JP2018053841A - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP2018053841A
JP2018053841A JP2016192518A JP2016192518A JP2018053841A JP 2018053841 A JP2018053841 A JP 2018053841A JP 2016192518 A JP2016192518 A JP 2016192518A JP 2016192518 A JP2016192518 A JP 2016192518A JP 2018053841 A JP2018053841 A JP 2018053841A
Authority
JP
Japan
Prior art keywords
fuel
injection
amount
engine control
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016192518A
Other languages
Japanese (ja)
Other versions
JP6685215B2 (en
Inventor
貴文 荒川
Takafumi Arakawa
貴文 荒川
堀 俊雄
Toshio Hori
堀  俊雄
豊原 正裕
Masahiro Toyohara
正裕 豊原
飯星 洋一
Yoichi Iiboshi
洋一 飯星
雄希 奥田
Yuki Okuda
雄希 奥田
浩雲 石
Haoyun Shi
浩雲 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016192518A priority Critical patent/JP6685215B2/en
Publication of JP2018053841A publication Critical patent/JP2018053841A/en
Application granted granted Critical
Publication of JP6685215B2 publication Critical patent/JP6685215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation of exhaust by suppressing generation of soot by reducing fuel injection from a stage number near an ignition timing among the divided fuel injections, in reducing a fuel injection amount from a fuel injection device in accordance with a canister purge.SOLUTION: In an engine control device for controlling an engine provided with a fuel injection device, a fuel injection amount is reduced from injection near at least an ignition timing in accordance with a request reduction amount, when the reduction of the fuel injection amount injected from the fuel injection device, is requested in executing multi-stage injection.SELECTED DRAWING: Figure 3

Description

本発明は内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

エンジンにおいて筒内噴射用の燃料噴射装置によって、排気に含まれる有害物質抑制のため多段噴射を行うものがある。また燃料タンクから蒸発した燃料を吸気管から燃焼室に導入して燃やすことで処理するキャニスタパージシステムを備えているエンジンがある。キャニスタパージが行われる際には、燃焼室内の燃料が過剰とならないように燃料噴射装置から噴射する燃料を減少させる必要がある。多段噴射とキャニスタパージを両立させる方法として特許文献1ではパージによって吸入される燃料量に合わせて多段噴射の少なくとも1段目の噴射の燃料噴射量を減少させるエンジンの制御方法が開示されている。   Some engines perform multi-stage injection to suppress harmful substances contained in exhaust gas by using a fuel injection device for in-cylinder injection. In addition, there is an engine equipped with a canister purge system that processes fuel evaporated from a fuel tank by introducing it into a combustion chamber through an intake pipe and burning it. When the canister purge is performed, it is necessary to reduce the fuel injected from the fuel injection device so that the fuel in the combustion chamber does not become excessive. As a method for making both the multistage injection and the canister purge compatible, Patent Document 1 discloses an engine control method for reducing the fuel injection amount of at least the first stage of the multistage injection in accordance with the amount of fuel sucked by the purge.

WO2015/162797WO2015 / 162797

ところで多段噴射を行うエンジンでは、多段噴射を行わないエンジンに比べて燃料噴射を終えるタイミングが遅くなり、すす発生の原因となってしまう。少なくとも1段目の噴射の燃料噴射量を減少させるだけではこの課題に対応できない。   By the way, in the engine which performs multistage injection, the timing which finishes fuel injection will be late | slow compared with the engine which does not perform multistage injection, and will cause a generation of soot. It is not possible to cope with this problem only by reducing the fuel injection amount of at least the first stage injection.

そこで本発明は多段噴射と燃料噴射量の減少要求を両立させつつ、すすを減らす内燃機関の制御装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for an internal combustion engine that reduces soot while satisfying both the multistage injection and the demand for reducing the fuel injection amount.

上記課題を解決するために、本発明では、エンジンの燃焼室内に燃料を噴射する燃料噴射装置を備えたエンジン制御装置において、燃料を分割して噴射する多段噴射実行時に前記燃料噴射装置から噴射する燃料噴射量の減量要求が発生した場合、前記減量要求量に合わせて燃料噴射量を点火時期に近い噴射から優先的に減らすことを特徴とする。   In order to solve the above-described problems, in the present invention, in an engine control device including a fuel injection device that injects fuel into a combustion chamber of an engine, fuel is injected from the fuel injection device when performing multistage injection in which fuel is divided and injected. When the fuel injection amount reduction request is generated, the fuel injection amount is preferentially reduced from the injection close to the ignition timing in accordance with the reduction amount request.

本発明によれば、キャニスタパージに合わせて燃料噴射装置からの燃料噴射量を減少させる際に、分割された燃料噴射のうち点火時期に近い段数から燃料噴射を減らすことで、すすの発生を抑えることができ排気悪化を防止できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, when the fuel injection amount from the fuel injection device is decreased in accordance with the canister purge, the generation of soot is suppressed by reducing the fuel injection from the number of stages close to the ignition timing among the divided fuel injections. And exhaust deterioration can be prevented. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明の第1実施例による自動車用エンジンシステムのシステム構成図。1 is a system configuration diagram of an automobile engine system according to a first embodiment of the present invention. 本発明の第1実施例によるECU1の構成を示すシステムブロック図。The system block diagram which shows the structure of ECU1 by 1st Example of this invention. 本発明の第1実施例による多段噴射時の燃料減量補正を示すフローチャート。The flowchart which shows the fuel loss correction | amendment at the time of the multistage injection by 1st Example of this invention. 本発明の第1実施例による多段噴射時の燃料減量補正における最遅角の噴射を減量する方法を示すフローチャート。The flowchart which shows the method of reducing the injection of the most retarded angle in the fuel loss correction | amendment at the time of the multistage injection by 1st Example of this invention. 本発明の第1実施例による多段噴射時の燃料減量補正における最遅角の噴射を減量する場合のパルス形状の変化を示す模式図。The schematic diagram which shows the change of the pulse shape in the case of reducing the injection of the most retarded angle in the fuel reduction correction at the time of multistage injection by 1st Example of this invention. 本発明の第2実施例による多段噴射時の燃料減量補正における最遅角の噴射を減量し、他の分割パルス幅の変更方法を示すフローチャート。10 is a flowchart showing another method of changing the divided pulse width by reducing the most retarded injection in the fuel reduction correction at the time of multi-stage injection according to the second embodiment of the present invention. 本発明の第2実施例による多段噴射時の燃料減量補正における最遅角の噴射を減量し、他の分割パルス幅を変更する場合のパルス形状の変化を示す模式図。The schematic diagram which shows the change of the pulse shape at the time of reducing the injection of the most retarded angle in the fuel reduction correction | amendment at the time of the multistage injection by 2nd Example of this invention, and changing another division | segmentation pulse width. 本発明の第3実施例による弱成層希薄燃焼時かつ多段噴射時の燃料減量補正方法を示すフローチャート。The flowchart which shows the fuel loss correction method at the time of weak stratified lean combustion and multistage injection by 3rd Example of this invention. 本発明の第3実施例による弱成層希薄燃焼時かつ多段噴射時の燃料減量補正を行う場合のパルス形状の変化を示す模式図。The schematic diagram which shows the change of the pulse shape in the case of performing fuel reduction correction at the time of weak stratified lean combustion and multistage injection by the 3rd example of the present invention. 本発明の第4実施例による多段噴射時の燃料減量補正実行時に、弱成層希薄燃焼時への移行方法を示すフローチャート。The flowchart which shows the transfer method at the time of weak stratified lean combustion at the time of fuel reduction correction | amendment execution at the time of the multistage injection by 4th Example of this invention. 本発明の第4実施例による多段噴射時の燃料減量補正実行時に、弱成層希薄燃焼時への移行を行う場合のパルス形状の変化を示す模式図。The schematic diagram which shows the change of the pulse shape at the time of shifting to the time of weak stratified lean combustion at the time of fuel reduction correction | amendment at the time of the multistage injection by 4th Example of this invention.

以下、本発明の実施例を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本実施例におけるエンジンのシステム構成図である。
エンジン100は火花点火式内燃機関である。エンジンの吸入空気量を計測する質量流量計3と、吸気管圧力を計測する吸気管圧力センサ4と、吸入空気温度検出器の一態様であって吸入空気の温度を計測する吸気管温度センサ5と、吸気管圧力を調整するスロットル6とが吸気管7の各々の位置に、適宜、備えられている。またエンジン100には燃焼室13の中に燃料を噴射する燃料噴射装置8と、点火エネルギを供給する点火プラグ9とがエンジン100の各々の適宜位置に備えられている。さらに排気を浄化する三元触媒16と、空燃比検出器の一態様であって三元触媒16の上流側にて排気の空燃比を検出する空燃比センサ15とが排気管14の各々の適宜位置に備えられている。空燃比センサ15は酸素濃度センサとしてもよい。
FIG. 1 is a system configuration diagram of an engine in the present embodiment.
The engine 100 is a spark ignition internal combustion engine. A mass flow meter 3 for measuring the intake air amount of the engine, an intake pipe pressure sensor 4 for measuring the intake pipe pressure, and an intake pipe temperature sensor 5 for measuring the temperature of the intake air as one aspect of the intake air temperature detector. And a throttle 6 for adjusting the intake pipe pressure are appropriately provided at each position of the intake pipe 7. Further, the engine 100 is provided with a fuel injection device 8 for injecting fuel into the combustion chamber 13 and a spark plug 9 for supplying ignition energy at appropriate positions of the engine 100. Further, a three-way catalyst 16 for purifying the exhaust and an air-fuel ratio sensor 15 that is an aspect of the air-fuel ratio detector and detects the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 16 are appropriately disposed in each of the exhaust pipes 14. Provided in position. The air-fuel ratio sensor 15 may be an oxygen concentration sensor.

またクランクシャフト11にはクランクシャフト11の角度および回転速度およびピストン10の移動速度を検出するためのクランク角センサ12が備えられている。また燃料噴射装置8に燃料を供給するための燃料タンク19が存在する。燃料タンク19からは燃料タンク19内の燃料蒸気を吸着しためておくためのチャコールキャニスタ18へと配管が接続されている。さらにチャコールキャニスタ18から燃料蒸気を吸気管7に導入するための配管と吸気管7の間にはキャニスタパージ弁17が接続されている。   The crankshaft 11 is provided with a crank angle sensor 12 for detecting the angle and rotational speed of the crankshaft 11 and the moving speed of the piston 10. There is also a fuel tank 19 for supplying fuel to the fuel injection device 8. A pipe is connected from the fuel tank 19 to a charcoal canister 18 for adsorbing fuel vapor in the fuel tank 19. Further, a canister purge valve 17 is connected between a pipe for introducing fuel vapor from the charcoal canister 18 to the intake pipe 7 and the intake pipe 7.

空燃比センサ15から得られる検出信号Ss15とクランク角センサ12から得られる検出信号Ss12と質量流量計3から得られる検出信号Ss3と吸気管温度センサ4から得られる検出信号Ss4と吸気管圧力センサ3から得られる検出信号Ss3は、エンジンコントロールユニット(以下ECU)1に送られる。アクセルペダルの踏み込み量、すなわちアクセル開度を検出するアクセル開度センサ2から得られる信号Ss2はECU1に送られる。   Detection signal Ss15 obtained from air-fuel ratio sensor 15, detection signal Ss12 obtained from crank angle sensor 12, detection signal Ss3 obtained from mass flow meter 3, detection signal Ss4 obtained from intake pipe temperature sensor 4, and intake pipe pressure sensor 3 The detection signal Ss3 obtained from is sent to the engine control unit (hereinafter referred to as ECU) 1. A signal Ss2 obtained from the accelerator opening sensor 2 that detects the amount of depression of the accelerator pedal, that is, the accelerator opening, is sent to the ECU 1.

ECU1はアクセル開度センサ2の出力信号Ss2や各種センサ信号に基づいて要求トルクを演算する。すなわちアクセル開度センサ2はエンジン100への要求トルクを検出する要求トルク検出センサとして用いられる。ECU1はクランク角センサ12の出力信号Ss12に基づいてクランクシャフト11の角度および回転速度およびピストン10の移動速度を演算する。ECU1は前記各種センサの出力から得られるエンジン100の運転状態に基づいてスロットル6の開度、燃料噴射装置8の噴射パルス期間、点火プラグ9の点火時期などのエンジン100の主要な作動量を最適に演算する。   The ECU 1 calculates the required torque based on the output signal Ss2 of the accelerator opening sensor 2 and various sensor signals. That is, the accelerator opening sensor 2 is used as a required torque detection sensor that detects a required torque for the engine 100. The ECU 1 calculates the angle and rotational speed of the crankshaft 11 and the moving speed of the piston 10 based on the output signal Ss12 of the crank angle sensor 12. The ECU 1 optimizes the main operating amount of the engine 100 such as the opening degree of the throttle 6, the injection pulse period of the fuel injection device 8, and the ignition timing of the spark plug 9 based on the operating state of the engine 100 obtained from the outputs of the various sensors. Calculate to

ECU1で演算された燃料噴射パルス期間は燃料噴射装置開弁パルス信号Ds8に変換され燃料噴射装置8に送られる。ECU1で演算された点火時期で点火されるように点火プラグ駆動信号Ds9が点火プラグ9に送られる。ECU1で演算されたスロットル開度はスロットル駆動信号Ds6としてスロットル5へ送られる。   The fuel injection pulse period calculated by the ECU 1 is converted into a fuel injector valve opening pulse signal Ds8 and sent to the fuel injector 8. A spark plug drive signal Ds9 is sent to the spark plug 9 so as to be ignited at the ignition timing calculated by the ECU 1. The throttle opening calculated by the ECU 1 is sent to the throttle 5 as a throttle drive signal Ds6.

吸気管7から吸気バルブを経て燃焼室13内に流入した空気に対し、燃料が燃料タンク19から図示していない燃料ポンプを経て燃料噴射装置8から噴射され混合気を形成する。混合気は所定の点火時期で点火プラグ9から発生される火花により燃焼し、その燃焼圧によりピストン10を押し下げてエンジン100の駆動力となる。燃焼後の排気は排気バルブおよび排気管14を経て三元触媒16に送られ、三元触媒16内でNOx、CO、HC成分が浄化された後排出される。   Fuel is injected from the fuel injection device 8 through a fuel pump (not shown) from the fuel tank 19 to the air flowing into the combustion chamber 13 from the intake pipe 7 through the intake valve, thereby forming an air-fuel mixture. The air-fuel mixture is burned by a spark generated from the spark plug 9 at a predetermined ignition timing, and the piston 10 is pushed down by the combustion pressure to become a driving force of the engine 100. The exhaust gas after combustion is sent to the three-way catalyst 16 through the exhaust valve and the exhaust pipe 14, and after the NOx, CO, and HC components are purified in the three-way catalyst 16, it is discharged.

燃料タンク19内の蒸発燃料をためておくチャコールキャニスタ18内の圧力が高まると、ECU1はキャニスタパージ弁17に開放命令を送信し、キャニスタパージ弁17が開放されることで蒸発燃料が吸気管7を経て燃焼室13に送られる。   When the pressure in the charcoal canister 18 for storing the evaporated fuel in the fuel tank 19 increases, the ECU 1 transmits an opening command to the canister purge valve 17, and the evaporated fuel flows into the intake pipe 7 by opening the canister purge valve 17. And then sent to the combustion chamber 13.

図2は本実施例によるECU1の構成を示すシステムブロック図である。アクセル開度センサ2、質量流量計3、吸気管圧力センサ4、吸気管温度センサ5、クランク角センサ12、および空燃比センサ15の各出力信号は、ECU1の入力回路30aに入力される。ただし入力信号はこれらだけに限定されるものではない。入力された各センサからの入力信号は、入出力ポート30b内の入力ポートに送られる。入出力ポート30bに送られた入力信号の値はランダムアクセスメモリRAM30cに保管されCPU30eで演算処理される。このとき、入力回路30aに送られる入力信号のうちアナログ信号で構成される信号は、入力回路30aに設けられたA/D変換器によりデジタル信号に変換される。   FIG. 2 is a system block diagram showing the configuration of the ECU 1 according to this embodiment. The output signals of the accelerator opening sensor 2, the mass flow meter 3, the intake pipe pressure sensor 4, the intake pipe temperature sensor 5, the crank angle sensor 12, and the air-fuel ratio sensor 15 are input to the input circuit 30a of the ECU 1. However, the input signal is not limited to these. The input signal from each input sensor is sent to the input port in the input / output port 30b. The value of the input signal sent to the input / output port 30b is stored in the random access memory RAM 30c and is processed by the CPU 30e. At this time, a signal composed of an analog signal among input signals sent to the input circuit 30a is converted into a digital signal by an A / D converter provided in the input circuit 30a.

演算処理内容を記述した制御プログラムはリードオンリーメモリROM30dに予め書き込まれている。制御プログラムに従って演算された各アクチュエータの作動量を示す値は、RAM30cに保管された後、入出力ポート30bの出力ポートに送られ、各駆動回路を経て各アクチュエータに送られる。本実施例の場合は駆動回路としてスロットル駆動回路30f、燃料噴射装置駆動回路30g、点火出力回路30h、可変バルブ機構駆動回路30i、およびキャニスタパージ弁駆動回路30jがある。   A control program describing the contents of the arithmetic processing is written in advance in the read-only memory ROM 30d. A value indicating the operation amount of each actuator calculated according to the control program is stored in the RAM 30c, then sent to the output port of the input / output port 30b, and sent to each actuator via each drive circuit. In this embodiment, there are a throttle drive circuit 30f, a fuel injection device drive circuit 30g, an ignition output circuit 30h, a variable valve mechanism drive circuit 30i, and a canister purge valve drive circuit 30j as drive circuits.

各駆動回路はスロットル6、燃料噴射装置8、点火プラグ9、およびキャニスタパージ弁17を制御する。本実施例のECU1はECU1内に前記駆動回路を備えているが、これに限るものでは無く、前記駆動回路のいずれか或いは全てをECU1外に設けてもよい。   Each drive circuit controls the throttle 6, the fuel injection device 8, the spark plug 9, and the canister purge valve 17. Although the ECU 1 of this embodiment includes the drive circuit in the ECU 1, the present invention is not limited to this, and any or all of the drive circuits may be provided outside the ECU 1.

図3は本実施例における制御装置の動作を示したフロー図である。まずステップS301で燃料噴射装置から噴射する減量要求前の基本燃料噴射パルス幅TPBASEを演算する。次にステップS302で減量要求前の基本多段噴射回数NDIVINJ0を演算する。次にステップS303で燃料噴射量の減量要求があるか判定する。減量要求がある場合ステップS304に進む。減量要求がない場合ステップS306に進む。ステップS304で減量要求量相当の燃料噴射パルス幅TPDECを演算する。ステップS301で演算した基本燃料噴射パルス幅TPBASEとステップS304で算出した減量相当パルス幅TPDECに基づきステップS305で燃料噴射量の減量が行われる。ステップS306で燃料噴射装置にパルス幅を入力し燃料噴射を行う。   FIG. 3 is a flowchart showing the operation of the control device in this embodiment. First, in step S301, a basic fuel injection pulse width TPBASE before a reduction request for injection from the fuel injection device is calculated. Next, in step S302, the basic multi-stage injection number NDIVINJ0 before requesting a reduction is calculated. Next, in step S303, it is determined whether there is a request for reducing the fuel injection amount. If there is a weight reduction request, the process proceeds to step S304. When there is no weight reduction request, the process proceeds to step S306. In step S304, a fuel injection pulse width TPDEC corresponding to the required amount of reduction is calculated. The fuel injection amount is reduced in step S305 based on the basic fuel injection pulse width TPBASE calculated in step S301 and the reduction equivalent pulse width TPDEC calculated in step S304. In step S306, a pulse width is input to the fuel injection device to perform fuel injection.

図4は図3で示したフロー図の詳細を説明するフロー図である。ステップS401からS404は図3のステップS301からS304と同一処理のため説明を省略する。ステップS405で最遅角側の基本パルス幅TPDIVN0を演算する。パルス幅の具体的な算出は公知技術のほか適宜の技術で行われてよい。
次にステップS406で減量相当パルス幅TPDECと最遅角段パルス幅TPDIVN0の大小を比較する。TPDECがTPDIVN0より小さい場合、ステップS407に進む。TPDECがTPDIVN0より大きい場合、ステップS408に進む。ステップS407では最遅角段パルス幅TPDIVNを演算する。基本最遅角段パルス幅TPDIVN0からTPDECを引いた差分をTPDIVNとする。TPDIVNを演算したのちステップS409に進む。ステップS408では多段噴射の回数である多段噴射回数NDIVINJFを演算する。ステップS402で演算した基本多段噴射回数NDIVINJ0から1を減じた回数をNDIVINJFとする。最後にステップS409で、ステップS401〜S408で演算したパルス幅に基づいて燃料噴射を実行する。
FIG. 4 is a flowchart for explaining details of the flowchart shown in FIG. Steps S401 to S404 are the same as steps S301 to S304 in FIG. In step S405, the most retarded basic pulse width TPDIVN0 is calculated. The specific calculation of the pulse width may be performed by an appropriate technique in addition to a known technique.
In step S406, the reduction equivalent pulse width TPDEC is compared with the most retarded stage pulse width TPDIVO. If TPDEC is smaller than TPDIVO, the process proceeds to step S407. If TPDEC is greater than TPDIVO, the process proceeds to step S408. In step S407, the most retarded stage pulse width TPDIVN is calculated. The difference obtained by subtracting TPDEC from the basic most retarded stage pulse width TPDIVN0 is defined as TPDIVN. After calculating TPDIVN, the process proceeds to step S409. In step S408, the number of multistage injections NDIVINJF, which is the number of multistage injections, is calculated. The number obtained by subtracting 1 from the basic multi-stage injection number NDIVINJ0 calculated in step S402 is defined as NDIVINJF. Finally, in step S409, fuel injection is executed based on the pulse width calculated in steps S401 to S408.

図5は図4で示したフロー動作による多段噴射回数及びパルス幅の変化を示す模式図である。例としてキャニスタパージが実行され、パージ流量に依存した減量要求が行われた場合を示す。減量要求がない通常時は多段噴射の回数が3回であるが、図5a)のように減量要求に合わせて最遅角側のパルスを減らして2回にする。または図5b)のように3回目のパルス幅を減少させる。なお図5は例として3回の分割としているが、実際の分割回数は3回に限るものではなく、公知技術および適宜の技術で決定してよい。   FIG. 5 is a schematic diagram showing changes in the number of multistage injections and pulse widths due to the flow operation shown in FIG. As an example, a case where a canister purge is executed and a reduction request depending on the purge flow rate is made is shown. In normal times when there is no request for weight reduction, the number of multistage injections is three times. However, as shown in FIG. Alternatively, the third pulse width is decreased as shown in FIG. Note that FIG. 5 shows three divisions as an example, but the actual number of divisions is not limited to three, and may be determined by a known technique and an appropriate technique.

以上のように本実施例のエンジン制御装置(ECU1)はエンジン100の燃焼室13の内部に燃料を噴射する燃料噴射装置8を備え、燃料を分割して噴射する多段噴射実行時に燃料噴射装置8から噴射する燃料噴射量の減量要求が発生した場合、減量要求量に合わせて燃料噴射量を点火プラグ9の点火時期に近い噴射から優先的に減らすように燃料噴射装置8を制御する。   As described above, the engine control apparatus (ECU 1) of the present embodiment includes the fuel injection device 8 that injects fuel into the combustion chamber 13 of the engine 100, and the fuel injection device 8 at the time of performing multistage injection that divides and injects the fuel. When a request to reduce the fuel injection amount injected from the engine is generated, the fuel injection device 8 is controlled so that the fuel injection amount is preferentially reduced from the injection close to the ignition timing of the spark plug 9 in accordance with the reduction request amount.

このとき、エンジン制御装置(ECU1)が図5a)に示すように、多段噴射実行時に燃料噴射量の減量要求が発生した場合、減量要求量に合わせて、多段噴射の分割数を点火プラグ9の点火時期に近い噴射から優先的に減らすと良い。あるいは、エンジン制御装置(ECU1)が図5b)に示すように、燃料噴射量を点火プラグ9の点火時期に近い噴射から減らす際に、燃料噴射パルス幅を短くすると良い。   At this time, as shown in FIG. 5 a), when the engine control unit (ECU 1) generates a fuel injection amount reduction request during the multistage injection execution, the number of divisions of the multistage injection is set to the spark plug 9 in accordance with the reduction amount request amount. It is better to preferentially reduce the injection close to the ignition timing. Alternatively, as shown in FIG. 5 b), when the engine control unit (ECU 1) reduces the fuel injection amount from the injection close to the ignition timing of the spark plug 9, the fuel injection pulse width may be shortened.

本実施例では、多段噴射実行時に燃料噴射量の減量要求に基づいて、少なくとも最遅角側のパルスから減少させることで、すすの発生を抑制しながら減量要求と多段噴射を両立させることが可能となる。   In the present embodiment, it is possible to achieve both the reduction request and the multistage injection while suppressing the generation of soot by reducing the pulse at least from the most retarded angle based on the request for the reduction of the fuel injection amount when executing the multistage injection. It becomes.

図6は図4で示したフローの別実施例を表わすフロー図である。ステップS601〜S607は図4のステップS401〜S407と同一の処理のため説明を省略する。ステップS608において減少させた最遅角段パルス幅TPDIVNと燃料噴射装置で制御可能な燃料噴射量下限値相当のパルス幅TPMINを比較する。TPDIVNがTPMINより大きい場合、ステップS611に進む。TPDIVNがTPMINより小さい場合、ステップS609に進む。ステップS609はステップS408と同一の処理のため説明を省略する。ステップS610ではTPDIVNを、残りのパルス幅に加える。ステップS611でステップS601〜S610で演算した多段噴射回数およびパルス幅に基づいて燃料噴射を実行する。   FIG. 6 is a flowchart showing another embodiment of the flow shown in FIG. Steps S601 to S607 are the same as steps S401 to S407 in FIG. The most retarded stage pulse width TPDIVN decreased in step S608 is compared with the pulse width TPMIN corresponding to the fuel injection amount lower limit value that can be controlled by the fuel injection device. If TPDIVN is greater than TPMIN, the process proceeds to step S611. If TPDIVN is smaller than TPMIN, the process proceeds to step S609. Since step S609 is the same as step S408, description thereof is omitted. In step S610, TPDIVN is added to the remaining pulse width. In step S611, fuel injection is executed based on the number of multistage injections and the pulse width calculated in steps S601 to S610.

図7は図6で示したフロー動作による多段噴射回数及びパルス幅の変化を示す模式図である。最遅角段のパルス幅と減量相当分パルス幅の差分が最小値TPMMINより小さい場合、最遅角段のパルス幅を減らし、差分を他のパルス幅に振り分ける。   FIG. 7 is a schematic diagram showing changes in the number of multistage injections and pulse widths due to the flow operation shown in FIG. If the difference between the pulse width of the most retarded stage and the pulse width corresponding to the reduction amount is smaller than the minimum value TPMMIN, the pulse width of the most retarded stage is reduced and the difference is distributed to other pulse widths.

以上の通り本実施例のエンジン制御装置(ECU1)は図7に示すように、多段噴射の分割数を減らした際に減少する燃料量から減量要求量を引いた燃料量が、燃料噴射装置8で制御可能な最小値より小さい場合、他の分割噴射のパルス幅を長くするように制御する。また、このとき、点火プラグ9の点火時期に近い噴射の噴射パルスは短くするように制御する。また、エンジン制御装置(ECU1)は図7に示すように、多段噴射の分割数を減らした際に減少する燃料量から減量要求量を引いた燃料量を、他の分割されたパルス幅に加える。   As described above, the engine control apparatus (ECU 1) of the present embodiment has a fuel amount obtained by subtracting the reduction amount from the amount of fuel that is reduced when the number of divisions of multistage injection is reduced, as shown in FIG. If it is smaller than the minimum value that can be controlled by the control, control is performed to increase the pulse width of the other divided injections. At this time, the injection pulse of the injection close to the ignition timing of the spark plug 9 is controlled to be short. Further, as shown in FIG. 7, the engine control unit (ECU 1) adds the fuel amount obtained by subtracting the reduction amount from the fuel amount that is reduced when the number of divisions of multi-stage injection is reduced to the other divided pulse widths. .

なお、本発明の実施例において、燃料噴射量の減量要求量は、たとえば、キャニスタパージ実行時のパージ由来燃料量に基づいて決定される。または空燃比フィードバック制御実行時の燃料減量要求に基づいて決定される。または減速時の燃料カット要求量に基づいて決定される。またはクランクケース揮発燃料のパージ量に基づいて決定される。以上のいずれか、あるいはこれらの要因を組合わせることで、燃料噴射量の減量要求量が決定されることが望ましい。   In the embodiment of the present invention, the fuel injection amount reduction request amount is determined, for example, based on the purge-derived fuel amount at the time of canister purge execution. Alternatively, it is determined based on the fuel reduction request when the air-fuel ratio feedback control is executed. Alternatively, it is determined based on the fuel cut request amount during deceleration. Alternatively, it is determined based on the purge amount of the crankcase volatile fuel. It is desirable that the fuel injection amount reduction request amount is determined by combining any of the above factors or these factors.

本実施例では、最遅角段のパルス幅と減量要求相当のパルス幅の差分を他のパルス幅に加算し、少なくとも最遅角段の噴射を削除することで、燃料噴射装置の制御可能な下限値を下回ることなく、燃料噴射量を減量し、かつ過剰な減量を防止することで失火や有害物質の発生を防ぐことが可能となる。   In this embodiment, the difference between the pulse width of the most retarded stage and the pulse width corresponding to the reduction request is added to the other pulse widths, and at least the injection of the most retarded stage is deleted, so that the fuel injection device can be controlled. By reducing the fuel injection amount and preventing excessive reduction without falling below the lower limit value, it becomes possible to prevent misfire and generation of harmful substances.

図8は図4、図6で示したフローの別実施例を表わすフロー図である。ステップS801〜S804はステップS601〜S604と同一の処理のため説明を省略する。ステップS805では燃焼形態が弱成層希薄燃焼であるかどうか判定する。弱成層希薄燃焼とは、燃焼室13の内部の空燃比を理論量論比より大きくした、すなわち均質希薄燃焼状態にし、加えて圧縮行程後半の点火直前に点火用の燃料を噴射する成層希薄燃焼状態を組み合わせた燃焼形態である。燃焼形態が弱成層希薄燃焼である場合ステップS806に進む。燃焼形態が弱成層希薄燃焼で無い場合、ステップS808に進む。ステップS806では最遅角段よりひとつ前の基本燃料噴射パルス幅TPDIVNM10を演算する。ステップS807ではステップS607〜S610のTPDIVN0をTPDIVNM10として、TPDIVNをTPDIVNM1として処理を行う。ステップS808〜S810はステップS605〜S611と同一の処理を行うため説明を省略する。   FIG. 8 is a flowchart showing another embodiment of the flow shown in FIGS. Since steps S801 to S804 are the same as steps S601 to S604, the description thereof is omitted. In step S805, it is determined whether the combustion mode is weakly stratified lean combustion. Weakly stratified lean combustion is a stratified lean combustion in which the air-fuel ratio in the combustion chamber 13 is larger than the stoichiometric ratio, that is, a homogeneous lean combustion state is set, and in addition, fuel for ignition is injected just before ignition in the latter half of the compression stroke. It is a combustion mode combining states. If the combustion mode is weakly stratified lean combustion, the process proceeds to step S806. If the combustion mode is not weakly stratified lean combustion, the process proceeds to step S808. In step S806, the basic fuel injection pulse width TPDIVNM10 immediately before the most retarded stage is calculated. In step S807, processing is performed with TPDIVN0 in steps S607 to S610 as TPDIVNM10 and TPDIVN as TPDIVNM1. Since steps S808 to S810 perform the same processing as steps S605 to S611, description thereof is omitted.

以上の通り本実施例のエンジン制御装置(ECU1)は図7に示すように、均質希薄燃焼と成層希薄燃焼を組み合わせた弱成層希薄燃焼で燃焼室13を燃焼させる場合で、かつ多段噴射実行時に、燃料噴射装置8から噴射する燃料噴射量の減量要求が発生した場合、点火プラグ9の点火時期に最も近い燃料噴射は残し、そのひとつ前の噴射から燃料量を減らすように燃料噴射装置8を制御する。   As described above, the engine control apparatus (ECU 1) of the present embodiment, as shown in FIG. 7, is a case where the combustion chamber 13 is burned by weakly stratified lean combustion combining homogeneous lean combustion and stratified lean combustion, and when multistage injection is performed. When a request for reducing the fuel injection amount injected from the fuel injection device 8 is generated, the fuel injection closest to the ignition timing of the spark plug 9 remains, and the fuel injection device 8 is set so as to reduce the fuel amount from the previous injection. Control.

図9は図8で示したフロー動作による多段噴射回数の変化を示す模式図である。弱成層希薄燃焼の場合、最遅角段の燃料噴射は点火に必要であるため、少なくともそのひとつ前の段から減量を行う。   FIG. 9 is a schematic diagram showing a change in the number of multistage injections by the flow operation shown in FIG. In the case of weak stratified lean combustion, the fuel injection at the most retarded stage is necessary for ignition, so the quantity is reduced from at least the previous stage.

本実施例では、弱成層希薄燃焼時に燃料噴射の減量要求が来た場合、最遅角段の噴射を残し、そのひとつ前の噴射パルスを減少させることで、希薄燃焼の燃焼安定性を損なわず、多段噴射および減量要求を両立させることで失火や有害物質の発生を防ぐことが可能となる。   In this embodiment, when a request for reduction of fuel injection is made during weak stratified lean combustion, the most retarded stage injection is left and the previous injection pulse is reduced, so that the combustion stability of lean combustion is not impaired. In addition, it is possible to prevent misfires and generation of harmful substances by making the multistage injection and the weight reduction request compatible.

図10は図4、6、8で示したフローの別実施例を表わすフロー図である。ステップS1001で燃料減量補正が実行されているか判定する。ここでの燃料減量補正とは、実施例1から3で示した実施内容が行われる。減量補正が実行されている場合、ステップS1002に進む。減量補正が実行されていない場合、ステップS1006に進む。ステップS1002では燃焼形態が理論量論比から弱成層希薄燃焼への移行要求があるかどうか判定する。移行要求がある場合はステップS1003に進む。移行要求が無い場合ステップS1006に進む。   FIG. 10 is a flow chart showing another embodiment of the flow shown in FIGS. In step S1001, it is determined whether fuel reduction correction is being performed. Here, the fuel content reduction correction is performed according to the implementation contents shown in the first to third embodiments. If the weight reduction correction is being performed, the process proceeds to step S1002. If the weight reduction correction has not been executed, the process proceeds to step S1006. In step S1002, it is determined whether there is a request for the combustion mode to shift from stoichiometric ratio to weakly stratified lean combustion. If there is a migration request, the process proceeds to step S1003. If there is no migration request, the process proceeds to step S1006.

ステップS1003では弱成層時希薄燃焼時の多段噴射回数NDIVINJLを演算する。理論量論比時の多段噴射回数に1を加算し、ステップS1004に進む。ステップS1004ではS1003で加算した分の燃料噴射段の噴射時期を圧縮行程後半に設定する。ステップS1005では、S1003、S1004で増加したパルス幅と同じ幅を他の分割したパルスから減少させる。ステップS1006にて実際の燃焼形態を理論量論比から弱成層希薄燃焼に変更する。ステップS1007はステップS1001〜S1006で演算した燃料噴射パルス幅および燃料噴射時期に基づいて燃料噴射を実行する。   In step S1003, the number of multistage injections NDIVINJL at the time of weak stratification lean combustion is calculated. 1 is added to the number of multistage injections at the stoichiometric ratio, and the process proceeds to step S1004. In step S1004, the fuel injection stage injection timing for the amount added in S1003 is set in the latter half of the compression stroke. In step S1005, the same width as the pulse width increased in S1003 and S1004 is decreased from the other divided pulses. In step S1006, the actual combustion mode is changed from stoichiometric ratio to weakly stratified lean combustion. In step S1007, fuel injection is performed based on the fuel injection pulse width and fuel injection timing calculated in steps S1001 to S1006.

図11は図10で示したフロー動作による多段噴射回数の変化を示す模式図である。理論量論比燃焼状態でかつ減量補正が行われている場合、最遅角段の燃料噴射パルスが削られている状態となる。この状態から燃焼形態が弱成層希薄燃焼に移行する場合、点火性を保つため、圧縮行程後半で燃料を噴射する必要がある。そのため、多段回数を増やす。ただしパルス幅を増やしただけだと、燃料量が過剰となるため、他のパルスから同じ量のパルス幅を減じる。   FIG. 11 is a schematic diagram showing a change in the number of multistage injections by the flow operation shown in FIG. When the stoichiometric ratio combustion state and the reduction correction are performed, the fuel injection pulse at the most retarded stage is cut off. When the combustion mode shifts from this state to weakly stratified lean combustion, it is necessary to inject fuel in the latter half of the compression stroke in order to maintain ignitability. Therefore, the number of multistages is increased. However, if the pulse width is simply increased, the fuel amount becomes excessive, so the same amount of pulse width is reduced from the other pulses.

以上の通り本実施例のエンジン制御装置(ECU1)は図7に示すように、理論量論比燃焼で燃焼室を燃焼させる場合で、かつ多段噴射実行時で、かつ燃料噴射装置8から噴射する燃料噴射量の減量要求に対応して燃料噴射量を減らしている状態で、燃焼形態を弱成層状態へ変更する要求が発生した際に、多段噴射回数を増やすように燃料噴射装置8を制御する。なお、このように多段噴射回数を増やす場合に、増加させる噴射の噴射時期は、圧縮行程後半とするのが望ましい。   As described above, the engine control device (ECU 1) of the present embodiment injects from the fuel injection device 8 when the combustion chamber is burned by the stoichiometric combustion as shown in FIG. The fuel injection device 8 is controlled so as to increase the number of multistage injections when a request to change the combustion mode to a weakly stratified state occurs in a state where the fuel injection amount is reduced in response to a request to reduce the fuel injection amount. . In addition, when increasing the number of multistage injections in this way, it is desirable that the injection timing of the injection to be increased is the latter half of the compression stroke.

本実施例では、減量補正中に燃焼形態の移行が発生しても、適切な燃料量を保ちながら弱成層希薄燃焼を実現することが可能となり、燃費や排気の悪化を防止することが可能となる。
なお、本発明は上記した各実施例に限定されるものでは無く、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものでは無い。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば各実施例における燃料噴射量の減量要求はキャニスタパージによるものであったり、空燃比センサや酸素センサの出力による空燃比フィードバックであったり、減速時のトルク減少要求などから発生するものであり、種々選択可能である。
In this embodiment, even when a change in combustion mode occurs during the reduction correction, it is possible to realize weak stratified lean combustion while maintaining an appropriate fuel amount, and to prevent deterioration of fuel consumption and exhaust. Become.
In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
For example, the fuel injection amount reduction request in each embodiment is caused by a canister purge, an air-fuel ratio feedback by the output of an air-fuel ratio sensor or an oxygen sensor, or a torque reduction request during deceleration, etc. Various selections are possible.

1…ECU、2…アクセル開度センサ、3…質量流量計、4…吸気管圧力センサ、5…吸気管温度センサ、6…スロットルバルブ、7…吸気管、8…燃料噴射装置、9…点火プラグ、10…ピストン、11…クランクシャフト、12…クランク角センサ、13…燃焼室、14…排気管、15…空燃比センサ、16…三元触媒、17…キャニスタパージ弁、18…チャコールキャニスタ、19…燃料タンク DESCRIPTION OF SYMBOLS 1 ... ECU, 2 ... Accelerator opening sensor, 3 ... Mass flow meter, 4 ... Intake pipe pressure sensor, 5 ... Intake pipe temperature sensor, 6 ... Throttle valve, 7 ... Intake pipe, 8 ... Fuel injection device, 9 ... Ignition Plug 10, piston 10, crankshaft 12, crank angle sensor 13 combustion chamber 14 exhaust pipe 15 air / fuel ratio sensor 16 three-way catalyst 17 canister purge valve 18 charcoal canister 19 ... Fuel tank

Claims (9)

エンジンの燃焼室内に燃料を噴射する燃料噴射装置を備えたエンジン制御装置において、
燃料を分割して噴射する多段噴射実行時に前記燃料噴射装置から噴射する燃料噴射量の減量要求が発生した場合、前記減量要求量に合わせて燃料噴射量を点火時期に近い噴射から優先的に減らすことを特徴とするエンジン制御装置。
In an engine control device including a fuel injection device that injects fuel into a combustion chamber of an engine,
When a request to reduce the fuel injection amount injected from the fuel injection device is generated during the execution of multistage injection in which fuel is divided and injected, the fuel injection amount is preferentially reduced from the injection close to the ignition timing in accordance with the reduction request amount. An engine control device characterized by that.
請求項1に記載のエンジン制御装置において、
燃料噴射量を点火時期に近い噴射から減らす際に、燃料噴射パルス幅を短くすることを特徴とするエンジン制御装置。
The engine control device according to claim 1,
An engine control apparatus characterized by shortening a fuel injection pulse width when the fuel injection amount is reduced from injection close to ignition timing.
請求項1に記載のエンジン制御装置において、
多段噴射実行時に燃料噴射量の減量要求が発生した場合、減量要求量に合わせて、多段噴射の分割数を点火時期に近い噴射から優先的に減らすことを特徴とするエンジン制御装置。
The engine control device according to claim 1,
An engine control device characterized by preferentially reducing the number of divisions of multi-stage injection from injection close to the ignition timing in accordance with the reduction quantity requested when a fuel injection quantity reduction request is generated during execution of multi-stage injection.
請求項3に記載のエンジン制御装置において、
多段噴射の分割数を減らした際に減少する燃料量から減量要求量を引いた燃料量が、燃料噴射装置で制御可能な最小値より小さい場合、多段噴射の分割数を減らした際に減少する燃料量から減量要求量を引いた燃料量を、他の分割されたパルス幅に加えることを特徴とするエンジン制御装置。
The engine control apparatus according to claim 3, wherein
When the fuel amount obtained by subtracting the reduction amount from the fuel amount that decreases when the number of divisions for multi-stage injection is smaller than the minimum value that can be controlled by the fuel injection device, it decreases when the number of divisions for multi-stage injection is reduced. An engine control apparatus characterized in that a fuel amount obtained by subtracting a reduction amount from a fuel amount is added to another divided pulse width.
請求項1に記載のエンジン制御装置において、
燃料噴射量の増量は、増量実行前の多段噴射から点火時期に近い噴射時期に設定することを特徴とするエンジン制御装置。
The engine control device according to claim 1,
The engine control apparatus characterized in that the increase in the fuel injection amount is set to an injection timing close to the ignition timing from the multistage injection before the increase is executed.
請求項1または5に記載のエンジン制御装置において、燃料噴射量の減量要求量は、少なくともキャニスタパージ実行時のパージ由来燃料量、空燃比フィードバック制御実行時の燃料減量要求、減速時の燃料カット要求量、クランクケース揮発燃料のパージ量のいずれか、またはこれらの組合せに基づいて決定されることを特徴とするエンジン制御装置。 6. The engine control apparatus according to claim 1, wherein the fuel injection amount reduction request amount includes at least a purge-derived fuel amount at the time of canister purge execution, a fuel reduction request at the time of air-fuel ratio feedback control execution, and a fuel cut request at the time of deceleration. The engine control device is determined on the basis of the amount, the purge amount of the crankcase volatile fuel, or a combination thereof. 請求項1に記載のエンジン制御装置において、
均質希薄燃焼と成層希薄燃焼を組み合わせた弱成層希薄燃焼で燃焼室を燃焼させる場合で、かつ多段噴射実行時に、前記燃料噴射装置から噴射する燃料噴射量の減量要求が発生した場合、点火時期に最も近い燃料噴射は残し、そのひとつ前の噴射から燃料量を減らすように前記燃料噴射装置を制御することを特徴とするエンジン制御装置。
The engine control device according to claim 1,
When the combustion chamber is combusted by weak stratified lean combustion combining homogeneous lean combustion and stratified lean combustion, and when a request to reduce the amount of fuel injected from the fuel injection device occurs during multistage injection, the ignition timing is An engine control device that controls the fuel injection device so as to reduce the amount of fuel from the previous injection, leaving the closest fuel injection.
請求項1に記載のエンジン制御装置において、
理論量論比燃焼で燃焼室を燃焼させる場合で、かつ多段噴射実行時で、かつ燃料噴射装置から噴射する燃料噴射量の減量要求に対応して燃料噴射量を減らしている状態で、燃焼形態を弱成層状態へ変更する要求が発生した際に、多段噴射回数を増やすように前記燃料噴射装置を制御することを特徴とするエンジン制御装置。
The engine control device according to claim 1,
Combustion mode when the combustion chamber is burned by stoichiometric combustion and when the multistage injection is performed and the fuel injection amount is reduced in response to a request for reduction of the fuel injection amount injected from the fuel injection device. When the request | requirement which changes to a weak stratification state generate | occur | produces, the said fuel-injection apparatus is controlled so that the frequency | count of multistage injection may be increased, The engine control apparatus characterized by the above-mentioned.
請求項8に記載のエンジン制御装置において、
多段噴射回数を増やす場合に、増加させる噴射の噴射時期は、圧縮行程後半であることを特徴とするエンジン制御装置。
The engine control apparatus according to claim 8, wherein
An engine control device characterized in that when the number of multistage injections is increased, the injection timing of the injection to be increased is in the latter half of the compression stroke.
JP2016192518A 2016-09-30 2016-09-30 Engine controller Active JP6685215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192518A JP6685215B2 (en) 2016-09-30 2016-09-30 Engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192518A JP6685215B2 (en) 2016-09-30 2016-09-30 Engine controller

Publications (2)

Publication Number Publication Date
JP2018053841A true JP2018053841A (en) 2018-04-05
JP6685215B2 JP6685215B2 (en) 2020-04-22

Family

ID=61835490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192518A Active JP6685215B2 (en) 2016-09-30 2016-09-30 Engine controller

Country Status (1)

Country Link
JP (1) JP6685215B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360524A (en) * 2003-06-03 2004-12-24 Hitachi Ltd Combustion control device and combustion control method for cylinder injection engine
JP2012117400A (en) * 2010-11-30 2012-06-21 Hitachi Automotive Systems Ltd Fuel injection control apparatus for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360524A (en) * 2003-06-03 2004-12-24 Hitachi Ltd Combustion control device and combustion control method for cylinder injection engine
JP2012117400A (en) * 2010-11-30 2012-06-21 Hitachi Automotive Systems Ltd Fuel injection control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP6685215B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
RU2719756C2 (en) Method (versions) of vehicle engine control
JP2011027059A (en) Engine cotrol apparatus
JP2005315124A (en) Fuel injection control device of internal combustion engine
JP2012087708A (en) Control device for cylinder injection gasoline engine
JP5240370B2 (en) Control device for internal combustion engine
JP5124522B2 (en) Control device for compression self-ignition internal combustion engine
US10495021B2 (en) Engine control device
US6758034B1 (en) Method for operating an internal combustion engine
US9470169B2 (en) Control device for internal combustion engine
JP5995613B2 (en) Control device for internal combustion engine
JP4353229B2 (en) Fuel injection control device
JP2002047973A (en) Fuel injection controller of direct injection engine
CN109779777B (en) Control device and control method for internal combustion engine
JP6685215B2 (en) Engine controller
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JP2010265815A (en) Fuel injection system for internal combustion engine
JPH0512538B2 (en)
JP2007077842A (en) Control device for internal combustion engine
JP5260770B2 (en) Engine control device
JP6737156B2 (en) Control device for internal combustion engine
JP2004286037A (en) Fuel injection control device for internal combustion engine
JP2002213276A (en) Fuel injection controller for internal combustion engine
JP2021139315A (en) Control device for internal combustion engine
JP2021127702A (en) Abnormality diagnostic device for gas sensor
JP2008031893A (en) Control device of in-cylinder injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250