JP2007109828A - Plasma resistant member - Google Patents

Plasma resistant member Download PDF

Info

Publication number
JP2007109828A
JP2007109828A JP2005298222A JP2005298222A JP2007109828A JP 2007109828 A JP2007109828 A JP 2007109828A JP 2005298222 A JP2005298222 A JP 2005298222A JP 2005298222 A JP2005298222 A JP 2005298222A JP 2007109828 A JP2007109828 A JP 2007109828A
Authority
JP
Japan
Prior art keywords
yttrium oxide
plasma
resistant member
polycrystal
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005298222A
Other languages
Japanese (ja)
Inventor
Junichi Iwazawa
順一 岩澤
Ryoichi Nishimizu
西水亮市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005298222A priority Critical patent/JP2007109828A/en
Publication of JP2007109828A publication Critical patent/JP2007109828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma resistant member with large mechanical strength in order to suppress and reduce the occurrence of particle release from the plasma resistant member. <P>SOLUTION: In the plasma resistant member needed to be plasma resistant; a plasma resistant structure is formed on the surface side thereof exposed at least to plasma, and takes a yttrium oxide polycrystalline structure as a chief component on an interface of crystals of which there is substantially inexistence of glassy grain boundary layer. A crystal structure of the yttrium oxide polycrystalline structure is made a mixture of cubic and monoclinic. Consequently, hardness of the structure consisted of the yttrium oxide polycrystalline structure is increased to suppress and reduce the particle release even it is exposed to a plasma atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐プラズマ性を有する耐プラズマ性部材に係り、特にハロゲン系腐食性ガス雰囲気下で、好適な耐プラズマ性を有する耐プラズマ性部材に関する発明である。   The present invention relates to a plasma-resistant member having plasma resistance, and more particularly to a plasma-resistant member having suitable plasma resistance in a halogen-based corrosive gas atmosphere.

従来の耐プラズマ性が必要とされる半導体製造装置用部材は、高純度アルミナ焼結体や酸化イットリウム溶射膜が使用されている(例えば、特許文献1参照。)。
しかし、焼結体や溶射膜には数〜数10ミクロン以上のポアや粒界層が存在し、プラズマ雰囲気に曝されるとポアや粒界層を起点に腐食が進行し、ポアの大きさが大きくなり、また表面に亀裂が発生する。これらの腐食の進行に伴う脱粒が半導体製造装置内を飛散し、半導体デバイスを汚染し半導体の性能や信頼性を損ねたり、耐プラズマ性部材自身の表面を削りとってしまい更なる脱粒を引き起こしてしまうという問題があった。
Conventionally, a member for a semiconductor manufacturing apparatus that requires plasma resistance uses a high-purity alumina sintered body or a yttrium oxide sprayed film (see, for example, Patent Document 1).
However, there are pores and grain boundary layers of several to several tens of microns or more in the sintered body and sprayed film. When exposed to a plasma atmosphere, corrosion proceeds from the pores and grain boundary layers, and the size of the pores Increases and cracks occur on the surface. The degranulation accompanying the progress of corrosion scatters within the semiconductor manufacturing equipment, contaminates the semiconductor device, impairs the performance and reliability of the semiconductor, and scrapes the surface of the plasma resistant member itself, causing further degranulation. There was a problem that.

エアロゾルデポジション法を用いて作製した酸化イットリウム膜の表面粗さRaを、溶射法により作製した酸化イットリウム膜の表面粗さRaより小さくし、パーティクル数を減少させた技術が知られている(特許文献2参照)。
しかし、酸化イットリウム膜の機械的強度が十分確保されていないと、飛来するパーティクルによって膜表面が削られてしまうという問題がある。
A technique is known in which the surface roughness Ra of the yttrium oxide film produced by the aerosol deposition method is made smaller than the surface roughness Ra of the yttrium oxide film produced by the thermal spraying method to reduce the number of particles (patent) Reference 2).
However, if the mechanical strength of the yttrium oxide film is not sufficiently ensured, there is a problem that the film surface is scraped by flying particles.

特開2002−252209号公報(第2頁)JP 2002-252209 A (2nd page) 特開2005−158933号公報JP 2005-158933 A

本発明は、上記問題を解決するためになされたもので、本発明の課題は、耐プラズマ性部材からの脱粒の発生を抑制・低減することである。   The present invention has been made to solve the above problems, and an object of the present invention is to suppress and reduce the occurrence of degranulation from the plasma-resistant member.

上記目的を達成するために本発明によれば、耐プラズマ性部材において、少なくともプラズマに曝される面側に、耐プラズマ構造物が形成され、この耐プラズマ構造物は酸化イットリウム多結晶体が主成分であり、その多結晶体の結晶同士の界面にはガラス質からなる粒界層が実質的に存在しない構造物であって、酸化イットリウム多結晶体の結晶構造を立方晶系(cubic)と単斜晶系(monoclinic)とを混在させることにより、酸化イットリウム多結晶体から成る構造物の硬度が大きくなり、プラズマ雰囲気に曝されても脱粒を抑制・低減できることを可能とした。   In order to achieve the above object, according to the present invention, a plasma-resistant structure is formed at least on the surface exposed to plasma in the plasma-resistant member, and the plasma-resistant structure is mainly composed of a yttrium oxide polycrystal. The structure is a structure in which a glassy grain boundary layer does not substantially exist at the interface between the crystals of the polycrystal, and the crystal structure of the yttrium oxide polycrystal is cubic and cubic. By mixing with monoclinic system, the structure of the yttrium oxide polycrystal is increased in hardness, and it is possible to suppress and reduce degranulation even when exposed to a plasma atmosphere.

また、本発明の好ましい形態によれば、耐プラズマ性部材において、前記酸化イットリウム多結晶体の一部が食い込むアンカー部が形成して直接接合されていることにより、基材と酸化イットリウム多結晶体から成る構造物との密着強度が大きくなり、プラズマ雰囲気に曝されても脱粒を抑制・低減できることを可能とした。   Further, according to a preferred embodiment of the present invention, in the plasma-resistant member, the anchor portion into which a part of the yttrium oxide polycrystal body bites is formed and directly joined, whereby the base material and the yttrium oxide polycrystal body are formed. Adhesion strength with a structure made from the above has increased, and it has become possible to suppress and reduce degranulation even when exposed to a plasma atmosphere.

本発明によれば、プラズマ雰囲気に曝される耐プラズマ性部材において、機械的強度の大きな耐プラズマ性部材を提供できる。ひいては、耐プラズマ性部材からの脱粒の発生を抑制・低減できるという効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the plasma-resistant member with big mechanical strength can be provided in the plasma-resistant member exposed to plasma atmosphere. As a result, there exists an effect that generation | occurrence | production of degranulation from a plasma-resistant member can be suppressed and reduced.

本件で使用する語句の説明を以下に行う。
(結晶構造)
本発明において結晶構造とは、X線回折法や電子線回折法によって測定し、JCPDS(ASTM)データを指標として同定される結晶構造を言う。
(多結晶)
本発明において多結晶とは、結晶子が接合・集積してなる構造体を言う。結晶子は実質的にそれひとつで結晶を構成し、その径は通常5nm以上である。ただし、微粒子が破砕されずに構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(界面)
本発明において界面とは、結晶子同士の境界を構成する領域を言う。
(粒界層)
本発明において粒界層とは、界面あるいは焼結体で言う粒界に位置する厚み(通常数nm〜数μm)を持つ層を言い、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(アンカー部)
本発明においてアンカー部とは、基材と脆性材料構造物の界面に形成された凹凸を言い、特に、予め基材に凹凸を形成させるのではなく、脆性材料の構造物を形成させる時に、元の基材の表面精度を変化させて形成される凹凸を言う。
(微粒子)
本発明において微粒子とは、一次粒子が緻密質粒子である場合は、粒度分布測定や走査型電子顕微鏡で同定される平均粒径が10μm以下であるものを言う。また一次粒子が衝撃によって破砕されやすい多孔質粒子である場合は、平均粒径が50μm以下であるものを言う。粉体とは上述の微粒子が自然凝集した状態を言う。
(エアロゾル)
本発明においてエアロゾルとは、ヘリウム、窒素、アルゴン、酸素、乾燥空気、これらの混合ガスなどのガス中に前述の微粒子を分散させたものであり、一次粒子が分散している状態が望ましいが、通常はこの一次粒子が凝集した凝集粒を含む。エアロゾルのガス圧力と温度は任意であるが、ガス中の微粒子の濃度は、ガス圧を1気圧、温度を20℃と換算した場合に、ノズルから噴射される時点において0.0003mL/L〜0.06mL/Lの範囲内であることが構造物の形成にとって望ましい。
(常温)
本発明において常温とは、酸化イットリウムの焼結温度に対して著しく低い温度で、実質的には0℃〜100℃の室温環境を言う。
The words used in this case are explained below.
(Crystal structure)
In the present invention, the crystal structure refers to a crystal structure that is measured by an X-ray diffraction method or an electron beam diffraction method and is identified by using JCPDS (ASTM) data as an index.
(Polycrystalline)
In the present invention, polycrystal means a structure in which crystallites are joined and integrated. A crystallite substantially constitutes a single crystal, and its diameter is usually 5 nm or more. However, the case where the fine particles are taken into the structure without being crushed rarely occurs, but is substantially polycrystalline.
(interface)
In the present invention, the interface refers to a region constituting a boundary between crystallites.
(Grain boundary layer)
In the present invention, the grain boundary layer refers to a layer having a thickness (usually several nm to several μm) located at the grain boundary referred to as an interface or a sintered body, and usually has an amorphous structure different from the crystal structure in the crystal grain. In some cases, impurities are segregated.
(Anchor part)
In the present invention, the anchor portion refers to the unevenness formed at the interface between the base material and the brittle material structure, and in particular, when forming the brittle material structure instead of forming the unevenness on the base material in advance, The irregularities formed by changing the surface accuracy of the base material.
(Fine particles)
In the present invention, the fine particles mean particles having an average particle size of 10 μm or less identified by particle size distribution measurement or a scanning electron microscope when the primary particles are dense particles. When the primary particles are porous particles that are easily crushed by impact, the average particle size is 50 μm or less. The powder means a state where the above-mentioned fine particles are naturally aggregated.
(aerosol)
In the present invention, the aerosol is a dispersion of the aforementioned fine particles in a gas such as helium, nitrogen, argon, oxygen, dry air, or a mixed gas thereof, and it is desirable that the primary particles are dispersed, Usually, the primary particles include aggregated particles. The gas pressure and temperature of the aerosol are arbitrary, but the concentration of fine particles in the gas is from 0.0003 mL / L to 0 at the time of injection from the nozzle when the gas pressure is converted to 1 atm and the temperature is converted to 20 ° C. It is desirable for structure formation to be in the range of 0.06 mL / L.
(At normal temperature)
In the present invention, the normal temperature refers to a room temperature environment that is substantially lower than the sintering temperature of yttrium oxide and is substantially 0 ° C. to 100 ° C.

次に、本発明を実施するための最良の形態を図面により説明する。まず、基材上に形成させる酸化イットリウム多結晶体から成る構造物の作製方法について図4を用いて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. First, a method for manufacturing a structure made of a yttrium oxide polycrystal formed on a substrate will be described with reference to FIGS.

図4は酸化イットリウム多結晶体から成る構造物を形成する作製装置の概略構成図であり、窒素、乾燥空気、ヘリウムの各種ガスボンベ11が、搬送管12を介してエアロゾル発生器13に連結され、さらに搬送管12を通じて構造物形成装置14内にノズル15が配置される。ノズル15の先方にはXYステージ17に設置された基材16がノズル15に対向して10mmの間隔をあけて配置される。構造物形成室14は排気ポンプ18に接続している。 FIG. 4 is a schematic configuration diagram of a manufacturing apparatus for forming a structure composed of a yttrium oxide polycrystal, and various gas cylinders 11 of nitrogen, dry air, and helium are connected to an aerosol generator 13 via a transport pipe 12, Further, a nozzle 15 is disposed in the structure forming apparatus 14 through the transport pipe 12. A base material 16 installed on the XY stage 17 is disposed at the tip of the nozzle 15 so as to face the nozzle 15 with an interval of 10 mm. The structure forming chamber 14 is connected to an exhaust pump 18.

そして、原料粉体をエアロゾル発生器13内に充填した後、ガスボンベ11を開き、ガスを搬送管12を通じてエアロゾル発生器13に導入し、原料粉体をガス中に分散させたエアロゾルを発生させる。このエアロゾルを搬送管12を通じてさらに構造物形成室14の方向へ搬送し、高速に加速させつつノズル15より原料粉体を基材16に向けて噴射する。 And after filling raw material powder in the aerosol generator 13, the gas cylinder 11 is opened, gas is introduce | transduced into the aerosol generator 13 through the conveyance pipe 12, and the aerosol which disperse | distributed raw material powder in gas is generated. This aerosol is further transported in the direction of the structure forming chamber 14 through the transport pipe 12, and the raw material powder is sprayed toward the base material 16 from the nozzle 15 while being accelerated at a high speed.

次に、基材上に形成させる酸化イットリウム多結晶体から成る構造物のより好ましい作製方法について説明する。   Next, a more preferable method for producing a structure made of a yttrium oxide polycrystal formed on a substrate will be described.

ガスボンベ11に封入するガスは、ヘリウム、窒素、アルゴン、酸素、乾燥空気、これらの混合ガスを用いることができるが、ヘリウムもしくは窒素を用いることがより好ましい作製方法である。   As the gas sealed in the gas cylinder 11, helium, nitrogen, argon, oxygen, dry air, or a mixed gas thereof can be used, but it is more preferable to use helium or nitrogen.

また、エアロゾル発生器13に内蔵する原料粉体は、平均粒径がサブμmオーダーの酸化イットリウム微粒子と平均粒径がμmオーダーの酸化アルミニウム微粒子を用いることがより好ましい作製方法である。   The raw material powder incorporated in the aerosol generator 13 is more preferably produced by using yttrium oxide fine particles having an average particle size of the order of sub-μm and aluminum oxide fine particles having an average particle size of the order of μm.

上述の作製装置を用いて作製した酸化イットリウム多結晶体から成る構造物の結晶構造は、X線回折における立方晶系(cubic)の最強線強度に対する単斜晶系(monoclinic)の最強線強度の強度比(単斜晶系の最強線強度/立方晶系の最強線強度)が1以上であることがより好ましい。 The crystal structure of the structure made of the yttrium oxide polycrystal manufactured using the above-described manufacturing apparatus has a monoclinic system strongest line intensity with respect to a cubic system strongest line intensity in X-ray diffraction. The intensity ratio (monoclinic strongest line strength / cubic strongest line strength) is more preferably 1 or more.

上述の作製装置を用いて作製した酸化イットリウム多結晶体から成る構造物は、チャンバー、ベルジャー、サセプター、クランプリング、フォーカスリング、キャプチャーリング、シャドーリング、絶縁リング、ダミーウエハー、高周波プラズマを発生させるためのチューブ、高周波プラズマを発生させるためのドーム、高周波透過窓、赤外線透過窓、監視窓、終点検出モニター、半導体ウエハーを支持するためのリフトピン、シャワー板、バッフル板、ベローズカバー、上部電極、下部電極などのプラズマ雰囲気に曝される半導体または液晶製造装置用部材に利用することができ、半導体または液晶製造装置用部材の基材は、金属、セラミックス、半導体、ガラス、石英、樹脂などが挙げられる。さらに、本発明の酸化イットリウム多結晶体から成る構造物は、半導体ウエハーや石英ウエハーに微細な加工を施すエッチング装置などの静電チャックに利用することが可能である。 The structure composed of yttrium oxide polycrystal produced by using the above-mentioned production apparatus generates chamber, bell jar, susceptor, clamp ring, focus ring, capture ring, shadow ring, insulating ring, dummy wafer, and high-frequency plasma. Tube, dome for generating high-frequency plasma, high-frequency transmission window, infrared transmission window, monitoring window, end point detection monitor, lift pin to support semiconductor wafer, shower plate, baffle plate, bellows cover, upper electrode, lower electrode It can be used for a semiconductor or liquid crystal manufacturing apparatus member exposed to a plasma atmosphere such as metal, ceramics, semiconductor, glass, quartz, resin, and the like. Furthermore, the structure made of the yttrium oxide polycrystal according to the present invention can be used for an electrostatic chuck such as an etching apparatus that performs fine processing on a semiconductor wafer or a quartz wafer.

以下に、本発明の実施の形態につき、実施例を用いて説明する。本実施例にあっては、酸化イットリウム多結晶体から成る構造物を形成する原料粉体として酸化イットリウム微粒子とこれよりも大粒径の酸化アルミニウム微粒子の混合粉体を用いた。 Hereinafter, embodiments of the present invention will be described using examples. In this example, a mixed powder of yttrium oxide fine particles and aluminum oxide fine particles having a larger particle diameter than that was used as a raw material powder for forming a structure made of yttrium oxide polycrystal.

(実施例)
酸化イットリウム微粒子と酸化アルミニウム微粒子を用意した。酸化アルミニウム微粒子の体積基準による50%平均粒径は5.9μmで、酸化イットリウム微粒子の平均粒径は0.47μmであった。ここで、体積基準による50%平均粒径とは、レーザー回折式粒度分布計を用いて測定した粒度分布測定データにおける、粒径の小さい側からの微粒子の累計体積が50%に達した時の微粒子の粒径をいう。また、酸化イットリウム微粒子の平均粒径は、フィッシャーサブシーブサイザーで測定した比表面積から算出した粒子径である。
(Example)
Yttrium oxide fine particles and aluminum oxide fine particles were prepared. The 50% average particle diameter of the aluminum oxide fine particles based on the volume was 5.9 μm, and the average particle diameter of the yttrium oxide fine particles was 0.47 μm. Here, the 50% average particle size based on the volume is the particle size distribution measurement data measured using a laser diffraction particle size distribution meter when the cumulative volume of fine particles from the smaller particle size reaches 50%. The particle size of the fine particles. Moreover, the average particle diameter of the yttrium oxide fine particles is a particle diameter calculated from the specific surface area measured with a Fischer sub-sieve sizer.

次にこれらの微粒子を(酸化アルミニウム微粒子):(酸化イットリウム微粒子)=1:100の個数比で混合した混合粉体を得た。 Next, a mixed powder in which these fine particles were mixed at a number ratio of (aluminum oxide fine particles) :( yttrium oxide fine particles) = 1: 100 was obtained.

尚、酸化アルミニウム微粒子は製膜補助粒子として機能し、酸化イットリウム微粒子を変形或いは破砕せしめて新生面を生じさせるためのもので、衝突後は反射し、不可避的に混入するものを除いて直接構造物の構成材料にはならないため、その材料は酸化アルミニウムに限定されず、酸化イットリウムを用いてもよいが、コスト面を考慮すると酸化アルミニウムが最適である。 The aluminum oxide fine particles function as film forming auxiliary particles, and are used to deform or crush the yttrium oxide fine particles to form a new surface. After the collision, the structure is directly reflected except for those that are inevitably mixed. Therefore, the material is not limited to aluminum oxide, and yttrium oxide may be used, but aluminum oxide is optimal in consideration of cost.

上記混合粉体を図4に示した作製装置のエアロゾル発生器に装填し、キャリアガスとして窒素ガスを5リットル/分の流量で装置内を流しながらエアロゾルを発生させて、アルミニウム合金基材上に噴出させた。こうして、基材上に高さ25μm、面積20mm×20mmの酸化イットリウム多結晶体から成る構造物を形成した。 The above mixed powder is loaded into the aerosol generator of the production apparatus shown in FIG. 4, and aerosol is generated while flowing nitrogen gas as a carrier gas at a flow rate of 5 liters / minute on the aluminum alloy substrate. Erupted. Thus, a structure made of yttrium oxide polycrystal having a height of 25 μm and an area of 20 mm × 20 mm was formed on the substrate.

図1は、(酸化アルミニウム微粒子):(酸化イットリウム微粒子)=1:100の個数比で混合した混合粉体を用いて作製した酸化イットリウム多結晶体から成る構造物のX線回折パターンである。図2は、酸化イットリウム多結晶体から成る構造物作製の原料粉体に使用した酸化イットリウム微粒子のX線回折パターンである。図3は酸化イットリウム焼結体(HIP処理品)のX線回折パターンである。 FIG. 1 is an X-ray diffraction pattern of a structure made of a yttrium oxide polycrystal prepared using a mixed powder mixed at a number ratio of (aluminum oxide fine particles) :( yttrium oxide fine particles) = 1: 100. FIG. 2 is an X-ray diffraction pattern of fine yttrium oxide particles used as a raw material powder for producing a structure made of a yttrium oxide polycrystal. FIG. 3 is an X-ray diffraction pattern of a yttrium oxide sintered body (HIP-treated product).

上記方法により作製した酸化イットリウム多結晶体から成る構造物の結晶構造は、立方晶系(cubic)と単斜晶系(monoclinic)とを混在させた。一方、原料粉体および酸化イットリウム焼結体の結晶構造は立方晶系(cubic)のみであった。 The crystal structure of the structure made of the yttrium oxide polycrystal produced by the above method is a mixture of cubic and monoclinic. On the other hand, the crystal structure of the raw material powder and the yttrium oxide sintered body was only cubic.

また、図1において、2θ=29°付近に見られる立方晶系(cubic)に起因する最強ピーク強度と2θ=30°付近に見られる単斜晶系(monoclinic)に起因する最強ピーク強度から、単斜晶系の最強線強度/立方晶系の最強線強度の強度比は1.04であった。 Further, in FIG. 1, from the strongest peak intensity attributed to the cubic system (cubic) seen in the vicinity of 2θ = 29 ° and the strongest peak intensity attributed to the monoclinic system (monoclinic) seen in the vicinity of 2θ = 30 °, The intensity ratio of the monoclinic strongest line intensity / cubic strongest line intensity was 1.04.

上記試料のビッカース硬度測定結果を表1に示す。ビッカース硬度は、ダイナミック超微小硬度計(DUH−W201/島津製作所)を用いて、試験力50gfで測定した。立方晶系(cubic)のみで構成されている酸化イットリウム焼結体よりも、本発明により作製した立方晶系(cubic)と単斜晶系(monoclinic)とを混在させた酸化イットリウム多結晶体から成る構造物の方が硬度が大きかった。 The Vickers hardness measurement results of the above samples are shown in Table 1. Vickers hardness was measured with a test force of 50 gf using a dynamic ultra-micro hardness meter (DUH-W201 / Shimadzu Corporation). Rather than a yttrium oxide sintered body composed only of a cubic system (cubic), the yttrium oxide polycrystalline body in which a cubic system and a monoclinic system (monoclinic system) prepared according to the present invention are mixed is used. The resulting structure had a greater hardness.

Figure 2007109828
Figure 2007109828

本発明により作製した酸化イットリウム多結晶体から成る構造物の密着強度を、以下に示す方法により測定した。酸化イットリウム多結晶体から成る構造物表面に、SUS製の円柱ロッドをエポキシ樹脂を用いて120℃、1時間で硬化させ、円柱ロッドを卓上小型試験機(EZ Graph/島津製作所製)を用いて90°方向に引き倒し評価した。密着強度Fは次式により算出した。
F=(4/πr)×h×f
ここで、rは円柱ロッドの半径、hは円柱ロッドの高さ、fは剥離時の試験力である。
アルミニウム合金基材上に形成させた酸化イットリウム多結晶体から成る構造物の密着強度は、80MPa以上で非常に優れた密着強度を有していた。
The adhesion strength of the structure made of the yttrium oxide polycrystal produced according to the present invention was measured by the following method. A cylindrical rod made of SUS is cured at 120 ° C. for 1 hour using epoxy resin on the surface of the structure composed of yttrium oxide polycrystal, and the cylindrical rod is tested using a desktop small testing machine (EZ Graph / manufactured by Shimadzu Corporation). The evaluation was made by pulling in the 90 ° direction. The adhesion strength F was calculated by the following formula.
F = (4 / πr 3 ) × h × f
Here, r is the radius of the cylindrical rod, h is the height of the cylindrical rod, and f is the test force at the time of peeling.
The adhesion strength of the structure composed of the yttrium oxide polycrystal formed on the aluminum alloy base material was 80 MPa or more and had very excellent adhesion strength.

本発明により、(酸化アルミニウム微粒子):(酸化イットリウム微粒子)=1:100の個数比で混合した混合粉体を用いて作製した酸化イットリウム多結晶体から成る構造物のX線回折パターンである。FIG. 4 is an X-ray diffraction pattern of a structure made of a yttrium oxide polycrystal produced using a mixed powder mixed in a number ratio of (aluminum oxide fine particles) :( yttrium oxide fine particles) = 1: 100 according to the present invention. 本発明の酸化イットリウム多結晶体から成る構造物の作製に用いた原料粉体である酸化イットリウム微粒子のX線回折パターンである。3 is an X-ray diffraction pattern of fine yttrium oxide particles which are raw material powders used in the production of a structure made of the yttrium oxide polycrystal of the present invention. 酸化イットリウム焼結体(HIP処理品)のX線回折パターンである。It is an X-ray-diffraction pattern of a yttrium oxide sintered compact (HIP processing goods). 本発明の酸化イットリウム多結晶体から成る構造物を作製する装置の概略図である。It is the schematic of the apparatus which produces the structure which consists of a yttrium oxide polycrystal of this invention.

符号の説明Explanation of symbols

11…ガスボンベ
12…搬送管
13…エアロゾル発生器
14…構造物形成装置
15…ノズル
16…基材
17…XYステージ
18…排気ポンプ
DESCRIPTION OF SYMBOLS 11 ... Gas cylinder 12 ... Conveyance pipe 13 ... Aerosol generator 14 ... Structure formation apparatus 15 ... Nozzle 16 ... Base material 17 ... XY stage 18 ... Exhaust pump

Claims (2)

耐プラズマ性が必要とされる耐プラズマ性部材であって、少なくともプラズマに曝される面側に、耐プラズマ構造物が形成され、この耐プラズマ構造物は酸化イットリウム多結晶体が主成分であり、その多結晶体の結晶同士の界面にはガラス質からなる粒界層が実質的に存在しない構造物であって、前記酸化イットリウム多結晶体の結晶構造が立方晶系(cubic)と単斜晶系(monoclinic)とを混在させていることを特徴とする耐プラズマ性部材。 A plasma-resistant member that requires plasma resistance, and a plasma-resistant structure is formed at least on the surface exposed to the plasma, and this plasma-resistant structure is mainly composed of yttrium oxide polycrystal. In addition, there is a structure having substantially no glassy grain boundary layer at the interface between the crystals of the polycrystal, and the crystal structure of the yttrium oxide polycrystal is cubic and monoclinic. A plasma-resistant member comprising a mixture of monoclinic materials. 請求項1に記載の耐プラズマ性部材において、前記酸化イットリウム多結晶体の一部が食い込むアンカー部が形成されていることを特徴とする耐プラズマ性部材。 2. The plasma-resistant member according to claim 1, wherein an anchor portion into which a part of the yttrium oxide polycrystal is bitten is formed.
JP2005298222A 2005-10-12 2005-10-12 Plasma resistant member Pending JP2007109828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298222A JP2007109828A (en) 2005-10-12 2005-10-12 Plasma resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298222A JP2007109828A (en) 2005-10-12 2005-10-12 Plasma resistant member

Publications (1)

Publication Number Publication Date
JP2007109828A true JP2007109828A (en) 2007-04-26

Family

ID=38035464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298222A Pending JP2007109828A (en) 2005-10-12 2005-10-12 Plasma resistant member

Country Status (1)

Country Link
JP (1) JP2007109828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131943A (en) * 2005-10-12 2007-05-31 Toto Ltd Composite structure
JP2011528755A (en) * 2008-07-25 2011-11-24 コミコ株式会社 Ceramic coating body having plasma resistance
JP2012221979A (en) * 2011-04-04 2012-11-12 Toshiba Corp Plasma processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284851A (en) * 2003-03-20 2004-10-14 National Institute Of Advanced Industrial & Technology Method of transforming crystal structure of group 13 element nitride, group 13 element nitride, and structure containing cubic nitride
JP2005217351A (en) * 2004-02-02 2005-08-11 Toto Ltd Member for semiconductor production system having plasma resistance and its production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284851A (en) * 2003-03-20 2004-10-14 National Institute Of Advanced Industrial & Technology Method of transforming crystal structure of group 13 element nitride, group 13 element nitride, and structure containing cubic nitride
JP2005217351A (en) * 2004-02-02 2005-08-11 Toto Ltd Member for semiconductor production system having plasma resistance and its production process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131943A (en) * 2005-10-12 2007-05-31 Toto Ltd Composite structure
JP2011528755A (en) * 2008-07-25 2011-11-24 コミコ株式会社 Ceramic coating body having plasma resistance
JP2012221979A (en) * 2011-04-04 2012-11-12 Toshiba Corp Plasma processing apparatus

Similar Documents

Publication Publication Date Title
JP5093745B2 (en) Composite structure
US20060178010A1 (en) Member having plasma-resistance for semiconductor manufacturing apparatus and method for producing the same
US20060159946A1 (en) Member having plasma-resistance for semiconductor manufacturing apparatus and method for producing the same
KR102282057B1 (en) Sprayed coating, method for manufacturing sprayed coating, sprayed member and spraying material
WO2013176168A1 (en) Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
JP4854445B2 (en) CMP conditioner and method of manufacturing the same
JP2006037238A (en) Method for producing spherical particle for thermal spraying
JP2022179582A (en) Rare earth oxide particle
US11473181B2 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP4560387B2 (en) Thermal spray powder, thermal spraying method and thermal spray coating
TW202035150A (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
CN115261762B (en) Material for thermal spraying
CN114044674A (en) Yttrium-based particle powder for thermal spraying, method for producing same, and thermal spraying film
JP4642487B2 (en) Thermal spray powder
JP2007109828A (en) Plasma resistant member
KR101807444B1 (en) Plasma device part and manufacturing method therefor
JP2021077900A (en) Member for semiconductor manufacturing device, semiconductor manufacturing device including the member, and display manufacturing device
JP2005217349A (en) Member for semiconductor production system having plasma resistance and its production process
JP5656036B2 (en) Composite structure
JP2018048378A (en) Silicon spray deposit and production method thereof
CN111627790A (en) Semiconductor manufacturing apparatus member, semiconductor manufacturing apparatus, and display manufacturing apparatus
JP2007100141A (en) Powder for thermal spraying and method for forming sprayed coating
JP2007254826A (en) Apparatus and method for depositing coating film
JP2007077447A (en) Composite structure, and its production method
JP4487764B2 (en) Translucent body for plasma processing apparatus and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110307