JP2007077447A - Composite structure, and its production method - Google Patents

Composite structure, and its production method Download PDF

Info

Publication number
JP2007077447A
JP2007077447A JP2005266687A JP2005266687A JP2007077447A JP 2007077447 A JP2007077447 A JP 2007077447A JP 2005266687 A JP2005266687 A JP 2005266687A JP 2005266687 A JP2005266687 A JP 2005266687A JP 2007077447 A JP2007077447 A JP 2007077447A
Authority
JP
Japan
Prior art keywords
transition metal
fine particles
aerosol
brittle material
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005266687A
Other languages
Japanese (ja)
Inventor
Hironori Hatono
広典 鳩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005266687A priority Critical patent/JP2007077447A/en
Publication of JP2007077447A publication Critical patent/JP2007077447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite structure very reduced in microgaps from which gas is gradually emitted. <P>SOLUTION: The composite structure 10 comprises: a base material 11 made of metal, ceramic, resin or a composite material thereof; a structure 12 made of a brittle material formed on the surface thereof by an aerosol deposition process; and a thin film 13 of one or more kinds selected from transition metal carbides, transition metal nitrides, transition metal borides and diamond like carbon and formed on the surface thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基材表面に脆性材料の構造物と遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜を形成した複層構造の複合構造物とその製造方法に関する。   The present invention relates to a composite structure having a multilayer structure in which a brittle material structure and a film made of one or more of transition metal carbide, transition metal nitride, transition metal boride, and diamond-like carbon are formed on the surface of a substrate. It relates to the manufacturing method.

基材表面に脆性材料の構造物を加熱工程なしに形成する方法として、エアロゾルデポジション法と呼ばれる手法が認知されている。   As a method for forming a brittle material structure on the surface of a substrate without a heating step, a technique called an aerosol deposition method has been recognized.

このエアロゾルデポジション法は、特許文献1にその詳細が記載されている。即ち、脆性材料などの微粒子をガス中に分散させたエアロゾルをノズルから基材に向けて噴射し、金属やガラス、セラミックスやプラスチックなどの基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子を変形や破砕を起さしめてこれらを接合させ、基材上に微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能であり、焼成体同等の機械的強度を保有する構造物を得ることができる。   This aerosol deposition method is described in detail in Patent Document 1. That is, an aerosol in which fine particles of a brittle material or the like are dispersed in a gas is jetted from a nozzle toward the base material, and the fine particles collide with a base material such as metal, glass, ceramics, or plastic. It is characterized in that the fine particles are deformed and crushed and joined together to directly form the structure made up of the constituent materials of the fine particles on the base material. Especially, the structure is formed at room temperature that does not require heating means. It is possible to obtain a structure having mechanical strength equivalent to that of the fired body.

また、粒径が10nmから5μmの範囲にあるセラミックスなどの超微粒子をガスに分散させてエアロゾルとした後、ノズルより高速の超微粒子流として基板に向けて噴射して堆積物を形成する製造方法が特許文献2に開示されている。この特許文献2にあっては、基板に、イオン、原子、分子ビームや低温プラズマなどの高エネルギー原子などを照射して、作製される構造物を強固なものとする工夫を行っている。   Also, a manufacturing method in which ultrafine particles such as ceramics having a particle size in the range of 10 nm to 5 μm are dispersed in a gas to form an aerosol, and then sprayed toward the substrate as a high-speed ultrafine particle flow from a nozzle to form a deposit. Is disclosed in Patent Document 2. In Patent Document 2, the substrate is irradiated with high-energy atoms such as ions, atoms, molecular beams, and low-temperature plasma to make the structure to be made strong.

上記エアロゾルデポジション法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させる位置制御手段を有し、減圧下で作製を行う場合には構造物を形成させるチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。   The apparatus used for the aerosol deposition method basically comprises an aerosol generator for generating aerosol and a nozzle for injecting the aerosol toward the substrate, and produces a structure with an area larger than the opening of the nozzle. In some cases, it has a position control means that moves and swings the base material and the nozzle relative to each other, and in the case of manufacturing under reduced pressure, it has a chamber for forming the structure and a vacuum pump, and generates aerosol. It is common to have a gas generation source for generating the gas.

エアロゾルデポジション法のプロセス温度は常温であり、微粒子材料の融点より十分に低い温度、すなわち数百℃以下で構造物形成が行われるところにひとつの特徴がある。   The process temperature of the aerosol deposition method is room temperature, and one feature is that the structure is formed at a temperature sufficiently lower than the melting point of the particulate material, that is, several hundred degrees C. or less.

また使用される微粒子はセラミックスや半導体などの脆性材料を主体とし、同一材質の微粒子を単独であるいは混合させて用いることができるほか、異種の脆性材料微粒子を混合したり、複合して用いることが可能である。また一部金属材料や有機物材料などを脆性材料微粒子に混合したり、脆性材料微粒子表面にコーティングして用いることも可能である。これらの場合でも構造物形成の主となるものは脆性材料である。   The fine particles used are mainly brittle materials such as ceramics and semiconductors, and fine particles of the same material can be used singly or mixed, and different kinds of fine particles of brittle material can be mixed or used in combination. Is possible. It is also possible to partially use a metal material, an organic material, or the like mixed with the brittle material fine particles or coat the surface of the brittle material fine particles. Even in these cases, the main component of structure formation is a brittle material.

このエアロゾルデポジション法によって形成される構造物において、結晶性の脆性材料微粒子を原料として用いる場合、構造物の脆性材料部分は、その結晶子サイズが原料微粒子のそれに比べて小さい多結晶体であり、その結晶は実質的に結晶配向性がない場合が多く、脆性材料結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないと言え、さらに構造物の一部は基材表面に食い込むアンカー層を形成することが多いという特徴がある。   In the structure formed by the aerosol deposition method, when crystalline brittle material fine particles are used as a raw material, the brittle material portion of the structure is a polycrystalline body whose crystallite size is smaller than that of the raw material fine particles. In many cases, the crystal has substantially no crystal orientation, and it can be said that there is substantially no grain boundary layer composed of a glass layer at the interface between brittle material crystals. There is a feature that an anchor layer is often formed to penetrate.

またエアロゾルデポジション法により形成される構造物は、微粒子同士が圧力によりパッキングされ、物理的な付着で形態を保っている状態のいわゆる圧粉体とは明らかに異なり、十分な強度を保有している。また、構造物形成において、脆性材料微粒子が破砕・変形を起していることは、原料として用いる脆性材料微粒子および形成された脆性材料構造物の結晶子サイズをX線回折法で測定することにより判断できる。すなわちエアロゾルデポジション法で形成される構造物の結晶子サイズは、原料微粒子の結晶子サイズよりも小さい値を示す。微粒子が破砕や変形をすることで形成されるずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この表面エネルギーが高い活性な新生面が、隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合することにより構造物が形成されるものと考えられる。また微粒子の表面に水酸基が程よく存在する場合では、微粒子の衝突時に微粒子同士や微粒子と構造物との間に生じる局部のずり応力により、メカノケミカルな酸塩基脱水反応が起き、これら同士が接合するということも考えられる。外部からの連続した機械的衝撃力の付加は、これらの現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が成長するものと考えられる。   In addition, the structure formed by the aerosol deposition method is clearly different from the so-called green compact in which the fine particles are packed together by pressure and keeps the form by physical adhesion. Yes. In addition, in the formation of the structure, the brittle material fine particles are crushed and deformed by measuring the brittle material fine particles used as a raw material and the crystallite size of the formed brittle material structure by an X-ray diffraction method. I can judge. That is, the crystallite size of the structure formed by the aerosol deposition method is smaller than the crystallite size of the raw material fine particles. A new surface in which atoms originally present inside and bonded to other atoms are exposed is formed on the slip surface or fracture surface formed by crushing or deforming fine particles. This active new surface having a high surface energy is considered to be formed by joining the surface of the adjacent brittle material, the new surface of the adjacent brittle material, or the substrate surface. In addition, when hydroxyl groups are present on the surface of the fine particles moderately, a mechanochemical acid-base dehydration reaction occurs due to local shear stress generated between the fine particles or between the fine particles and the structure when the fine particles collide with each other. It can be considered. The addition of continuous mechanical impact force from the outside causes these phenomena to occur continuously, and the progress and densification of joints are performed by repeated deformation and crushing of fine particles, and brittle material structures grow. it is conceivable that.

特許第3348154号公報Japanese Patent No. 3348154 特開2000−212766号公報JP 2000-212766 A

従来から各種基材上にエアロゾルデポジション法で脆性材料を主体とする成分から構成される構造物を形成した複合構造物の提案は多くなされている。エアロゾルデポジション構造物は、基材上に数十μm、場合によっては数百μmまでの形成高さで形成されるため、例えば数kV以上の高い電圧が印加される用途に用いられる絶縁膜や、材料の誘電特性を利用した回路基板用誘電体膜やなどの利用が考えられる。   Conventionally, many proposals have been made on composite structures in which structures composed of components mainly composed of brittle materials are formed on various substrates by an aerosol deposition method. Since the aerosol deposition structure is formed on a substrate with a formation height of several tens of μm, and in some cases up to several hundreds of μm, for example, an insulating film used for applications where a high voltage of several kV or more is applied. It is conceivable to use a dielectric film for a circuit board that utilizes the dielectric properties of the material.

エアロゾルデポジション法は脆性材料の微粒子を基材上に衝突させて、微粒子の破砕・変形によって微粒子の構成材料同士を接合して堆積させることで形成されるが、形成条件によっては体積抵抗率で1014Ω・cm以上の抵抗を有する緻密な構造物の形成が達成される。あるいは形成条件によっては微小な隙間を持つポーラスな構造体となり、室温大気中での体積抵抗率がこれを下回る場合も生じる。この理由は、破砕・変形の状況によっては、もともとは微粒子であった構造要素同士の間に微小な隙間が存在し、この隙間にガス成分、水蒸気成分が侵入して表面に付着し、これが電圧印加時に移動して抵抗値を下げるものと考えられる。連続気孔を形成しているなど状況によっては、抵抗率の値は10Ω・cm程度まで低下することもある。ここでいう微小な隙間とは、例えば透過型電子顕微鏡でようやく観察されるような数〜数十nm程度の隙間である。またさらに内部に大きなポアを持つ構造物の形成あるいは、連続気孔を有する多孔体の形成が可能である。 The aerosol deposition method is formed by colliding the fine particles of brittle material on the base material and bonding and depositing the constituent materials of the fine particles by crushing and deforming the fine particles. Formation of a dense structure having a resistance of 10 14 Ω · cm or more is achieved. Or it may become a porous structure with a minute gap depending on the forming conditions, and the volume resistivity in the room temperature atmosphere may be lower than this. The reason for this is that, depending on the state of crushing and deformation, there are minute gaps between the structural elements that were originally fine particles, and gas components and water vapor components enter the gaps and adhere to the surface. It is considered that the resistance value is decreased by moving at the time of application. Depending on the situation such as the formation of continuous pores, the resistivity value may decrease to about 10 8 Ω · cm. The minute gap here is a gap of about several to several tens of nanometers that is finally observed, for example, with a transmission electron microscope. Furthermore, it is possible to form a structure having a large pore inside or a porous body having continuous pores.

一方、エアロゾルデポジション法では、一般的に微小な隙間を持つポーラスな構造体を形成させる場合の方が、抵抗率の高い緻密体を形成させる場合に較べて、構造体の内部応力を小さくしたり、形成速度が速く、形成高さを大きくできたり、あるいは見かけの誘電率を低下させられるなどの利点は存在する。形成高さの増大は絶縁破壊電圧値の向上に寄与するために、有利である。また熱放射特性(輻射特性)や遮熱特性などの特性の利用の場合は、構造物形成厚みは大きく関与するが、微細な構造は関与しないために、この用途ではコストや形成高さの点で有利となる。   On the other hand, in the aerosol deposition method, the internal stress of the structure is generally smaller when forming a porous structure with a minute gap than when forming a dense body with high resistivity. There are advantages such that the formation speed is high, the formation height can be increased, or the apparent dielectric constant can be reduced. An increase in the formation height is advantageous because it contributes to an improvement in the breakdown voltage value. In addition, when using characteristics such as thermal radiation characteristics (radiation characteristics) and heat shielding characteristics, the structure formation thickness is greatly involved, but the fine structure is not involved. Is advantageous.

しかしながら、真空環境で使用される機器や、ガスやプラズマなどの腐食性環境に使用されるような部品へ、絶縁機能や誘電機能のためにエアロゾルデポジション法で形成した構造体を利用しようとする場合、微小な隙間を持つ構造体では、真空用途では、微小の隙間から徐々に放出されるガスによって、いつまでも機器内の真空度が上昇しなかったり、忌避されるべき水蒸気が放出されるような不具合、あるいは耐食環境での使用では、微小な隙間からガスが侵入し、構造物の比表面積の大きさから、腐食が進行しやすいなどの問題がある。   However, we try to use structures formed by the aerosol deposition method for insulation and dielectric functions in equipment used in vacuum environments and parts used in corrosive environments such as gas and plasma. In the case of a structure having a minute gap, in a vacuum application, the gas gradually released from the minute gap does not increase the degree of vacuum in the device forever, or water vapor that should be avoided is released. When used in a malfunction or corrosion-resistant environment, there is a problem that gas enters from a minute gap and corrosion is likely to proceed due to the large specific surface area of the structure.

またエアロゾルデポジション法は、破砕・変形によって構造物を形成させる特徴上、結晶レベルは数〜数十nmと小さく、欠陥や歪みを多く有する、結晶性がやや悪い構造体となっており、特に微細な隙間を持つ構造体を利用するようなときには、耐食性が同じ材料の焼成体に比較して劣る場合がある。   In addition, the aerosol deposition method is characterized by forming a structure by crushing / deformation, and the crystal level is as small as several to several tens of nanometers. When a structure having a fine gap is used, the corrosion resistance may be inferior to a fired body made of the same material.

一方、PVDやCVD、ゾルゲルで形成するセラミック膜は、緻密質を得やすい一方、厚い構造体を形成することが難しかったり、薄膜の場合は、基材の表面粗さの影響を受けて構造物に微小な欠陥を有するなどの不具合がある。   On the other hand, a ceramic film formed by PVD, CVD, or sol-gel is easy to obtain a dense material, but it is difficult to form a thick structure, and in the case of a thin film, it is affected by the surface roughness of the base material. There are problems such as having minute defects.

上記課題を解決すべく本発明に係る複合構造物は、基材表面に脆性材料からなる構造物が形成され、この構造物の表面に遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜が形成され、前記構造物は脆性材料の微粒子をガス中に分散させたエアロゾルを前記基材表面に噴射して衝突させて形成させた多結晶構造物であり、その結晶同士の界面にはガラス層からなる粒界層が実質的に存在しない構成とした。
エアロゾルデポジション法を適用することで、前記構造物の一部は前記基材表面に食い込むアンカー部となる。
In order to solve the above problems, a composite structure according to the present invention has a structure made of a brittle material on the surface of a base material, and transition metal carbide, transition metal nitride, transition metal boride, diamond on the surface of the structure. A film composed of one or more of like carbon is formed, and the structure is a polycrystalline structure formed by injecting and colliding an aerosol in which fine particles of a brittle material are dispersed in a gas onto the substrate surface. The grain boundary layer made of a glass layer is not substantially present at the interface between the crystals.
By applying the aerosol deposition method, a part of the structure becomes an anchor portion that bites into the substrate surface.

このような構成の構造物を得ることで、例えば厚い脆性材料の構造物にて基材のポア封止、大きな絶縁破壊特性値や熱放射特性、遮熱特性、低誘電率特性などを発現させ、表面に緻密質の膜を形成させて、ガスバリヤ特性、耐食性などを発現させることが可能となる。   By obtaining a structure with such a structure, for example, a thick brittle material structure can be used to exhibit pore sealing of the base material, large dielectric breakdown characteristics, thermal radiation characteristics, thermal insulation characteristics, low dielectric constant characteristics, etc. By forming a dense film on the surface, it becomes possible to develop gas barrier properties, corrosion resistance, and the like.

例えば、具体的には真空機器用セラミック部材への適用が挙げられる。これは基体としてはセラミック焼成体が用いられるが、焼成体は表面に微細な凹凸やポアが存在するために比表面積が大きくなり、表面に吸着しているガス成分量が多いために真空引きしてからの所望真空度到達時間が長くなり、プロセス速度を低下させるという問題があるが、このセラミック焼成体の表面にエアロゾルデポジション法により脆性材料の構造物を形成させて表面をフラットとさせて比表面積を小さくし、さらにこの上に撥水性が高いことやガス吸着能が低いことで知られるチタン炭化物などを含む、遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜を形成させることで良好な真空機器用セラミック部材が得られる。この場合遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜は1μm以下の薄膜の採用ができる。   For example, application to a ceramic member for vacuum equipment is specifically mentioned. This is because a ceramic fired body is used as the substrate, but the fired body has a large surface area due to the presence of fine irregularities and pores on the surface, and the amount of gas components adsorbed on the surface is large. However, there is a problem that the time to reach the desired degree of vacuum is prolonged and the process speed is lowered, but the surface of this ceramic fired body is made flat by forming a brittle material structure by the aerosol deposition method. Among transition metal carbides, transition metal nitrides, transition metal borides, and diamond-like carbons, including titanium carbide, which is known to have a low specific surface area and high water repellency and low gas adsorption capacity. A good ceramic member for vacuum equipment can be obtained by forming a film composed of one or more of the above. In this case, a film made of one or more of transition metal carbide, transition metal nitride, transition metal boride, and diamond-like carbon can be a thin film of 1 μm or less.

エアロゾルデポジション法によって作製される脆性材料の構造物は、数μm以上の厚膜形成が容易であり、基体の表面平坦化を主として担うために、構造物中に数nmレベルの微細な隙間が存在してもよく、この微細な隙間は薄膜にてカバーできる。基体に直接PVDやCVD、ゾルゲル法などで形成される薄膜を形成させても、基体の凹凸にならって薄膜が成長するばかりであり、表面の粗面度が低下しなかったり、比表面積の低下にはつながらず、また複雑な形状ゆえに膜の欠損部などが残ることが考えられるが、本発明によればこのような不利がない。   A brittle material structure manufactured by the aerosol deposition method is easy to form a thick film of several μm or more, and mainly has a surface flatness of the substrate. It may be present and this fine gap can be covered with a thin film. Even if a thin film formed directly by PVD, CVD, sol-gel method, etc. is formed on the substrate, the thin film only grows according to the unevenness of the substrate, and the surface roughness does not decrease or the specific surface area decreases. In addition, it is conceivable that a defective portion of the film remains due to its complicated shape, but according to the present invention, there is no such disadvantage.

ここで、遷移金属炭化物とは、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化ニオブ、炭化タンタル、炭化クロム、炭化モリブデン、炭化タングステンなどであり、遷移金属窒化物とは、窒化チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナジウム、窒化ニオブ、窒化タンタル、窒化クロム、窒化モリブデンなどであり、遷移金属ほう化物とは、ほう化チタン、ほう化ジルコニウム、ほう化ハフニウム、ほう化バナジウム、ほう化ニオブ、ほう化タンタル、ほう化クロム、ほう化モリブデン、ほう化タングステンなどである。薄膜材質としては例えばガス吸着密度が低いといわれている窒化チタンや炭化チタンなどを選択することが考えられるが、これ以外の材料でもガス吸着性の低い材料となる物質の採用が考えられる。またこれらの混合物や固溶物でもよく、またこれらを主として様々な元素を導入したものでもよい。またダイヤモンドライクカーボンはこれを主体として窒素などをドープしたものでもよい。これらは表面機能を利用する特性上、膜厚0.1μm以上5μm未満の薄い領域の膜状体さらには1μm以下でも十分である。   Here, the transition metal carbide is titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide, molybdenum carbide, tungsten carbide, etc., and the transition metal nitride is titanium nitride, nitride Zirconium, hafnium nitride, vanadium nitride, niobium nitride, tantalum nitride, chromium nitride, molybdenum nitride, etc., and transition metal borides include titanium boride, zirconium boride, hafnium boride, vanadium boride, niobium boride, Examples include tantalum boride, chromium boride, molybdenum boride, and tungsten boride. As the thin film material, for example, titanium nitride or titanium carbide, which is said to have a low gas adsorption density, may be selected. However, it is conceivable to use a material that is a material having a low gas adsorption property even with other materials. Also, a mixture or a solid solution of these may be used, and those mainly incorporating various elements may be used. The diamond-like carbon may be mainly doped with nitrogen or the like. In view of the characteristics utilizing the surface function, a thin film-like body having a film thickness of 0.1 μm or more and less than 5 μm, or even 1 μm or less is sufficient.

本発明における複合構造物の製造方法は、脆性材料の微粒子をガス中に分散させたエアロゾルを基材表面に向けて噴射し、基材表面に微粒子の構成材料である脆性材料の構造物を形成する工程の後に、PVD法、CVD法、ゾルゲル法のいずれかの手法によりこの構造物の表面に遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜を形成する。   In the method of manufacturing a composite structure in the present invention, an aerosol in which fine particles of a brittle material are dispersed in a gas is sprayed toward the surface of the base material to form a structure of the brittle material as a constituent material of the fine particles on the base material surface. After this step, a film made of one or more of transition metal carbide, transition metal nitride, transition metal boride, and diamond-like carbon is formed on the surface of the structure by any one of PVD, CVD, and sol-gel methods. Form.

前記PVD法としては、真空蒸着法、スパッタリング法、エレクトロンビーム蒸着法、分子線エピタキシー法、レーザーアブレーション法などが挙げられ、CVD法としては、熱CVD法、MOCVD法、プラズマCVD法、レーザーCVD法などが挙げられる。   Examples of the PVD method include a vacuum deposition method, a sputtering method, an electron beam deposition method, a molecular beam epitaxy method, and a laser ablation method. Examples of the CVD method include a thermal CVD method, an MOCVD method, a plasma CVD method, and a laser CVD method. Etc.

ここで、本件明細書で使用する語句の説明を以下に行う。
(微粒子)
一次粒子が緻密質粒子である場合は、粒度分布測定や走査型電子顕微鏡で同定される平均粒径が10μm以下であるものを言う。また一次粒子が衝撃によって破砕しやすい多孔質粒子である場合は、平均粒径が50μm以下であるものを言う。
(エアロゾル)
ヘリウム、窒素、アルゴン、酸素、乾燥空気、これらの混合ガスなどのガス中に前述の微粒子を分散させたものであり、一次粒子が分散している状態が望ましいが、通常はこの一次粒子が凝集した凝集粒を含む。エアロゾルのガス圧力と温度は任意であるが、ガス中の微粒子の濃度は、ガス圧を1気圧、温度を20℃と換算した場合に、ノズルから噴射される時点において0.0003mL/L〜0.06mL/Lの範囲内であることが構造物の形成にとって望ましい。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
Here, the terms used in this specification will be described below.
(Fine particles)
When the primary particles are dense particles, the average particle size identified by particle size distribution measurement or a scanning electron microscope is 10 μm or less. In addition, when the primary particles are porous particles that are easily crushed by impact, the average particle diameter is 50 μm or less.
(aerosol)
The above-mentioned fine particles are dispersed in a gas such as helium, nitrogen, argon, oxygen, dry air, or a mixed gas thereof, and it is desirable that the primary particles are dispersed. Usually, the primary particles are aggregated. Containing aggregated grains. The gas pressure and temperature of the aerosol are arbitrary, but the concentration of fine particles in the gas is from 0.0003 mL / L to 0 at the time of injection from the nozzle when the gas pressure is converted to 1 atm and the temperature is converted to 20 ° C. It is desirable for structure formation to be in the range of 0.06 mL / L.
(Polycrystalline)
In this case, it refers to a structure in which crystallites are joined and integrated. The crystallite is essentially one crystal, and its diameter is usually 5 nm or more. However, the case where the fine particles are taken into the structure without being crushed rarely occurs, but is substantially polycrystalline.

エアロゾルデポジション法によると、比較的大きな厚さの膜を短時間のうちに形成することができるが、結晶レベルは数〜数十nmと小さく、場合によっては微小な隙間を有しており、この場合は真空中でのガス放出時間が長かったり、耐食性が悪い。しかしながら、本願発明のようにその表面にPVD法、CVD法、ゾルゲル法のいずれかの手法で遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜を形成すれば、真空環境特性や耐食性などの諸機能の面で見て、有利となる。   According to the aerosol deposition method, a film having a relatively large thickness can be formed in a short time, but the crystal level is as small as several to several tens of nanometers, and in some cases has a minute gap, In this case, the gas release time in vacuum is long, and the corrosion resistance is poor. However, as in the present invention, a film made of one or more of transition metal carbide, transition metal nitride, transition metal boride and diamond-like carbon is formed on the surface by any of PVD, CVD, and sol-gel methods. If formed, it is advantageous in terms of various functions such as vacuum environment characteristics and corrosion resistance.

図1は、本発明に係る複合構造物の断面図であり、複合構造物10は、金属やセラミックス、樹脂あるいはこれらの複合材料からできている基材11と、この表面にエアロゾルデポジション法によって形成される脆性材料からなる構造物12と、さらにこの表面に形成される遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる薄膜13とからなる。   FIG. 1 is a cross-sectional view of a composite structure according to the present invention. A composite structure 10 includes a base material 11 made of metal, ceramics, resin, or a composite material thereof, and an aerosol deposition method on the surface. It consists of a structure 12 made of a brittle material and a thin film 13 made of one or more of transition metal carbide, transition metal nitride, transition metal boride and diamond-like carbon formed on the surface.

基材11の形状や構造は任意であり、表面に形成される構造物12と薄膜13の形成位置、形成面積、形成パターンもまた任意である。必要部分にのみ、これらが形成されていればよい。   The shape and structure of the base material 11 are arbitrary, and the formation position, formation area, and formation pattern of the structure 12 and the thin film 13 formed on the surface are also arbitrary. These need only be formed on the necessary portions.

図2はエアロゾルデポジション装置20の一例を示したものであり、窒素ガスボンベ201の先にガス搬送管202を介してエアロゾル発生器203が設置され、その下流側に例えば直径2mmのエアロゾル搬送管204を介して構造物形成室205内に配置された例えば直径2mmの導入開口と10mm×0.4mmの導出開口をもつノズル206に接続されている。エアロゾル発生器203内には脆性材料微粒子例えば酸化アルミニウム微粒子粉体が充填されている。ノズル206の開口の先には、XYステージ207に保持された基材208が配置されている。構造物形成室205は真空ポンプ209と接続されている。基材208には上述したような複合材料などが採用される。   FIG. 2 shows an example of the aerosol deposition apparatus 20. An aerosol generator 203 is installed at the tip of a nitrogen gas cylinder 201 via a gas transport pipe 202, and an aerosol transport pipe 204 having a diameter of 2 mm, for example, is provided downstream thereof. For example, a nozzle 206 having an introduction opening having a diameter of 2 mm and a lead-out opening having a diameter of 10 mm × 0.4 mm is disposed in the structure forming chamber 205. The aerosol generator 203 is filled with brittle material fine particles, for example, aluminum oxide fine particle powder. A base material 208 held by an XY stage 207 is disposed at the tip of the opening of the nozzle 206. The structure forming chamber 205 is connected to a vacuum pump 209. For the base material 208, the composite material as described above is employed.

以下に上記エアロゾルデポジション装置20の作用を述べる。窒素ガスボンベ201を開栓し、ガス搬送管202を通じてガスをエアロゾル発生器203内に送り込み、同時にエアロゾル発生器203を運転させて脆性材料微粒子と窒素ガスが適当比で混合されたエアロゾルを発生させる。また真空ポンプ209を稼動させ、エアロゾル発生器203と構造物形成室205の間に差圧を生じさせる。エアロゾルはこの差圧に乗って下流側のエアロゾル搬送管204に導入されて加速し、ノズル206より基材208に向けて噴射する。基材208はXYステージ207により2軸に揺動され、エアロゾル衝突位置を変化させつつ、微粒子の衝突により基材208上に膜状の脆性材料構造物が形成されていく。   The operation of the aerosol deposition apparatus 20 will be described below. The nitrogen gas cylinder 201 is opened, gas is fed into the aerosol generator 203 through the gas transport pipe 202, and at the same time, the aerosol generator 203 is operated to generate an aerosol in which brittle material fine particles and nitrogen gas are mixed in an appropriate ratio. Further, the vacuum pump 209 is operated to generate a differential pressure between the aerosol generator 203 and the structure forming chamber 205. The aerosol rides on this differential pressure, is introduced into the aerosol transport pipe 204 on the downstream side, accelerates, and is sprayed from the nozzle 206 toward the substrate 208. The base material 208 is swung in two axes by the XY stage 207, and a film-like brittle material structure is formed on the base material 208 by collision of fine particles while changing the aerosol collision position.

図3は、本発明に係る複合構造物を真空機器用セラミック部材として適用した例の部分断面構造模式図である。真空機器用セラミック部材とは、真空チャンバーの壁面部材やアクチュエータ機能を持つステージ、静電チャックなどの周辺部材や固定部材などにあたる。   FIG. 3 is a partial cross-sectional structural schematic diagram of an example in which the composite structure according to the present invention is applied as a ceramic member for vacuum equipment. The ceramic member for vacuum equipment corresponds to a wall member of a vacuum chamber, a stage having an actuator function, a peripheral member such as an electrostatic chuck, or a fixed member.

真空機器用セラミック部材30の表面部断面は、基体であるアルミナ焼成体31の上に、脆性材料構造物32が形成されており、その表面にチタン炭化物の膜33が被覆されている。ここでアルミナ焼成体31は内部に気孔を有する場合が多いが、図ではこれを省略して、表面に近い部位のみこれを表現している。アルミナ焼成体は例えば80〜96%の酸化アルミニウム純度の構造体であり、原料粉体粒度や焼成方法により表面には数百nm〜数十μmの大きさのポアを無数に有する。従ってガス成分の吸着サイトとなる表面積が大きくなる。そこで、この表面にポアの大きさに応じて5μm以上50μm未満の膜厚でエアロゾルデポジション法により酸化アルミニウムの構造物を形成させる。これによりアルミナ焼成体31のポアを完全に封止でき、この表面を研磨することにより表面積を最も小さくすることができる。この表面に緻密でガス吸着特性の低いチタン炭化物をCVD法により例えば数百nmの薄膜で形成する。このような複合構造物により、真空中での脱ガス速度が向上した真空機器用セラミック部材が得られる。   In the surface portion cross section of the ceramic member 30 for vacuum equipment, a brittle material structure 32 is formed on an alumina fired body 31 as a base, and a titanium carbide film 33 is coated on the surface. Here, the alumina fired body 31 often has pores inside, but this is omitted in the drawing and only the portion close to the surface is represented. The alumina fired body is, for example, a structure having an aluminum oxide purity of 80 to 96%, and has numerous pores having a size of several hundred nm to several tens of μm on the surface depending on the raw material powder particle size and the firing method. Therefore, the surface area which becomes the adsorption site of the gas component is increased. Therefore, an aluminum oxide structure is formed on the surface by an aerosol deposition method with a film thickness of 5 μm or more and less than 50 μm according to the size of the pores. Thereby, the pores of the alumina fired body 31 can be completely sealed, and the surface area can be minimized by polishing the surface. A dense titanium carbide having low gas adsorption characteristics is formed on this surface as a thin film of, for example, several hundred nm by the CVD method. With such a composite structure, a ceramic member for vacuum equipment having an improved degassing rate in a vacuum can be obtained.

本発明に係る複合構造物の断面図Sectional view of the composite structure according to the present invention エアロゾルデポジション装置の一例を示した図Diagram showing an example of an aerosol deposition device 本発明に係る複合構造物としての真空機器用セラミック部材の断面図Sectional drawing of the ceramic member for vacuum equipment as a composite structure which concerns on this invention

符号の説明Explanation of symbols

10…複合構造物、11…基材、12…構造物、13…遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる薄膜。
20…エアロゾルデポジション装置、201…窒素ガスボンベ、202…ガス搬送管、203…エアロゾル発生器、204…エアロゾル搬送管、205…構造物形成室、206…ノズル、207…XYステージ、208…基材、209…真空ポンプ。
30…真空機器用セラミック部材、31…アルミナ焼成体、32…脆性材料構造物、33…チタン炭化物の膜。
DESCRIPTION OF SYMBOLS 10 ... Composite structure, 11 ... Base material, 12 ... Structure, 13 ... Transition metal carbide, Transition metal nitride, Transition metal boride, Diamond-like carbon thin film.
DESCRIPTION OF SYMBOLS 20 ... Aerosol deposition apparatus, 201 ... Nitrogen gas cylinder, 202 ... Gas conveyance pipe, 203 ... Aerosol generator, 204 ... Aerosol conveyance pipe, 205 ... Structure formation chamber, 206 ... Nozzle, 207 ... XY stage, 208 ... Base material 209: Vacuum pump.
30 ... Ceramic member for vacuum equipment, 31 ... Alumina fired body, 32 ... Brittle material structure, 33 ... Titanium carbide film.

Claims (4)

基材表面に脆性材料からなる構造物が形成され、この構造物の表面に遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜が形成された複合構造物であって、前記構造物は脆性材料の微粒子をガス中に分散させたエアロゾルを前記基材表面に噴射して衝突させて形成させた多結晶構造物であり、その結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないことを特徴とする複合構造物。 A composite in which a structure made of a brittle material is formed on the surface of the substrate, and a film made of one or more of transition metal carbide, transition metal nitride, transition metal boride and diamond-like carbon is formed on the surface of the structure The structure is a polycrystalline structure formed by injecting and colliding an aerosol, in which fine particles of a brittle material are dispersed in a gas, onto the surface of the base material, and is formed at the interface between the crystals. Is a composite structure characterized in that there is substantially no grain boundary layer composed of a glass layer. 請求項1に記載の複合構造物であって、前記構造物の一部は前記基材表面に食い込むアンカー部からなっていることを特徴とする複合構造物。 2. The composite structure according to claim 1, wherein a part of the structure includes an anchor portion that bites into the surface of the base material. 請求項1または2に記載の複合構造物であって、前記遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜はPVD法、CVD法、ゾルゲル法のいずれかの手法で形成され、前記構造物はエアロゾルデポジション法で形成されることを特徴とする複合構造物。 3. The composite structure according to claim 1, wherein a film made of at least one of the transition metal carbide, transition metal nitride, transition metal boride, and diamond-like carbon is formed by a PVD method, a CVD method, or a sol-gel method. A composite structure, wherein the structure is formed by an aerosol deposition method. 脆性材料の微粒子をガス中に分散させたエアロゾルを基材表面に向けて噴射し、基材表面に微粒子の構成材料である脆性材料の多結晶構造物を形成する工程の後に、PVD法、CVD法、ゾルゲル法のいずれかの手法によりこの構造物の表面に遷移金属炭化物、遷移金属窒化物、遷移金属ほう化物、ダイヤモンドライクカーボンのうちの一種以上からなる膜を形成する工程を経て請求項1乃至請求項3に記載の複合構造物を得ることを特徴とする複合構造物の製造方法。
An aerosol in which fine particles of a brittle material are dispersed in a gas is sprayed toward the surface of the base material to form a polycrystalline structure of the brittle material, which is a constituent material of the fine particles, on the surface of the base material. And a method of forming a film made of one or more of transition metal carbide, transition metal nitride, transition metal boride, and diamond-like carbon on the surface of the structure by any one of the method and the sol-gel method. A method for producing a composite structure, comprising obtaining the composite structure according to claim 3.
JP2005266687A 2005-09-14 2005-09-14 Composite structure, and its production method Pending JP2007077447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266687A JP2007077447A (en) 2005-09-14 2005-09-14 Composite structure, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266687A JP2007077447A (en) 2005-09-14 2005-09-14 Composite structure, and its production method

Publications (1)

Publication Number Publication Date
JP2007077447A true JP2007077447A (en) 2007-03-29

Family

ID=37938050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266687A Pending JP2007077447A (en) 2005-09-14 2005-09-14 Composite structure, and its production method

Country Status (1)

Country Link
JP (1) JP2007077447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658933B (en) * 2016-05-16 2019-05-11 國立研究開發法人產業技術總合研究所 Laminated structure and manufacturing method thereof
WO2023045598A1 (en) * 2021-09-22 2023-03-30 东莞市维万特智能科技有限公司 Atomizing core, atomizer, aerosol generating device, and atomizing core preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318001Y2 (en) * 1986-02-06 1991-04-16
JP2005109234A (en) * 2003-09-30 2005-04-21 Toto Ltd Electrostatic chuck and method for manufacturing the same
JP2005158933A (en) * 2003-11-25 2005-06-16 National Institute Of Advanced Industrial & Technology Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318001Y2 (en) * 1986-02-06 1991-04-16
JP2005109234A (en) * 2003-09-30 2005-04-21 Toto Ltd Electrostatic chuck and method for manufacturing the same
JP2005158933A (en) * 2003-11-25 2005-06-16 National Institute Of Advanced Industrial & Technology Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658933B (en) * 2016-05-16 2019-05-11 國立研究開發法人產業技術總合研究所 Laminated structure and manufacturing method thereof
US11225436B2 (en) 2016-05-16 2022-01-18 National Institute Of Advanced Industrial Science And Technology Multilayer structure and method for producing same
WO2023045598A1 (en) * 2021-09-22 2023-03-30 东莞市维万特智能科技有限公司 Atomizing core, atomizer, aerosol generating device, and atomizing core preparation method

Similar Documents

Publication Publication Date Title
JP5093745B2 (en) Composite structure
JP5888458B2 (en) Plasma-resistant member and manufacturing method thereof
KR102213487B1 (en) Plasma-resistant member
JP4854445B2 (en) CMP conditioner and method of manufacturing the same
JP3864958B2 (en) Member for semiconductor manufacturing apparatus having plasma resistance and method for manufacturing the same
KR102266656B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2007320797A (en) Composite structure and its manufacturing method
TW201733803A (en) Ceramic laminate
Shibuya et al. Formation of mullite coating by aerosol deposition and microstructural change after heat exposure
KR102266658B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2007077447A (en) Composite structure, and its production method
JP2006131992A (en) Ceramic film and its manufacturing method, ceramic compound film and its manufacturing method, and cutting tool
JP2016008352A (en) Plasma resistant member
JP3897623B2 (en) Composite structure manufacturing method
JP4962901B2 (en) Electrostatic functional member and manufacturing method thereof
US20080274347A1 (en) Method for Producing Film Using Aerosol, Particles Mixture Therefor, and Film and Composite Material
JP2008137860A (en) Ceramics burning tool material for electronic components
JP2005279953A (en) Ceramic structure and its manufacturing method
JP2009013472A (en) Sputtering target, and production method and regeneration method therefor
JP2006289683A (en) Composite structure and its manufacturing method
JP2007109828A (en) Plasma resistant member
JP3874683B2 (en) Composite structure manufacturing method
JP2005314804A (en) Method for producing coating film with use of aerosol, particulate therefor, coating film and composite material
JP2005314800A (en) Method for producing coating film with the use of aerosol, particulate mixture therefor, coating film and composite material
JP2010084223A (en) Composite body of metal silicate film and glass base material, composite body of metal silicate film and the body to be film-formed, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018