JP2018048587A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2018048587A
JP2018048587A JP2016184253A JP2016184253A JP2018048587A JP 2018048587 A JP2018048587 A JP 2018048587A JP 2016184253 A JP2016184253 A JP 2016184253A JP 2016184253 A JP2016184253 A JP 2016184253A JP 2018048587 A JP2018048587 A JP 2018048587A
Authority
JP
Japan
Prior art keywords
flow path
valve seat
combustion engine
internal combustion
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016184253A
Other languages
English (en)
Inventor
貴士 天野
Takashi Amano
貴士 天野
輝 小川
Teru Ogawa
輝 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016184253A priority Critical patent/JP2018048587A/ja
Priority to EP17182812.2A priority patent/EP3299600A1/en
Priority to US15/657,779 priority patent/US20180080577A1/en
Publication of JP2018048587A publication Critical patent/JP2018048587A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • F16K49/005Circulation means for a separate heat transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

【課題】内燃機関の燃焼室を冷却する冷却性能を更に高めること。
【解決手段】内燃機関は、シリンダヘッドとシリンダライナとピストンによって囲まれた燃焼室を具備する。シリンダヘッドは、燃焼室に隣接するバルブシートを備える。シリンダライナの筒形状の中心軸に平行な方向から見たとき、バルブシートは、当該中心軸を含む燃焼室の中央領域よりも外側に配置されている。バルブシートは、冷却媒体の流路を内部に有する。流路の延在方向に直交する面における流路の断面積を考えたとき、断面積が小さい第1位置と、断面積が大きい第2位置とが存在する。第2位置は、第1位置と比較して、中央領域により近い。
【選択図】図4

Description

本発明は、バルブシートを備える内燃機関に関する。
内燃機関におけるノッキングへの対策として、燃焼室を冷却することが考えられる。従来、燃焼室を冷却するための構造として、内燃機関のシリンダブロック及びシリンダヘッド内に設けられたウォータージャケットが知られている。
特許文献1は、内燃機関用のバルブシートを開示している。そのバルブシートの内部には、中空室が形成されている。中空室には冷却媒体が供給され、それによりバルブシートが冷却される。高温状態にさらされるバルブシートを冷却することにより、バルブシートの高温腐食を抑制し、バルブシートの脱落を防ぐことが可能となる。尚、特許文献1には、燃焼室を冷却するという観点は記載されていない。
実開昭58−111302号公報
燃焼室を冷却する冷却性能を更に高めることが望まれている。従来のウォータージャケットの冷却性能を高めるためには、ウォーターポンプの出力を増大させること、ウォーターポンプの数を増やすこと、ラジエータを大型化すること、等が必要である。しかし、これらのことは、内燃機関及び車両のサイズ及び重量の増大を招く。
本発明の1つの目的は、内燃機関の燃焼室を冷却する冷却性能を更に高めることができる新たな技術を提供することにある。
第1の発明は、内燃機関を提供する。
内燃機関は、シリンダヘッドとシリンダライナとピストンによって囲まれた燃焼室を具備する。
シリンダヘッドは、燃焼室に隣接するバルブシートを備える。
シリンダライナの筒形状の中心軸に平行な方向から見たとき、バルブシートは、中心軸を含む燃焼室の中央領域よりも外側に配置されている。
バルブシートは、冷却媒体の流路を内部に有する。
流路の延在方向に直交する面における流路の断面積を考えたとき、断面積が第1断面積である第1位置と、断面積が第1断面積より大きい第2断面積である第2位置とが存在する。
第2位置は、第1位置と比較して、中央領域により近い。
第2の発明は、第1の発明において、次の特徴を有する。
バルブシートは、
流路に冷却媒体を注入するための注入孔と、
流路から冷却媒体を排出するための排出孔と
を有する。
流路は、環状であり、注入孔から排出孔に至る外側流路と内側流路を含む。
外側流路は、第1位置を通る。
内側流路は、第2位置を通り、外側流路と比較して中央領域により近い。
第3の発明は、第2の発明において、次の特徴を有する。
注入孔から注入された冷却媒体は、外側流路よりも内側流路の方により多く分配される。
第4の発明は、第1から第3の発明のいずれかにおいて、次の特徴を有する。
流路の断面積は、中央領域に近づくにつれて大きくなる。
第5の発明は、第1から第3の発明のいずれかにおいて、次の特徴を有する。
中心軸に平行な方向から見たとき、燃焼室における温度分布のピーク位置は、中央領域に含まれる。
流路の断面積は、ピーク位置に最も近い位置において最大となる。
第6の発明は、第1から第3の発明のいずれかにおいて、次の特徴を有する。
中心軸に平行な方向から見たとき、シリンダヘッドが有する点火プラグは中央領域内に位置している。
流路の断面積は、点火プラグに最も近い位置において最大となる。
第7の発明は、第1から第3の発明のいずれかにおいて、次の特徴を有する。
流路の断面積は、中心軸に最も近い位置において最大となる。
第8の発明は、第1から第7の発明のいずれかにおいて、次の特徴を有する。
バルブシートは、流路内に形成された放熱フィンを備える。
第9の発明は、第8の発明において、次の特徴を有する。
単位体積あたりの放熱フィンの表面積は、第1位置よりも第2位置においてより大きい。
第10の発明は、第8又は第9の発明において、次の特徴を有する。
単位体積あたりの放熱フィンの表面積は、燃焼室に近づくにつれて大きくなる。
第11の発明は、第1から第10の発明のいずれかにおいて、次の特徴を有する。
流路は、少なくとも一部の範囲において層状になっている。
第12の発明は、第1から第11の発明のいずれかにおいて、次の特徴を有する。
バルブシートの数は複数である。
冷却媒体の供給は、複数のバルブシートのそれぞれについて独立に制御される。
第13の発明は、第1から第11の発明のいずれかにおいて、次の特徴を有する。
バルブシートの数は複数である。
複数のバルブシートは、第1バルブシートと第2バルブシートを含む。
シリンダヘッドは、第1バルブシートの流路と第2バルブシートの流路との間をつなぐ接続流路を更に備える。
第1バルブシートと第2バルブシートの一方の流路に導入された冷却媒体は、接続流路を介して、第1バルブシートと第2バルブシートの他方の流路に供給される。
第14の発明は、第13の発明において、次の特徴を有する。
第1バルブシートと第2バルブシートは共に、吸気側の吸気バルブシート、あるいは、排気側の排気バルブシートである。
第15の発明は、第13の発明において、次の特徴を有する。
第1バルブシートは、吸気側の吸気バルブシートである。
第2バルブシートは、排気側の排気バルブシートである。
第16の発明は、第15の発明において、次の特徴を有する。
吸気バルブシートの流路に導入された冷却媒体が、接続流路を介して、排気バルブシートの流路に供給される。
第17の発明は、第15の発明において、次の特徴を有する。
吸気側の暖機が要求される場合、排気バルブシートの流路に導入された冷却媒体が、接続流路を介して、吸気バルブシートの流路に供給される。
吸気側の暖機が要求されない場合、吸気バルブシートの流路に導入された冷却媒体が、接続流路を介して、排気バルブシートの流路に供給される。
第1の発明によれば、バルブシートが冷却媒体の流路を有している。従って、従来のウォータージャケットに加えて、バルブシートを新たな冷却手段として利用することが可能となる。これにより、燃焼室を冷却するためのトータルの冷却性能が増加する。特に、バルブシートは、燃焼室に隣接しており、燃焼室を冷却する効率の観点から優れている。燃焼室に隣接するバルブシートを冷却手段として利用することにより、燃焼室を効率的に冷却することが可能となる。
更に、第1の発明によれば、流路の断面積が大きい部分が、燃焼室の中央領域の比較的近くに位置している。燃焼室の中央領域の温度は、外側領域の温度よりも高くなる傾向にある。一方、流路の断面積が大きい部分の冷却能力は高い。そのような高い冷却能力を有する部分を中央領域の近くに配置することにより、高温となる中央領域を効果的に冷却することが可能となる。
第2、第3の発明によれば、冷却媒体は、断面積の小さい外側流路よりも、断面積の大きい内側流路の方を通りやすい。つまり、注入孔から注入された冷却媒体は、外側流路よりも内側流路の方により多く分配される。よって、流路に供給可能な冷却媒体の総量が一定であっても、比較的多くの冷却媒体を内側流路の方に優先的に分配することができる。これにより、高温となる中央領域を効率的に冷却することができる。一方、外側流路にも少量ながらも冷却媒体が供給されるため、燃焼室の外側領域も冷却することができる。すなわち、限られた冷却資源の中で、燃焼室内の温度分布に即した効率的な冷却が可能となる。
第4の発明によれば、流路の断面積は、中央領域に近づくにつれて大きくなる。この場合、燃焼室内の温度分布に即した冷却が可能となる。
第5の発明によれば、流路の断面積は、温度分布のピーク位置に最も近い位置において最大となる。これにより、燃焼室内の実際の温度分布に即したより効率的な冷却が可能となる。
第6の発明によれば、流路の断面積は、点火プラグに最も近い位置において最大となる。これにより、燃焼室に加えて、点火プラグも効果的に冷却することが可能となる。
第7の発明によれば、流路の断面積は、中心軸に最も近い位置において最大となる。この場合、バルブシートの配置がシンプルであるため、内燃機関の設計及び組み立てが簡易になる。
第8から第10の発明によれば、流路内に放熱フィンが配置される。これにより、冷却性能が更に向上する。
第11の発明によれば、流路は、少なくとも一部の範囲において層状になっている。これにより、流線の偏りや冷却媒体のよどみが抑制される。よって、狙い通りの流量を実現しやすく、目標部位を確実に冷却することが可能となる。
第12の発明によれば、冷却媒体の供給は、複数のバルブシートのそれぞれについて独立に制御される。これにより、細やかな冷却が可能となる。
第13から第16の発明によれば、第1、第2バルブシートに対する冷却媒体の供給をまとめて制御することができる。その結果、冷却媒体の供給を制御するシステムを単純化することができる。
第17の発明によれば、吸気側の暖機が要求される場合に、吸気側の温度上昇を促進することができる。
本発明の第1の実施の形態に係る内燃機関の構造例を概略的に示す断面図である。 第1の実施の形態におけるバルブ及びバルブシートの拡大断面図である。 第1の実施の形態における複数のバルブシートの配置の一例を示す平面図である。 第1の実施の形態におけるバルブシートの特徴を説明するための平面図である。 図4中に示される線Pに沿ったバルブシートの断面構造を示す断面図である。 第1の実施の形態におけるバルブシートの流路への冷却媒体の供給を説明するための概念図である。 第1の実施の形態におけるバルブシートの流路への冷却媒体の供給を説明するための概念図である。 第1の実施の形態におけるバルブシートの配置の1つの具体例を説明するための平面図である。 第1の実施の形態におけるバルブシートの配置の他の具体例を説明するための平面図である。 本発明の第2の実施の形態におけるバルブシートの特徴を説明するための平面図である。 図10中に示される線d−dに沿ったバルブシートの断面構造を示す断面図である。 本発明の第3の実施の形態におけるバルブシートの特徴を説明するための平面図である。 図12中に示される線d−dに沿ったバルブシートの断面構造を示す断面図である。 本発明の第4の実施の形態における冷却媒体の供給制御を説明するための概念図である。 本発明の第5の実施の形態における冷却媒体の供給制御を説明するための概念図である。 第5の実施の形態における接続流路近傍の冷却媒体の流れを説明するための概念図である。 第5の実施の形態における接続流路近傍の冷却媒体の流れを説明するための概念図である。 本発明の第6の実施の形態における冷却媒体の供給制御を説明するための概念図である。 本発明の第7の実施の形態における冷却媒体の供給制御を説明するための概念図である。 第7の実施の形態における冷却媒体の供給制御を説明するためのフローチャートである。
添付図面を参照して、本発明の実施の形態を説明する。
<第1の実施の形態>
図1は、本発明の第1の実施の形態に係る内燃機関1の構造例を概略的に示す断面図である。内燃機関1は、主な構成として、シリンダブロック10、シリンダヘッド20、及び燃焼室30を備えている。
シリンダブロック10は、燃焼室30の側壁を形成する筒状のシリンダライナ11を備えている。シリンダライナ11の筒形状の中心軸は、以下「中心軸C」と呼ばれる。また、以下の説明において、中心軸Cに平行な方向は「Z方向」と呼ばれ、Z方向と直交する平面は「XY平面」と呼ばれる。
シリンダライナ11の内部には、シリンダライナ11の内周面に沿ってZ方向に摺動するようにピストン15が設けられている。このピストン15は、燃焼室30の底面を形成している。
シリンダヘッド20は、ピストン15と対向するようにシリンダブロック10上に設置されており、燃焼室30の上面を形成している。つまり、燃焼室30は、シリンダライナ11とピストン15とシリンダヘッド20によって囲まれている。
シリンダヘッド20は、吸気通路21i、排気通路21e、吸気バルブ23i、排気バルブ23e、点火プラグ24、吸気バルブシート25i、及び排気バルブシート25eを備えている。吸気通路21iは、吸気側開口部22iにおいて燃焼室30とつながっている。吸気バルブ23iは、吸気側開口部22iを開閉可能に設けられている。排気通路21eは、排気側開口部22eにおいて燃焼室30とつながっている。排気バルブ23eは、排気側開口部22eを開閉可能に設けられている。点火プラグ24は、例えば、吸気側開口部22iと排気側開口部22eに挟まれた領域に設置されている。
図2は、吸気側の吸気バルブ23i及び吸気バルブシート25iの拡大断面図である。吸気バルブシート25iは、吸気側開口部22iの周りに固定された円環状の部品であり、燃焼室30と隣接している。この吸気バルブシート25iには吸気バルブ23iが着座する。つまり、吸気バルブ23iが吸気側開口部22iを閉じるとき、吸気バルブ23iは吸気バルブシート25iと接触する。これにより、吸気通路21iから燃焼室30への吸気の供給が遮断される。
拡大図示されない排気側も同様である。排気バルブシート25eは、排気側開口部22eの周りに固定された円環状の部品であり、燃焼室30と隣接している。この排気バルブシート25eには排気バルブ23eが着座する。つまり、排気バルブ23eが排気側開口部22eを閉じるとき、排気バルブ23eは排気バルブシート25eと接触する。これにより、燃焼室30から排気通路21eへの排気の排出が遮断される。
以下の説明において、吸気バルブシート25iと排気バルブシート25eを区別する必要がないときは、それらをまとめて「バルブシート25」と呼ぶ場合がある。
図3は、Z方向から見たときの複数のバルブシート25の配置の一例を示すXY平面図である。本例では、単一の燃焼室30に対して2個の吸気バルブ23i及び2個の排気バルブ23eが設けられた4バルブ形式の場合が示されている(但し、バルブ形式はそれに限定されない)。2個の吸気バルブ23iのそれぞれに対し、2個の吸気バルブシート25i1、25i2が配置されている。また、2個の排気バルブ23eのそれぞれに対し、2個の排気バルブシート25e1、25e2が配置されている。
図3に示されるように、複数のバルブシート25(25i1、25i2、25e1、25e2)は、中心軸Cの周りに配置されている。ここで、図3に示されるような燃焼室30の「中央領域CR」を考える。この中央領域CRは、中心軸Cを含み、且つ、複数のバルブシート25によって囲まれた領域である。言い換えれば、中心軸Cを中心として考えたとき、複数のバルブシート25の各々は、中央領域CRよりも径方向外側に配置されている。逆に言えば、中央領域CRは、各バルブシート25の配置位置よりも径方向内側に位置している。
図4は、本実施の形態におけるバルブシート25の特徴を説明するためのXY平面図である。図4では、図3の場合と同様にZ方向から見たときの、1つのバルブシート25及び中央領域CRが示されている。本実施の形態に係るバルブシート25は、その内部に、冷却媒体が流れる流路40(中空部)を有している。より詳細には、円環状のバルブシート25の内部において、流路40は、その円環の周方向に沿って延在するように形成されている。つまり、流路40も円環状に形成されている。但し、流路40は、必ずしも円環状でなくてもよく、部分円環状であってもよい。
ここで、流路40の延在方向に直交する面における流路40の断面積を考える。この断面積は、図4中の線d−dに沿った断面における断面積に相当する。線d−dは、バルブシート25の円環の径方向に平行である。本実施の形態において、流路40の断面積は一様ではない。バルブシート25は、流路40の断面積が大きい部分と小さい部分とを有している。
例えば、図4に示されるような2つの位置A、Bを考える。第1位置Aは中央領域CRから比較的遠く、第2位置Bは中央領域CRに比較的近い。つまり、第2位置Bは、第1位置Aと比較して、中央領域CRにより近い。そして、第2位置Bにおける流路40の断面積(第2断面積)は、第1位置Aにおける流路40の断面積(第1断面積)よりも大きくなっている。例えば、図4に示されるXY平面において、第2位置Bにおける流路40の幅は、第1位置Aにおける流路40の幅よりも大きくなっている。流路40の幅は、中央領域CRに近づくにつれて大きくなってもよい。
図5は、図4中の線Pに沿ったバルブシート25の断面構造を示している。線Pは、流路40に沿って第1位置Aと第2位置Bとの間を結んでいる。図5に示されるように、第2位置Bにおける流路40の厚さは、第1位置Aにおける流路40の厚さよりも大きくなっている。流路40の厚さは、中央領域CRに近づくにつれて大きくなってもよい。
図6は、流路40への冷却媒体の供給を説明するための概念図である。冷却媒体は、例えば水である。バルブシート25は、流路40に冷却媒体を注入するための注入孔41と、流路40から冷却媒体を排出するための排出孔42を有している。また、内燃機関1は、冷却媒体の循環を制御する制御システム100を備えている。制御システム100は、注入孔41を通して冷却媒体を流路40に注入し、また、排出孔42を通して流路40から排出された冷却媒体を受け取る。このような制御システム100としては、例えば、既存のウォータージャケットの制御システムを流用することが考えられる。あるいは、制御システム100は、ウォータージャケットの制御システムから独立していてもよい。
バルブシート25の流路40に冷却媒体を供給することによって、バルブシート25及びその周辺を冷却することができる。つまり、バルブシート25そのものを冷却手段として活用することができる。バルブシート25は燃焼室30に隣接しているため、燃焼室30を冷却する効率の観点からバルブシート25は優れていると言える。つまり、燃焼室30に隣接するバルブシート25を冷却手段として利用することにより、燃焼室30を効率的に冷却することが可能となる。
また、上述の通り、流路40の断面積が大きい部分が、燃焼室30の中央領域CRの比較的近くに位置している。燃焼室30の中央領域CRの温度は、シリンダライナ11により近い外側領域の温度よりも高くなる傾向にある。一方、流路40の断面積が大きくなるほど、流路40に沿った単位長さ当たりの表面積が大きくなり、より効率的に熱を吸収することが可能となる。すなわち、流路40の断面積が大きい部分は、冷却能力が高いと言える。そのような高い冷却能力を有する部分を中央領域CRの近くに配置することにより、高温となる中央領域CRを効果的に冷却することが可能となる。
流路40の断面積は、中央領域CRに近づくにつれて大きくなってもよい。その場合、燃焼室30内の温度分布に即した冷却が可能となる。
更に、本実施の形態によれば、冷却媒体の総量が一定であっても、中央領域CRに近い流路40により多くの冷却媒体を分配することができる。詳細には、図6に示されるように、円環状の流路40は、注入孔41から排出孔42に至る流路として、外側流路40Aと内側流路40Bの2つを含んでいる。外側流路40Aは、断面積の小さい上記の第1位置A(図4参照)を通る流路40であり、中央領域CRから比較的遠くに位置している。一方、内側流路40Bは、断面積の大きい上記の第2位置B(図4参照)を通る流路であり、中央領域CRの比較的近くに位置している。このとき、冷却媒体は、断面積の小さい外側流路40Aよりも、断面積の大きい内側流路40Bの方を通りやすい。つまり、注入孔41から注入された冷却媒体は、外側流路40Aよりも内側流路40Bの方により多く分配される。よって、流路40に供給可能な冷却媒体の総量が一定であっても、比較的多くの冷却媒体を内側流路40Bの方に優先的に分配することができる。これにより、高温となる中央領域CRを効率的に冷却することができる。一方、外側流路40Aにも少量ながらも冷却媒体が供給されるため、燃焼室30の外側領域も冷却することができる。すなわち、本実施の形態によれば、限られた冷却資源の中で、燃焼室30内の温度分布に即した効率的な冷却が可能となる。
外側流路40Aよりも内側流路40Bの方に冷却媒体が流れやすくなるように、冷却媒体の注入方向及び冷却媒体の排出方向が設計されてもよい。例えば、図7に示されるように、冷却媒体の注入方向が外側流路40Aよりも内側流路40Bに向かうように、注入孔41が形成されてもよい。
次に、図8を参照して、バルブシート25の配置の具体例を説明する。図8では、図3の場合と同様にZ方向から見たときの、複数のバルブシート25(25i1、25i2、25e1、25e2)及び中央領域CRが示されている。本例では、中央領域CRに含まれる「代表点G」を考える。各バルブシート25において、代表点Gに最も近い位置は符号Kで示されている。このとき、流路40の断面積が最近接位置Kにおいて最大となるように、各バルブシート25は配置される。流路40の断面積は、最近接位置Kに近づくにつれて大きくなってもよい。
代表点Gの設定としては、様々な例が考えられる。例えば、燃焼室30における温度分布のピーク位置が、代表点Gに設定される。そのピーク位置は、必ずしも中心軸Cに一致せず、典型的には中心軸Cから排気側に少しずれる。温度分布のピーク位置は、実験あるいはシミュレーションを通して予め求めることができる。そのようなピーク位置が代表点Gに設定されると、そのピーク位置に最も近い位置Kにおいて流路40の断面積が最大となる。これにより、燃焼室30内の実際の温度分布に即したより効率的な冷却が可能となる。
他の例として、図9に示されるように、中心軸Cが代表点Gに設定されてもよい。この場合、中心軸Cに最も近い位置Kにおいて流路40の断面積が最大となるように、各バルブシート25が配置される。このような配置はシンプルであり、内燃機関1の設計及び組み立ての簡易さの観点から好適である。
更に他の例として、点火プラグ24の設置位置が考慮されてもよい。点火プラグ24は、燃焼室30内の高温ガスにさらされる部品であり、高温になりやすい。高温による点火プラグ24の故障を防ぐためには、点火プラグ24を冷却することが望ましい。図1で示されたように点火プラグ24が吸気側開口部22iと排気側開口部22eに挟まれた領域に設置される場合、XY平面において点火プラグ24は中央領域CR内に位置する。従って、本実施の形態に係るバルブシート25を冷却手段として利用することにより、燃焼室30に加えて、点火プラグ24をも効果的に冷却することが可能となる。特に、点火プラグ24の位置が代表点Gに設定されると、点火プラグ24に最も近い位置Kにおいて流路40の断面積が最大となる。これにより、点火プラグ24をより一層効果的に冷却することが可能となる。
尚、代表点Gが中央領域CR内に含まれる限り、「流路40の断面積が大きい部分が中央領域CRの比較的近くに位置する」という本実施の形態の傾向に変わりはない。
本実施の形態に係るバルブシート25は、例えば、3Dプリンタによって作成可能である。あるいは、バルブシート25は、流路40をはさんで対向する2つの部品を接合することによって作成されてもよい。
以上に説明されたように、本実施の形態によれば、バルブシート25が冷却媒体の流路40を有している。従って、従来のウォータージャケットに加えて、バルブシート25を新たな冷却手段として利用することが可能となる。これにより、燃焼室30を冷却するためのトータルの冷却性能が増加する。特に、バルブシート25は、燃焼室30に隣接しており、燃焼室30を冷却する効率の観点から優れている。燃焼室30に隣接するバルブシート25を冷却手段として利用することにより、燃焼室30を効率的に冷却することが可能となる。
ここで、本実施の形態によれば、トータルの冷却性能を高めるために、従来のウォータージャケットの冷却性能を高める必要がないことに留意されたい。ウォータージャケットの冷却性能を高めるためには、ウォーターポンプの出力を増大させること、ウォーターポンプの数を増やすこと、ラジエータを大型化すること、等が必要である。しかし、これらのことは、内燃機関1及び車両のサイズ及び重量の増大を招く。本実施の形態によれば、そのような問題を招くことなく、冷却性能を向上させることが可能である。
更に、本実施の形態によれば、流路40の断面積が大きい部分が、燃焼室30の中央領域CRの比較的近くに位置している。燃焼室30の中央領域CRの温度は、外側領域の温度よりも高くなる傾向にある。一方、流路40の断面積が大きい部分の冷却能力は高い。そのような高い冷却能力を有する部分を中央領域CRの近くに配置することにより、高温となる中央領域CRを効果的に冷却することが可能となる。流路40の断面積は、中央領域CRに近づくにつれて大きくなってもよい。その場合、燃焼室30内の温度分布に即した冷却が可能となる。
更に、本実施の形態によれば、冷却媒体は、断面積の小さい外側流路40Aよりも、断面積の大きい内側流路40Bの方を通りやすい。つまり、注入孔41から注入された冷却媒体は、外側流路40Aよりも内側流路40Bの方により多く分配される。よって、流路40に供給可能な冷却媒体の総量が一定であっても、比較的多くの冷却媒体を内側流路40Bの方に優先的に分配することができる。これにより、高温となる中央領域CRを効率的に冷却することができる。一方、外側流路40Aにも少量ながらも冷却媒体が供給されるため、燃焼室30の外側領域も冷却することができる。すなわち、本実施の形態によれば、限られた冷却資源の中で、燃焼室30内の温度分布に即した効率的な冷却が可能となる。
尚、少なくとも1つのバルブシート25が流路40を有していれば、本実施の形態の効果は得られる。当然、流路40を有するバルブシート25が増えるほど、より効果的である。好適には、全てのバルブシート25が流路40を有する。
<第2の実施の形態>
図10は、本発明の第2の実施の形態におけるバルブシート25の特徴を説明するためのXY平面図である。図10のフォーマットは、既出の図4のものと同じである。第1の実施の形態と重複する説明は適宜省略される。
本実施の形態に係るバルブシート25は、放熱フィン50を備えている。放熱フィン50は、流路40の壁面から流路40内に延びるように形成されている。例えば、3Dプリンタを用いることによって、バルブシート25の本体と一体的に放熱フィン50を形成することができる。流路40内に放熱フィン50が配置されるため、冷却性能が更に向上する。
図10に示される例では、放熱フィン50は、中央領域CRに近い領域に重点的に配置されている。これにより、高温となる中央領域CRを効果的に冷却することが可能となる。より一般化すれば、放熱フィン50の能力は、単位体積あたりの放熱フィン50の表面積に依存し、その表面積が大きくなるほど高くなる。よって、中央領域CRに比較的近い第2位置Bにおける表面積は、中央領域CRから比較的遠い第1位置Aにおける表面積よりも大きいことが好適である。これは、単位体積あたりの放熱フィン50の表面積が、流路40の断面積と同じ傾向を有することを意味する。中央領域CRに近い第2位置Bにおいて放熱フィン50の能力を高くすることにより、高温となる中央領域CRを効果的に冷却することが可能となる。
放熱フィン50の能力は、中央領域CRに近づくにつれて高くなってもよい。図10に示される例では、複数の放熱フィン50が配置され、それら放熱フィン50の幅が中央領域CRに近づくにつれて大きくなっている。これにより、燃焼室30内の温度分布に即した冷却が可能となる。
図11は、図10中の線d−dに沿ったバルブシート25の断面構造を示している。図11に示される例では、複数の放熱フィン50が配置され、それら放熱フィン50の幅が燃焼室30に近づくにつれて大きくなっている。つまり、単位体積あたりの放熱フィン50の表面積は、燃焼室30に近づくにつれて大きくなっている。これにより、高温の燃焼室30の側をより効果的に冷却することが可能となる。
<第3の実施の形態>
図12は、本発明の第3の実施の形態におけるバルブシート25の特徴を説明するためのXY平面図である。図12のフォーマットは、既出の図4のものと同じである。図13は、図12中の線d−dに沿ったバルブシート25の断面構造を示している。第1の実施の形態と重複する説明は適宜省略される。
本実施の形態によれば、少なくとも一部の範囲60において、流路40が層状になっている。図13に示される例では、流路40内に仕切り65が配置され、それにより流路40が第1流路層40−1と第2流路層40−2に分断されている。尚、流路層の数は2に限られない。また、複数の流路層のそれぞれの厚さは同じでなくてもよい。
流路40の断面積が大きくなると、その断面の中でも冷却媒体が流れやすい場所と流れにくい場所とが発生する可能性がある。例えば、冷却媒体が流路40の上方に偏って流れ、流路40の下方でよどむといった場合が考えられる。ここで、流路40が層状に形成されると、それぞれの流路層に流れ(流線)が発生する。そのため、流路40が層状に形成されない場合と比較して、流線の偏りや冷却媒体のよどみが抑制される。流線の偏りやよどみが抑制されるため、狙い通りの流量を実現しやすく、目標部位を確実に冷却することが可能となる。その点で、流路40が層状となる範囲60は、中央領域CRに近い部分を少なくとも含んでいることが好ましい。
また、複数の流路層が存在する場合、その中の1つがゴミで詰まったとしても、他の流路層は活きている。よって、冷却を継続することができる。
<第4の実施の形態>
図14は、本発明の第4の実施の形態における冷却媒体の供給制御を説明するための概念図である。図14のフォーマットは、既出の図3のものと同じである。第1の実施の形態と重複する説明は適宜省略される。
本実施の形態によれば、冷却媒体の供給は、複数のバルブシート25(25i1、25i2、25e1、25e2)のそれぞれについて独立に制御される。これにより、複数のバルブシート25の温度を個別に管理することができ、細やかな冷却が可能となる。
<第5の実施の形態>
図15は、本発明の第5の実施の形態における冷却媒体の供給制御を説明するための概念図である。図15のフォーマットは、既出の図3のものと同じである。第1の実施の形態と重複する説明は適宜省略される。
本実施の形態によれば、2以上のバルブシート25に対する冷却媒体の供給がまとめて制御される。まとめて制御される2以上のバルブシート25のそれぞれの流路40は、接続流路70を介して順次接続される。そのような接続流路70は、シリンダヘッド20内に形成される。
図15に示される例では、吸気側の2個の吸気バルブシート25i1、25i2のそれぞれの流路40が、接続流路70iを介して互いに接続されている。吸気バルブシート25i1、25i2の一方の流路40に導入された冷却媒体は、接続流路70iを介して、吸気バルブシート25i1、25i2の他方の流路40に供給される。吸気側に対する冷却媒体の供給を一括で制御できるため、制御システム100を単純化することができる。
同様に、排気側の2個の排気バルブシート25e1、25e2のそれぞれの流路40が、接続流路70eを介して互いに接続されている。排気バルブシート25e1、25e2の一方の流路40に導入された冷却媒体は、接続流路70eを介して、排気バルブシート25e1、25e2の他方の流路40に供給される。排気側に対する冷却媒体の供給を一括で制御できるため、制御システム100を単純化することができる。
また、図15に示されるように、接続流路70i、70eは、複数のバルブシート25とともに中央領域CRを取り囲んでいる。よって、接続流路70i、70eを流れる冷却媒体も、中央領域CRの冷却に寄与する。その点で、接続流路70i、70eは、中央領域CRになるべく近い位置に形成されると好適である。
図16は、接続流路70近傍の冷却媒体の流れを説明するための概念図である。接続流路70は、接続流路70i、70eのいずれかを表している。図16には、注入孔41が接続流路70に接続されたバルブシート25が示されている。第1の実施の形態で説明されたように、注入孔41から排出孔42に至る流路として、外側流路40Aと内側流路40Bの2つが存在する。冷却媒体は、断面積の小さい外側流路40Aよりも、断面積の大きい内側流路40Bの方を通りやすい。つまり、接続流路70から注入された冷却媒体は、外側流路40Aよりも内側流路40Bの方により多く分配される。これにより、高温となる中央領域CRを効率的に冷却することができる。
外側流路40Aよりも内側流路40Bの方に冷却媒体が流れやすくなるように、接続流路70が設計されてもよい。例えば、図17に示されるように、冷却媒体の注入方向が外側流路40Aよりも内側流路40Bに向かうように、接続流路70が形成されてもよい。流路40から接続流路70に冷却媒体を排出する側にも同様の議論を適用可能である。
<第6の実施の形態>
図18は、本発明の第6の実施の形態における冷却媒体の供給制御を説明するための概念図である。図18のフォーマットは、既出の図3のものと同じである。既出の実施の形態と重複する説明は適宜省略される。
上記の第5の実施の形態の場合と同じく、本実施の形態によれば、2以上のバルブシート25に対する冷却媒体の供給がまとめて制御される。本実施の形態では、吸気バルブシート25iと排気バルブシート25eに対する冷却媒体の供給がまとめて制御される。
図18に示される例では、吸気バルブシート25i1と排気バルブシート25e1のそれぞれの流路40が、接続流路70aを介して互いに接続されている。ここで、冷却効率の観点から、温度が比較的低い吸気側から温度が比較的高い排気側に冷却媒体を流すことが好適である。そのため、図18に示されるように、吸気バルブシート25i1の流路40に導入された冷却媒体が、接続流路70aを介して、排気バルブシート25e1の流路40に供給される。同様に、吸気バルブシート25i2と排気バルブシート25e2のそれぞれの流路40が、接続流路70bを介して互いに接続されている。そして、吸気バルブシート25i2の流路40に導入された冷却媒体が、接続流路70bを介して、排気バルブシート25e2の流路40に供給される。
本実施の形態によれば、上記の第5の実施の形態の場合と同じく、一括制御によって制御システム100を単純化することができる。また、接続流路70a、70bは、中央領域CRになるべく近い位置に形成されると好適である。また、図16及び図17で説明された議論は、本実施の形態にも適用可能である。
<第7の実施の形態>
本発明の第7の実施の形態は、上記の第6の実施の形態の変形である。本実施の形態によれば、冷却媒体の流れ方向が、内燃機関1の運転状態に応じて切り替えられる。
例えば、内燃機関1の冷間始動を考える。冷間始動後、しばらくの間、暖機が遅い吸気側を暖めたいという要求がある。この場合、温度が比較的高い排気側から温度が比較的低い吸気側に冷却媒体を流すことによって、吸気側の温度上昇を促進することができる。そのため、冷間始動後、しばらくの間、図19に示されるように、冷却媒体の流れ方向が図18の場合と反対向きに設定される。すなわち、排気バルブシート25e1(25e2)の流路40に導入された冷却媒体が、接続流路70a(70b)を介して、吸気バルブシート25i1(25i2)の流路40に供給される。吸気側の暖機が完了すると、冷却媒体の流れ方向は、図18の状態に切り替えられる。
図20は、本実施の形態における冷却媒体の供給制御を説明するためのフローチャートである。図20に示されるフローは繰り返し実行される。
内燃機関1が始動すると(ステップS1;Yes)、各種センサを通して、内燃機関1の運転状態を示す各種パラメータの取得が行われる(ステップS2、S3、S4、S5)。各種パラメータとして、水温、新気流量(Ga)の積算値、エンジン回転速度、エンジン負荷、冷却媒体の流量、等が挙げられる。
続いて、ステップS2〜S5で取得されたパラメータに基づいて、バルブシート25の温度状況が予測される(ステップS6)。例えば、それらパラメータとバルブシート25の温度状況との対応関係を示すマップがあらかじめ用意される。そのマップを参照することによって、バルブシート25の温度状況を予測することができる。
続いて、バルブシート25の温度状況に基づいて、吸気側の暖機が必要か否かが判定される。例えば、バルブシート25の予測温度が閾値より低い場合、吸気側の暖機が必要と判定される。
吸気側の暖機が要求される場合(ステップS7;Yes)、冷却媒体の流れ方向は、図19で示された状態に設定される(ステップS8)。これにより、吸気側の温度上昇を促進することができる。特に、低温冷間始動の間(ステップS9;Yes)は、冷却媒体の流量が増加するよう制御が行われてもよい(ステップS10)。
一方、吸気側の暖機が要求されない場合(ステップS7;No)、冷却媒体の流れ方向は、図18で示された状態に設定される(ステップS11)。高温高負荷運転の間(ステップS12;Yes)は、冷却媒体の流量が増加するよう制御が行われてもよい(ステップS10)。
<第8の実施の形態>
矛盾しない限りにおいて、上述の第1〜第7の実施の形態のうち複数を組み合わせることも可能である。
1 内燃機関
10 シリンダブロック
11 シリンダライナ
15 ピストン
20 シリンダヘッド
21i 吸気通路
21e 排気通路
22i 吸気側開口部
22e 排気側開口部
23i 吸気バルブ
23e 排気バルブ
24 点火プラグ
25 バルブシート
25i、25i1、25i2 吸気バルブシート
25e、25e1、25e2 排気バルブシート
30 燃焼室
40 流路
40A 外側流路
40B 内側流路
40−1 第1流路層
40−2 第2流路層
41 注入孔
42 排出孔
50 放熱フィン
65 仕切り
70、70i、70e、70a、70b 接続流路
100 制御システム
C 中心軸
CR 中央領域

Claims (17)

  1. シリンダヘッドとシリンダライナとピストンによって囲まれた燃焼室を具備し、
    前記シリンダヘッドは、前記燃焼室に隣接するバルブシートを備え、
    前記シリンダライナの筒形状の中心軸に平行な方向から見たとき、前記バルブシートは、前記中心軸を含む前記燃焼室の中央領域よりも外側に配置されており、
    前記バルブシートは、冷却媒体の流路を内部に有し、
    前記流路の延在方向に直交する面における前記流路の断面積を考えたとき、前記断面積が第1断面積である第1位置と、前記断面積が前記第1断面積より大きい第2断面積である第2位置とが存在し、
    前記第2位置は、第1位置と比較して、前記中央領域により近い
    内燃機関。
  2. 請求項1に記載の内燃機関であって、
    前記バルブシートは、
    前記流路に前記冷却媒体を注入するための注入孔と、
    前記流路から前記冷却媒体を排出するための排出孔と
    を有し、
    前記流路は、環状であり、前記注入孔から前記排出孔に至る外側流路と内側流路を含み、
    前記外側流路は、前記第1位置を通り、
    前記内側流路は、前記第2位置を通り、前記外側流路と比較して前記中央領域により近い
    内燃機関。
  3. 請求項2に記載の内燃機関であって、
    前記注入孔から注入された前記冷却媒体は、前記外側流路よりも前記内側流路の方により多く分配される
    内燃機関。
  4. 請求項1乃至3のいずれか一項に記載の内燃機関であって、
    前記断面積は、前記中央領域に近づくにつれて大きくなる
    内燃機関。
  5. 請求項1乃至3のいずれか一項に記載の内燃機関であって、
    前記中心軸に平行な方向から見たとき、前記燃焼室における温度分布のピーク位置は、前記中央領域に含まれ、
    前記断面積は、前記ピーク位置に最も近い位置において最大となる
    内燃機関。
  6. 請求項1乃至3のいずれか一項に記載の内燃機関であって、
    前記中心軸に平行な方向から見たとき、前記シリンダヘッドが有する点火プラグは前記中央領域内に位置しており、
    前記断面積は、前記点火プラグに最も近い位置において最大となる
    内燃機関。
  7. 請求項1乃至3のいずれか一項に記載の内燃機関であって、
    前記断面積は、前記中心軸に最も近い位置において最大となる
    内燃機関。
  8. 請求項1乃至7のいずれか一項に記載の内燃機関であって、
    前記バルブシートは、前記流路内に形成された放熱フィンを備える
    内燃機関。
  9. 請求項8に記載の内燃機関であって、
    単位体積あたりの前記放熱フィンの表面積は、前記第1位置よりも前記第2位置においてより大きい
    内燃機関。
  10. 請求項8又は9に記載の内燃機関であって、
    単位体積あたりの前記放熱フィンの表面積は、前記燃焼室に近づくにつれて大きくなる
    内燃機関。
  11. 請求項1乃至10のいずれか一項に記載の内燃機関であって、
    前記流路は、少なくとも一部の範囲において層状になっている
    内燃機関。
  12. 請求項1乃至11のいずれか一項に記載の内燃機関であって、
    前記バルブシートの数は複数であり、
    前記冷却媒体の供給は、前記複数のバルブシートのそれぞれについて独立に制御される
    内燃機関。
  13. 請求項1乃至11のいずれか一項に記載の内燃機関であって、
    前記バルブシートの数は複数であり、
    前記複数のバルブシートは、第1バルブシートと第2バルブシートを含み、
    前記シリンダヘッドは、前記第1バルブシートの前記流路と前記第2バルブシートの前記流路との間をつなぐ接続流路を更に備え、
    前記第1バルブシートと前記第2バルブシートの一方の前記流路に導入された前記冷却媒体は、前記接続流路を介して、前記第1バルブシートと前記第2バルブシートの他方の前記流路に供給される
    内燃機関。
  14. 請求項13に記載の内燃機関であって、
    前記第1バルブシートと前記第2バルブシートは共に、吸気側の吸気バルブシート、あるいは、排気側の排気バルブシートである
    内燃機関。
  15. 請求項13に記載の内燃機関であって、
    前記第1バルブシートは、吸気側の吸気バルブシートであり、
    前記第2バルブシートは、排気側の排気バルブシートである
    内燃機関。
  16. 請求項15に記載の内燃機関であって、
    前記吸気バルブシートの前記流路に導入された前記冷却媒体が、前記接続流路を介して、前記排気バルブシートの前記流路に供給される
    内燃機関。
  17. 請求項15に記載の内燃機関であって、
    前記吸気側の暖機が要求される場合、前記排気バルブシートの前記流路に導入された前記冷却媒体が、前記接続流路を介して、前記吸気バルブシートの前記流路に供給され、
    前記吸気側の暖機が要求されない場合、前記吸気バルブシートの前記流路に導入された前記冷却媒体が、前記接続流路を介して、前記排気バルブシートの前記流路に供給される
    内燃機関。
JP2016184253A 2016-09-21 2016-09-21 内燃機関 Pending JP2018048587A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016184253A JP2018048587A (ja) 2016-09-21 2016-09-21 内燃機関
EP17182812.2A EP3299600A1 (en) 2016-09-21 2017-07-24 Internal-combustion engine
US15/657,779 US20180080577A1 (en) 2016-09-21 2017-07-24 Internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184253A JP2018048587A (ja) 2016-09-21 2016-09-21 内燃機関

Publications (1)

Publication Number Publication Date
JP2018048587A true JP2018048587A (ja) 2018-03-29

Family

ID=59399284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184253A Pending JP2018048587A (ja) 2016-09-21 2016-09-21 内燃機関

Country Status (3)

Country Link
US (1) US20180080577A1 (ja)
EP (1) EP3299600A1 (ja)
JP (1) JP2018048587A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143934U (ja) * 1977-04-19 1978-11-13
JPS551956U (ja) * 1978-06-21 1980-01-08
JPS615320U (ja) * 1984-06-18 1986-01-13 三井造船株式会社 排気弁座の冷却装置
US20110220043A1 (en) * 2010-01-26 2011-09-15 Societe De Motorisations Aeronautiques Cylinder head of an internal combustion engine comprising a cooling circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111302U (ja) 1982-01-25 1983-07-29 日野自動車株式会社 エンジン燃焼室用バルブシ−ト
DE3829339C1 (ja) * 1988-08-30 1989-12-14 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
AT513383B1 (de) * 2013-05-08 2014-04-15 Avl List Gmbh Zylinderkopf für eine Brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143934U (ja) * 1977-04-19 1978-11-13
JPS551956U (ja) * 1978-06-21 1980-01-08
JPS615320U (ja) * 1984-06-18 1986-01-13 三井造船株式会社 排気弁座の冷却装置
US20110220043A1 (en) * 2010-01-26 2011-09-15 Societe De Motorisations Aeronautiques Cylinder head of an internal combustion engine comprising a cooling circuit

Also Published As

Publication number Publication date
EP3299600A1 (en) 2018-03-28
US20180080577A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP5846135B2 (ja) 内燃機関
US10787952B2 (en) Exhaust side block insert, cylinder block assembly including the same, and heat management system of engine including the same
JP2018145971A (ja) 内燃エンジン、特に、大型のディーゼルエンジン
JP6036668B2 (ja) 多気筒エンジンの冷却構造
JP6299737B2 (ja) 多気筒エンジンの冷却構造
RU124738U1 (ru) Охлаждение топливных форсунок
JP6055322B2 (ja) 内燃機関の冷却構造および当該冷却構造を備えた内燃機関の製造方法
JP6575578B2 (ja) 多気筒エンジンの冷却構造
KR102395302B1 (ko) 배기매니폴드 일체형 실린더헤드 및 이를 포함한 엔진 냉각시스템
JP6384492B2 (ja) 多気筒エンジンの冷却構造
JP6079594B2 (ja) 多気筒エンジンの冷却構造
US10808595B2 (en) Engine cooling system for vehicle
CN208578650U (zh) 一种摩托车发动机冷却液循环系统及发动机
JP2014145285A (ja) 内燃機関のシリンダヘッド
US20170268455A1 (en) Water jacket for cylinder head
JP2017008778A (ja) 内燃機関
JP6096519B2 (ja) 内燃機関のシリンダヘッド冷却構造
CN108757201B (zh) 一种摩托车发动机冷却液循环系统及发动机
JP2018048587A (ja) 内燃機関
KR20210003434A (ko) 엔진의 워터자켓
JP6096518B2 (ja) 内燃機関のシリンダヘッド
CN105317518B (zh) 水冷式引擎的汽缸头水道散热结构
US10858981B2 (en) Water jacket of engine and engine cooling system having the same
TWI515360B (zh) Water - cooled Engine 's Cylinder Head Waterway Cooling Structure
CN110446844B (zh) 液冷式内燃机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730