JP2004296124A - Manufacturing method of nb3sn superconductive wire rod - Google Patents

Manufacturing method of nb3sn superconductive wire rod Download PDF

Info

Publication number
JP2004296124A
JP2004296124A JP2003083323A JP2003083323A JP2004296124A JP 2004296124 A JP2004296124 A JP 2004296124A JP 2003083323 A JP2003083323 A JP 2003083323A JP 2003083323 A JP2003083323 A JP 2003083323A JP 2004296124 A JP2004296124 A JP 2004296124A
Authority
JP
Japan
Prior art keywords
wire
base material
composite
atomic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003083323A
Other languages
Japanese (ja)
Other versions
JP4193194B2 (en
Inventor
Kyoji Tachikawa
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2003083323A priority Critical patent/JP4193194B2/en
Publication of JP2004296124A publication Critical patent/JP2004296124A/en
Application granted granted Critical
Publication of JP4193194B2 publication Critical patent/JP4193194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a Nb<SB>3</SB>Sn superconductive wire rod capable of generating a magnetic field of 20 teslas or more at 4.2K, whereby the manufacturing cost of the wire rod is reduced. <P>SOLUTION: This manufacturing method of the Nb<SB>3</SB>Sn superconductive wire rod is provided with a process to manufacture a complex by alternately laminating a first base material comprising a mixture of Sn and M and a second base material comprising Nb or a Nb-based alloy, a process to machine the complex to the wire rod, and a process to heat-treat the wire rod. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、NMR分析装置、核融合炉、高密度エネルギー貯蔵等の種々の新技術開発を可能にする高磁界発生用のNbSn超伝導線材の製造方法に関する。
【0002】
【従来の技術】
超伝導線材としては、Nb−Ti系の合金線材が多く用いられ、電力消費なしに大電流を通電し、高磁界を発生することができる。しかし、この合金線材は液体ヘリウム温度(4.2K)における発生磁界の限度が約9テスラ(9T)である。従って核融合装置、NMR分析装置などに必要な10T以上の高磁界を発生するためには、化合物系超伝導線材を用いる必要がある。A15型結晶構造をもつNbSn化合物は、このような要求に応える超伝導材料の一つとして知られている。その臨界温度Tは約18K、上部臨界磁界Bc2(4.2K)は約21Tで、Nb−Tiの約9K及び約11.5テスラに比べて、それぞれ2倍近く高い値をもつ。NbSn化合物の線材を作製する方法としては、例えば非特許文献1に記載されたブロンズ法が用いられている。ブロンズ法はNbを芯材とし、これをCu−Sn合金マトリックスで包んだ複合体を作り、これを塑性加工したのち、拡散熱処理することによりNb芯とマトリックスの界面にNbSn化合物相を生成する方法である。
【0003】
さらにブロンズ法において、本発明者はCu−Sn合金マトリックスに少量のTiを添加することにより上部臨界磁界Bc2が改善されることを見出し、非特許文献2に発表した。その後この製法は工業化された。この線材を用いて4.2Kで18.8テスラ、1.6Kで21.6テスラの磁界が発生され、2002年にたんぱく質の構造解析等に有用な世界最高の920MHzNMR分析装置が完成された。しかし、ブロンズ法線材の特性は限界に達しており、次世代の高磁界超伝導線材の開発が待望されている。
【0004】
本発明者は、Ti,Zr,Hf,V及びTaの群から選ばれた1種または2種以上の金属とSnの合金または金属間化合物を芯(コア)材とし、NbまたはNb合金をシース材として前記芯材を充填して得た複合体を線材に加工後、熱処理することにより高磁界特性に優れたNbSn線材を作製しうることを特許文献1において提案している。さらに本発明者は、特願2001−275401の出願明細書(未公開)において関連発明を出願している。これらはいずれも粉末コア法によるものである。
【0005】
【非特許文献1】
K.Tachikawa:Filamentary A15 Superconductors, Plenum Press(1980)p1
【0006】
【非特許文献2】
関根久,飯嶋安男,伊藤喜久男,太刀川恭治:日本金属学会誌,第49巻,10号(1985)913頁
【0007】
【特許文献1】
特開平11−250749号公報
【0008】
【発明が解決しようとする課題】
しかし、上記の従来法では、Ti,Zr,Hf,V及びTaの群から選ばれた1種または2種以上の金属とSnとの合金または金属間化合物を作製する工程及びこの合金または金属間化合物をシース材に充填するために粉末に粉砕する工程を必須とするが、これら工程は必ずしも容易でなく工業化する上での課題となっていた。
【0009】
また、従来の粉末コア法により線材を作製すると、線材が波打つように変形する所謂ソーセージングを生じることがあり、これにより均一な断面形状を有する長尺線材の加工が困難であった。
【0010】
本発明の目的とするところは、高磁界特性の向上に最も効果的であるTaを使用し、しかも、可塑性を有する基材からなる複合体を使用して工業化する上での上記課題を解消し、もって、線材作成コストを低減し、所望の組成の芯材を容易に作成できるNbSn超伝導線材の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
現在広く用いられている超伝導線材として、Nb−Ti合金線材やブロンズ法により作製されたNbSn化合物線材があり、Ti添加ブロンズ法(Nb,Ti)Sn線材を用いて1.6K運転で世界最高性能の920MHz級NMR分析装置が開発されている。しかし、ブロンズ法線材の性能は限界に達しており、超伝導線材の更なる高磁界特性の向上が期待されている。本発明者はそのような期待に応えるべく鋭意研究した結果、最近次世代超伝導線材としてTa−Sn粉末コアとNb(Nb−Ta)シースを用いた(Nb,Ta)Sn超伝導線材を開発した。
【0012】
この線材では熱処理によりシースのNbがコアヘと移動し、それによりコアに含まれるSnのシースヘの拡散を促進させるため、従来法(ブロンズ法)の線材よりも厚く均一な(Nb,Ta)Sn層が形成される。これはSnがTaよりNbと金属間化合物を作り易いこと、またTaとNbが互に固溶し易く、シースのNbが芯材に固溶するため空孔を生じ、シースへのSnとTaの拡散を促進するという本発明者が見出した新たな知見に基づくものである。本発明では、新たに加工性に富むSn−Taシートを作製し、(Nb,Ta)Sn超伝導線材の作製、および基材へのCuの添加効果を検討することを目的とした。
【0013】
本発明によれば、TaがNbSn層に固溶するため高磁界特性が向上し、またシースのNbが芯に拡散するため、反応後芯にボイドが発生することがない。芯にボイドが発生すると線材の機械的性質を劣化させる。
【0014】
本発明は上記の知見に基づいてなされたものであり、以下の構成を備えている。
(1)SnとMとの混合体からなる第1の基材とNbまたはNb系合金からなる第2の基材とを交互に積層して複合体を作製する工程と、前記複合体を線材に加工する工程と、前記線材を熱処理する工程と、を具備するNbSn超伝導線材の製造方法。
【0015】
(2)Mは、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属であってもよいし、(3)Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を水素化した金属水素化物であってもよい。Mは金属のみに限られず、Ta−Hのような金属水素化物を用いると、原料粉末が微粉化され、実用上有用な極細多芯形式の線材を容易に作製することができる。
【0016】
(4)第1の基材は、Mを0.5〜50原子%含有する。0.5原子%未満のM含有量では超伝導特性の改善効果が認められなくなる。また、50原子%を超えるM含有量では第1の基材の可塑性が失われて好ましくない。
【0017】
(5)複合体作製工程の前に、第1の基材をSnの融点以上1200℃以下の温度域で溶製することが望ましい。このような温度域で第1の基材を溶製するとSnとMが合金化され、その後の加工上の取り扱いが容易になる。なお、溶製温度が1200℃を超えると、Snが蒸発して成分コントロールすることが難しくなる。
【0018】
(6)第1の基材は、可塑性を有する合金からなる。
【0019】
(7)第1の基材は、さらに第3の元素が添加されて第2の基材との複合加工性が改善されていることが好ましい。第1の基材に含まれるSnは第2の基材を構成するNbに比べて軟らかいので、これらの第3の元素を添加して硬さを調整する。これにより第1の基材と第2の基材との伸びが揃い、伸びが一様な伸線加工を行うことができる。
【0020】
(8)第3の元素は、Bi,In,Sb,Mg,Ag,Zn,Al,Ge,Si,Pbからなる群より選択される一種又は二種以上の元素である。なお、第3の元素の添加量は0.5〜20原子%とすることが望ましい。0.5原子%未満の添加量ではSnの硬さ上昇が不十分であり、20原子%を超える添加量ではSnが硬くなりすぎるからである。
【0021】
(9)第1の基材は、さらにCuを0.5乃至30原子%含有することが望ましい。Cu添加量が0.5原子%を下回ると熱処理温度を低下させる効果が得られなくなるからである。一方、添加量が30原子%を超えると超伝導特性の低下を生じるからである。
【0022】
(10)第2の基材は、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を含有するNb合金である。
【0023】
(11)複合体作製工程において、第1の基材または第2の基材のうちのいずれか一方と実質的に同じ組成の芯材を用いて、第1の基材と第2の基材を交互に重ね合わせて芯材の周囲に捲回する。
【0024】
(12)第1の基材は、Sn含有量が20乃至80原子%の範囲内である。Sn含有量が20原子%を下回るとNbSn層の厚さが減少するからである。一方、Sn含有量が80原子%を上回るとM金属含有の効果が減少し、超伝導特性の低下を生じるからである。
【0025】
(13)第2の基材は、Ta,Ti,Hfの群から選択される一種又は二種の元素を20原子%以下含有するNb合金からなる。これら元素の添加量が20原子%を超えると超伝導特性の低下を生じるからである。
【0026】
(14)Cuマトリックス内に(1)乃至(13)のいずれかの方法で得られた複合体を充填し、この複合体を線材に加工後熱処理する。
【0027】
また、複合体を線材に加工する工程中に、複合体をSnの融点以上650℃以下の温度域で中間焼鈍することが望ましい。この焼鈍効果によって組織が均質化するという利点があり、超伝導特性を向上させる上で有利にはたらく。
【0028】
【発明の実施の形態】
TaとSnの混合体(第1の基材)とNbまたはNb合金(第2の基材)とを交互に積層して得た複合体あるいは前記混合体をNbまたはNb合金シース材に充填して得た複合体を線材に加工後熱処理を行ってNbSn超伝導線材を作製する。TaとSnの混合体中のSnの含有量は20〜80原子%の範囲にあることが望ましく、Sn含有量が20原子%未満であると生成されるNbSn層の厚さが薄くなり、また80原子%を超えるとNbSn層中のTa固溶量が減少し、高磁界特性改善の効果が減少する。加工後の熱処理温度は700℃〜950℃の範囲が適当で、真空中または不活性ガス雰囲気中で行うのがよい。
【0029】
TaとSnの混合体(第1の基材)をSnの融点以上1200℃以下の温度で溶製すると、Snが溶融してSn中にTaが分散した加工の容易な合金が得られ、NbまたはNb合金との複合体を作製し、さらにこれを線材加工する際、取り扱い易くなる利点がある。1200℃を超える温度で溶製すると、Snの蒸発のために組成が変動するので好ましくない。また、中間焼鈍を線材加工工程中で行ってもよいが、NbSn層が生成すると以後の線材加工に不都合を生ずるため、650℃以下の温度、好ましくは500℃〜600℃の温度範囲で中間焼鈍を行うのがよい。
【0030】
第1の基材は、さらに第3の元素が添加されて第2の基材との複合加工性が改善されていることが好ましい。第1の基材に含まれるSnは第2の基材を構成するNbに比べて軟らかいので、これらの第3の元素としてBi,In,Sb,Mg,Ag,Zn,Al,Ge,Si,Pbを添加して硬さを調整する。これにより第1の基材と第2の基材との伸びが揃い、伸びが一様な伸線加工を行うことができるようになる。この場合に、第3の元素の添加量は0.5〜20原子%とすることが望ましい。0.5原子%未満の添加量ではSnの硬さ上昇が不十分であり、20原子%を超える添加量ではSnが硬くなりすぎるからである。
【0031】
さらに、第1の基材に0.5〜30原子%のCuを含有させると熱処理温度の低下に顕著な効果がある。0.5原子%未満のCu添加では効果がなく、30原子%以上のCu添加では高磁界特性を劣化させる。3乃至15原子%のCu添加がとくに好ましく、これにより熱処理温度を800℃以下に低下させることができ、工業生産上のメリットが大きい。
【0032】
一方、Nb合金が20原子%以下のTa、Ti及びHfの群から選択された1種または2種の金属を含むと高磁界特性の改善に明瞭な効果がある。含有量が20原子%を超えると超伝導特性を低下させるとともに、線材加工に中間焼鈍が必要となり好ましくない。また超伝導線材を実用する際には、急激な磁界変動があっても超伝導性を安定に保つために、Cuマトリックスと複合して用いることが必要となる。従って本発明による芯材とシース材の複合体をCuマトリックス内に挿入したのち加工と熱処理を行い、実用に供する。
【0033】
【実施例】
以下、本発明の好ましい実施例についてそれぞれ説明する。
[実施例1]
実施例1として、Nbシートを用いるJR法またはNbメッシュシートを用いる改良型JR法(MJR法)により各種の線材を作製した。その作製方法について図1〜図4および表1を参照して説明する。
(試料の作製)
Ta量が40原子%以上ではTa−Snは粉末化され、線材化には粉末コア法を適用した。本発明ではTa量が30原子%以下のときに加工性を持つSn−Taシートが作製できるという知見を得た。そこで、Ta/Sn比が3/7、1/3となるようにTaとSnの粉末を調合し、その後1×10−5Torrの真空中において800℃×10時間で溶製した。また、3/7、1/3の混合粉末に5質量%のCuを添加し、同様の処理を行った。
【0034】
その後プレス加工、平ロール圧延を行い、厚さ200μmのシート2に加工した。図1に示すように、Sn−Taシート2を厚さ240μmのNbシート3と共にNb芯材4のまわりに重ねて巻き込み、Sn−Ta/Nb捲回体5を得た(工程S1)。このSn−Ta/Nb捲回体5を外径/内径が10/7mmφのNb−4原子%Ta管6のなかに挿入して組み込んだ(工程S2)。
【0035】
この複合体5,6を溝ロール加工または平ロール加工により断面円形または矩形の長尺物品とした(工程S3)。さらに、これを引き抜き加工により最終的に直径1.35〜1.90mmφの丸線に加工した(工程S4)。
【0036】
また、Nbシート3の代わりに厚さが340μmのNbメッシュシートを用いて、同様の操作によりMJR法線材を別途に作製した。
【0037】
作製した試料は1×10−5Torrの真空中において775℃〜925℃×80時間の熱処理を行い、超伝導線材を作製した。最後に作製した線材の臨界温度T、および高磁界中における臨界電流Iを測定した。
【0038】
(評価)
本発明では、Sn中にTa粒子が均一に分布した加工性に富むSn−Taシートを作製することができた。
【0039】
JR法線材ははじめ溝ロール加工を行うと、内部組織に四角いあとが残るが、良好な組織が得られることが判明した。MJR法線材においては、Nbメッシュシートを用いることで容易に多芯形式線材の作製が可能であることが判明した。
【0040】
表1に従来の粉末コア法および本発明のJR法、JR法(Cu添加したもの)及びMJR法によりそれぞれ作製した(Nb,Ta)Sn線材の臨界温度T(K)の測定結果を示す。表1中にてOnは超伝導遷移の開始点の温度を、Offは超伝導遷移の終了点の温度を、Midは超伝導遷移の中点の温度をそれぞれ示す。表1から明らかなように、どの線材においてもほぼ同じ臨界温度Tを示すことが判明した。
【0041】
図2は、横軸に磁界の強さ(T)、左縦軸に臨界電流I(A)、右縦軸に線径1.35mmの線材における臨界電流密度J(A/cm)をそれぞれとって、JR法により組成、線径、熱処理温度を種々変えて作製した各試料の高磁界中における超伝導特性を調べた結果を示す特性線図である。図2中にて特性線AはTa/Sn=3/7組成で線径1.35mmφの試料を900℃×80時間の条件で熱処理した結果を、特性線BはTa/Sn=3/7組成で線径1.35mmφの試料を925℃×80時間の条件で熱処理した結果を、特性線CはTa/Sn=3/7組成で線径1.90mmφの試料を900℃×80時間の条件で熱処理した結果を、特性線DはTa/Sn=1/3組成で線径1.90mmφの試料を900℃×80時間の条件で熱処理した結果をそれぞれ示した。なお、図中にてプロット記号の上側に矢印を付したものはその値以上の結果が得られたデータを示した。
【0042】
特性線Aに示すように、線径1.35mmφの試料を900℃×80時間で中間熱処理すると、4.2K、23テスラで線材断面積当り1.2×10A/cmの極めて有望な臨界電流密度Jが得られた。ちなみに超伝導線材を実用化するときには1.0×10A/cm以上のJが要求される。
【0043】
なお、熱処理温度が900℃(特性線A)の線材と925℃(特性線B)の線材とを比較してみると、23テスラ以下では925℃のほうが低いJとなるのは、高い熱処理温度により(Nb,Ta)Snの結晶粒が粗大化し磁束のピン止め点が減少したためと考えられる。
【0044】
さらに、900℃で熱処理を行った線材(本発明方法で作製した特性線A〜Dの試料とは異なる別の試料)の特性を減圧下の液体ヘリウム中2.1Kで評価したところ、25テスラの超高磁界で1.0×10A/cmのJを示した。
【0045】
また、特性線C,Dに示すように、4.2K、23テスラで200A以上の臨界電流Iが確認された。
【0046】
図3は、横軸に磁界の強さ(T)、左縦軸に臨界電流I(A)、右縦軸に線径1.35mmの線材における臨界電流密度J(A/cm)をそれぞれとって、種々のCu添加JR線材試料の高磁界中における超伝導特性を調べた結果を示す特性線図である。図3中にて特性線EはTa/Sn=1/3組成で線径1.35mmφの5質量%Cu添加試料を800℃×80時間の条件で熱処理した結果を、特性線FはTa/Sn=3/7組成で線径1.35mmφの5質量%Cu添加試料を800℃×80時間の条件で熱処理した結果を、特性線GはTa/Sn=1/3組成で線径1.35mmφの5質量%Cu添加試料を775℃×80時間の条件で熱処理した結果を、特性線HはTa/Sn=1/3組成で線径1.90mmφの5質量%Cu添加試料を800℃×80時間の条件で熱処理した結果をそれぞれ示した。なお、図中にてプロット記号を括弧で括って表示したものはフラックスジャンプのため正確ではないデータ(不確定データ)を、プロット記号の上側に矢印を付したものはその値以上の結果が得られたデータを示した。
【0047】
図3では特性線Gに示すように、4.2K、22テスラで線材断面積当たり1.3×10A/cmのJcが得られた。また、特性線Hに示すように、4.2K、22テスラで200Aの臨界電流Iが確認された。
【0048】
このように少量のCuを添加することにより、熱処理温度を900℃から775℃まで低下させることができ、実用化に有利なことが判明した。これはNb−Sn−Cu3元系となることにより融点が減少し、低い温度でも拡散が速く進行するためと考えられる。
【0049】
図4に臨界電流密度J−磁界特性について実施例線材(Cuを含まない)と比較例線材とを比べた結果を示す。図中にて特性線Mは本発明を代表する実施例の(Nb,Ta)Sn線材(図2の曲線A)の結果を、特性線Nは920MHz級NMR分析装置に用いられている従来のブロンズ法(Nb,Ti)Sn線材(比較例)の結果をそれぞれ示した。
【0050】
図2及び図3から明らかなように、本発明により製造した線材は、4.2Kで20テスラ以上の性能を充分備えており、蛋白質の構造解析などに必要なNMR分析装置、クリーンなエネルギー源として期待される核融合、冷凍機直冷型超伝導マグネットなど幅広い分野での応用が期待される。
【0051】
[実施例2]
実施例2として、水素化物を用いて各種の線材を作製した。その作製方法について図5〜図8および表2を参照して説明する。
【0052】
Ta−Sn粉末をコアに用い、Nbシースと反応させると厚い(Nb,Ta)Sn層が形成され、このようにして作製された(Nb,Ta)Sn超伝導線材は優れた高磁界特性を示す。この製法においてTa粒子を微細で均一にすることができると、実用的な極細多芯線材化が容易になると考えられる。そこで、本実施例では新しく微粉化が容易となる水素化物Ta−Hを出発物質として線材を作製し、その組織と超伝導特性について比較検討した。
【0053】
(試料の作製)
次に、図5を参照して試料の作製方法について説明する。
先ず市販品のフレーク状Ta−Hを乳鉢で約30分間かけて粉砕し(工程S21)、次いでAr雰囲気中で遊星型ボールミル装置(以下BMと略称する)を用いて30分間粉砕し(工程S22)、Ta−H粉末を作製した。これにSn粉末をTa/Sn原子比が3/7または4/6になるようにそれぞれ調合した。
【0054】
次いで、925℃で約10時間溶融拡散を行い(工程S23)、Ta−Sn粉末を作製した。この工程S23の過程で脱水素が行われたと考えられる。さらに、このTa−H/Sn混合粉末にCu粉末を5質量%混合した粉末、同混合粉末にCu粉末を7.5質量%混合した粉末、およびTa−Hの代わりに市販品のTa粉末を用いた粉末も同様にしてそれぞれ作製した(工程S24)。
【0055】
作製した各種の粉末は粒度分布測定装置により粉末の粒径を測定した。その後、Nb−4at%Taシース(外径8.0mm、内径5.0mm)にTa−Sn粉末を充填して複合体を作製し(工程S25)、溝ロール、平ロール加工を行い(工程S26)、厚さ0.6mm、幅4mmのテープを作製した。作製したテープを1×10−5Torrの真空中において各濃度で80時間熱処理し(工程S27)、超伝導テープ試料を得た。作製試料について組織観察、及び臨界温度T、高磁界中における臨界電流I測定を行った。以下、Ta−Hを出発物質として作製した試料を「TH」と表記することとする。
【0056】
(評価)
市販のTa粉末(325メッシュ以下)は粗く、大きさもばらついているが、Ta−HをBM粉砕して作製した粉末は粒子の大きさが著しく細かくなり、均一化することが光学顕微鏡観察により確認された。
【0057】
図6は各粉体原料の粒度分布を示す棒グラフである。市販のTa粉末では、2〜3μmφと20〜30μmφに粒度分布のピークが存在するが、BM粉砕Ta−H粉末では3μmφ以上の粒子が見られず微粒子化され、また分布範囲も狭くなることが判明した。
【0058】
900℃×80時間の熱処理後の市販Ta粉末を用いた超伝導テープの試料断面と本発明方法を用いて作製したTH試料断面とをそれぞれ光学顕微鏡により観察した。その結果、市販Ta粉末を用いた試料の熱処理後の組織は一部の粗大なTa粒子がコアの部分に残っているが、TH試料は組織が細かく均一にできていることが確認された。これは、Ta−Hを用いたことによりTa粉末が微粉化されたためと推察される。また、TH試料においても熱処理後に、従来と同様に厚い(Nb,Ta)Sn層が生成された。
【0059】
表2にTH3/7のBMした試料とBMしていない試料、Cuを添加した試料の臨界温度T(K)を示した。BMした試料とBMしてない試料を比べると、On/Offの状態で殆ど変わらない値になった。Cuを添加した試料は熱処理温度を低くしても、臨界温度が高い値になった。
【0060】
図7および図8は、各種試料の臨界電流Ic(左縦軸)−臨界電流密度Jc(右縦軸)−磁界(横軸)特性を4.2Kの温度条件下で調べた結果をそれぞれ示す。図7中の特性線PはTa−H/Sn=3/7組成のCu無添加試料(TH3/7)を880℃×80時間の条件で熱処理した結果を、特性線QはTa−H/Sn=3/7組成のCu無添加試料(TH3/7)を900℃×80時間の条件で熱処理した結果を、特性線RはTa−H/Sn=3/7組成のCu無添加試料(TH3/7)を925℃×80時間の条件で熱処理した結果をそれぞれ示した。図8中の特性線UはTa−H/Sn=3/7組成の5質量%Cu添加試料(TH3/7+5Cu)を800℃×80時間の条件で熱処理した結果を、特性線VはTa−H/Sn=4/6組成の7.5質量%Cu添加試料(TH4/6+7.5Cu)を775℃×80時間の条件で熱処理した結果を、特性線WはTa−H/Sn=4/6組成のボールミル粉砕7.5質量%Cu添加試料(TH4/6+7.5Cu(BM))を800℃×80時間の条件で熱処理した結果をそれぞれ示した。
【0061】
図8に示すように、コアにCuを数質量%添加した試料(特性線U,V,W)では775℃〜800℃の熱処理でも臨界電流Iを多く流し、良い特性が得られることが確認できた。
【0062】
本実施例では、BMした線材のT値はマイナス325メッシュの純Taを用いた試料と変りがなく、また4.2K,22Tで1×10/cmのJが得られた。
【0063】
このように本実施例では、少量のCuをTa−Snコアに添加すると熱処理温度が900℃から775℃〜800℃に低下し、4.2K,21Tで1.5×10A/cmのJcが得られた。
【0064】
さらに、本実施例では、Ta−Hを用いることで微細なTa粉末にすることに成功し、また従来と同様に厚い(Nb,Ta)Sn層が得られることが判明した。
【0065】
さらに、M金属の水素化物を粉砕した微粉末を用いてSn−M合金を作製すると、Sn中にMが微細に分散するために実用線材作製上のメリットが大きい。
【0066】
[実施例3]
実施例3として、複数のNb芯材のまわりにSnTaCuシートを巻き付ける方法により多芯線を作製した。その作製方法について以下に述べる。
(線材の作製)
Sn粉末とTa粉末をSn/Ta原子比が7/3になるように調合し、これに5質量%のCu粉末を添加し、石英るつぼを用いて真空雰囲気中において800℃×10時間の加熱を行い、SnTaCu合金を溶製した。使用したSn粉末、Ta粉末およびCu粉末の粒度はいずれもマイナス325メッシュであった。
【0067】
溶製したSnTaCu合金をプレス加工により板状にし、次いで平ロールにより厚さ100μmのシートに加工した。このシートを直径1.2mmのNb芯材のまわりに6回巻き付けたものを7本つくり、これら7本の捲回体を外径10mm内径7.3mmのNb−4atom%Taシース管のなかに挿入して組み込み、複合体とした。
【0068】
この複合体を溝ロール加工により所定長さの長尺物品とし、さらに線引加工(引き抜き加工)により最終的に直径1.4mmの線材とした。なお、本実施例では線材の溝ロールおよび線引加工中において中間焼鈍を行わなかった。このようにして得た線材を800℃×80時間の条件で熱処理した。
【0069】
(評価)
図9は、本実施例の多芯線材の横断面を拡大して示す顕微鏡写真である。熱処理後の線材の断面を光学顕微鏡により観察した結果、7本のNb芯材の周囲およびNb−4atom%Taシース管の内側にそれぞれ厚いNbSn層が生成されていることを確認できた。顕微鏡視野内で測定したところ、生成NbSn層の厚みは30〜50μmの程度であった。
【0070】
この線材を4.2K、20テスラの垂直磁界中で臨界電流Iを測定したところ250Aとなり、線材の単位断面積当りの臨界電流密度Jは約1.6×10A/cmであった。
【0071】
[実施例4]
実施例4として、実施例1と同様のシートJR法を用いて第1の基材がSnTiCu合金である線材を作製した。その作製方法について以下に述べる。
(線材の作製)
Tiを25原子%含むCu−Ti母合金を粉砕し、マイナス325メッシュのSn粉末と調合して、Sn90質量%、Ti2質量%、Cu8質量%の組成の混合粉末を作製した。
【0072】
この混合粉末を石英るつぼに装入し、真空雰囲気中において800℃×10時間の加熱を行い、SnTiCu合金を溶製した。この合金をプレス加工により板状とし、次いで平ロールにより厚さ100μmのシートに加工した。このSnTiCu合金シートを厚さ100μmのNbシートと重ね合わせ、直径1.2mmのNb芯材のまわりに10回巻き付けて捲回体とした。この捲回体を外径8mm内径5.5mmのNb−1.1atom%Tiシース管のなかに挿入して組み込み、複合体とした。
【0073】
この複合体を溝ロールにより1.5×1.5mm角に加工した後、平ロール加工により厚さ0.8mm、幅2.5mmの平角線材に圧延した。なお、本実施例では線材の溝ロールおよび線引加工中において中間焼鈍を行わなかった。このようにして得た線材を800℃×80時間の条件で熱処理した。
【0074】
(評価)
この線材を4.2K、20テスラの垂直磁界中で臨界電流Iを測定したところ345Aとなり、線材の単位断面積当りの臨界電流密度Jは約1.7×10A/cmであった。
【0075】
【表1】

Figure 2004296124
【0076】
【表2】
Figure 2004296124
【0077】
【発明の効果】
以上説明したように、本発明の方法で作製された線材は、1GHzNMR分析装置に必要な23.5テスラの磁界の発生を達成しうる可能性を示したので、従来法で作製された線材と比較して格段に高いJc磁界特性が得られ、蛋白質の構造解析などに必要なNMR分析装置、クリーンなエネルギー源として期待される核融合、冷凍機直冷型超伝導マグネットなどの幅広い分野に応用することができる。
【0078】
また、本発明によれば、TaとSnの合金あるいは金属間化合物を作製し、さらにこれをシース材に充填するため粉末に粉砕する工程を省略することができるので、線材作製コストが大幅に削減されるとともに、望ましい組成の芯材を容易に作製することができる。その結果、4.2Kで23テスラ、2.1Kで25テスラの磁界を発生しうる、インパクトの大きい超伝導線材を容易に提供することができる。なお、超伝導線材を磁界発生に実用する際には、Iを線材全断面積で除した臨界電流密度Jが1×10A/cm以上あることが望ましい。
【0079】
また、本発明によれば、Sn中にMが分散した可塑性に優れたSn−M合金とNb又はNb合金との複合体を線材に加工した後に反応熱処理するので、従来の粉末コア法よりも加工しやすく、また均一性に優れた線材を提供することができる。このように本発明方法により製造された線材は可塑性に富むものであるため、極細多芯線材の製造などが可能となり、工業的な利用価値が極めて高く、実用的である。
【0080】
また、本発明の方法は、従来のブロンズ法において必要とされていた多くの中間焼鈍を省略することができるので、製造コストを大幅に低減することができる。
【0081】
さらに、本発明によれば、少量のCuの添加によりNbSn層を生成する反応が促進されるので、最終熱処理温度を低下させ、製造コストを低く抑えることができる。
【0082】
また、さらに本発明によれば、水素化物を出発物質として微細なM粒子をSn中に均一に分散させることができるので、従来よりもさらに超伝導特性に優れた線材を提供できるとともに、実用上好ましい極細多芯形式の線材を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る超伝導線材の製造方法(ジェリーロール法)の概要を示すブロック工程図。
【図2】超伝導特性{臨界電流Ic(左縦軸),線径1.35mm臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図3】超伝導特性{臨界電流Ic(左縦軸),線径1.35mm臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図4】超伝導特性(臨界電流密度Jc−磁界特性)について本発明方法で作製した実施例サンプルと従来法で作製した比較例サンプルとを比べて示す特性線図。
【図5】本発明の他の実施形態に係る超伝導線材の製造方法の概要を示す工程図。
【図6】粉体原料の粒径分布を示す棒グラフ。
【図7】超伝導特性{臨界電流Ic(左縦軸),臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図8】超伝導特性{臨界電流Ic(左縦軸),臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図9】本発明方法を用いて製造された極細多芯線材の横断面を示す顕微鏡写真。
【符号の説明】
2…第1の基材(Sn−Mシート)
3…第2の基材(Nbシート)
4…芯材(Nb棒)
5…複合体(Sn−M/Nb捲回体)
6…外筒(Nb−Taチューブ)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an Nb for generating a high magnetic field which enables development of various new technologies such as an NMR analyzer, a fusion reactor, and a high-density energy storage. 3 The present invention relates to a method for manufacturing a Sn superconducting wire.
[0002]
[Prior art]
As the superconducting wire, an Nb-Ti alloy wire is often used, and a large current can be supplied without power consumption to generate a high magnetic field. However, this alloy wire has a limit of a generated magnetic field at a liquid helium temperature (4.2 K) of about 9 Tesla (9 T). Therefore, it is necessary to use a compound superconducting wire in order to generate a high magnetic field of 10 T or more necessary for a nuclear fusion device, an NMR analyzer, and the like. Nb with A15 type crystal structure 3 Sn compounds are known as one of the superconducting materials that meet such requirements. Its critical temperature T c Is about 18K, upper critical magnetic field B c2 (4.2K) is about 21T, which is almost twice as high as Nb-Ti about 9K and about 11.5 Tesla, respectively. Nb 3 As a method for producing a Sn compound wire, for example, a bronze method described in Non-Patent Document 1 is used. The bronze method uses Nb as a core material, creates a composite in which this is wrapped in a Cu-Sn alloy matrix, plastically processes this, and performs diffusion heat treatment to form an Nb core at the interface between the Nb core and the matrix. 3 This is a method for generating a Sn compound phase.
[0003]
Furthermore, in the bronze method, the present inventor added a small amount of Ti to the Cu-Sn alloy matrix to increase the upper critical magnetic field B. c2 Was found to be improved and published in Non-Patent Document 2. The process was subsequently industrialized. Using this wire, a magnetic field of 18.8 Tesla at 4.2K and 21.6 Tesla at 1.6K was generated. In 2002, the world's best 920 MHz NMR analyzer useful for structural analysis of proteins and the like was completed. However, the properties of bronze normal wires have reached their limits, and the development of next-generation high-magnetic-field superconducting wires is expected.
[0004]
The inventor has made an alloy or an intermetallic compound of one or more metals selected from the group consisting of Ti, Zr, Hf, V and Ta and Sn and an intermetallic compound into a core material, and made Nb or an Nb alloy a sheath. After processing the composite obtained by filling the core material into a wire, the material is heat-treated to obtain Nb having excellent high magnetic field characteristics. 3 Patent Document 1 proposes that an Sn wire can be manufactured. Further, the present inventor has applied for a related invention in the application specification (unpublished) of Japanese Patent Application No. 2001-275401. These are all based on the powder core method.
[0005]
[Non-patent document 1]
K. Tachikawa: Filamentary A15 Superconductors, Plenum Press (1980) p1
[0006]
[Non-patent document 2]
Hisashi Sekine, Yasuo Iijima, Kikuo Ito, Kyoji Tachikawa: Journal of the Japan Institute of Metals, Vol. 49, No. 10, (1985) p. 913
[0007]
[Patent Document 1]
JP-A-11-250749
[0008]
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, the step of producing an alloy or an intermetallic compound of one or more metals selected from the group consisting of Ti, Zr, Hf, V and Ta and Sn and the alloy or intermetallic compound In order to fill the sheath material with the compound, a step of pulverizing the compound into powder is essential, but these steps are not always easy and have been a problem in industrialization.
[0009]
In addition, when a wire is manufactured by the conventional powder core method, so-called sausaging in which the wire is deformed in a wavy manner may occur, which makes it difficult to process a long wire having a uniform cross-sectional shape.
[0010]
An object of the present invention is to use Ta, which is most effective in improving high magnetic field characteristics, and to solve the above-mentioned problems in industrialization using a composite made of a plastic base material. Accordingly, Nb which can reduce the cost of wire production and easily produce a core material of a desired composition 3 An object of the present invention is to provide a method for manufacturing a Sn superconducting wire.
[0011]
[Means for Solving the Problems]
Nb-Ti alloy wires and Nb produced by the bronze method are currently used as superconducting wires. 3 There is Sn compound wire rod, Ti addition bronze method (Nb, Ti) 3 A 920 MHz class NMR analyzer with the world's highest performance at 1.6K operation using a Sn wire has been developed. However, the performance of the bronze normal wire has reached its limit, and further improvement in the high magnetic field characteristics of the superconducting wire is expected. As a result of intensive research to meet such expectations, the present inventor has recently used a Ta-Sn powder core and an Nb (Nb-Ta) sheath as a next-generation superconducting wire (Nb, Ta). 3 A Sn superconducting wire was developed.
[0012]
In this wire, the heat treatment causes Nb of the sheath to move to the core, thereby promoting the diffusion of Sn contained in the core to the sheath. 3 An Sn layer is formed. This is because Sn is easier to form an intermetallic compound with Nb than Ta, and Ta and Nb are more likely to form a solid solution with each other, and Nb of the sheath forms a solid solution with the core material. This is based on a new finding discovered by the present inventor to promote the diffusion of. In the present invention, a Sn-Ta sheet having a high processability is newly prepared, and (Nb, Ta) 3 The purpose was to produce a Sn superconducting wire and to study the effect of adding Cu to the substrate.
[0013]
According to the present invention, Ta is Nb 3 Since the solid solution forms in the Sn layer, the high magnetic field characteristics are improved, and the Nb of the sheath diffuses into the core, so that voids do not occur in the core after the reaction. The generation of voids in the core degrades the mechanical properties of the wire.
[0014]
The present invention has been made based on the above findings, and has the following configuration.
(1) a step of alternately laminating a first substrate made of a mixture of Sn and M and a second substrate made of Nb or an Nb-based alloy to produce a composite; Nb, comprising: 3 A method for producing a Sn superconducting wire.
[0015]
(2) M may be one or two or more metals selected from the group consisting of Ta, Ti, and Hf, and (3) one or two metals selected from the group consisting of Ta, Ti, and Hf. A metal hydride obtained by hydrogenating at least one kind of metal may be used. M is not limited to metal, but when a metal hydride such as Ta-H is used, the raw material powder is finely divided, and a practically useful multifilamentary wire can be easily produced.
[0016]
(4) The first base material contains 0.5 to 50 atomic% of M. When the content of M is less than 0.5 atomic%, the effect of improving the superconductivity is not recognized. On the other hand, if the M content exceeds 50 atomic%, the plasticity of the first base material is lost, which is not preferable.
[0017]
(5) It is desirable to melt the first base material in a temperature range from the melting point of Sn to 1200 ° C. before the composite manufacturing step. When the first base material is melted in such a temperature range, Sn and M are alloyed, and subsequent handling in processing is facilitated. If the melting temperature exceeds 1200 ° C., Sn evaporates and it becomes difficult to control the components.
[0018]
(6) The first substrate is made of an alloy having plasticity.
[0019]
(7) It is preferable that the first base material is further added with a third element to improve the composite workability with the second base material. Since Sn contained in the first base material is softer than Nb constituting the second base material, the hardness is adjusted by adding these third elements. As a result, the elongation of the first base material and the elongation of the second base material are uniform, and wire drawing with uniform elongation can be performed.
[0020]
(8) The third element is one or more elements selected from the group consisting of Bi, In, Sb, Mg, Ag, Zn, Al, Ge, Si, and Pb. Note that the addition amount of the third element is desirably 0.5 to 20 atomic%. If the addition amount is less than 0.5 atomic%, the hardness of Sn is insufficiently increased, and if the addition amount exceeds 20 atomic%, the Sn becomes too hard.
[0021]
(9) The first base material preferably further contains 0.5 to 30 atomic% of Cu. If the Cu content is less than 0.5 atomic%, the effect of lowering the heat treatment temperature cannot be obtained. On the other hand, if the addition amount exceeds 30 atomic%, the superconductivity is deteriorated.
[0022]
(10) The second substrate is an Nb alloy containing one or more metals selected from the group consisting of Ta, Ti, and Hf.
[0023]
(11) In the composite manufacturing step, a first base material and a second base material are used by using a core material having substantially the same composition as one of the first base material and the second base material. Are alternately overlapped and wound around the core material.
[0024]
(12) The first base material has a Sn content in the range of 20 to 80 atomic%. If the Sn content is less than 20 atomic%, Nb 3 This is because the thickness of the Sn layer decreases. On the other hand, when the Sn content exceeds 80 atomic%, the effect of the M metal content is reduced, and the superconductivity is deteriorated.
[0025]
(13) The second substrate is made of an Nb alloy containing one or two elements selected from the group consisting of Ta, Ti, and Hf in an amount of 20 atomic% or less. This is because, if the addition amount of these elements exceeds 20 atomic%, the superconductivity is deteriorated.
[0026]
(14) The composite obtained by any of the methods (1) to (13) is filled in a Cu matrix, and the composite is processed into a wire and then heat-treated.
[0027]
In addition, during the step of processing the composite into a wire, it is desirable that the composite be subjected to intermediate annealing in a temperature range from the melting point of Sn to 650 ° C. or less. There is an advantage that the structure is homogenized by this annealing effect, which is advantageous in improving superconductivity.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
A composite obtained by alternately laminating a mixture of Ta and Sn (first substrate) and Nb or Nb alloy (second substrate) or the mixture is filled in an Nb or Nb alloy sheath material. After processing the composite obtained into a wire, heat treatment is performed to obtain Nb 3 A Sn superconducting wire is manufactured. The Sn content in the mixture of Ta and Sn is desirably in the range of 20 to 80 atomic%, and Nb produced when the Sn content is less than 20 atomic% is formed. 3 If the thickness of the Sn layer is reduced, and if it exceeds 80 atomic%, Nb 3 The amount of Ta solid solution in the Sn layer decreases, and the effect of improving the high magnetic field characteristics decreases. The heat treatment temperature after processing is suitably in the range of 700 ° C. to 950 ° C., and is preferably performed in a vacuum or in an inert gas atmosphere.
[0029]
When a mixture of Ta and Sn (first base material) is melted at a temperature of not less than the melting point of Sn and not more than 1200 ° C., an alloy which is easy to process in which Sn is melted and Ta is dispersed in Sn is obtained. Alternatively, when a composite with an Nb alloy is produced and further processed into a wire, there is an advantage that handling becomes easy. Melting at a temperature exceeding 1200 ° C. is not preferable because the composition fluctuates due to evaporation of Sn. Also, the intermediate annealing may be performed during the wire rod processing step. 3 Since the formation of the Sn layer causes inconvenience in the subsequent wire rod processing, the intermediate annealing is preferably performed at a temperature of 650 ° C. or less, preferably in a temperature range of 500 ° C. to 600 ° C.
[0030]
It is preferable that the first base material is further added with a third element to improve composite workability with the second base material. Since Sn contained in the first base material is softer than Nb constituting the second base material, Bi, In, Sb, Mg, Ag, Zn, Al, Ge, Si, The hardness is adjusted by adding Pb. As a result, the elongation of the first base material and the elongation of the second base material are uniform, and it is possible to perform wire drawing with uniform elongation. In this case, the addition amount of the third element is desirably 0.5 to 20 atomic%. If the addition amount is less than 0.5 atomic%, the hardness of Sn is insufficiently increased, and if the addition amount exceeds 20 atomic%, the Sn becomes too hard.
[0031]
Furthermore, when 0.5 to 30 atomic% of Cu is contained in the first base material, there is a remarkable effect in lowering the heat treatment temperature. Addition of less than 0.5 atomic% of Cu has no effect, while addition of 30 atomic% or more of Cu degrades high magnetic field characteristics. It is particularly preferable to add 3 to 15 atomic% of Cu, whereby the heat treatment temperature can be lowered to 800 ° C. or lower, which has a great advantage in industrial production.
[0032]
On the other hand, when the Nb alloy contains one or two metals selected from the group consisting of Ta, Ti, and Hf of 20 atomic% or less, there is a clear effect in improving the high magnetic field characteristics. If the content exceeds 20 atomic%, the superconductivity is deteriorated, and intermediate annealing is required for wire processing, which is not preferable. When a superconducting wire is put into practical use, it must be used in combination with a Cu matrix in order to maintain superconductivity stably even when there is a sudden magnetic field fluctuation. Therefore, after the composite of the core material and the sheath material according to the present invention is inserted into the Cu matrix, processing and heat treatment are performed, and the composite material is put to practical use.
[0033]
【Example】
Hereinafter, preferred embodiments of the present invention will be described.
[Example 1]
As Example 1, various wire rods were produced by a JR method using an Nb sheet or an improved JR method (MJR method) using an Nb mesh sheet. The manufacturing method will be described with reference to FIGS.
(Preparation of sample)
When the amount of Ta is 40 atom% or more, Ta-Sn is powdered, and the powder core method is applied to wire. In the present invention, it has been found that an Sn—Ta sheet having workability can be produced when the Ta amount is 30 atomic% or less. Therefore, the powders of Ta and Sn are mixed so that the Ta / Sn ratio becomes 3/7, 1/3, and then 1 × 10 -5 It was melted at 800 ° C. for 10 hours in a Torr vacuum. Further, 5% by mass of Cu was added to 3/7, 1/3 mixed powder, and the same treatment was performed.
[0034]
Thereafter, press working and flat roll rolling were carried out to form a sheet 2 having a thickness of 200 μm. As shown in FIG. 1, the Sn-Ta sheet 2 and the Nb sheet 3 having a thickness of 240 μm were superposed and wound around the Nb core material 4 to obtain a Sn-Ta / Nb wound body 5 (step S1). The Sn-Ta / Nb wound body 5 was inserted into an Nb-4 atom% Ta tube 6 having an outer diameter / inner diameter of 10/7 mmφ and incorporated (step S2).
[0035]
The composites 5 and 6 were formed into long articles having a circular or rectangular cross section by groove roll processing or flat roll processing (step S3). Further, this was finally processed into a round wire having a diameter of 1.35 to 1.90 mmφ by drawing (step S4).
[0036]
In addition, an Nb mesh sheet having a thickness of 340 μm was used in place of the Nb sheet 3, and an MJR method wire was separately produced by the same operation.
[0037]
The prepared sample is 1 × 10 -5 Heat treatment was performed at 775 ° C. to 925 ° C. × 80 hours in a vacuum of Torr to produce a superconducting wire. Critical temperature T of the last produced wire c And the critical current I in a high magnetic field c Was measured.
[0038]
(Evaluation)
In the present invention, a Sn-Ta sheet with excellent processability, in which Ta particles are uniformly distributed in Sn, could be produced.
[0039]
It has been found that when groove rolling is performed on the JR normal wire at first, a square residue remains in the internal structure, but a good structure can be obtained. In the case of the MJR method wire, it was found that a multi-core wire can be easily manufactured by using an Nb mesh sheet.
[0040]
Table 1 shows the conventional powder core method, the JR method of the present invention, the JR method (with Cu added), and the MJR method, respectively (Nb, Ta). 3 Critical temperature T of Sn wire c (K) shows the measurement results. In Table 1, On indicates the temperature at the start point of the superconducting transition, Off indicates the temperature at the end point of the superconducting transition, and Mid indicates the temperature at the midpoint of the superconducting transition. As is clear from Table 1, almost the same critical temperature T c It turned out to show.
[0041]
FIG. 2 shows the magnetic field strength (T) on the horizontal axis and the critical current I on the left vertical axis. c (A), the right vertical axis shows the critical current density J in a wire having a diameter of 1.35 mm. c (A / cm 2 FIG. 4 is a characteristic diagram showing the results of examining the superconducting characteristics in a high magnetic field of each sample manufactured by varying the composition, wire diameter, and heat treatment temperature by the JR method. In FIG. 2, a characteristic line A is a result of heat-treating a sample having a composition of Ta / Sn = 3/7 and a wire diameter of 1.35 mmφ at 900 ° C. for 80 hours, and a characteristic line B is Ta / Sn = 3/7. As a result of heat treatment of a sample having a composition and a wire diameter of 1.35 mmφ under a condition of 925 ° C. × 80 hours, a characteristic line C is a sample of Ta / Sn = 3/7 having a wire diameter of 1.90 mmφ and a temperature of 900 ° C. × 80 hours. As a result of heat treatment under the conditions, a characteristic line D shows a result of heat treatment of a sample having a Ta / Sn = 1/3 composition and a wire diameter of 1.90 mmφ at 900 ° C. for 80 hours. In the figures, data with an arrow above the plot symbol indicate data with a result higher than that value.
[0042]
As shown by the characteristic line A, when a sample having a wire diameter of 1.35 mmφ was subjected to an intermediate heat treatment at 900 ° C. for 80 hours, a sample having a diameter of 1.2 × 10 was obtained at 4.2 K and 23 Tesla. 4 A / cm 2 Promising critical current density J c was gotten. By the way, when a superconducting wire is put to practical use, 1.0 × 10 4 A / cm 2 J above c Is required.
[0043]
A comparison between a wire having a heat treatment temperature of 900 ° C. (characteristic line A) and a wire having a heat treatment temperature of 925 ° C. (characteristic line B) shows that J is lower at 925 ° C. below 23 Tesla. c Becomes (Nb, Ta) due to the high heat treatment temperature. 3 This is probably because the Sn crystal grains became coarse and the pinning point of the magnetic flux decreased.
[0044]
Furthermore, when the characteristics of the wire (another sample different from the samples of the characteristic lines A to D produced by the method of the present invention) heat-treated at 900 ° C. were evaluated at 2.1 K in liquid helium under reduced pressure, 25 tesla was obtained. 1.0 × 10 at ultra high magnetic field 4 A / cm 2 J c showed that.
[0045]
Further, as shown in characteristic lines C and D, the critical current I of 200 A or more at 4.2 K and 23 Tesla is used. c Was confirmed.
[0046]
FIG. 3 shows the magnetic field strength (T) on the horizontal axis and the critical current I on the left vertical axis. c (A), the right vertical axis shows the critical current density J in a wire having a diameter of 1.35 mm. c (A / cm 2 FIG. 7 is a characteristic diagram showing the results of examining the superconducting characteristics of various Cu-added JR wire samples in a high magnetic field, respectively. In FIG. 3, a characteristic line E is a result obtained by heat-treating a 5% by mass Cu-added sample having a composition of Ta / Sn = 1/3 and having a wire diameter of 1.35 mmφ at 800 ° C. for 80 hours. As a result of heat treatment of a 5% by mass Cu-added sample having a Sn = 3/7 composition and a wire diameter of 1.35 mmφ under the condition of 800 ° C. × 80 hours, the characteristic line G is Ta / Sn = 1/3 composition and a wire diameter of 1. As a result of heat-treating a 35 mmφ 5 mass% Cu-added sample under the condition of 775 ° C. × 80 hours, the characteristic line H is a Ta / Sn = 1/3 composition and a 1.90 mm φ 5 mass% Cu-added sample at 800 ° C. The results of heat treatment under the conditions of × 80 hours are shown. In the figure, the plot symbols enclosed in parentheses indicate inaccurate data due to flux jumps (uncertain data), and those with an arrow above the plot symbols indicate results exceeding the values. Data shown.
[0047]
In FIG. 3, as shown by the characteristic line G, at 4.2 K and 22 Tesla, 1.3 × 10 4 A / cm 2 Of Jc was obtained. As shown by the characteristic line H, the critical current I of 200 A at 4.2 K and 22 Tesla was obtained. c Was confirmed.
[0048]
By adding such a small amount of Cu, the heat treatment temperature can be lowered from 900 ° C. to 775 ° C., which proves to be advantageous for practical use. This is considered to be due to the fact that the melting point decreases due to the Nb-Sn-Cu ternary system, and diffusion proceeds rapidly even at a low temperature.
[0049]
Figure 4 shows the critical current density J c -The magnetic field characteristic shows the result of comparing the example wire (not including Cu) and the comparative example wire. In the figure, the characteristic line M is (Nb, Ta) of the embodiment representative of the present invention. 3 The result of the Sn wire (curve A in FIG. 2) is shown by the characteristic line N, which is a conventional bronze method (Nb, Ti) used in a 920 MHz class NMR analyzer. 3 The results of the Sn wire (Comparative Example) are shown.
[0050]
As is clear from FIGS. 2 and 3, the wire manufactured according to the present invention has a sufficient performance of 20 Tesla or more at 4.2K, an NMR analyzer required for structural analysis of proteins, a clean energy source, and the like. It is expected to be applied in a wide range of fields such as nuclear fusion and refrigerator direct cooling type superconducting magnets.
[0051]
[Example 2]
As Example 2, various wires were produced using hydrides. The manufacturing method will be described with reference to FIGS.
[0052]
When Ta-Sn powder is used for the core and reacted with the Nb sheath, it is thick (Nb, Ta) 3 An Sn layer was formed, and thus produced (Nb, Ta) 3 Sn superconducting wire exhibits excellent high magnetic field characteristics. It is considered that if the Ta particles can be made fine and uniform in this production method, a practical ultrafine multifilamentary wire can be easily obtained. Therefore, in this example, a wire rod was prepared using a hydride Ta-H, which is easy to pulverize, as a starting material, and the structure and superconductivity were compared and studied.
[0053]
(Preparation of sample)
Next, a method for manufacturing a sample will be described with reference to FIGS.
First, a commercially available flake Ta-H is ground in a mortar for about 30 minutes (Step S21), and then ground in an Ar atmosphere using a planetary ball mill (hereinafter abbreviated as BM) for 30 minutes (Step S22). ) And Ta-H powder were produced. To this, Sn powder was prepared so that the Ta / Sn atomic ratio became 3/7 or 4/6, respectively.
[0054]
Next, melt-diffusion was performed at 925 ° C. for about 10 hours (step S23) to produce a Ta—Sn powder. It is considered that dehydrogenation was performed in the process of step S23. Further, a powder obtained by mixing 5 mass% of Cu powder with this Ta-H / Sn mixed powder, a powder obtained by mixing 7.5 mass% of Cu powder with the mixed powder, and a commercially available Ta powder instead of Ta-H are used. The powders used were similarly prepared (step S24).
[0055]
The particle size of each of the produced powders was measured by a particle size distribution analyzer. Thereafter, an Nb-4 at% Ta sheath (outside diameter 8.0 mm, inside diameter 5.0 mm) is filled with Ta-Sn powder to prepare a composite (step S25), and groove and flat rolls are processed (step S26). ), A tape having a thickness of 0.6 mm and a width of 4 mm was produced. 1 × 10 -5 Heat treatment was performed for 80 hours at each concentration in a Torr vacuum (Step S27) to obtain a superconducting tape sample. Observation of microstructure and critical temperature T c Critical current I in a high magnetic field c A measurement was made. Hereinafter, a sample prepared using Ta-H as a starting material is referred to as “TH”.
[0056]
(Evaluation)
Commercially available Ta powder (325 mesh or less) is coarse and varies in size, but powder produced by BM pulverization of Ta-H has a remarkably fine particle size and is confirmed by optical microscope observation to be uniform. Was done.
[0057]
FIG. 6 is a bar graph showing the particle size distribution of each powder raw material. In commercially available Ta powder, peaks of the particle size distribution are present at 2 to 3 μmφ and 20 to 30 μmφ, but in the case of BM-pulverized Ta-H powder, particles of 3 μmφ or more are not observed, and the particle size is reduced, and the distribution range is narrowed. found.
[0058]
The cross section of the sample of the superconducting tape using the commercially available Ta powder after the heat treatment at 900 ° C. × 80 hours and the cross section of the TH sample manufactured by using the method of the present invention were respectively observed with an optical microscope. As a result, it was confirmed that the structure of the sample using the commercially available Ta powder after the heat treatment had some coarse Ta particles remaining in the core, but the TH sample had a fine and uniform structure. This is presumed to be due to the use of Ta-H to finely powder the Ta powder. Also, after heat treatment, the TH sample is thick (Nb, Ta) as before. 3 A Sn layer was created.
[0059]
Table 2 shows the critical temperature T of the BM sample with TH3 / 7, the sample without BM, and the sample with Cu added. c (K) is shown. When the sample subjected to BM and the sample not subjected to BM were compared, the value almost did not change in the On / Off state. The sample to which Cu was added had a high critical temperature even when the heat treatment temperature was lowered.
[0060]
7 and 8 show the results of examining the characteristics of the critical current Ic (left vertical axis) -critical current density Jc (right vertical axis) -magnetic field (horizontal axis) of various samples under a temperature condition of 4.2K, respectively. . The characteristic line P in FIG. 7 shows the result of heat treatment of the Cu-free sample (TH3 / 7) having the composition of Ta-H / Sn = 3/7 under the condition of 880 ° C. × 80 hours, and the characteristic line Q shows the result of Ta-H / The characteristic line R shows the result of heat treatment of the Cu-free sample (TH3 / 7) having a composition of Sn = 3/7 under the condition of 900 ° C. × 80 hours (Cu-free sample having a composition of Ta-H / Sn = 3/7). TH3 / 7) was subjected to heat treatment at 925 ° C. for 80 hours. A characteristic line U in FIG. 8 shows a result of heat treatment of a 5% by mass Cu-added sample (TH3 / 7 + 5Cu) having a composition of Ta-H / Sn = 3/7 under the condition of 800 ° C. × 80 hours, and a characteristic line V shows Ta−H / Sn. The result of heat-treating a 7.5% by mass Cu-added sample (TH4 / 6 + 7.5Cu) having a composition of H / Sn = 4/6 under the condition of 775 ° C. × 80 hours, the characteristic line W is Ta−H / Sn = 4 / The results obtained by heat-treating a sample (TH4 / 6 + 7.5Cu (BM)) with 7.5% by mass of ball-milled 7.5 mass% Cu at 800 ° C. for 80 hours are shown.
[0061]
As shown in FIG. 8, in the sample (characteristic lines U, V, W) in which Cu was added to the core by several mass%, the critical current I was maintained even at the heat treatment of 775 ° C. to 800 ° C. c , And it was confirmed that good characteristics were obtained.
[0062]
In the present embodiment, the T c The value is the same as that of the sample using pure Ta of minus 325 mesh, and 1 × 10 at 4.2K and 22T. 4 / Cm 2 J c was gotten.
[0063]
As described above, in this embodiment, when a small amount of Cu is added to the Ta—Sn core, the heat treatment temperature decreases from 900 ° C. to 775 ° C. to 800 ° C., and becomes 1.5 × 10 at 4.2K and 21T. 4 A / cm 2 Of Jc was obtained.
[0064]
Further, in this embodiment, fine Ta powder was successfully obtained by using Ta-H, and the thickness was as thick as the conventional one (Nb, Ta). 3 It was found that an Sn layer was obtained.
[0065]
Furthermore, when an Sn-M alloy is produced using fine powder obtained by pulverizing a hydride of M metal, M is finely dispersed in Sn, so that there is a great merit in producing a practical wire rod.
[0066]
[Example 3]
As Example 3, a multi-core wire was manufactured by a method of winding a SnTaCu sheet around a plurality of Nb core materials. The manufacturing method is described below.
(Preparation of wire rod)
A Sn powder and a Ta powder are blended so that the Sn / Ta atomic ratio becomes 7/3, a 5 mass% Cu powder is added thereto, and heating is performed at 800 ° C. × 10 hours in a vacuum atmosphere using a quartz crucible. Was performed to melt the SnTaCu alloy. The particle sizes of the used Sn powder, Ta powder and Cu powder were all minus 325 mesh.
[0067]
The smelted SnTaCu alloy was formed into a plate by press working, and then processed into a sheet having a thickness of 100 μm by a flat roll. This sheet was wound six times around an Nb core material having a diameter of 1.2 mm to make seven, and these seven wound bodies were placed in an Nb-4 atom% Ta sheath tube having an outer diameter of 10 mm and an inner diameter of 7.3 mm. The complex was inserted and incorporated.
[0068]
This composite was formed into a long product having a predetermined length by groove roll processing, and finally a wire having a diameter of 1.4 mm was formed by wire drawing (drawing). In this example, the intermediate annealing was not performed during the groove roll and the wire drawing of the wire. The wire thus obtained was heat-treated at 800 ° C. for 80 hours.
[0069]
(Evaluation)
FIG. 9 is an enlarged micrograph showing a cross section of the multifilamentary wire of the present example. As a result of observing the cross section of the heat-treated wire by an optical microscope, it was found that thick Nb was formed around the seven Nb cores and inside the Nb-4 atom% Ta sheath tube. 3 It was confirmed that the Sn layer was generated. When measured in the microscope field of view, the generated Nb 3 The thickness of the Sn layer was about 30 to 50 μm.
[0070]
This wire is subjected to a critical current I in a vertical magnetic field of 4.2 K and 20 Tesla. c Is 250 A when the critical current density J per unit cross-sectional area of the wire is measured. c Is about 1.6 × 10 4 A / cm 2 Met.
[0071]
[Example 4]
As Example 4, a wire rod in which the first base material was an SnTiCu alloy was manufactured using the same sheet JR method as in Example 1. The manufacturing method is described below.
(Preparation of wire rod)
A Cu—Ti master alloy containing 25 atomic% of Ti was pulverized and mixed with a minus 325 mesh Sn powder to prepare a mixed powder having a composition of 90% by mass of Sn, 2% by mass of Ti, and 8% by mass of Cu.
[0072]
This mixed powder was placed in a quartz crucible and heated at 800 ° C. for 10 hours in a vacuum atmosphere to melt the SnTiCu alloy. This alloy was formed into a plate by pressing, and then processed into a sheet having a thickness of 100 μm by a flat roll. This SnTiCu alloy sheet was superimposed on a 100 μm thick Nb sheet, and wound 10 times around a 1.2 mm diameter Nb core material to form a roll. The wound body was inserted into an Nb-1.1 atom% Ti sheath tube having an outer diameter of 8 mm and an inner diameter of 5.5 mm to assemble into a composite.
[0073]
This composite was processed into a 1.5 × 1.5 mm square by a groove roll, and then rolled into a flat rectangular wire having a thickness of 0.8 mm and a width of 2.5 mm by flat roll processing. In this example, the intermediate annealing was not performed during the groove roll and the wire drawing of the wire. The wire thus obtained was heat-treated at 800 ° C. for 80 hours.
[0074]
(Evaluation)
This wire is subjected to a critical current I in a vertical magnetic field of 4.2 K and 20 Tesla. c Is 345 A, and the critical current density J per unit sectional area of the wire is measured. c Is about 1.7 × 10 4 A / cm 2 Met.
[0075]
[Table 1]
Figure 2004296124
[0076]
[Table 2]
Figure 2004296124
[0077]
【The invention's effect】
As described above, since the wire manufactured by the method of the present invention has a possibility of generating a magnetic field of 23.5 Tesla required for a 1 GHz NMR analyzer, the wire manufactured by the conventional method is different from the wire manufactured by the conventional method. Higher Jc magnetic field characteristics are obtained by comparison, and applied to a wide range of fields such as NMR analyzers required for protein structure analysis, nuclear fusion expected as a clean energy source, and refrigerator-cooled direct-cooled superconducting magnets can do.
[0078]
Further, according to the present invention, it is possible to omit the step of preparing an alloy or intermetallic compound of Ta and Sn and further pulverizing the alloy into a powder for filling the sheath material. At the same time, a core material having a desired composition can be easily produced. As a result, a high impact superconducting wire capable of generating a magnetic field of 23 Tesla at 4.2K and 25 Tesla at 2.1K can be easily provided. When a superconducting wire is used for generating a magnetic field, c The critical current density J divided by the total cross-sectional area of the wire c Is 1 × 10 4 A / cm 2 It is desirable that there be.
[0079]
Further, according to the present invention, a reaction heat treatment is performed after processing a composite of an Sn-M alloy having excellent plasticity in which M is dispersed in Sn and Nb or an Nb alloy into a wire rod, and thus, compared with the conventional powder core method. A wire rod that is easy to process and has excellent uniformity can be provided. Since the wire produced by the method of the present invention is rich in plasticity, it is possible to produce an ultrafine multifilamentary wire and the like, which has a very high industrial value and is practical.
[0080]
Further, the method of the present invention can omit many intermediate annealings required in the conventional bronze method, so that the manufacturing cost can be significantly reduced.
[0081]
Further, according to the present invention, Nb is added by adding a small amount of Cu. 3 Since the reaction for forming the Sn layer is promoted, the final heat treatment temperature can be lowered, and the manufacturing cost can be kept low.
[0082]
Further, according to the present invention, fine M particles can be uniformly dispersed in Sn using a hydride as a starting material, so that a wire rod having more excellent superconductivity than before can be provided, and practically, A preferred ultrafine multifilamentary wire can be provided.
[Brief description of the drawings]
FIG. 1 is a block process diagram showing an outline of a method for manufacturing a superconducting wire (a jelly roll method) according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing superconductivity characteristics {critical current Ic (left vertical axis), wire diameter 1.35 mm critical current density Jc (right vertical axis) -magnetic field (horizontal axis) characteristics}.
FIG. 3 is a characteristic diagram showing superconducting characteristics {critical current Ic (left vertical axis), wire diameter of 1.35 mm critical current density Jc (right vertical axis) -magnetic field (horizontal axis) characteristics}.
FIG. 4 is a characteristic diagram showing a comparison between a sample of an example manufactured by the method of the present invention and a sample of a comparative example manufactured by a conventional method with respect to superconducting characteristics (critical current density Jc-magnetic field characteristics).
FIG. 5 is a process chart showing an outline of a method for manufacturing a superconducting wire according to another embodiment of the present invention.
FIG. 6 is a bar graph showing the particle size distribution of a powder raw material.
FIG. 7 is a characteristic diagram showing superconducting characteristics {critical current Ic (left vertical axis), critical current density Jc (right vertical axis) -magnetic field (horizontal axis) characteristics}.
FIG. 8 is a characteristic diagram showing superconducting characteristics {critical current Ic (left vertical axis), critical current density Jc (right vertical axis) -magnetic field (horizontal axis) characteristics}.
FIG. 9 is a micrograph showing a cross section of an ultrafine multifilamentary wire manufactured using the method of the present invention.
[Explanation of symbols]
2. 1st base material (Sn-M sheet)
3. Second substrate (Nb sheet)
4: Core material (Nb rod)
5. Composite (Sn-M / Nb wound body)
6. Outer cylinder (Nb-Ta tube)

Claims (14)

SnとMとの混合体からなる第1の基材とNbまたはNb系合金からなる第2の基材とを交互に積層して複合体を作製する工程と、
前記複合体を線材に加工する工程と、
前記線材を熱処理する工程と、
を具備することを特徴とするNbSn超伝導線材の製造方法。
Producing a composite by alternately laminating a first substrate composed of a mixture of Sn and M and a second substrate composed of Nb or an Nb-based alloy;
Processing the composite into a wire;
Heat treating the wire,
A method for producing an Nb 3 Sn superconducting wire, comprising:
前記Mは、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属であることを特徴とする請求項1記載の方法。The method according to claim 1, wherein the M is one or more metals selected from the group consisting of Ta, Ti, and Hf. 前記Mは、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を水素化した金属水素化物であることを特徴とする請求項1記載の方法。The method according to claim 1, wherein the M is a metal hydride obtained by hydrogenating one or more metals selected from the group consisting of Ta, Ti, and Hf. 前記第1の基材は、前記Mを0.5〜50原子%含有することを特徴とする請求項1乃至3のうちのいずれか1記載の方法。The method according to any one of claims 1 to 3, wherein the first substrate contains 0.5 to 50 atomic% of the M. 前記複合体作製工程の前に、前記第1の基材をSnの融点以上1200℃以下の温度域で溶製することを特徴とする請求項1乃至4のうちのいずれか1記載の方法。The method according to any one of claims 1 to 4, wherein the first base material is melted in a temperature range from the melting point of Sn to 1200 ° C before the composite manufacturing step. 前記第1の基材は、可塑性を有する合金からなることを特徴とする請求項1乃至5のうちのいずれか1記載の方法。The method according to claim 1, wherein the first substrate is made of a plastic alloy. 前記第1の基材は、さらに第3の元素が添加されて前記第2の基材との複合加工性が改善されたものであることを特徴とする請求項1乃至6のうちのいずれか1記載の方法。7. The first substrate according to claim 1, wherein a third element is further added to the first substrate to improve composite workability with the second substrate. The method of claim 1. 前記第3の元素は、Bi,In,Sb,Mg,Ag,Zn,Al,Ge,Si,Pbからなる群より選択される一種又は二種以上の元素からなることを特徴とする請求項7記載の方法。8. The method according to claim 7, wherein the third element is one or more elements selected from the group consisting of Bi, In, Sb, Mg, Ag, Zn, Al, Ge, Si, and Pb. The described method. 前記第1の基材は、Cuを0.5乃至30原子%含有することを特徴とする請求項1乃至8のうちのいずれか1記載の方法。9. The method according to claim 1, wherein the first base material contains 0.5 to 30 atomic% of Cu. 前記第2の基材は、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を含有するNb合金であることを特徴とする請求項1乃至9のうちのいずれか1記載の方法。10. The method according to claim 1, wherein the second substrate is an Nb alloy containing one or more metals selected from the group consisting of Ta, Ti, and Hf. The described method. 前記複合体作製工程において、前記第1の基材または前記第2の基材のうちのいずれか一方と実質的に同じ組成の芯材を用いて、前記第1の基材と前記第2の基材を交互に重ね合わせて前記芯材の周囲に捲回することを特徴とする請求項1乃至10のうちのいずれか1記載の方法。In the composite manufacturing step, the first base material and the second base material are formed using a core material having substantially the same composition as one of the first base material and the second base material. The method according to any one of claims 1 to 10, wherein substrates are alternately overlapped and wound around the core material. 前記第1の基材は、Sn含有量が20乃至80原子%の範囲内であることを特徴とする請求項1乃至11のうちのいずれか1記載の方法。The method according to claim 1, wherein the first substrate has a Sn content in a range of 20 to 80 atomic%. 前記第2の基材は、Ta,Ti,Hfの群から選択される一種又は二種の元素を20原子%以下含有するNb合金からなることを特徴とする請求項1乃至12のうちのいずれか1記載の方法。13. The method according to claim 1, wherein the second base is made of an Nb alloy containing one or two elements selected from the group consisting of Ta, Ti, and Hf in an amount of 20 atomic% or less. Or the method of claim 1. Cuマトリックス内に請求項1乃至13のいずれかの方法で得られた複合体を充填し、この複合体を線材に加工後熱処理することを特徴とする方法。14. A method characterized by filling a composite obtained by the method according to any one of claims 1 to 13 into a Cu matrix, processing the composite into a wire, and then performing a heat treatment.
JP2003083323A 2003-03-25 2003-03-25 Method for producing Nb3Sn superconducting wire Expired - Lifetime JP4193194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083323A JP4193194B2 (en) 2003-03-25 2003-03-25 Method for producing Nb3Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083323A JP4193194B2 (en) 2003-03-25 2003-03-25 Method for producing Nb3Sn superconducting wire

Publications (2)

Publication Number Publication Date
JP2004296124A true JP2004296124A (en) 2004-10-21
JP4193194B2 JP4193194B2 (en) 2008-12-10

Family

ID=33398829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083323A Expired - Lifetime JP4193194B2 (en) 2003-03-25 2003-03-25 Method for producing Nb3Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP4193194B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165151A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
EP3650568A1 (en) * 2018-11-06 2020-05-13 Bernd Spaniol Niobium tin alloy and method for its preparation
CN113192685A (en) * 2021-04-26 2021-07-30 福建师范大学 Nb with high current-carrying density and low loss3Al precursor wire and preparation method thereof
CN113192686A (en) * 2021-04-26 2021-07-30 福建师范大学 Improved Nb3Al precursor wire and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165151A (en) * 2005-12-14 2007-06-28 Hitachi Cable Ltd CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP4742843B2 (en) * 2005-12-14 2011-08-10 日立電線株式会社 Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
EP3650568A1 (en) * 2018-11-06 2020-05-13 Bernd Spaniol Niobium tin alloy and method for its preparation
CN113192685A (en) * 2021-04-26 2021-07-30 福建师范大学 Nb with high current-carrying density and low loss3Al precursor wire and preparation method thereof
CN113192686A (en) * 2021-04-26 2021-07-30 福建师范大学 Improved Nb3Al precursor wire and preparation method thereof

Also Published As

Publication number Publication date
JP4193194B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US7018954B2 (en) Processing of magnesium-boride superconductors
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
JP4034802B2 (en) Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
JPS6260847A (en) Manufacture of multiple wire superconductive wire material
WO2005117032A1 (en) METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE BY POWDER PROCESS
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
Chen et al. Ag Doping Effect on the Superconductivity of Nb 3 Al Prepared Using High-Energy Ball Milling Method
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
Flukiger et al. Composite core Nb/sub 3/Sn wires: preparation and characterization
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JP2916382B2 (en) Method for producing Nb3Sn superconductor
JP2007027089A (en) Superconductive element containing copper inclusion, complex material, and manufacturing method of the same
JP4009167B2 (en) Powder method Nb (3) Sn superconducting wire
Tachikawa et al. Nb3Sn superconductors prepared from intermediate compound phase
JP2004111203A (en) MANUFACTURING METHOD FOR MgB2 SERIES SUPERCONDUCTIVE WIRE
JP4771037B2 (en) Method for producing Nb3Sn superconducting wire
JP2003086041A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTIVE WIRE BY POWDER METHOD
JPH0644427B2 (en) Nb with ultra-fine multi-layer structure ▼ Bottom 3 ▼ Method for manufacturing A1 superconducting wire
JP2005108782A (en) Nb3Al BASE SUPERCONDUCTIVE WIRE ROD AND MANUFACTURING METHOD FOR THE WIRE ROD
JP2005524935A (en) High magnetic field superconductor
Suenaga Understanding properties and fabrication processes of superconducting Nb3Sn wires
Sumption et al. Fabrication and properties of PIT Nb-Al and Nb-Sn based superconductors
US20150270471A1 (en) Formation of bismuth strontium calcium copper oxide superconductors
Kikuchi et al. New Ti-Sn Intermetallic Compound and $({\hbox {Nb}},{\hbox {Ti}}) _ {3}{\hbox {Sn}} $ Conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4