JP2018048378A - Silicon spray deposit and production method thereof - Google Patents

Silicon spray deposit and production method thereof Download PDF

Info

Publication number
JP2018048378A
JP2018048378A JP2016184898A JP2016184898A JP2018048378A JP 2018048378 A JP2018048378 A JP 2018048378A JP 2016184898 A JP2016184898 A JP 2016184898A JP 2016184898 A JP2016184898 A JP 2016184898A JP 2018048378 A JP2018048378 A JP 2018048378A
Authority
JP
Japan
Prior art keywords
silicon
sprayed film
spraying
hvof
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016184898A
Other languages
Japanese (ja)
Other versions
JP6722073B2 (en
Inventor
誠 酒巻
Makoto Sakamaki
誠 酒巻
祐毅 早坂
Yuki Hayasaka
祐毅 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016184898A priority Critical patent/JP6722073B2/en
Publication of JP2018048378A publication Critical patent/JP2018048378A/en
Application granted granted Critical
Publication of JP6722073B2 publication Critical patent/JP6722073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a minute silicon spray deposit having few pores, a small pore size, and a uniform distribution of pores, in comparison with a conventional plasma spray deposit; and to provide a production method thereof.SOLUTION: In a silicon spray deposit, a half value width of a diffraction peak at a diffraction angle 2θ=28.4±0.5° is 0.23-1.0° in an X-ray diffraction spectrum. A production method of the silicon spray deposit includes a step for thermally spraying slurry containing silicon particles having a volume-based median size (D50) of 1-10 μm by a high velocity flame spray process (HVOF).SELECTED DRAWING: None

Description

本発明は、半導体製造装置に用いられる部材の薄膜として有用なシリコン溶射膜及びその製造方法に関する。   The present invention relates to a silicon sprayed film useful as a thin film of a member used in a semiconductor manufacturing apparatus and a method for manufacturing the same.

半導体製造装置に用いられる各部材に薄膜を塗着させる手段として、例えば、プラズマ溶射や高速フレーム溶射(HVOF溶射)などが知られている。プラズマ溶射は、主に、金属やセラミックス焼結体基材の表面にアルミナやイットリアなどのセラミック膜を成膜する手段として採用される。HVOF溶射は、高温部材のコーティング用や摺動部材へのコーティング手段として採用される。   As means for applying a thin film to each member used in a semiconductor manufacturing apparatus, for example, plasma spraying or high-speed flame spraying (HVOF spraying) is known. Plasma spraying is mainly employed as a means for depositing a ceramic film such as alumina or yttria on the surface of a metal or ceramic sintered base material. HVOF spraying is employed as a coating means for high temperature members and as a coating means for sliding members.

上記のような半導体製造装置の部材へのコーティングにおいて、中でもシリコンのコーティングは、主にプラズマプロセス装置用部材に適用される。シリコン自体は、例えば、CFなどのフッ素系ガスと反応し低沸点のSiFを生成するが、気化し系外に排気される。そのため、粒子状物質の生成によるデバイスへのコンタミネーションを抑える効果があるとされている。そして、従来において、シリコンのコーティングは、主にプラズマ溶射で行われており、HVOF溶射が採用された例は知られていない。HVOF溶射は、主に金属基を含む部材の溶射に適用されている(特許文献1、2、非特許文献1、2参照
)。
In the coating on the members of the semiconductor manufacturing apparatus as described above, the silicon coating is mainly applied to the members for the plasma processing apparatus. Silicon itself reacts with a fluorine-based gas such as CF 4 to generate low boiling point SiF 4 , but is vaporized and exhausted out of the system. Therefore, it is said that there is an effect of suppressing contamination to the device due to generation of particulate matter. Conventionally, silicon coating is mainly performed by plasma spraying, and an example in which HVOF spraying is employed is not known. HVOF thermal spraying is mainly applied to thermal spraying of members containing metal groups (see Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).

特許文献1では、ニッケル基合金の金属被膜をHVOF溶射で形成する技術が開示されている。特許文献2では、被膜としてアモルファス相の金属ガラスバルク材ならびにその製造方法を開示している。金属ガラスとして知られているFe43Cr16Mo161510ガスアトマイズ粉末をHVOF溶射し、溶射被膜のX線回折でアモルファス相に特有の良好なハローパターンが認められている。また、非特許文献1では、Fe-10mass%Cr-8mass%P-2mass%C合金の耐食性非晶質皮膜の応用を目的として、HVOF溶射は、フレーム温度が低く溶射粒子速度が著しく大きいので融点が低く、また急速凝固で非晶質化しやすい合金を使えば、完全な非晶質溶射皮膜が得られる可能性があることが示唆されている。しかし、非晶質化しにくい半導体などについての非晶質化についての言及はない。非特許文献2では、WC−CoサーメットのHVOF溶射について開示され、一般にHVOF溶射やHVAF溶射では、セラミックスのような脆性材料の成膜は困難であるとされている。 Patent Document 1 discloses a technique for forming a nickel-based alloy metal coating by HVOF thermal spraying. Patent Document 2 discloses an amorphous-phase metallic glass bulk material as a coating and a method for producing the same. A good halo pattern peculiar to the amorphous phase is recognized by HVOF thermal spraying of Fe 43 Cr 16 Mo 16 C 15 B 10 gas atomized powder known as metallic glass and X-ray diffraction of the thermal spray coating. In Non-Patent Document 1, HVOF spraying has a low flame temperature and a high spray particle velocity for the purpose of application of a corrosion-resistant amorphous coating of Fe-10 mass% Cr-8 mass% P-2 mass% C alloy. It is suggested that a completely amorphous sprayed coating may be obtained by using an alloy that is low in temperature and easily amorphized by rapid solidification. However, there is no mention of amorphization of a semiconductor that is difficult to be amorphized. Non-Patent Document 2 discloses HVOF spraying of WC-Co cermet, and it is generally considered difficult to form a brittle material such as ceramics by HVOF spraying or HVAF spraying.

以上の従来のHVOF技術は、いずれも金属基を含む部材についてのHVOF溶射についてのものであり、シリコンなどの共有結合結晶からなる脆性材料の成膜例はなく、かつHVOF溶射膜の結晶性についての技術開示例もない。つまり、従来において、シリコンのコーティングにおいてHVOF溶射を採用することは想起されず、他の手段、例えば、上記の通りプラズマ溶射が採用されている。   The above conventional HVOF techniques are all related to HVOF thermal spraying on a member containing a metal group, there is no example of film formation of a brittle material made of a covalent bond crystal such as silicon, and the crystallinity of the HVOF thermal sprayed film. There is no example of technical disclosure. That is, conventionally, it is not recalled that HVOF spraying is employed in the silicon coating, and other means, for example, plasma spraying as described above is employed.

特許第3612568号公報Japanese Patent No. 3612568 特許第3946226号公報Japanese Patent No. 3946226

大坪文隆、外2名、「高速フレーム溶射したFe-Cr-Mo-8P-2C合金非晶質溶射皮膜の耐塩酸性」、溶接学会論文集、2001年、 第19巻、第1号、p.54-59Fumitaka Otsubo, 2 others, “Hydrochloric acid resistance of high-speed flame sprayed Fe-Cr-Mo-8P-2C alloy amorphous sprayed coating”, Journal of the Japan Welding Society, 2001, Vol. 19, No. 1, p. 54-59 黒田聖治、「高速フレーム(HVOF)溶射の新しいトレンド」、2006年、溶接学会誌、第75巻、第8号、p.627-631Seiji Kuroda, “New Trend of High-Speed Flame (HVOF) Thermal Spray”, 2006, Journal of the Japan Welding Society, Vol. 75, No. 8, p.627-631

しかしながら、プラズマ溶射においては溶融物の体積が大きく、基材付着後も相対的にゆっくりと温度低下するため結晶性が相対的によく、冷却中の付着物の表面は界面活性(
表面エネルギー)が高くならない。そのため隣り合う周りの付着物との反応(結合、焼結)が起きにくく、隣り合う物質との間で気孔が発生しやすくなる。同時にプラズマ溶射では溶融物の体積が大きいため、基材に付着したときに大きな空間を取り込み、それが冷却後大きな気孔となりやすい。以上のプラズマ溶射についてまとめると、プラズマ溶射によりシリコンを溶射した場合、膜の結晶性が高く、結果として成膜時に焼結性(反応性)が低下し、隣り合う粒子との焼結が阻害され気孔を内在しやすく気孔率の高い組織になる傾向にあった。半導体プロセス用に緻密なシリコン膜を成膜するには、成膜時に焼結性が高くなるように界面活性(表面エネルギー)を高めた溶射プロセスが必要である。また、半導体
装置用部材として気孔率が小さく、かつ気孔径が小さい組織であるシリコンなどの共有結合結晶からなる脆性材料の溶射膜が要求されている。
However, in plasma spraying, the volume of the melt is large and the temperature gradually decreases even after the substrate is deposited, so the crystallinity is relatively good, and the surface of the deposit during cooling is surface active (
(Surface energy) does not increase. For this reason, reaction (bonding and sintering) with the adhering material around the adjacent material hardly occurs, and pores are easily generated between the adjacent materials. At the same time, since the volume of the melt is large in plasma spraying, a large space is taken in when it adheres to the substrate, which tends to become large pores after cooling. Summarizing the above plasma spraying, when silicon is sprayed by plasma spraying, the crystallinity of the film is high, resulting in a decrease in sinterability (reactivity) during film formation, which hinders sintering with adjacent particles. There was a tendency for pores to be inherent and to have a high porosity. In order to form a dense silicon film for a semiconductor process, a thermal spray process in which the surface activity (surface energy) is increased so as to increase the sinterability at the time of film formation is required. Further, there is a demand for a sprayed film of a brittle material made of a covalent bond crystal such as silicon, which is a structure having a small porosity and a small pore diameter, as a member for a semiconductor device.

本発明は、以上の従来の問題点に鑑みなされたものであり、その目的は、従来のプラズマ溶射によるシリコン溶射膜と比較して、緻密で、気孔が少なく、平均気孔径が小さくかつ気孔の分布が均一なシリコン溶射膜及びその製造方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its purpose is denser, fewer pores, smaller average pore diameter, and smaller pores than conventional plasma sprayed silicon sprayed films. An object is to provide a silicon sprayed film having a uniform distribution and a method for manufacturing the same.

本発明のシリコン溶射膜は、X線回折スペクトルにおいて、回折角2θ=28.4±0.5°における回折ピークの半値幅が0.23〜1.0°であることを特徴とする。本発明のシリコン溶射膜においては、当該半値幅がプラズマ溶射によるシリコン溶射膜のそれよりも広い。従って、本発明のシリコン溶射膜は、プラズマ溶射によるシリコン溶射膜よりも結晶性が小さく、理由は後述するように、緻密で気孔が少なくかつ気孔径が小さい溶射膜である。具体的には、本発明のシリコン溶射膜は、気孔率が2%以下であり、かつ平均気孔径が1μm以下であるシリコン溶射膜であることが好ましく、そのような溶射膜は半導体製造装置の部材の薄膜として有用である。   The silicon sprayed film of the present invention is characterized in that, in an X-ray diffraction spectrum, the half-value width of a diffraction peak at a diffraction angle 2θ = 28.4 ± 0.5 ° is 0.23 to 1.0 °. In the silicon sprayed film of the present invention, the half width is wider than that of the silicon sprayed film formed by plasma spraying. Therefore, the silicon sprayed film of the present invention is smaller in crystallinity than the silicon sprayed film formed by plasma spraying, and the reason is a sprayed film that is dense, has few pores, and has a small pore diameter, as will be described later. Specifically, the silicon sprayed film of the present invention is preferably a silicon sprayed film having a porosity of 2% or less and an average pore diameter of 1 μm or less. Such a sprayed film is used in a semiconductor manufacturing apparatus. It is useful as a thin film for members.

本発明のシリコン溶射膜の製造方法は、体積基準のメジアン径(D50)が1〜10μ
mのシリコン粒子を含むスラリーを、高速フレーム溶射法(HVOF)により溶射する工程を含むことを特徴とする。本発明のシリコン溶射膜の製造方法においては、HVOF溶射によりシリコンの溶射を行うのであるが、HVOF溶射によると、プラズマ溶射と比較して以下の特徴がある。すなわち、(1)シリコン粒子の溶融物の体積を小さくすることができるため、基材に付着する粒子の焼結性(反応性)を高まる。(2)シリコン粒子の溶融物が基材に付着すると急冷されるため付着したシリコンの結晶性が出発原料に比べ低下する。その結果、付着粒子の界面活性(表面エネルギー)が高くなり焼結性が向上し気孔
が少なく、かつ気孔径の小さい組織になる。(3)シリコンはsp混成軌道による共有結合をしているため、共有結合を切るために大きなエネルギーが必要になるが、HVOF溶射では酸素量や燃料により効率的に熱量を与えることができる。
従って、プラズマ溶射によるシリコン溶射膜と比較して、緻密で、気孔が少なく、気孔径が小さくかつ気孔の分布が均一なシリコン溶射膜を製造することができる。
The silicon sprayed film manufacturing method of the present invention has a volume-based median diameter (D50) of 1 to 10 μm.
The method includes spraying a slurry containing m silicon particles by high-speed flame spraying (HVOF). In the method for producing a silicon sprayed film according to the present invention, silicon is sprayed by HVOF spraying, but HVOF spraying has the following characteristics as compared with plasma spraying. That is, (1) since the volume of the silicon particle melt can be reduced, the sinterability (reactivity) of the particles adhering to the substrate is increased. (2) When the melt of silicon particles adheres to the substrate, it is cooled rapidly, so that the crystallinity of the deposited silicon is lower than that of the starting material. As a result, the interfacial activity (surface energy) of the adhered particles is increased, the sinterability is improved, the pores are few, and the pore size is small. (3) Since silicon is covalently bonded by sp 3 hybrid orbitals, a large amount of energy is required to break the covalent bond. However, in HVOF thermal spraying, heat can be efficiently given by the amount of oxygen and fuel.
Accordingly, it is possible to manufacture a silicon sprayed film that is denser, has fewer pores, has a smaller pore diameter, and has a uniform pore distribution compared to a silicon sprayed film by plasma spraying.

図1Aは、プラズマ溶射によるシリコン溶射膜とHVOF溶射によるシリコン溶射膜のX線回折スペクトル、図1Bは28.4±0.5°付近の回折ピークの拡大図。FIG. 1A is an X-ray diffraction spectrum of a silicon sprayed film by plasma spraying and a silicon sprayed film by HVOF spraying, and FIG. 1B is an enlarged view of a diffraction peak near 28.4 ± 0.5 °. 実施例4のシリコン溶射膜(2A)と比較例3のシリコン溶射膜(2B)の断面を示すSEM写真。The SEM photograph which shows the cross section of the silicon sprayed film (2A) of Example 4, and the silicon sprayed film (2B) of the comparative example 3. FIG. 実施例4のシリコン溶射膜(3A)と比較例3のシリコン溶射膜(3B)の表面を示すSEM写真。The SEM photograph which shows the surface of the silicon sprayed film (3A) of Example 4, and the silicon sprayed film (3B) of the comparative example 3. FIG.

<シリコン溶射膜>
本発明のシリコン溶射膜は、X線回折スペクトルにおいて、回折角2θ=28.4±0.5°における回折ピークの半値幅が0.23〜1.0°であることを特徴とする。また、上記回折角における回折ピークを、半値幅ではなく回折ピークの1/10の強度値に相当する回折角2θの幅(以下、「1/10強度値幅」と称する)で表現すると、0.6〜2.0°となる。本発明のシリコン溶射膜は、HVOF溶射により形成することができ、上記のような半値幅に特徴を有する。図1は、プラズマ溶射によるシリコン溶射膜とHVOF溶射によるシリコン溶射膜のX線回折スペクトルを示すが、図1に示すように、プラズマ溶射によるシリコン溶射膜よりも、HVOF溶射によるシリコン溶射膜の方が回折角2θ=28.4±0.5°における回折ピークの半値幅も1/10強度値幅も広くなっている。つまり、HVOF溶射によるシリコン溶射膜は、プラズマ溶射によるシリコン溶射膜よりも結晶性が小さい。これは、上述の通り、HVOF溶射によると、シリコン粒子の溶融物が基材に付着すると急冷されるため付着したシリコンの結晶性が出発原料に比べ低下するためと考えられる。そして、本発明のシリコン溶射膜は、HVOF溶射によるシリコン溶射膜であるため、プラズマ溶射によるシリコン溶射膜と比較して、緻密で、気孔が少なく、気孔径が小さくかつ気孔の分布が均一なシリコン溶射膜である。
<Silicon sprayed film>
The silicon sprayed film of the present invention is characterized in that, in an X-ray diffraction spectrum, the half-value width of a diffraction peak at a diffraction angle 2θ = 28.4 ± 0.5 ° is 0.23 to 1.0 °. Further, when the diffraction peak at the diffraction angle is expressed not by a half-value width but by a width of a diffraction angle 2θ corresponding to an intensity value of 1/10 of the diffraction peak (hereinafter referred to as “1/10 intensity value width”), 6 to 2.0 °. The silicon sprayed film of the present invention can be formed by HVOF spraying, and is characterized by the half width as described above. FIG. 1 shows X-ray diffraction spectra of a silicon sprayed film by plasma spraying and a silicon sprayed film by HVOF spraying. As shown in FIG. 1, the silicon sprayed film by HVOF spraying is more preferable than the silicon sprayed film by plasma spraying. However, the half-value width and the 1/10 intensity value width of the diffraction peak at the diffraction angle 2θ = 28.4 ± 0.5 ° are wide. That is, the silicon sprayed film formed by HVOF spraying has lower crystallinity than the silicon sprayed film formed by plasma spraying. This is presumably because, as described above, according to HVOF thermal spraying, when the melt of silicon particles adheres to the base material, it is rapidly cooled, so that the crystallinity of the deposited silicon is lower than that of the starting material. Since the silicon sprayed film according to the present invention is a silicon sprayed film formed by HVOF spraying, silicon is denser, has fewer pores, has a smaller pore diameter, and has a more uniform distribution of pores than a silicon sprayed film formed by plasma spraying. It is a sprayed film.

本発明のシリコン溶射膜は、気孔率が2%以下であり、かつ平均気孔径が1μm以下とすることができ、半導体製造装置の部材の薄膜として好適な膜となり得る。また、本発明のシリコン溶射膜の表面粗さRaは、1〜3μmとなり得る。
ここで、気孔率、平均気孔径および気孔の分布は、断面のSEM観察によって測定して得られる数値である。
また、本発明のシリコン溶射膜の厚みとしては、50〜2000μmとすることができる。
The silicon sprayed film of the present invention can have a porosity of 2% or less and an average pore diameter of 1 μm or less, and can be a film suitable as a thin film of a member of a semiconductor manufacturing apparatus. Further, the surface roughness Ra of the silicon sprayed film of the present invention can be 1 to 3 μm.
Here, the porosity, the average pore diameter, and the pore distribution are numerical values obtained by measurement by SEM observation of the cross section.
Moreover, as thickness of the silicon sprayed film of this invention, it can be set as 50-2000 micrometers.

<シリコン溶射膜の製造方法>
本発明のシリコン溶射膜の製造方法は、体積基準のメジアン径(D50)が1〜10μmのシリコン粒子を含むスラリーを、高速フレーム溶射法(HVOF)により溶射する工程を含むことを特徴とする。
<Method for producing silicon sprayed film>
The method for producing a silicon spray film of the present invention includes a step of spraying a slurry containing silicon particles having a volume-based median diameter (D50) of 1 to 10 μm by a high-speed flame spraying method (HVOF).

本発明のシリコン溶射膜の製造方法においては、溶射する粒子(溶融物)の体積は、プラズマ溶射の場合と比較して小さいため、溶融物が基材に付着して冷却されるときに、体積が小さいために溶融物の温度が急激に低下し、溶融物は一部非晶質化する。そのため、冷却中の付着物の表面は表面エネルギーが高くなる。これは化学反応する結合手が非晶質化により一部切断されているためである。そして、隣り合う周りの付着物と反応(結合、
焼結)が起きやすくなり、隣り合う物質との間で反応、焼結が進み、気孔が発生しにくく
なる。
In the method for producing a silicon sprayed film of the present invention, since the volume of the sprayed particles (melt) is smaller than that in the case of plasma spraying, the volume is reduced when the melt adheres to the substrate and is cooled. Is small, the temperature of the melt rapidly decreases, and the melt partially becomes amorphous. Therefore, the surface energy of the deposit during cooling becomes high. This is because the chemically reacting bond is partially broken by amorphization. And it reacts with the adjoining surroundings (bond,
Sintering) easily occurs, reaction and sintering proceed with adjacent substances, and pores are less likely to be generated.

また、HVOF溶射においては粒子(溶融物)体積が小さいために溶融物が付着する際に空間を取り組みにくい。そのため気孔径は小さくなる。
一方、プラズマ溶射においては、溶射する粒子(溶融物)の体積が大きいため、基材に付着したときに空間を取り込むがその大きさにバラツキが大きく冷却後気孔の存在する位置にバラツキが生じやすい。これに対して、HVOF溶射は、溶射する粒子(溶融物)の体積が小さいために溶融物が付着する際に空間を取り組みにくくかつ気孔の存在する位置のバラツキは相対的にプラズマ溶射の場合より小さくなる。
Further, in HVOF spraying, the volume of particles (melt) is small, so it is difficult to tackle space when the melt adheres. Therefore, the pore diameter becomes small.
On the other hand, in plasma spraying, since the volume of the sprayed particles (melt) is large, the space is taken in when it adheres to the substrate, but the size varies greatly and the positions where pores exist after cooling are likely to vary. . In contrast, in HVOF spraying, the volume of sprayed particles (melt) is small, so it is difficult to work on the space when the melt adheres, and the variation in the positions where the pores are present is relatively more than in the case of plasma spraying. Get smaller.

以上より、本発明のシリコン溶射膜の製造方法においては、従来のプラズマ溶射膜に比較して緻密かつ気孔径が小さくかつ気孔の分布が均一な溶射膜が得られ、半導体製造装置用部材に好適なシリコン溶射膜を提供することができる。   As described above, in the method for producing a silicon sprayed film of the present invention, it is possible to obtain a sprayed film that is denser, has a smaller pore diameter, and has a uniform pore distribution than the conventional plasma sprayed film, and is suitable for a member for a semiconductor manufacturing apparatus. A silicon sprayed film can be provided.

シリコン粒子を含むスラリーの体積基準のメジアン径(D50)は1〜10μmとしているが、1μm未満では溶融した粒子が凝集しやすく、堆積物が塊状凝集組織となり、10μmを超えると基材に溶融粒子が付着せず溶射膜を形成することができない。当該メジアン径(D50)は、1〜10μmとすることが好ましく、3〜8μmとすることがより好ましい。
ここで、本発明において、「メジアン径(D50)」は、レーザー回折・散乱法などの従前の方法により体積基準粒子径より測定することができる。尚、平均気孔径、気孔率の評価時の倍率は500〜3000とする。
The volume-based median diameter (D50) of the slurry containing silicon particles is 1 to 10 μm, but if it is less than 1 μm, the melted particles tend to agglomerate, and the deposit becomes a lump aggregate structure. The sprayed film cannot be formed without adhering. The median diameter (D50) is preferably 1 to 10 μm, and more preferably 3 to 8 μm.
Here, in the present invention, the “median diameter (D50)” can be measured from the volume-based particle diameter by a conventional method such as a laser diffraction / scattering method. In addition, the magnification at the time of evaluation of an average pore diameter and a porosity shall be 500-3000.

シリコン粒子を含むスラリーの調製に用いる溶剤としては、水やエタノール、メタノール、IPA、などのアルコール類、他の有機溶剤、石油、灯油等を用いることが挙げられる。
また、上記スラリーには、1次粒子の分散性の改善を目的として、セラミックス用分散剤、高級アルコールを主成分とした消泡剤を添加してもよい。
Examples of the solvent used for preparing the slurry containing silicon particles include water, alcohols such as ethanol, methanol, and IPA, other organic solvents, petroleum, kerosene, and the like.
Further, for the purpose of improving the dispersibility of the primary particles, a ceramic dispersant and an antifoaming agent mainly composed of a higher alcohol may be added to the slurry.

HVOF溶射装置としては特に制限はなく、市販のものを用いることができる。使用する燃料も制限はなく、石油、灯油などの液体燃料、又はプロパン、プロピレン、アセチレン、水素などの気体燃料を用いることができる。また、酸素の代わりに空気を用いる、いわゆるHVAF(High Velocity Air−Fuel)溶射装置も用いることができる。   There is no restriction | limiting in particular as an HVOF thermal spraying apparatus, A commercially available thing can be used. The fuel to be used is not limited, and liquid fuel such as petroleum and kerosene, or gaseous fuel such as propane, propylene, acetylene, and hydrogen can be used. In addition, a so-called HVAF (High Velocity Air-Fuel) spraying apparatus using air instead of oxygen can also be used.

HVOF溶射の条件として、溶射距離(HVOF溶射装置のノズル先端から基材までの距離)としては、例えば、50〜170mmの間で設定することができ、50〜130mmが好ましい。その他、燃焼圧力は0.2〜1.0MPaで設定できる。より好ましくは0.4MPa以上である。   As conditions for HVOF spraying, the spraying distance (distance from the nozzle tip of the HVOF spraying apparatus to the base material) can be set, for example, between 50 and 170 mm, and preferably 50 to 130 mm. In addition, the combustion pressure can be set at 0.2 to 1.0 MPa. More preferably, it is 0.4 MPa or more.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

[実施例1〜6、比較例1〜2]
各実施例・比較例において、溶剤としてIPAを用い、シリコン粒子の体積基準のメジアン径(D50)が表1に記載の数値となるようにシリコン粒子含有スラリーを調製した
。次いで、石油を燃料とするHVOF溶射装置を用い、調製したシリコン粒子含有スラリーを基材(アルミニウム合金(A6061))にHVOF溶射しシリコン溶射膜を形成した。このとき、各実施例・比較例において、溶射距離は表1に示す距離とした。なお、HVOF溶射の条件は以下の通りである。
酸素流量:520L/min
石油流量:220mL/min
[Examples 1-6, Comparative Examples 1-2]
In each of the examples and comparative examples, IPA was used as a solvent, and a silicon particle-containing slurry was prepared so that the volume-based median diameter (D50) of the silicon particles was a numerical value described in Table 1. Next, using the HVOF thermal spraying apparatus using petroleum as a fuel, the prepared silicon particle-containing slurry was HVOF sprayed on a base material (aluminum alloy (A6061)) to form a silicon sprayed film. At this time, in each of the examples and comparative examples, the spraying distance was set to the distance shown in Table 1. The conditions for HVOF spraying are as follows.
Oxygen flow rate: 520 L / min
Oil flow rate: 220 mL / min

[比較例3]
プラズマ溶射装置(エアロプラズマ製、 APS−7100 )を用い、基材にシリコンを溶射してシリコン溶射膜を形成した。
[Comparative Example 3]
Using a plasma spraying apparatus (Aeroplasma, APS-7100), silicon was sprayed on the base material to form a silicon sprayed film.

得られたシリコン溶射膜に対し、蛍光X線分析装置(日本フィリップス(株)製、PW-1480)を用い、以下に示す条件で、X線回折スペクトルを測定した。
X線光源:Cu−Kα線(波長:1.54060Å)
スキャンステップ:0.02°
走査軸:2θ
走査範囲:10〜80°
An X-ray diffraction spectrum was measured on the obtained silicon sprayed film using a fluorescent X-ray analyzer (manufactured by Nippon Philips Co., Ltd., PW-1480) under the following conditions.
X-ray light source: Cu-Kα ray (wavelength: 1.54060 mm)
Scan step: 0.02 °
Scanning axis: 2θ
Scanning range: 10-80 °

実施例1〜6は、いずれも回折角2θ=28.4±0.5°における回折ピークの半値幅は、0.23〜1.0°の範囲内であった。また、回折角2θ=28.4±0.5°における1/10強度値幅は0.6〜2.0°であった。比較例3は、当該半値幅は0.22°であった。また回折角2θ=28.4±0.5°における1/10強度値幅は0.5°であった。なお、比較例1及び2はシリコン溶射膜が形成されなかったためX線回折スペクトルを測定していない。   In each of Examples 1 to 6, the half width of the diffraction peak at a diffraction angle 2θ = 28.4 ± 0.5 ° was in the range of 0.23 to 1.0 °. The 1/10 intensity value width at a diffraction angle 2θ = 28.4 ± 0.5 ° was 0.6 to 2.0 °. In Comparative Example 3, the half width was 0.22 °. The 1/10 intensity value width at a diffraction angle 2θ = 28.4 ± 0.5 ° was 0.5 °. In Comparative Examples 1 and 2, no X-ray diffraction spectrum was measured because no silicon sprayed film was formed.

(評価)
各実施例・比較例において得られたシリコン溶射膜の焼結性について以下の評価基準に従い評価した。また、各実施例・比較例において得られたシリコン溶射膜の平均気孔径、気孔率、及び溶射面の表面粗さRaを以下のようにして測定した。測定結果を表1に示す。
(1)焼結性
得られたシリコン溶射膜を目視し、塊状の凝集が認められる場合を「焼結性過大」、塊状の凝集が顕著に認められずかつ気孔率が2%以下の場合を「焼結性大」、溶融物の付着が認められなかった場合を「付着せず」とした。
(2)平均気孔径
形成したシリコン溶射膜の断面のSEM写真により、気孔の直径(気孔を通過する直線
郡のうち最大の交点間の距離)を10〜30箇所測定しその平均値を評価した。
(3)気孔率
形成したシリコン溶射膜の断面のSEM写真を画像処理し気孔を2値化しその面積を算出した。1視野当たり10〜30箇所測定しその平均値を評価した。
(4)気孔の分布
形成したシリコン溶射膜の断面のSEM写真により、均一か不均一かを評価した。
(5)表面粗さRa
溶射後の表面粗さを触針式の表面粗さ計で測定した。(JIS B0601準拠)
(Evaluation)
The sinterability of the silicon sprayed film obtained in each example and comparative example was evaluated according to the following evaluation criteria. Further, the average pore diameter, porosity, and surface roughness Ra of the sprayed surface of the silicon sprayed film obtained in each of the examples and comparative examples were measured as follows. The measurement results are shown in Table 1.
(1) Sinterability When the obtained silicon sprayed film is visually observed, a case where massive agglomeration is observed is “excessive sinterability”, a case where massive agglomeration is not significantly recognized and the porosity is 2% or less. When “sinterability was high” and adhesion of the melt was not observed, it was defined as “no adhesion”.
(2) Average pore diameter From the SEM photograph of the cross section of the formed silicon sprayed film, the diameter of the pores (the distance between the largest intersections of straight lines passing through the pores) was measured at 10 to 30 locations, and the average value was evaluated. .
(3) Porosity The SEM photograph of the cross section of the formed silicon sprayed film was subjected to image processing to binarize the pores, and the area was calculated. 10 to 30 spots were measured per visual field, and the average value was evaluated.
(4) Distribution of pores It was evaluated whether the pores were uniform or non-uniform by SEM photographs of the cross section of the formed silicon sprayed film.
(5) Surface roughness Ra
The surface roughness after thermal spraying was measured with a stylus type surface roughness meter. (Conforms to JIS B0601)

実施例4及び比較例3のシリコン溶射膜の各断面のSEM写真を図2に示す。また、実施例4及び比較例3のシリコン溶射膜の表面のSEM写真を図3に示す。   The SEM photograph of each cross section of the silicon sprayed film of Example 4 and Comparative Example 3 is shown in FIG. Moreover, the SEM photograph of the surface of the silicon sprayed film of Example 4 and Comparative Example 3 is shown in FIG.

表1より、実施例1〜6においては、気孔率が2%以下であり、かつ平均気孔径が1μm以下であるシリコン溶射膜が得られた。これに対して、シリコン粒子の体積基準のメジアン径(D50)が大きい比較例1及び2は溶射膜の形成すらできなかった。また、プラズマ溶射により溶射膜を形成した比較例3は、平均気孔径及び気孔率のいずれも大きく緻密な溶射膜が得られなかった。
一方、図2より、本発明のシリコン溶射膜は、プラズマ溶射膜よりも気孔率が小さいことが、図3より、本発明のシリコン溶射膜は、プラズマ溶射膜よりも表面粗さRaが小さいことが分かる。
From Table 1, in Examples 1-6, the silicon sprayed film whose porosity is 2% or less and whose average pore diameter is 1 micrometer or less was obtained. On the other hand, Comparative Examples 1 and 2 having a large volume-based median diameter (D50) of silicon particles could not even form a sprayed film. Further, in Comparative Example 3 in which the sprayed film was formed by plasma spraying, both the average pore diameter and the porosity were large, and a dense sprayed film was not obtained.
On the other hand, FIG. 2 shows that the silicon sprayed film of the present invention has a lower porosity than the plasma sprayed film, and FIG. 3 shows that the silicon sprayed film of the present invention has a smaller surface roughness Ra than the plasma sprayed film. I understand.

Claims (3)

X線回折スペクトルにおいて、回折角2θ=28.4±0.5 °における回折ピークの半値幅が0.23〜1.0°であることを特徴とするシリコン溶射膜。   In the X-ray diffraction spectrum, a half-width of a diffraction peak at a diffraction angle 2θ = 28.4 ± 0.5 ° is 0.23 to 1.0 °, a silicon sprayed film. 請求項1に記載のシリコン溶射膜において、気孔率が2%以下であり、かつ平均気孔径が1μm以下であることを特徴とするシリコン溶射膜。   2. The silicon sprayed film according to claim 1, wherein the porosity is 2% or less and the average pore diameter is 1 μm or less. 体積基準のメジアン径(D50)が1〜10μmのシリコン粒子を含むスラリーを、高速フレーム溶射法(HVOF)により溶射する工程を含むことを特徴とするシリコン溶射膜の製造方法。   A method for producing a silicon sprayed film, comprising a step of spraying a slurry containing silicon particles having a volume-based median diameter (D50) of 1 to 10 μm by a high-speed flame spraying method (HVOF).
JP2016184898A 2016-09-21 2016-09-21 Silicon sprayed film and manufacturing method thereof Active JP6722073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016184898A JP6722073B2 (en) 2016-09-21 2016-09-21 Silicon sprayed film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184898A JP6722073B2 (en) 2016-09-21 2016-09-21 Silicon sprayed film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018048378A true JP2018048378A (en) 2018-03-29
JP6722073B2 JP6722073B2 (en) 2020-07-15

Family

ID=61767330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184898A Active JP6722073B2 (en) 2016-09-21 2016-09-21 Silicon sprayed film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6722073B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220029450A (en) 2020-08-28 2022-03-08 도쿄엘렉트론가부시키가이샤 Film forming apparatus and method for manufacturing part having film containing silicon
KR20220151610A (en) 2020-03-06 2022-11-15 도카로 가부시키가이샤 Novel tungsten-based thermal spray coating and thermal spraying material for obtaining the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1138284A (en) * 1966-02-09 1968-12-27 Nat Res Dev Spray deposition of silicon powder structures
JP2009054984A (en) * 2007-08-01 2009-03-12 Tosoh Corp Component for film forming apparatus and its manufacturing method
JP2010147006A (en) * 2008-12-22 2010-07-01 Sony Corp Negative electrode and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1138284A (en) * 1966-02-09 1968-12-27 Nat Res Dev Spray deposition of silicon powder structures
JP2009054984A (en) * 2007-08-01 2009-03-12 Tosoh Corp Component for film forming apparatus and its manufacturing method
JP2010147006A (en) * 2008-12-22 2010-07-01 Sony Corp Negative electrode and secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220151610A (en) 2020-03-06 2022-11-15 도카로 가부시키가이샤 Novel tungsten-based thermal spray coating and thermal spraying material for obtaining the same
KR20220029450A (en) 2020-08-28 2022-03-08 도쿄엘렉트론가부시키가이샤 Film forming apparatus and method for manufacturing part having film containing silicon
US11919032B2 (en) 2020-08-28 2024-03-05 Tokyo Electron Limited Film forming apparatus and method for manufacturing part having film containing silicon

Also Published As

Publication number Publication date
JP6722073B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
Vardelle et al. The 2016 thermal spray roadmap
JP2014240511A (en) Method of producing sprayed coating and material for flame spray
JP6097701B2 (en) Thermal spray material and method for forming yttrium oxide coating
JP5159204B2 (en) Thermal spray powder, thermal spray coating formation method, plasma resistant member, and plasma processing chamber
JP6262716B2 (en) Thermal spray powder and method for forming thermal spray coating
JP5093745B2 (en) Composite structure
US20110086178A1 (en) Ceramic coatings and methods of making the same
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
Zhang et al. Ablation resistant ZrC coating modified by polymer-derived SiC/TiC nanocomposites for ultra-high temperature application
JP6571308B2 (en) Thermal spray material, production method thereof, and thermal spray method
TW202223119A (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP6722073B2 (en) Silicon sprayed film and manufacturing method thereof
Govindarajan et al. Understanding the Formation of Vertical Cracks in Solution Precursor Plasma Sprayed Yttria‐Stabilized Zirconia Coatings
JP2013136814A (en) Ceramic spray deposit and method for manufacturing the same
JP2018053356A (en) Yttrium fluoride based spray coating and method for manufacturing the same, and base material having spray coating and method for manufacturing the same
JP4642487B2 (en) Thermal spray powder
JP5726400B2 (en) Thermal spray powder, method for forming thermal spray coating, and thermal spray coating
CN114044674A (en) Yttrium-based particle powder for thermal spraying, method for producing same, and thermal spraying film
JP2017061738A (en) Thermal spray material
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
JP5996756B2 (en) Thermal spray material
JP2009280483A (en) Corrosion resistant member, method for producing the same and treatment device
JP4981292B2 (en) Thermal spray powder and method of forming thermal spray coating
JP2012188677A (en) Powder for thermal spraying
JP2007109828A (en) Plasma resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6722073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250