JP2018052770A - Method and apparatus for parting brittle material substrate - Google Patents

Method and apparatus for parting brittle material substrate Download PDF

Info

Publication number
JP2018052770A
JP2018052770A JP2016189937A JP2016189937A JP2018052770A JP 2018052770 A JP2018052770 A JP 2018052770A JP 2016189937 A JP2016189937 A JP 2016189937A JP 2016189937 A JP2016189937 A JP 2016189937A JP 2018052770 A JP2018052770 A JP 2018052770A
Authority
JP
Japan
Prior art keywords
laser beam
aberration
brittle material
material substrate
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016189937A
Other languages
Japanese (ja)
Other versions
JP6775822B2 (en
Inventor
井上 修一
Shuichi Inoue
修一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2016189937A priority Critical patent/JP6775822B2/en
Priority to TW106114595A priority patent/TWI716589B/en
Priority to KR1020170058393A priority patent/KR102472644B1/en
Priority to CN201710332472.0A priority patent/CN107866637B/en
Priority to JP2017243712A priority patent/JP6944703B2/en
Publication of JP2018052770A publication Critical patent/JP2018052770A/en
Application granted granted Critical
Publication of JP6775822B2 publication Critical patent/JP6775822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for parting a brittle material substrate that utilize an aberration laser beam, obtained by causing a laser beam to converge having aberration, and a laser beam for parting.SOLUTION: A method parts a brittle material substrate W along a parting predetermined line S by: making a laser beam L1 including a burst of a pulse laser beam into an aberration laser beam L2 through an aberration generating lens 4c which generates aberration; scanning the brittle material substrate W with the aberration laser beam L2 along a parting predetermined line S thereof to form a modified layer; and irradiating the substrate with a laser beam L3 for parting along the modified layer and also cooling, following the irradiation, the foreside in a moving direction of an irradiation point P of the laser beam L3 for parting.SELECTED DRAWING: Figure 1

Description

本発明は、分断用レーザビームを用いたガラス等の脆性材料基板の分断方法並びに分断装置に関する。   The present invention relates to a cutting method and a cutting apparatus for a brittle material substrate such as glass using a cutting laser beam.

従来から基板に対して透過性を有する(透明な)パルスレーザビームを照射して内部改質層を形成する「ステルスダイシング」と称されるレーザ加工技術が利用されている(特許文献1参照)。このレーザ加工技術では、分断すべき領域の基板内部に焦点を合わせてパルスレーザビームを照射して改質し、これをストリート(分断予定ライン)に沿って連続的に行うことで改質層を形成する。そして、強度が低下した改質層に沿って外力を加えることにより分断している。   Conventionally, a laser processing technique called “stealth dicing” in which an internal modified layer is formed by irradiating a transparent (transparent) laser beam with respect to a substrate has been used (see Patent Document 1). . In this laser processing technology, a modified layer is formed by focusing on the inside of the substrate in the region to be divided and irradiating with a pulsed laser beam and performing this continuously along the street (scheduled division line). Form. And it divides | segments by applying external force along the modified layer in which intensity | strength fell.

また、近年、パルス幅(パルス持続時間)がナノ秒(ns)、ピコ秒(ps)の分断用レーザビームの研究および開発が進んだ結果、個々のパルスが分割されたバースト列(バーストパルス光)として発振される「バーストモード」と称される分断用レーザビームを照射して基板の内部改質を行うレーザ加工技術も利用されている(特許文献2参照)。
すなわち、基板に対し透過性を有する波長のレーザを用いて、そのパルスレーザビームの繰り返し周波数やパルス幅が加工に適した分断用レーザビームとなるように調整し、基板内部に集光点を合わせて照射することでアブレーションを生じさせることなく改質層を形成することができる。このレーザ加工技術では、調整されたパルス幅を有する分断用レーザビームをそのまま照射するのではなく、個々のパルスを複数(例えば2〜10個)の微細パルス幅からなるバーストパルス光(バースト列)に分割された状態で発振させて照射するようにしている。
In recent years, as a result of research and development of laser beams for splitting with pulse widths (pulse durations) of nanoseconds (ns) and picoseconds (ps), burst trains (burst pulse light) ) Is also used, which is a laser processing technique that irradiates a cutting laser beam called “burst mode” and performs internal modification of the substrate (see Patent Document 2).
In other words, using a laser with a wavelength that is transparent to the substrate, adjust the repetition frequency and pulse width of the pulsed laser beam so that it is a suitable cutting laser beam for processing, and align the focusing point inside the substrate. The modified layer can be formed without causing ablation. In this laser processing technique, burst pulse light (burst train) composed of a plurality of (for example, 2 to 10) fine pulse widths is used instead of directly irradiating a cutting laser beam having an adjusted pulse width. It is made to oscillate and irradiate in the divided state.

例えば、パルス光生成手段によって、繰り返し周波数100kHz(10μ秒(μs)周期でパルスを生成)かつパルス幅200nsの分断用レーザビームが、パルス光エネルギー10μJで生成される際に、バーストパルス光形成手段によりこの分断用レーザビームを微細パルス幅が1nsの10個のバーストパルス光(バースト列)に分割された状態で発振させる。この場合、バーストパルス光のピークパワーは、理論的には平均で(10μJ/10個)/1ns=1kWとなるが、各バーストパルス光のピークパワーは相互に同等にすることも、相互に異ならせること(例えば、各バーストパルス光のピークパワーを順次大きくしていくこと、順次小さくしていくこと等)もできる。
そして、シリコン基板に対し透過性を有する波長(例えば1064nm)であって改質に適したパルス幅のパルスレーザビームを、このような複数の微細パルス幅からなるバーストパルス光として発振させ、集光器によりバーストパルス光の集光点を基板の厚み方向中央部に合わせ、シリコン基板に「バーストモード」として照射を行う。これにより、被加工物におけるレーザ入射面と反対面側への抜け光が反対面へ与えるダメージを抑制することができるようになり、この反対面上に予め形成されているデバイスへのダメージを抑制できることが開示されている。
For example, when a split laser beam having a repetition frequency of 100 kHz (a pulse is generated at a cycle of 10 μs (μs)) and a pulse width of 200 ns is generated with a pulsed light energy of 10 μJ by the pulsed light generating unit, burst pulsed light forming unit Thus, this dividing laser beam is oscillated in a state where it is divided into 10 burst pulse lights (burst trains) having a fine pulse width of 1 ns. In this case, the peak power of the burst pulse light is theoretically (10 μJ / 10) / 1 ns = 1 kW on average, but the peak power of each burst pulse light may be equal to or different from each other. (For example, increasing the peak power of each burst pulse light sequentially, decreasing the peak power, etc.).
Then, a pulse laser beam having a wavelength that is transparent to the silicon substrate (eg, 1064 nm) and having a pulse width suitable for modification is oscillated as burst pulse light having such a plurality of fine pulse widths, and condensed. The burst pulse light is focused on the central portion in the thickness direction of the substrate by the detector, and the silicon substrate is irradiated in the “burst mode”. As a result, it is possible to suppress damage to the opposite surface caused by light leaking to the surface opposite to the laser incident surface in the workpiece, and to suppress damage to the device formed on the opposite surface. It is disclosed that it can be done.

また、分断用レーザビームのバースト列(バーストパルス光)を利用して基板を劈開する加工方法として、他の文献では基板内に「フィラメント」を形成して加工するレーザ加工技術が開示されている。すなわち、対物レンズにより集束された集束レーザビームを基板に照射して、長さが数百ミクロンまたは数ミリメートルの「レーザフィラメント」(以下「フィラメント」と略す)と称する、レーザエネルギーを蓄積させた長く狭いチャネルを基板内に形成し、基板を並進して直線状あるいは曲線状にフィラメントを移動することでフィラメントトラックを刻んで加工することが特許文献3に開示されている(特に0035、0039欄)。同文献ではこの加工方法が適用可能な基板材料として、ガラス、半導体、透明セラミックス、ポリマ、透明導体、広バンドギャップガラス、水晶、結晶石英、ダイヤモンド、およびサファイアが記載されている。   Further, as a processing method for cleaving a substrate using a burst train (burst pulse light) of a cutting laser beam, another literature discloses a laser processing technique for forming a “filament” in a substrate and processing the substrate. . In other words, a long laser beam is accumulated by irradiating a substrate with a focused laser beam focused by an objective lens, which is called a “laser filament” (hereinafter abbreviated as “filament”) having a length of several hundred microns or several millimeters. Patent Document 3 discloses that a narrow channel is formed in a substrate, and the substrate is translated to move the filament in a straight line or a curved line to cut and process a filament track (particularly, columns 0035 and 0039). . In this document, glass, semiconductor, transparent ceramics, polymer, transparent conductor, wide band gap glass, crystal, crystal quartz, diamond, and sapphire are described as substrate materials to which this processing method can be applied.

また、上記特許文献3に記載の「レーザフィラメント」をさらに空間的に拡張し、空間的に同質なフィラメントを長く形成する改良方法が特許文献4に開示されている。
同文献によれば、特許文献3では超高速パルスレーザビームのバーストからなる入射レーザビームが「集束レンズ」によって基板内部で集束されて、基板内部で数百ミクロン程度のフィラメントを形成できることが開示されているとしている。
Further, Patent Document 4 discloses an improved method for further expanding the “laser filament” described in Patent Document 3 to form a longer spatially homogeneous filament.
According to this document, Patent Document 3 discloses that an incident laser beam composed of a burst of an ultrafast pulsed laser beam can be focused inside a substrate by a “focusing lens” to form a filament of about several hundred microns inside the substrate. It is going to be.

特許第3408805号公報Japanese Patent No. 3408805 特開2014−104484号公報JP 2014-104484 A 特表2013−536081号公報Special table 2013-536081 gazette 特開2015−037808号公報Japanese Patent Laying-Open No. 2015-037808

上記特許文献3、4で示されている「レーザフィラメント」によって強度の弱くなった改質層が形成されたガラス基板を分断するには、改質層に沿ってブレイクバーを押し付けて基板を機械的に撓ませることにより分断する方法がとられている。この際、改質層を形成した分断予定ラインが直線の場合は分断予定ラインに沿ってきれいに分断することができるが、図7(a)に示すように分断予定ラインSが角部に円弧S1を有する四角形状の場合や、図7(b)に示すように直線状の分断予定ラインSの中間に円弧状の凸部S2がある場合には、円弧S1や凸部S2の領域を分断予定ラインSに沿って均等に撓ませることが困難となり、きれいに分断することができない。   In order to divide the glass substrate on which the modified layer whose strength is weakened by the “laser filament” shown in Patent Documents 3 and 4 above, the break bar is pressed along the modified layer and the substrate is machined. The method of dividing | segmenting by bending is taken. At this time, when the planned dividing line on which the modified layer is formed is a straight line, the dividing line can be cleanly divided along the planned dividing line. However, as shown in FIG. In the case of a quadrangular shape having an arc, or when there is an arcuate convex portion S2 in the middle of a straight segmentation line S as shown in FIG. 7 (b), the region of the arc S1 or the convex portion S2 is scheduled to be segmented. It becomes difficult to bend along the line S evenly, and it cannot be divided cleanly.

そこで、ブレイクバーによる機械的分断手段に代えて、COレーザを改質層に照射して加熱による圧縮応力によって分断する方法も考えられる。
しかし、COレーザによるブレイクでは、レーザビームを改質層に照射してスキャンしたとき、図8に示すようにレーザ照射ポイントPよりレーザ進行方向前方側に小さな割れKが先行して発生する傾向がある。この現象は、分断予定ラインSが直線の場合は問題がないが、円弧の場合は円弧の接線方向に割れが先行するので、図9(a)に示すように亀裂K1が先走るなどしてきれいに分断することができない。特に円弧の半径が5mm以下の場合は分断がより困難となる。また、図9(b)に示すように直線の分断予定ラインSの中間に円弧状の凸部S2がある場合には、凸部S2の底辺を横切るように亀裂K2が生じるなどして歩留まりが悪くなるといった問題点があった。
In view of this, a method of irradiating the modified layer with a CO 2 laser and dividing it by a compressive stress due to heating may be considered instead of the mechanical dividing means using a break bar.
However, in the break by the CO 2 laser, when the modified layer is irradiated with the laser beam and scanned, a small crack K tends to occur ahead of the laser irradiation point P in the laser traveling direction as shown in FIG. There is. This phenomenon is not a problem when the line to be divided S is a straight line, but in the case of an arc, since the crack precedes in the tangential direction of the arc, the crack K1 is advanced as shown in FIG. It cannot be divided. In particular, when the radius of the arc is 5 mm or less, the division becomes more difficult. Also, as shown in FIG. 9B, when there is an arc-shaped convex portion S2 in the middle of a straight line segmentation planned line S, the yield is increased due to a crack K2 extending across the bottom of the convex portion S2. There was a problem of getting worse.

そこで本発明は、パルスレーザビームのバーストを含む収差レーザビームと、COレーザなどの分断用レーザビームを利用して、脆性材料基板を精度よくきれいに分断することのできる分断方法並びに分断装置を提供することを目的とする。 Accordingly, the present invention provides a cutting method and a cutting apparatus capable of accurately and cleanly cutting a brittle material substrate using an aberration laser beam including a burst of a pulse laser beam and a cutting laser beam such as a CO 2 laser. The purpose is to do.

上記目的を達成するためになされた本発明の脆性材料基板の分断方法は、パルスレーザビームのバーストを含むレーザビームを、収差を生じさせる収差生成レンズを透過させて収差レーザビームに生成し、前記収差レーザビームを脆性材料基板の分断予定ラインに沿ってスキャンして改質層(通常、強度が低下した改質層)を形成し、この改質層に沿って分断用レーザビームを照射するとともに、これに追随して当該分断用レーザビームの照射ポイントの進行方向前方側(好ましくは進行方向前方側を含む周辺)を冷却(例えば、冷却媒体の吹き付けによって冷却)することにより前記脆性材料基板を分断予定ラインに沿って分断するようにしている。
本発明の分断方法においては、収差レーザビームの最も集束する最集束部を脆性材料基板の厚みの中間位置に合わせてスキャンすることが好ましい。ここで、収差レーザビームの最集束部は、収差レーザビームの照射方向に沿って、ビームプロファイル(強度分布)を測定したときに、ビームプロファイルのピークパワーが最も高くなる位置(収差レーザビームの照射方向に沿った位置)を意味する。また、分断用レーザビームとしては、波長10.6μmのCOレーザビームや、波長1064nmのNd;YAGレーザビームが好ましい。
In order to achieve the above object, the method for dividing a brittle material substrate according to the present invention generates a laser beam including a burst of a pulsed laser beam through an aberration generating lens that generates an aberration into an aberration laser beam, Aberration laser beam is scanned along the planned cutting line of the brittle material substrate to form a modified layer (usually a modified layer with reduced strength), and the cutting laser beam is irradiated along the modified layer. Following this, the brittle material substrate is cooled by cooling the front side (preferably the periphery including the front side in the forward direction) of the irradiation point of the cutting laser beam (for example, cooling by spraying a cooling medium). It is divided along the planned line.
In the dividing method of the present invention, it is preferable to scan the most converging portion where the aberration laser beam is most focused in accordance with an intermediate position of the thickness of the brittle material substrate. Here, the most focused part of the aberration laser beam is a position where the peak power of the beam profile becomes highest when the beam profile (intensity distribution) is measured along the irradiation direction of the aberration laser beam (irradiation of the aberration laser beam). Position along the direction). Further, as the dividing laser beam, a CO 2 laser beam with a wavelength of 10.6 μm or an Nd: YAG laser beam with a wavelength of 1064 nm is preferable.

また、別の観点からなされた本発明の脆性材料基板の分断装置においては、脆性材料基板を載置するテーブルと、光源から出射されたパルスレーザビームのバーストを含んだレーザビームを、収差を生じさせる収差生成レンズを介して収差レーザビームに生成する収差レーザビーム発光部材と、前記収差レーザビーム発光部材を、前記脆性材料基板の分断予定ラインに沿って相対的に移動させる収差レーザビーム発光部材移動機構と、前記収差レーザビームが照射された前記分断予定ラインに沿って分断用レーザビームを照射する分断用レーザビーム発光部材と、前記分断用レーザビームの照射ポイントのレーザビーム進行方向前方側(好ましくは進行方向前方側を含む周辺)を冷却する冷媒噴射部材と、前記分断用レーザビーム発光部材並びに冷媒噴射部材を前記脆性材料基板の分断予定ラインに沿って相対的に移動させる分断用レーザビーム発光部材移動機構とからなる構成とした。   Further, in the brittle material substrate cutting apparatus of the present invention made from another point of view, an aberration is generated between the table on which the brittle material substrate is placed and the laser beam including the burst of the pulsed laser beam emitted from the light source. An aberration laser beam emitting member that generates an aberration laser beam through an aberration generating lens to be moved, and an aberration laser beam emitting member that relatively moves the aberration laser beam emitting member along a planned cutting line of the brittle material substrate A mechanism, a dividing laser beam light emitting member that irradiates a dividing laser beam along the scheduled dividing line irradiated with the aberration laser beam, and a laser beam traveling direction front side of the irradiation point of the dividing laser beam (preferably Is a refrigerant injection member that cools the periphery including the front side in the traveling direction) and the laser beam emitting member for cutting. Coolant injection member is configured comprising a cutting laser beam emitting member moving mechanism for relatively moving along section scheduled line of the brittle material substrate.

本発明は上記のごとく構成されているので、収差レーザビームにより形成された改質層のラインに沿って分断用レーザビームを照射しながら移動させることにより、ガラス基板等の脆性材料基板を分断予定ラインに沿って完全分断することができる。このとき、分断用レーザビームの照射ポイントの進行方向前方側(好ましくは進行方向前方側を中心に照射ポイントの周辺)が冷却されるので、照射ポイントの部位で生じる熱応力、すなわち、加熱による圧縮応力と、冷却による引張応力を効果的に高めることができ、これにより、レーザ進行方向前方側での割れを生じさせることなく、照射ポイントの部位のみを効果的に分断することができる。したがって、分断予定ラインが、角部に円弧を有する四角形状であったり、直線状の分断予定ラインの途中に湾曲した凸部を有するような複雑な形状であったりしても、円弧の接線方向に先走る亀裂や、凸部の底辺を横切る亀裂等を生じさせることなく、分断予定ラインに沿ってきれいに分断することができるといった効果がある。   Since the present invention is configured as described above, a brittle material substrate such as a glass substrate is scheduled to be cut by moving it while irradiating the cutting laser beam along the line of the modified layer formed by the aberration laser beam. Can be completely cut along the line. At this time, the front side in the traveling direction of the irradiation point of the dividing laser beam (preferably the periphery of the irradiation point around the front side in the traveling direction) is cooled, so that the thermal stress generated at the irradiation point, that is, compression by heating The stress and the tensile stress due to cooling can be effectively increased, so that only the site of the irradiation point can be effectively divided without causing a crack on the front side in the laser traveling direction. Therefore, even if the planned dividing line is a quadrangle having an arc at the corner or a complicated shape having a curved convex part in the middle of the straight scheduled dividing line, the tangential direction of the arc There is an effect that it is possible to cleanly divide along the line to be cut without causing a crack that runs ahead of or a crack that crosses the bottom of the convex portion.

本発明において、前記収差生成レンズは平凸レンズで形成するのがよい。この場合、レーザビームを平凸レンズの平面側から入射させることにより、凸面側から収差レーザビームを出射させることができる。
さらに、本発明において、前記収差レーザビームの光源が波長0.7〜2.5μm(例えば、Nd:YAGレーザの基本波)の近赤外レーザであり、かつ、パルス幅が100ピコ秒以下のレーザビームのバーストを用いるようにしてもよい。
In the present invention, the aberration generating lens is preferably a plano-convex lens. In this case, the aberration laser beam can be emitted from the convex surface side by making the laser beam incident from the plane side of the plano-convex lens.
Further, in the present invention, the light source of the aberration laser beam is a near-infrared laser having a wavelength of 0.7 to 2.5 μm (for example, a fundamental wave of Nd: YAG laser), and a pulse width is 100 picoseconds or less. A burst of laser beams may be used.

本発明に係る分断装置の概略的な説明図。Schematic explanatory drawing of the cutting apparatus according to the present invention. 本発明における収差レーザビーム発光部材の光学系を示すブロック図。The block diagram which shows the optical system of the aberration laser beam light emission member in this invention. 収差レーザビームの集束状態を示す拡大説明図。FIG. 4 is an enlarged explanatory view showing a focused state of an aberration laser beam. パルスレーザビームのバーストのプロファイルを示す概念図。The conceptual diagram which shows the profile of the burst of a pulse laser beam. 本発明における分断加工工程の第一段階を示す説明図。Explanatory drawing which shows the 1st step of the parting process in this invention. 本発明における分断加工工程の第二段階を示す説明図。Explanatory drawing which shows the 2nd step of the parting process in this invention. 分断予定ラインの形状の一例を示す平面図。The top view which shows an example of the shape of a dividing line. COレーザビームによる分断時の割れの発生を説明するための平面図。Plan view for explaining the occurrence of cracking during cutting by CO 2 laser beam. 図7で示した分断予定ラインでの亀裂の発生を説明するための平面図。The top view for demonstrating generation | occurrence | production of the crack in the parting plan line shown in FIG.

以下において、本発明の詳細を図に示した実施例に基づき説明する。
図1は本発明に係るスクライブ装置(分断装置)Aを示す図である。
スクライブ装置Aには、左右の支柱1、1にX方向に沿ったガイド2を備えた水平なビーム(横梁)3が設けられている。このビーム3のガイド2には、収差レーザビーム発光部材4を備えたスクライブヘッド5と、分断用レーザビーム発光部材6および冷却部材(冷却媒体)7を備えたスクライブヘッド8とがモータM1によりX方向に移動できるように取り付けられている。加工対象となる脆性材料基板Wを載置して吸着保持するテーブル9は、縦軸を支点とする回動機構10を介して台盤11上に保持されており、台盤11は、モータM2によって駆動するスクリューネジ12によってY方向(図1における前後方向)に移動できるように形成されている。なお、本実施例では、収差レーザビーム発光部材4と分断用レーザビーム発光部材6とは個別のスクライブヘッド5、8に振り分けて取り付けられているが、共通のスクライブヘッドに取り付けるようにしてもよい。
The details of the present invention will be described below based on the embodiments shown in the drawings.
FIG. 1 is a view showing a scribing device (cutting device) A according to the present invention.
The scribing device A is provided with a horizontal beam (lateral beam) 3 provided with guides 2 along the X direction on the left and right columns 1, 1. A scribe head 5 provided with an aberration laser beam emitting member 4 and a scribe head 8 provided with a dividing laser beam emitting member 6 and a cooling member (cooling medium) 7 are arranged on the guide 2 of the beam 3 by a motor M1. It is attached so that it can move in the direction. A table 9 on which the brittle material substrate W to be processed is placed and sucked and held is held on a base plate 11 via a rotation mechanism 10 having a vertical axis as a fulcrum, and the base plate 11 is a motor M2. It is formed so that it can move in the Y direction (the front-rear direction in FIG. 1) by the screw 12 driven by. In this embodiment, the aberration laser beam emitting member 4 and the dividing laser beam emitting member 6 are separately attached to the individual scribe heads 5 and 8, but they may be attached to a common scribe head. .

スクライブヘッド5に取り付けられた収差レーザビーム発光部材4は、図2に示すように、パルス幅(パルス持続時間)が100ピコ秒以下、好ましくは50ピコ秒以下(通常は1ピコ秒以上)、ここでは15ピコ秒のパルスレーザビームを出射する光源4aと、この光源4aから発振されたパルスレーザビームを分割されたバースト列の集合として出射させる光変調器4bと、この光変調器4bから出射されたレーザビームL1に収差を生じさせる収差生成レンズ4cとを備える。
なお、光源4aには波長0.7〜2.5μmの近赤外レーザを使用することができる。
また、パルスレーザビームのバースト列を出射させる光変調器4bについては、例えば特表2012−515450号公報に開示されており、ここでは公知の光変調器を利用してパルスレーザビームのバースト列を出射するものとし、詳細については説明を省略する。
As shown in FIG. 2, the aberration laser beam emitting member 4 attached to the scribe head 5 has a pulse width (pulse duration) of 100 picoseconds or less, preferably 50 picoseconds or less (usually 1 picosecond or more), Here, a light source 4a that emits a pulse laser beam of 15 picoseconds, an optical modulator 4b that emits a pulse laser beam oscillated from the light source 4a as a set of divided burst trains, and an output from the optical modulator 4b. And an aberration generation lens 4c that causes aberration in the laser beam L1.
Note that a near-infrared laser having a wavelength of 0.7 to 2.5 μm can be used as the light source 4a.
An optical modulator 4b that emits a burst sequence of a pulse laser beam is disclosed in, for example, Japanese Translation of PCT International Publication No. 2012-515450. Here, a burst sequence of a pulse laser beam is generated using a known optical modulator. It is assumed that the light is emitted, and a detailed description thereof is omitted.

光変調器4bから出射されたレーザビームL1に収差を生じさせるために用いる収差生成レンズ4cは、特に限定されるものではないが、ここでは焦点を光軸方向に分散させ、通過したレーザビームL1を軸方向にぼやけた焦点を結ぶように集束させて収差を生じさせる平凸レンズを利用している。この平凸レンズを通過したレーザビームL1は、焦点が分散した収差レーザビームL2となる。レーザビームL1を平凸レンズの平面側から入射させることによって、凸面側から収差レーザビームL2を出射させることができる。   The aberration generation lens 4c used for causing aberration in the laser beam L1 emitted from the optical modulator 4b is not particularly limited, but here, the focal point is dispersed in the optical axis direction and the laser beam L1 that has passed therethrough is passed. A plano-convex lens is used in which the lens is focused so as to form a blurred focus in the axial direction to cause aberration. The laser beam L1 that has passed through the plano-convex lens becomes an aberration laser beam L2 having a dispersed focus. By making the laser beam L1 incident from the plane side of the plano-convex lens, the aberration laser beam L2 can be emitted from the convex surface side.

パルスレーザビームのバースト列から生成された収差レーザビームL2は、図3(a)に示すように、収差生成レンズ4cで集束させることによりレーザエネルギーを各焦点部fで蓄積させた狭くて長い高エネルギー分布領域Fを形成することができる。この高エネルギー分布領域Fを模式的に拡大した図を図3(b)に示す。このような高エネルギー分布領域Fの形成によって、加工対象物である脆性材料基板Wとして、例えばソーダガラス基板の表面に照射したときに、加工対象基板Wの被照射面から内部深くまで強度の弱くなった改質層を加工することができる。   As shown in FIG. 3A, the aberration laser beam L2 generated from the burst sequence of the pulsed laser beam is focused by the aberration generation lens 4c, so that the laser energy is accumulated at each focal point f, and is narrow and long. An energy distribution region F can be formed. FIG. 3B schematically shows an enlarged view of the high energy distribution region F. By forming such a high energy distribution region F, when the surface of a soda glass substrate, for example, is irradiated as the brittle material substrate W that is a processing target, the strength decreases from the irradiated surface of the processing target substrate W to the deep inside. The modified layer can be processed.

もう一方のスクライブヘッド8に取り付けられた分断用レーザビーム発光部材6から出射される分断用レーザビームL3(図6参照)には、加熱による圧縮力によって強度の弱くなった改質層を完全分断することのできるレーザビームが用いられる。本実施例では、この分断用レーザビームL3として波長10.6μmのCOレーザビームを使用した。なお、COレーザビームに代えて、波長0.7〜10μmのIRレーザビーム等を用いることもできる。また、冷却部材7から噴射される冷媒として、冷却エアや噴霧状の水などを用いることができる。 In the cutting laser beam L3 (see FIG. 6) emitted from the cutting laser beam emitting member 6 attached to the other scribe head 8, the modified layer whose strength has been weakened by the compressive force due to heating is completely cut. A laser beam that can be used is used. In the present embodiment, a CO 2 laser beam having a wavelength of 10.6 μm was used as the dividing laser beam L3. In place of the CO 2 laser beam, an IR laser beam having a wavelength of 0.7 to 10 μm can also be used. Further, as the refrigerant injected from the cooling member 7, cooling air, sprayed water, or the like can be used.

次に、上記のスクライブ装置Aを用いた本発明に係る脆性材料基板Wの分断方法について、図1〜6を参照しつつ以下に説明する。本実施例では、加工対象となる脆性材料基板Wとして、厚み1.8mmのソーダガラス基板を用いた。   Next, a method for dividing the brittle material substrate W according to the present invention using the scribing apparatus A will be described below with reference to FIGS. In this example, a soda glass substrate having a thickness of 1.8 mm was used as the brittle material substrate W to be processed.

まず、図5、6に示すように、テーブル9上に基板Wを載置し、収差レーザビーム発光部材4から出射される収差レーザビームL2を基板Wに向かって照射しながら、スクライブヘッド5とガイド2による収差レーザビーム発光部材移動機構により基板Wの分断予定ラインSに沿って移動させる。このとき、収差レーザビームL2の集束部における高エネルギー分布領域Fが基板Wの厚みの中間位置となるようにする。これにより、基板Wの被照射面から内部の深くまで、分断予定ラインSに沿って改質層(通常は、強度が弱くなった改質層)を加工することができる。   First, as shown in FIGS. 5 and 6, the substrate W is placed on the table 9, and the aberration laser beam L <b> 2 emitted from the aberration laser beam emitting member 4 is irradiated toward the substrate W, and the scribe head 5 and The aberration laser beam emitting member moving mechanism by the guide 2 moves the substrate W along the planned cutting line S. At this time, the high energy distribution region F in the converging portion of the aberration laser beam L2 is set to an intermediate position of the thickness of the substrate W. As a result, the modified layer (usually, the modified layer whose strength has become weak) can be processed along the planned dividing line S from the irradiated surface of the substrate W to the deep inside.

ここで、バーストを含む収差レーザビームL2(パルスレーザビームのバースト列)の好ましい実施条件の一例を下記に示す。

レーザ出力 : 19.4W
繰り返し周波数 : 32.5kHz
パルス幅 : 15ピコ秒
パルス間隔(レーザパルスの基板上での照射スポットの照射間隔): 4μm
バースト : 4パルス
パルスエネルギー : 155μJ/1バースト
走査速度 : 130mm/s

なお、加工深さや加工状態は、上記したレーザ出力、繰り返し周波数、パルス幅、バースト数やパルス間隔、収差等の調整により容易にコントロールすることができる。
Here, an example of a preferable implementation condition of the aberration laser beam L2 including a burst (burst train of pulse laser beams) is shown below.

Laser output: 19.4W
Repetition frequency: 32.5 kHz
Pulse width: 15 picoseconds Pulse interval (laser pulse irradiation interval on the substrate): 4 μm
Burst: 4 pulses Pulse energy: 155 μJ / 1 burst Scanning speed: 130 mm / s

The processing depth and processing state can be easily controlled by adjusting the laser output, repetition frequency, pulse width, burst number, pulse interval, aberration, and the like described above.

図4はパルスレーザビームのバースト列を示す模式図である。1つ1つのパルスレーザビームが分割された4つの微細パルスpが形成され、これが繰り返し周波数ごとに間欠的に照射される。   FIG. 4 is a schematic diagram showing a burst train of pulse laser beams. Four fine pulses p obtained by dividing each pulse laser beam are formed, and this is intermittently irradiated for each repetition frequency.

上記のようにして、基板Wに対し分断予定ラインSに沿って強度の弱くなった改質層を加工した後、図6(a)に示すように、改質層を加工した分断予定ラインSに向かって分断用レーザビーム発光部材6からCOレーザビームL3を照射しながら、スクライブヘッド8並びにガイド2を含む分断用レーザビーム発光部材移動機構により分断予定ラインSに沿って移動させる。同時に、COレーザビームL3の照射ポイントPの進行方向前方側に向かって冷却部材7から冷媒を噴射する。図6(b)は、基板Wに対するCOレーザビームL3の照射ポイントPの部位を上面から見た平面図であって、冷却部材7による冷却領域を符号Bで示す。冷却領域Bは冷媒の飛散によってレーザビームの照射ポイントPの進行方向前方側を冷却する(好ましくは照射ポイントPの進行方向前方側を中心に照射ポイントPの周辺を取り巻く)ように形成される。 As described above, after processing the modified layer whose strength has decreased along the planned division line S with respect to the substrate W, as shown in FIG. 6A, the planned divided line S obtained by processing the modified layer. While being irradiated with the CO 2 laser beam L3 from the dividing laser beam light emitting member 6 toward the direction, it is moved along the scheduled cutting line S by the dividing laser beam light emitting member moving mechanism including the scribe head 8 and the guide 2. At the same time, the coolant is injected from the cooling member 7 toward the front side in the traveling direction of the irradiation point P of the CO 2 laser beam L3. FIG. 6B is a plan view of a portion of the irradiation point P of the CO 2 laser beam L3 on the substrate W as viewed from above, and a cooling region by the cooling member 7 is indicated by a symbol B. The cooling region B is formed so as to cool the front side in the traveling direction of the irradiation point P of the laser beam (preferably surrounding the periphery of the irradiation point P around the front side in the traveling direction of the irradiation point P) by scattering of the coolant.

このようにして、改質層を加工した分断予定ラインSに沿ってCOレーザビームL3を照射しながら移動させることにより、熱応力によって基板Wが分断予定ラインSに沿って完全分断される。このとき、COレーザビームL3の照射ポイントPの進行方向前方側(好ましくは照射ポイントPの進行方向前方側を中心に照射ポイントPの周辺)が冷却されるので、照射ポイントPの部位で生じる熱応力、すなわち、加熱による圧縮応力と、冷却による引張応力を効果的に高めることができ、これにより、先に図8で述べたような、レーザ進行方向前方側での割れKを生じさせることなく、照射ポイントPの部位のみを効果的に分断することができる。したがって、例えば、図9(a)に示すように分断予定ラインSが、角部に円弧S1を有する四角形状の場合や、図9(b)に示すように直線状の分断予定ラインSの中間に円弧状凸部S2を有する場合であっても、円弧の接線方向に先走る亀裂K1や、凸部S2の底辺を横切る亀裂K2を生じさせることなく、分断予定ラインSに沿ってきれいに分断することができる。
また、COレーザビームL3の照射ポイントPの進行方向前方側(好ましくは照射ポイントPの進行方向前方側を中心にその周辺)を冷却することによって熱応力を高めることができるので、COレーザビームL3の出力を下げても分断することが可能となり、消費電力を軽減することができる。
In this way, the substrate W is completely divided along the planned division line S by the thermal stress by moving the modified layer along the planned division line S while being irradiated with the CO 2 laser beam L3. At this time, the front side in the traveling direction of the irradiation point P of the CO 2 laser beam L3 (preferably the periphery of the irradiation point P around the front side in the traveling direction of the irradiation point P) is cooled. Thermal stress, that is, compressive stress due to heating, and tensile stress due to cooling can be effectively increased, and as a result, the crack K on the front side in the laser traveling direction as described above with reference to FIG. 8 is generated. In addition, only the portion of the irradiation point P can be effectively divided. Therefore, for example, as shown in FIG. 9A, when the planned dividing line S has a quadrangular shape having an arc S1 at the corner, or in the middle of the straight divided scheduled line S as shown in FIG. 9B. Even if it has a circular arc-shaped convex part S2, it is possible to divide neatly along the planned cutting line S without causing a crack K1 that runs ahead in the tangential direction of the circular arc or a crack K2 that crosses the bottom of the convex part S2. Can do.
Further, since the thermal stress can be increased by cooling the front side in the traveling direction of the irradiation point P of the CO 2 laser beam L3 (preferably around the front side in the traveling direction of the irradiation point P), the CO 2 laser can be increased. Even if the output of the beam L3 is lowered, it can be divided and the power consumption can be reduced.

以上、本発明の代表的な実施形態について説明したが、本発明は必ずしも上記の実施形態のみに特定されるものでない。例えば、上記実施例では、収差レーザビームの照射によって全ての分断予定ラインに改質層を形成した後、COレーザビームなどの分断用レーザビームを改質層に照射して分断するようにしたが、収差レーザビームの照射に追随して分断用レーザビームを照射するようにしてもよい。その他本発明では、本発明の目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正および変更することが可能である。 As mentioned above, although typical embodiment of this invention was described, this invention is not necessarily limited only to said embodiment. For example, in the above-described embodiment, after the modified layer is formed on all the planned dividing lines by the irradiation of the aberration laser beam, the modified layer is irradiated with a cutting laser beam such as a CO 2 laser beam to be divided. However, the cutting laser beam may be irradiated following the irradiation of the aberration laser beam. In the present invention, the object of the present invention can be achieved and modified and changed as appropriate without departing from the scope of the claims.

本発明は、ガラス基板等の脆性材料基板を分断する際に利用することができる。   The present invention can be used when a brittle material substrate such as a glass substrate is cut.

A スクライブ装置(分断装置)
B 冷却領域
F 高エネルギー分布領域
K 割れ
L1 レーザビーム
L2 収差レーザビーム
L3 分断用レーザビーム(COレーザビーム)
P 分断用レーザビームの照射ポイント
S 分断予定ライン
W 脆性材料基板
2 ガイド
4 収差レーザビーム発光部材
4a 光源
4b 光変調器
4c 収差生成レンズ
5 スクライブヘッド
6 分断用レーザビーム発光部材
7 冷却部材(冷却媒体)
8 スクライブヘッド
9 テーブル
A scribe device (cutting device)
B Cooling region F High energy distribution region K Crack L1 Laser beam L2 Aberration laser beam L3 Laser beam for cutting (CO 2 laser beam)
P Laser beam irradiation point S Scheduled line W Brittle material substrate 2 Guide 4 Aberration laser beam light emitting member 4a Light source 4b Optical modulator 4c Aberration generating lens 5 Scribe head 6 Laser beam light emitting member for cutting 7 Cooling member (cooling medium) )
8 Scribe head 9 Table

Claims (6)

脆性材料基板の分断方法であって、
パルスレーザビームのバーストを含むレーザビームを、収差を生じさせる収差生成レンズを透過させて収差レーザビームに生成し、
前記収差レーザビームを脆性材料基板の分断予定ラインに沿ってスキャンして改質層を形成し、
この改質層に沿って分断用レーザビームを照射するとともに、これに追随して当該分断用レーザビームの照射ポイントの進行方向前方側を冷却することにより前記脆性材料基板を分断予定ラインに沿って分断することを特徴とする脆性材料基板の分断方法。
A method for dividing a brittle material substrate,
A laser beam including a burst of pulsed laser beam is transmitted through an aberration generating lens that generates aberration, and is generated into an aberration laser beam.
The aberration laser beam is scanned along the planned cutting line of the brittle material substrate to form a modified layer,
Irradiating the cutting laser beam along the modified layer, and following this, the front side in the traveling direction of the irradiation point of the cutting laser beam is cooled to cut the brittle material substrate along the planned cutting line. A method for dividing a brittle material substrate, characterized by dividing.
前記分断用レーザビームの照射ポイントの進行方向前方側を含む周辺を冷却媒体の吹き付けによって冷却する請求項1に記載の脆性材料基板の分断方法。   The method for dividing a brittle material substrate according to claim 1, wherein the periphery including the front side in the traveling direction of the irradiation point of the laser beam for division is cooled by spraying a cooling medium. 前記収差レーザビームの光源が波長0.7〜2.5μmの近赤外レーザであり、かつ、パルス幅が100ピコ秒以下のレーザビームのバーストを用いる請求項1または2に記載の脆性材料基板の分断方法。   3. The brittle material substrate according to claim 1, wherein a light source of the aberration laser beam is a near infrared laser having a wavelength of 0.7 to 2.5 μm, and a burst of the laser beam having a pulse width of 100 picoseconds or less is used. How to divide 前記分断用レーザビームが、波長10.6μmのCOレーザビームである請求項1〜3のいずれかに記載の脆性材料基板の分断方法。 The method for dividing a brittle material substrate according to claim 1, wherein the dividing laser beam is a CO 2 laser beam having a wavelength of 10.6 μm. 脆性材料基板を載置するテーブルと、
光源から出射されたパルスレーザビームのバーストを含んだレーザビームを、収差を生じさせる収差生成レンズを介して収差レーザビームに生成する収差レーザビーム発光部材と、
前記収差レーザビーム発光部材を、前記脆性材料基板の分断予定ラインに沿って相対的に移動させる収差レーザビーム発光部材移動機構と、
前記収差レーザビームが照射された前記分断予定ラインに沿って分断用レーザビームを照射する分断用レーザビーム発光部材と、
前記分断用レーザビームの照射ポイントのレーザビーム進行方向前方側を冷却する冷媒噴射部材と、
前記分断用レーザビーム発光部材並びに冷媒噴射部材を前記脆性材料基板の分断予定ラインに沿って相対的に移動させる分断用レーザビーム発光部材移動機構とからなる脆性材料基板の分断装置。
A table on which a brittle material substrate is placed;
An aberration laser beam emitting member that generates a laser beam including a burst of a pulsed laser beam emitted from a light source into an aberration laser beam via an aberration generation lens that generates aberration;
An aberration laser beam emitting member moving mechanism for relatively moving the aberration laser beam emitting member along a line to be cut of the brittle material substrate;
A laser beam emitting member for cutting that irradiates a laser beam for cutting along the planned cutting line irradiated with the aberration laser beam;
A coolant injection member that cools the laser beam traveling direction front side of the irradiation point of the dividing laser beam;
A brittle material substrate cutting apparatus comprising: a cutting laser beam light emitting member moving mechanism for relatively moving the cutting laser beam light emitting member and the refrigerant injection member along a planned cutting line of the brittle material substrate.
前記冷媒噴射部材が前記分断用レーザビームの照射ポイントのレーザビーム進行方向前方側を含む周辺を冷却する請求項5に記載の脆性材料基板の分断装置。   The brittle material substrate cutting device according to claim 5, wherein the coolant injection member cools a periphery including a front side in a laser beam traveling direction of an irradiation point of the cutting laser beam.
JP2016189937A 2016-09-28 2016-09-28 Brittle material substrate fragmentation method and fragmentation device Active JP6775822B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016189937A JP6775822B2 (en) 2016-09-28 2016-09-28 Brittle material substrate fragmentation method and fragmentation device
TW106114595A TWI716589B (en) 2016-09-28 2017-05-03 Breaking method and breaking device of brittle material substrate
KR1020170058393A KR102472644B1 (en) 2016-09-28 2017-05-11 Method and apparatus of dividing brittleness material substrate
CN201710332472.0A CN107866637B (en) 2016-09-28 2017-05-11 Method and apparatus for breaking brittle material substrate
JP2017243712A JP6944703B2 (en) 2016-09-28 2017-12-20 Method for forming a modified layer of a brittle material substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189937A JP6775822B2 (en) 2016-09-28 2016-09-28 Brittle material substrate fragmentation method and fragmentation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017243712A Division JP6944703B2 (en) 2016-09-28 2017-12-20 Method for forming a modified layer of a brittle material substrate

Publications (2)

Publication Number Publication Date
JP2018052770A true JP2018052770A (en) 2018-04-05
JP6775822B2 JP6775822B2 (en) 2020-10-28

Family

ID=61761497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189937A Active JP6775822B2 (en) 2016-09-28 2016-09-28 Brittle material substrate fragmentation method and fragmentation device

Country Status (4)

Country Link
JP (1) JP6775822B2 (en)
KR (1) KR102472644B1 (en)
CN (1) CN107866637B (en)
TW (1) TWI716589B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197858A (en) * 2018-05-11 2019-11-14 株式会社ディスコ Chip manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908780A (en) * 2019-05-10 2020-11-10 塔工程有限公司 Scribing device and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100590A (en) * 2000-09-22 2002-04-05 Sony Corp Splitting device and method therefor
JP2009034982A (en) * 2007-07-31 2009-02-19 National Applied Research Lab Cutting device for cutting hard-brittle material
JP2013136067A (en) * 2011-12-28 2013-07-11 Mitsuboshi Diamond Industrial Co Ltd Splitting device and method for splitting workpiece
JP2015037808A (en) * 2013-08-02 2015-02-26 ロフィン−ジナール テクノロジーズ インコーポレイテッド Method and device for executing laser filamentation in transparent material
JP2015171955A (en) * 2012-07-11 2015-10-01 旭硝子株式会社 Method for manufacturing curved plate
JP2016515944A (en) * 2013-03-21 2016-06-02 コーニング レーザー テクノロジーズ ゲーエムベーハーCORNING LASER TECHNOLOGIES GmbH Apparatus and method for cutting a contour shape from a flat substrate using a laser

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408805B2 (en) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
JP4133812B2 (en) * 2001-07-18 2008-08-13 三星ダイヤモンド工業株式会社 Scribing apparatus and scribing method for brittle material substrate
JP5060880B2 (en) * 2007-09-11 2012-10-31 三星ダイヤモンド工業株式会社 Fragment material substrate cutting apparatus and method
JP2010023071A (en) * 2008-07-18 2010-02-04 Mitsuboshi Diamond Industrial Co Ltd Method for machining terminal of laminated substrate
AU2011279374A1 (en) 2010-07-12 2013-02-07 Filaser Usa Llc Method of material processing by laser filamentation
JP5104919B2 (en) * 2010-07-23 2012-12-19 三星ダイヤモンド工業株式会社 Laser processing apparatus, workpiece processing method, and workpiece dividing method
JP5361916B2 (en) * 2011-02-04 2013-12-04 三星ダイヤモンド工業株式会社 Laser scribing method
RU2479496C2 (en) * 2011-03-25 2013-04-20 Учреждение образования "Гомельский государственный университет имени Франциска Скорины" Method of separating fragile nonmetallic materials by thermo elastic strain
JP5879106B2 (en) * 2011-11-25 2016-03-08 三星ダイヤモンド工業株式会社 Method for scribing a brittle material substrate
JP2014104484A (en) 2012-11-27 2014-06-09 Disco Abrasive Syst Ltd Laser processing apparatus
JP6504686B2 (en) * 2013-09-20 2019-04-24 株式会社東京精密 Laser dicing apparatus and laser dicing method
US11053156B2 (en) * 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US10252507B2 (en) * 2013-11-19 2019-04-09 Rofin-Sinar Technologies Llc Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy
CN105436712B (en) * 2015-12-07 2017-12-12 武汉铱科赛科技有限公司 The fragility splinter method and system of a kind of brittle semiconductor materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100590A (en) * 2000-09-22 2002-04-05 Sony Corp Splitting device and method therefor
JP2009034982A (en) * 2007-07-31 2009-02-19 National Applied Research Lab Cutting device for cutting hard-brittle material
JP2013136067A (en) * 2011-12-28 2013-07-11 Mitsuboshi Diamond Industrial Co Ltd Splitting device and method for splitting workpiece
JP2015171955A (en) * 2012-07-11 2015-10-01 旭硝子株式会社 Method for manufacturing curved plate
JP2016515944A (en) * 2013-03-21 2016-06-02 コーニング レーザー テクノロジーズ ゲーエムベーハーCORNING LASER TECHNOLOGIES GmbH Apparatus and method for cutting a contour shape from a flat substrate using a laser
JP2015037808A (en) * 2013-08-02 2015-02-26 ロフィン−ジナール テクノロジーズ インコーポレイテッド Method and device for executing laser filamentation in transparent material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197858A (en) * 2018-05-11 2019-11-14 株式会社ディスコ Chip manufacturing method
JP7139037B2 (en) 2018-05-11 2022-09-20 株式会社ディスコ Chip manufacturing method

Also Published As

Publication number Publication date
CN107866637A (en) 2018-04-03
KR102472644B1 (en) 2022-11-29
CN107866637B (en) 2021-07-16
JP6775822B2 (en) 2020-10-28
KR20180035111A (en) 2018-04-05
TW201813752A (en) 2018-04-16
TWI716589B (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP5193326B2 (en) Substrate processing apparatus and substrate processing method
US10074565B2 (en) Method of laser processing for substrate cleaving or dicing through forming “spike-like” shaped damage structures
KR102292611B1 (en) Method of Laser Cutting a Sapphire Substrate by Lasers and an Article Comprising Sapphire with Edge Having a Series of Defects
TWI587959B (en) Lamination method of substrate and processing device
US20150151380A1 (en) Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
JP2005288503A (en) Laser beam machining method
JP2005179154A (en) Method and apparatus for fracturing brittle material
JP6888809B2 (en) Brittle material substrate with metal film Dividing method and dividing device
JP6888808B2 (en) Brittle material substrate with resin layer Dividing method and dividing device
WO2012063348A1 (en) Laser processing method and device
CN104944756A (en) Laser machining strengthened glass
JP2010138046A (en) Method and device for working material to be cut
JP6744624B2 (en) Method and apparatus for cutting tubular brittle member
TWI716589B (en) Breaking method and breaking device of brittle material substrate
JP2006159747A (en) Laser beam machining method and its apparatus
JP6944703B2 (en) Method for forming a modified layer of a brittle material substrate
JP5560096B2 (en) Laser processing method
JP2014033218A (en) Laser cutting method and laser processing apparatus
JP5923765B2 (en) Laser processing equipment for glass substrates
JP6787617B2 (en) Method and device for dividing tubular brittle members
JP2015057296A (en) Laser processing apparatus
KR20150127844A (en) Substrate cutting apparatus and method
KR20130076440A (en) Laser cutting apparatus and laser cutting method
JP2015123482A (en) Laser dicing device and laser dicing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6775822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250