割合が急峻である。このため、焼成時間によるAsの拡散の進行度合いからPIT法による焼成時間を1〜8時間とすることがより好ましいと考えられる。   From the results shown in FIG. 21 and FIG. 22, it was confirmed that the electrical resistance was almost zero even when the superconducting wire was fired at any firing time of 1 to 16 hours. By analogy with the state of the electrical resistance values shown in these figures, the rate of decrease in electrical resistivity is higher in the superconducting wire having a firing time of 1 to 8 hours than in the superconducting wire having a firing time of 16 hours. For this reason, it is considered that it is more preferable that the firing time by the PIT method is 1 to 8 hours from the degree of progression of As diffusion due to the firing time.

図24は1時間焼成、2時間焼成、4時間焼成によりそれぞれ得られた超電導線材に対し超電導転移温度以下、すなわち1時間焼成は16Kと18K、2時間焼成は17Kと18K、4時間焼成は13Kと15Kにおいて臨界電流Icを測定した場合、超電導コアの単位面積当たりの臨界電流密度JcはJc(T)=Jc(0){1−(T/Tc)}…(1)式で示す外挿式が成立するため、0Kにおける臨界電流密度Jc(0)を計算により算出できることを示す説明図である。
超電導線材の測定により図24の1時間焼成(1h)の16KにおけるIc(16K)=29.7mA、Ic(18K)=16.7mAとなる。また、この超電導線材において、Jc(17K)=17.2A/cm、Jc(18K)=9.65A/cmと測定できた。この場合の超電導線材のTcは20.3Kとなる。上述の16K、18KのJcの場合、(1)式を用いてJc(0)を算出すると、Jc(0)=45.3A/cmと見積もることができる。
FIG. 24 shows a superconducting transition temperature for superconducting wires obtained by firing for 1 hour, 2 hours, and 4 hours, respectively, that is, 16K and 18K for 1 hour firing, 17K and 18K for 2 hour firing, and 13K for 4 hour firing. When the critical current Ic is measured at 15 K and the critical current density Jc per unit area of the superconducting core is Jc (T) = Jc (0) {1- (T / Tc) 2 } (1) It is explanatory drawing which shows that the critical current density Jc (0) in 0K can be calculated by calculation because an insertion type is materialized.
According to the measurement of the superconducting wire, Ic (16K) = 29.7 mA and 16 (1K) = 16.7 mA at 16 K after firing for 1 hour (1 h) in FIG. Moreover, in this superconducting wire, it was measured with Jc (17K) = 17.2 A / cm 2 and Jc (18K) = 9.65 A / cm 2 . The Tc of the superconducting wire in this case is 20.3K. In the case of JC of 16K and 18K described above, Jc (0) = 45.3 A / cm 2 can be estimated by calculating Jc (0) using equation (1).

同じく、 超電導線材の測定により図23の2時間焼成(2h)の17KにおけるIc(17K)=19.8mA、Ic(18K)=12.9mA、Jc(17K)=10.6A/cm、Jc(18K)=6.94A/cmと測定できた。この場合の超電導線材のTcは19.7Kとなる。1)式を用いてJc(0)を算出すると、Jc(0)=41.2A/cmと見積もることができる。
同じく、超電導線材の測定により図23の4時間焼成(4h)の13KにおけるIc(13K)=20.1mA、Ic(15K)=8.35mA、Jc(13K)=9.66A/cm、Jc(15K)=4.01A/cmと測定できた。この場合の超電導線材のTcは16.3Kとなる。
Similarly, according to the measurement of the superconducting wire, Ic (17K) = 19.8 mA, Ic (18K) = 12.9 mA, Jc (17K) = 10.6 A / cm 2 , Jc at 17 K after firing for 2 hours (2 h) in FIG. (18K) = 6.94 A / cm 2 . The Tc of the superconducting wire in this case is 19.7K. When Jc (0) is calculated using the equation (1), it can be estimated that Jc (0) = 41.2 A / cm 2 .
Similarly, according to the measurement of the superconducting wire, Ic (13K) = 20.1 mA, Ic (15K) = 8.35 mA, Jc (13K) = 9.66 A / cm 2 , Jc at 13 K for 4 hours firing (4 h) in FIG. (15K) = 4.01 A / cm 2 . In this case, the Tc of the superconducting wire is 16.3K.

以上説明のように、図24を基に説明した如く本実施例の超電導線材は0Kにおいて、45.3A/cm、41.2A/cmあるいは26.7A/cmの優れた臨界電流密度を得ることができると見積もることができた。 As described above, as described with reference to FIG. 24, the superconducting wire of this example has an excellent critical current density of 45.3 A / cm 2 , 41.2 A / cm 2 or 26.7 A / cm 2 at 0K. I was able to estimate that

以上説明した組成式SrVFeAsO3-δで表されるペロブスカイト関連混合アニオン型鉄系超電導体の原料をPIT法に従い金属チューブの内部に充填し、金属チューブを圧縮して原料を圧縮体としてから本焼成することで臨界温度の高い、臨界電流密度の高い超電導線材を得ることができることが判明した。このことは、成膜法などのように超電導体の結晶を2軸配向する技術を用いなくとも、PIT法によりある程度高い臨界温度と臨界電流密度の超電導線材を製造できたこととなる。このことは、組成式SrVFeAsO3-δで表されるペロブスカイト関連混合アニオン型鉄系超電導体は、熱処理(焼成)による元素拡散の影響を受け難く、熱処理(焼成)による化学変化に対し臨界温度の変化を鈍感にできる超電導体であることを確認できた。従って、ペロブスカイト関連混合アニオン型鉄系超電導体は、PIT法を更に改良することで更に超電導特性を向上できる可能性を秘めた超電導体であると期待できる。 The raw material of the perovskite-related mixed anionic iron-based superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ described above is filled in the metal tube according to the PIT method, and the metal tube is compressed to form the compressed material. It has been found that a superconducting wire having a high critical temperature and a high critical current density can be obtained by this firing. This means that a superconducting wire having a somewhat high critical temperature and critical current density can be produced by the PIT method without using a technique for biaxially orienting superconductor crystals such as a film forming method. This indicates that the perovskite-related mixed anionic iron-based superconductor represented by the composition formula Sr 2 VFeAsO 3 -δ is not easily affected by element diffusion due to heat treatment (firing) and is critical to chemical changes due to heat treatment (firing). It was confirmed that the superconductor was capable of insensitive to temperature changes. Therefore, the perovskite-related mixed anionic iron-based superconductor can be expected to be a superconductor having the possibility of further improving the superconducting characteristics by further improving the PIT method.

図24を基に先に説明した0Kにおける臨界電流密度Jc(0)の見積もりについて、0〜20Kにおける臨界電流密度の推定値をまとめて図25に示す。
先の(1)式が示す臨界電流密度の関係は0〜20Kの温度範囲に展開すると図24に示す1h(1時間焼成の超電導線材)と2h(2時間焼成の超電導線材)と4h(4時間焼成の超電導線材)の線分で示される。
これらのデータを基に解析すると、先の実施例の如く1〜16時間の本焼成時間を選択する場合、できるだけ短い時間で本焼成することでより、より高い臨界電流密度の超電導線材を得られることがわかる。図25に示す結果によれば、本焼成時間を1時間〜2時間にすることが最も望ましい焼成条件であると推定できる。
Regarding the estimation of the critical current density Jc (0) at 0K described above based on FIG. 24, the estimated values of the critical current density at 0 to 20K are collectively shown in FIG.
When the relationship of the critical current density shown by the above equation (1) is developed in a temperature range of 0 to 20 K, 1h (superconducting wire baked for 1 hour), 2h (superconducting wire baked for 2 hours) and 4h (4 It is indicated by the line segment of the superconducting wire with time firing).
Based on these data, when a main firing time of 1 to 16 hours is selected as in the previous example, a superconducting wire having a higher critical current density can be obtained by performing the main firing in as short a time as possible. I understand that. According to the results shown in FIG. 25, it can be estimated that the main firing time is 1 hour to 2 hours, which is the most desirable firing condition.

図26は先に本出願人が研究した結果により得られたSrVFeASO3-δの組成式で示されるペロブスカイト関連混合アニオン型鉄系超電導体の相図を示す。
この相図からSrVFeASO3-δの組成式で示されるペロブスカイト関連混合アニオン型鉄系超電導体において、酸素欠損量を示すδの値は、0<δ<0.2の範囲の中でも、0<δ<0.145の範囲が好ましく、0.06<δ<0.145の範囲が最も好ましいことがわかる。
FIG. 26 shows a phase diagram of the perovskite-related mixed anionic iron-based superconductor represented by the composition formula of Sr 2 VFeASO 3-δ obtained by the results of the previous study by the present applicant.
From this phase diagram, in the perovskite-related mixed anionic iron-based superconductor represented by the composition formula of Sr 2 VFeASO 3-δ , the value of δ indicating the amount of oxygen deficiency is 0 in the range of 0 <δ <0.2. It can be seen that the range <δ <0.145 is preferable, and the range 0.06 <δ <0.145 is most preferable.

A…超電導線材、1…超電導コア、2…内部シース(金属シース)、3…外部シース(金属シース)、10、11…原料粉末、15…ペレット、16…加熱炉、17…圧縮体、20…最終混合粉末、21…チューブ、22…外チューブ、23…圧延装置、23A…圧延ロール、23a…周溝、25…複合線材、26…加熱炉。   A ... superconducting wire, 1 ... superconducting core, 2 ... inner sheath (metal sheath), 3 ... outer sheath (metal sheath), 10, 11 ... raw material powder, 15 ... pellet, 16 ... heating furnace, 17 ... compression body, 20 ... final mixed powder, 21 ... tube, 22 ... outer tube, 23 ... rolling device, 23A ... rolling roll, 23a ... circumferential groove, 25 ... composite wire, 26 ... heating furnace.

Claims (8)

DFeAsO3-δ(Aはアルカリ土類金属Mg、Ca、Sr、Baの中から選択される1種または2種以上の元素を示し、Dは遷移金属Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Au、希土類La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、アルカリ土類金属Mg、典型金属元素Alの中から選択される1種または2種以上の元素を示す。)なる組成式で示される混合アニオン型鉄系超電導体を含むコア部が金属シースの内部に充填されたことを特徴とする超電導線材。 A 2 DFeAsO 3 -δ (A represents one or more elements selected from the alkaline earth metals Mg, Ca, Sr, Ba, and D represents the transition metals Sc, Ti, V, Cr, Mn , Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, rare earth La, Ce, Pr, Nd, Pm, The composition is one or more elements selected from Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, alkaline earth metal Mg, and typical metal element Al. A superconducting wire, wherein a core portion containing a mixed anionic iron-based superconductor represented by the formula is filled in a metal sheath. 前記組成式における酸素欠損量を示すδの値が0<δ<0.2の範囲であることを特徴とする請求項1に記載の超電導線材。   The superconducting wire according to claim 1, wherein the value of δ indicating the amount of oxygen deficiency in the composition formula is in a range of 0 <δ <0.2. 前記金属シースがCuシース、Feシース、CuとFeの複合材シース、Agシース、AgとFeの複合材シースのうち、いずれかからなることを特徴とする請求項1または請求項2に記載の超電導線材。   3. The metal sheath according to claim 1, wherein the metal sheath is any one of a Cu sheath, an Fe sheath, a composite sheath of Cu and Fe, an Ag sheath, and a composite sheath of Ag and Fe. Superconducting wire. 臨界温度(Tc)の測定値と、10K〜20Kにおける臨界電流密度の測定値(Jc)との関係において、Jc(0){1−(T/Tc)}…(1)式の関係から求められる0Kにおける臨界電流密度が25A/cm以上であることを特徴とする請求項1〜請求項3のいずれか一項に記載の超電導線材。 In the relationship between the measured value of critical temperature (Tc) and the measured value of critical current density (Jc) at 10K to 20K, Jc (0) {1- (T / Tc) 2 }... The superconducting wire according to any one of claims 1 to 3, wherein the required critical current density at 0 K is 25 A / cm 2 or more. DFeAsO3-δ(Aはアルカリ土類金属Mg、Ca、Sr、Baの中から選択される1種または2種以上の元素を示し、Dは遷移金属Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Au、希土類La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、アルカリ土類金属Mg、典型金属元素Alの中から選択される1種または2種以上の元素を示す。)なる組成式で示される混合アニオン型鉄系超電導体を金属シースの内部に設けた超電導線材を製造するに際し、
元素Aと元素DとFeとAsを前記組成式の割合または前記組成式に近似した割合で含む原料混合粉末を用意し、この原料混合粉末を予備焼成して仮焼き粉末を得、この仮焼き粉末を金属チューブの内部に充填した後、前記金属チューブを圧縮して金属シースとその内部に充填されたコア部を有する圧縮体を得るとともに、前記圧縮体を本焼成して前記コア部内にADFeAsO3-δなる組成式で示される超電導体を生成することを特徴とする混合アニオン型鉄系超電線材の製造方法。
A 2 DFeAsO 3 -δ (A represents one or more elements selected from the alkaline earth metals Mg, Ca, Sr, Ba, and D represents the transition metals Sc, Ti, V, Cr, Mn , Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, rare earth La, Ce, Pr, Nd, Pm, The composition is one or more elements selected from Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, alkaline earth metal Mg, and typical metal element Al. When manufacturing a superconducting wire in which a mixed anion type iron superconductor represented by the formula is provided inside a metal sheath,
A raw material mixed powder containing element A, element D, Fe, and As in a proportion of the composition formula or a proportion approximate to the composition formula is prepared, and the raw material mixed powder is pre-fired to obtain a calcined powder. After filling the inside of the metal tube with the powder, the metal tube is compressed to obtain a compressed body having a metal sheath and a core portion filled in the metal sheath, and the compressed body is subjected to main firing to obtain A in the core portion. A method for producing a mixed anion type iron-based super-wire material, characterized in that a superconductor represented by a composition formula of 2 DFeAsO 3 -δ is generated.
前記本焼成温度を800〜1030℃、前記本焼成時間を16時間以内とすることを特徴とする請求項5に記載の混合アニオン型鉄系超電線材の製造方法。   The method for producing a mixed anionic iron-based super-wire material according to claim 5, wherein the main baking temperature is 800 to 1030 ° C, and the main baking time is 16 hours or less. 前記ADFeAsO3-δなる組成式で示される超電線材が、SrVFeAsO3-δなる組成式で示される混合アニオン型鉄系超電線材であることを特徴とする請求項5または請求項6に記載の混合アニオン型鉄系超電導線材の製造方法。 The super-wire material represented by the composition formula of A 2 DFeAsO 3-δ is a mixed anion type iron-based super-wire material represented by the composition formula of Sr 2 VFeAsO 3-δ. Item 7. A method for producing a mixed anionic iron-based superconducting wire according to Item 6. 前記ADFeAsO3-δなる組成式で示される超電導体が、SrVFeAsO3-δなる組成式で示される混合アニオン型鉄系超電導体であり、前記原料混合粉末を得る場合、Srの酸化物粉末と、FeAs粉末と、Vの単体粉末またはVの酸化物粉末を混合して焼成することを特徴とする請求項5または請求項6に記載の混合アニオン型鉄系超電導線材の製造方法。 When the superconductor represented by the composition formula of A 2 DFeAsO 3 -δ is a mixed anion type iron-based superconductor represented by the composition formula of Sr 2 VFeAsO 3 -δ and when the raw material mixed powder is obtained, oxidation of Sr The method for producing a mixed anionic iron-based superconducting wire according to claim 5 or 6, wherein the product powder, the FeAs powder, and the simple powder of V or the oxide powder of V are mixed and fired.
JP2016191311A 2016-09-29 2016-09-29 Mixed anion compound Iron-based superconducting wire and its manufacturing method Active JP6814007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191311A JP6814007B2 (en) 2016-09-29 2016-09-29 Mixed anion compound Iron-based superconducting wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191311A JP6814007B2 (en) 2016-09-29 2016-09-29 Mixed anion compound Iron-based superconducting wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018055975A true JP2018055975A (en) 2018-04-05
JP6814007B2 JP6814007B2 (en) 2021-01-13

Family

ID=61835926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191311A Active JP6814007B2 (en) 2016-09-29 2016-09-29 Mixed anion compound Iron-based superconducting wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6814007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931160A (en) * 2019-10-23 2020-03-27 中国科学院电工研究所 Iron-based superconducting precursor powder, preparation method thereof and iron-based superconducting wire strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240521A (en) * 2013-05-14 2014-12-25 独立行政法人物質・材料研究機構 Method of producing iron-based superconductive wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240521A (en) * 2013-05-14 2014-12-25 独立行政法人物質・材料研究機構 Method of producing iron-based superconductive wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931160A (en) * 2019-10-23 2020-03-27 中国科学院电工研究所 Iron-based superconducting precursor powder, preparation method thereof and iron-based superconducting wire strip
CN110931160B (en) * 2019-10-23 2021-03-19 中国科学院电工研究所 Iron-based superconducting precursor powder, preparation method thereof and iron-based superconducting wire strip

Also Published As

Publication number Publication date
JP6814007B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
Yao et al. Recent breakthrough development in iron-based superconducting wires for practical applications
CN102498528B (en) Iron-based superconducting wire and manufacturing method therefor
US9224937B2 (en) Precursor of MgB2 superconducting wire, and method for producing the same
Hirai et al. Spontaneous formation of zigzag chains at the metal-insulator transition in the β-pyrochlore CsW 2 O 6
JP2002026400A (en) Thermoelectric conversion material and element
US7213325B2 (en) Method of manufacturing Fe-sheathed MgB2 wires and solenoids
Schwartz et al. High temperature mechanical properties and high strength sheaths for powder-in-tube tapes
JP6814007B2 (en) Mixed anion compound Iron-based superconducting wire and its manufacturing method
Huang et al. Influences of Tape Thickness on the Properties of Ag-Sheathed Sr 1-x K x Fe 2 As 2 Superconducting Tapes
Zeng et al. Effect on the phase formation of Bi-2223 in some Ag-alloy sheathed PIT tapes
CN101401171A (en) Superconducting oxide material, process for producing the same, and superconducting wire and superconduction apparatus both employing the superconducting material
JPS63222068A (en) Device and system based on novel superconductive material
EP3375548A1 (en) Thermoelectric conversion material
JP4350407B2 (en) MgB2-based superconductor with high critical current density and irreversible magnetic field
JPH01251515A (en) Oxide high temperature superconductive wire material and manufacture thereof
JP2636057B2 (en) Manufacturing method of oxide superconductor
JP2005310600A (en) Manufacturing method of mgb2 wire rod
TW200948742A (en) Sintered member and thermo-electric conversion material
Fukutomi et al. Texture development in Bi1. 5Pb0. 5Sr1. 7Y0. 5Co2O9− δ layered cobaltite by high-temperature compression deformation and its effect on thermoelectric properties
JPS63285155A (en) Oxide type superconductive material and production thereof
WO2023243635A1 (en) Superconductor, superconducting wire rod, superconducting bulk magnet and superconducting coil electromagnet
JP2004296124A (en) Manufacturing method of nb3sn superconductive wire rod
JP2727565B2 (en) Superconductor manufacturing method
Raykov et al. Glass and glass-ceramics in the La2O3–Gd2O3–PbO–MnO–B2O3 system
JP2828631B2 (en) Manufacturing method of superconducting material

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6814007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250