JP2016008352A - Plasma resistant member - Google Patents

Plasma resistant member Download PDF

Info

Publication number
JP2016008352A
JP2016008352A JP2014131779A JP2014131779A JP2016008352A JP 2016008352 A JP2016008352 A JP 2016008352A JP 2014131779 A JP2014131779 A JP 2014131779A JP 2014131779 A JP2014131779 A JP 2014131779A JP 2016008352 A JP2016008352 A JP 2016008352A
Authority
JP
Japan
Prior art keywords
layered structure
plasma
resistant member
less
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014131779A
Other languages
Japanese (ja)
Inventor
岩澤 順一
Junichi Iwazawa
順一 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2014131779A priority Critical patent/JP2016008352A/en
Publication of JP2016008352A publication Critical patent/JP2016008352A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma resistant member capable of reducing particles and stably maintaining a chamber condition.SOLUTION: The plasma resistant member comprises: a base material; and a layer structure including a yttria polycrystal formed on the surface of the base material by an aerosol deposition method and having plasma resistance. The crystal structure of the yttria polycrystal constituting the layer structure has cubic and monoclinic crystals mixed together. The monoclinic ratio to the cubic crystal is 60% or less. The crystallite size of the yttria polycrystalline substance constituting the layer structure is 50 nm or less.

Description

本発明の態様は、一般的に、耐プラズマ性部材に関し、具体的にはチャンバー内でドライエッチング、アッシング、スパッタリングおよびCVD等の処理を行う半導体製造装置に使用される耐プラズマ性部材に関する。   Aspects of the present invention generally relate to a plasma-resistant member, and more specifically to a plasma-resistant member used in a semiconductor manufacturing apparatus that performs processes such as dry etching, ashing, sputtering, and CVD in a chamber.

半導体の製造プロセスにおいては、製造されるデバイスの不具合の低減による歩留まりの向上と、歩留まりの安定性が求められている。   2. Description of the Related Art In a semiconductor manufacturing process, improvement in yield and reduction in yield due to reduction in defects of devices to be manufactured are required.

これに対して、チャンバーの天井部が石英ガラスにより構成され、天井部の内面に形成された微小凹凸部の平均表面粗さが0.2〜5μmである電子デバイスの製造装置がある(特許文献1)。また、ポアや粒界層が存在せず、耐プラズマ性部材からの脱粒の発生を抑制・低減する耐プラズマ性部材がある(特許文献2)。   On the other hand, there is an apparatus for manufacturing an electronic device in which the ceiling portion of the chamber is made of quartz glass, and the average surface roughness of the minute irregularities formed on the inner surface of the ceiling portion is 0.2 to 5 μm (Patent Document) 1). In addition, there is a plasma-resistant member that does not have pores or grain boundary layers and suppresses or reduces the occurrence of degranulation from the plasma-resistant member (Patent Document 2).

半導体の製造プロセス中では、製造されるデバイスの不具合の低減による歩留まりの向上のために、チャンバーの内壁に耐プラズマ性に優れたイットリア膜をコーティングし、パーティクルの発生を低減させている。さらに昨今では、半導体デバイスの微細パターン化が進み、ナノレベルでのパーティクルの安定的なコントロールが求められている。   During the semiconductor manufacturing process, in order to improve the yield by reducing the defects of the manufactured device, the inner wall of the chamber is coated with an yttria film having excellent plasma resistance to reduce the generation of particles. In recent years, finer patterning of semiconductor devices has progressed, and stable control of particles at the nano level is required.

特許第3251215号公報Japanese Patent No. 3251215 特許第3864958号公報Japanese Patent No. 3864958

パーティクルを低減させることができ、チャンバーコンディションを安定的に維持することができる耐プラズマ性部材を提供することを目的とする。   It is an object of the present invention to provide a plasma-resistant member that can reduce particles and stably maintain chamber conditions.

第1の発明は、基材と、前記基材の表面にエアロゾルデポジション法により形成されたイットリア多結晶体を含み耐プラズマ性を有する層状構造物とを備え、前記層状構造物を構成するイットリア多結晶体の結晶構造は、立方晶と単斜晶とが混在し、立方晶に対する単斜晶の比が60%以下であり、前記層状構造物を構成するイットリア多結晶体の結晶子サイズが50nm以下であることを特徴とする耐プラズマ性部材である。   1st invention is equipped with the base material and the layered structure which has the yttria polycrystal formed in the surface of the said base material by the aerosol deposition method, and has plasma resistance, The yttria which comprises the said layered structure The crystal structure of the polycrystal is a mixture of cubic and monoclinic crystals, the ratio of monoclinic to cubic is 60% or less, and the crystallite size of the yttria polycrystal constituting the layered structure is It is a plasma-resistant member characterized by being 50 nm or less.

この耐プラズマ性部材によれば、層状構造物は、イットリア焼成体やイットリア溶射膜などと比較すると緻密な構造を有する。これにより、耐プラズマ性部材の耐プラズマ性は、焼成体や溶射膜などの耐プラズマ性よりも高い。また、耐プラズマ性部材がパーティクルの発生源になる確率は、焼成体や溶射膜などがパーティクルの発生源になる確率よりも低い。これにより、耐プラズマ性部材の耐プラズマ性を維持するとともに、パーティクルを低減することができる。また、層状構造物を構成するイットリア多結晶体の結晶子サイズが50nm以下と非常に小さいため、半導体の製造プロセス中にチャンバー内で発生するパーティクルを低減させることができる。層状構造物を構成するイットリア多結晶体の結晶子サイズは20nm以上35nm以下が好ましく、より好ましくは8nm以上25nm以下である。
また、立方晶に対する単斜晶の比を60%以下にすることにより、層状構造物の表面粗さのばらつきを小さくすることができる。立方晶に対する単斜晶の比は20%以上40%以下が好ましく、より好ましくは0%以上5%以下である。チャンバー内に搭載される耐プラズマ性部材の表面粗さのばらつきを小さくすることにより、チャンバー内に発生させるプラズマの状態を安定化させることがきる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができ、チャンバーコンディションを安定的に維持することができる。ここで、表面粗さのばらつきとは、耐プラズマ性部材ごとの表面粗さのばらつき、および、耐プラズマ性部材の面内における表面粗さのばらつきを指す。
According to this plasma-resistant member, the layered structure has a dense structure as compared with the yttria fired body, the yttria sprayed film, and the like. Thereby, the plasma resistance of the plasma-resistant member is higher than the plasma resistance of the fired body or the sprayed film. In addition, the probability that the plasma-resistant member becomes a particle generation source is lower than the probability that the fired body or the sprayed film becomes a particle generation source. Thereby, while maintaining the plasma resistance of a plasma-resistant member, a particle can be reduced. In addition, since the crystallite size of the yttria polycrystal constituting the layered structure is as small as 50 nm or less, particles generated in the chamber during the semiconductor manufacturing process can be reduced. The crystallite size of the yttria polycrystal constituting the layered structure is preferably 20 nm or more and 35 nm or less, more preferably 8 nm or more and 25 nm or less.
Further, by setting the ratio of monoclinic crystal to cubic crystal to 60% or less, variation in the surface roughness of the layered structure can be reduced. The ratio of the monoclinic crystal to the cubic crystal is preferably 20% or more and 40% or less, more preferably 0% or more and 5% or less. By reducing the variation in surface roughness of the plasma-resistant member mounted in the chamber, the state of plasma generated in the chamber can be stabilized. Thereby, particles generated during the semiconductor manufacturing process can be reduced, and the chamber condition can be stably maintained. Here, the variation in surface roughness refers to the variation in surface roughness for each plasma-resistant member and the variation in surface roughness within the surface of the plasma-resistant member.

第2の発明は、第1の発明において、前記層状構造物を構成するイットリア多結晶体は、酸素欠損量が30%未満であることを特徴とする耐プラズマ性部材である。   A second invention is the plasma-resistant member according to the first invention, wherein the yttria polycrystal constituting the layered structure has an oxygen deficiency amount of less than 30%.

この耐プラズマ性部材によれば、層状構造物を構成するイットリア多結晶体の結晶子サイズを微細な大きさで維持しながら、層状構造物の表面粗さのばらつきをより小さくすることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができ、チャンバーコンディションを安定的に保持することができる。   According to this plasma-resistant member, the variation in the surface roughness of the layered structure can be further reduced while maintaining the fine crystallite size of the yttria polycrystal constituting the layered structure. Thereby, particles generated during the semiconductor manufacturing process can be reduced, and the chamber condition can be stably maintained.

第3の発明は、第1または第2の発明において、前記層状構造物を構成するイットリア多結晶体は、粒子間の空隙が10nm未満であることを特徴とする耐プラズマ性部材である。   A third invention is the plasma-resistant member according to the first or second invention, wherein the yttria polycrystal constituting the layered structure has a gap between particles of less than 10 nm.

この耐プラズマ性部材によれば、層状構造物の微細構造がより明確となる。層状構造物を構成するイットリア多結晶体は、粒子間の空隙が10nm未満と非常に小さく、腐食の起点となる空隙が非常に小さいため、パーティクルを低減することができる。また、緻密な構造であるため、層状構造物の表面粗さのばらつきをより小さくすることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができ、チャンバーコンディションを安定的に維持することができる。   According to this plasma-resistant member, the fine structure of the layered structure becomes clearer. Since the yttria polycrystal constituting the layered structure has a very small void between particles of less than 10 nm and a very small void serving as a starting point of corrosion, particles can be reduced. Moreover, since it is a dense structure, the variation in the surface roughness of the layered structure can be further reduced. Thereby, particles generated during the semiconductor manufacturing process can be reduced, and the chamber condition can be stably maintained.

第4の発明は、第3の発明において、前記層状構造物を構成するイットリア多結晶体は、イットリア粒子表面のOH基を介して結合していることを特徴とする耐プラズマ性部材である。   A fourth invention is the plasma-resistant member according to the third invention, wherein the yttria polycrystals constituting the layered structure are bonded through OH groups on the surface of the yttria particles.

この耐プラズマ性部材によれば、イットリア粒子間の結合がより強固になるため、パーティクルを低減することができる。また、より緻密な構造であるため、層状構造物の表面粗さのばらつきをより小さくすることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができ、チャンバーコンディションを安定的に維持することができる。   According to this plasma-resistant member, since the bonds between yttria particles become stronger, particles can be reduced. Moreover, since it has a denser structure, variations in the surface roughness of the layered structure can be further reduced. Thereby, particles generated during the semiconductor manufacturing process can be reduced, and the chamber condition can be stably maintained.

第5の発明は、第1〜第4のいずれか1つの発明において、前記層状構造物は、結晶粒子サイズが原料粒子サイズに比べて小さいイットリア多結晶体であり、前記層状構造物の表面の一部に形成され結晶粒子の集団が脱落した空隙を有する第1の凹凸構造と、前記層状構造物の表面の全体において前記第1の凹凸構造に重畳して形成され前記第1の凹凸構造よりも微細な凹凸であって前記結晶粒子の大きさの微細な凹凸を有する第2の凹凸構造とを有することを特徴とする耐プラズマ性部材である。   According to a fifth invention, in any one of the first to fourth inventions, the layered structure is a yttria polycrystal having a crystal grain size smaller than a raw material particle size, and the surface of the layered structure is The first concavo-convex structure having a void formed in part and having a group of crystal grains dropped off, and the first concavo-convex structure formed over the first concavo-convex structure over the entire surface of the layered structure. And a second concavo-convex structure having fine concavo-convex portions and fine concavo-convex portions of the size of the crystal grains.

この耐プラズマ性部材によれば、層状構造物は、第2の微細な凹凸構造が第1の凹凸構造に重畳して形成された構造を有する。半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができる。 According to this plasma-resistant member, the layered structure has a structure in which the second fine concavo-convex structure is formed so as to overlap the first concavo-convex structure. Reaction products and particles generated in the semiconductor device manufacturing process can be reliably captured with a high and stable adhesion strength by a fine uneven structure, and a stable adhesion strength can be obtained. Thereby, particles generated during the semiconductor manufacturing process can be reduced.

第6の発明は、第5の発明において、前記層状構造物の表面の算術平均Saは、0.026μm以上0.075μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の実体体積Vmcは、0.03μm/μm以上0.079μm/μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の中空体積Vvcは、0.036μm/μm以上0.1μm/μm以下であり、前記層状構造物の表面の界面の展開面積率Sdrは、3.4以上28以下であることを特徴とする耐プラズマ性部材である。 In a sixth aspect based on the fifth aspect, the arithmetic mean Sa of the surface of the layered structure is 0.026 μm or more and 0.075 μm or less, and the core portion obtained from the surface load curve of the layered structure entity volume and Vmc, 0.03 .mu.m 3 / [mu] m is 2 or more 0.079μm 3 / μm 2 or less, the hollow volume Vvc core portion obtained from the load curve of the surface of the layered structure, 0.036μm 3 / μm 2 or more and 0.1 μm 3 / μm 2 or less, and the development area ratio Sdr of the interface of the surface of the layered structure is 3.4 or more and 28 or less.

この耐プラズマ性部材によれば、層状構造物の表面の3次元表面性状がより明確となる。これにより、半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができる。   According to this plasma-resistant member, the three-dimensional surface property of the surface of the layered structure becomes clearer. Thereby, reaction products and particles generated during the manufacturing process of the semiconductor device can be reliably captured with a high and stable adhesion strength by a fine uneven structure, and a stable adhesion strength can be obtained. Thereby, particles generated during the semiconductor manufacturing process can be reduced.

第7の発明は、第5または第6の発明において、前記第1の凹凸構造および前記第2の凹凸構造は、化学的処理が施されることにより形成されたことを特徴とする耐プラズマ性部材である。   The seventh invention is the plasma resistance according to the fifth or sixth invention, wherein the first concavo-convex structure and the second concavo-convex structure are formed by chemical treatment. It is a member.

この耐プラズマ性部材によれば、半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができる。   According to this plasma-resistant member, reaction products and particles generated during the manufacturing process of a semiconductor device can be reliably captured with high and stable adhesion strength by a fine concavo-convex structure, and stable adhesion strength can be obtained. it can. Thereby, particles generated during the semiconductor manufacturing process can be reduced.

第8の発明は、第5の発明において、面解析におけるカットオフが0.8μmである場合において、前記層状構造物の表面の算術平均Saは、0.010μm以上0.033μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の実体体積Vmcは、0.01μm/μm以上0.034μm/μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の中空体積Vvcは、0.012μm/μm以上0.045μm/μm以下であり、前記層状構造物の表面の界面の展開面積率Sdrは、1.1以上15以下であり、前記層状構造物の表面の二乗平均平方根傾斜SΔqは、0.15以上0.57以下であることを特徴とする耐プラズマ性部材である。 In an eighth aspect based on the fifth aspect, when the cut-off in the surface analysis is 0.8 μm, the arithmetic average Sa of the surface of the layered structure is 0.010 μm or more and 0.033 μm or less, entity volume Vmc of the core obtained from the load curve of the surface of the layered structure, 0.01 [mu] m 3 / [mu] m is 2 or more 0.034μm 3 / μm 2 or less, determined from the load curve of the surface of the layered structure The hollow volume Vvc of the core part is 0.012 μm 3 / μm 2 or more and 0.045 μm 3 / μm 2 or less, and the development area ratio Sdr of the interface of the surface of the layered structure is 1.1 or more and 15 or less. The root mean square slope SΔq of the surface of the layered structure is 0.15 or more and 0.57 or less, which is a plasma resistant member.

この耐プラズマ性部材によれば、半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができる。これにより、半導体の製造プロセス中に発生するパーティクルを低減させることができる。   According to this plasma-resistant member, reaction products and particles generated during the manufacturing process of a semiconductor device can be reliably captured with high and stable adhesion strength by a fine concavo-convex structure, and stable adhesion strength can be obtained. it can. Thereby, particles generated during the semiconductor manufacturing process can be reduced.

第9の発明は、第5〜第8のいずれか1つの発明において、前記層状構造物は、前記イットリア多結晶体の粗密構造を有することを特徴とする耐プラズマ性部材である。   A ninth invention is the plasma-resistant member according to any one of the fifth to eighth inventions, wherein the layered structure has a dense structure of the yttria polycrystal.

この耐プラズマ性部材によれば、層状構造物がイットリア多結晶体の粗密構造を有するため、第1の凹凸構造と、第2の凹凸構造と、が生じやすい。すなわち、第1の凹凸構造は、密度が粗の部分において形成されやすい。そのため、第2の凹凸構造が第1の凹凸構造に重畳して形成されやすいと考えられる。これにより、半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができ、半導体の製造プロセス中に発生するパーティクルを低減させることができる。   According to this plasma-resistant member, since the layered structure has a dense structure of yttria polycrystal, the first uneven structure and the second uneven structure are likely to occur. That is, the first concavo-convex structure is likely to be formed in a portion where the density is coarse. For this reason, it is considered that the second concavo-convex structure is easily formed so as to overlap the first concavo-convex structure. As a result, reaction products and particles generated in the semiconductor device manufacturing process can be reliably captured with high and stable adhesion strength by a fine uneven structure, and a stable adhesion strength can be obtained. Particles generated inside can be reduced.

第10の発明は、第9の発明において、前記粗密構造のうちの粗の部分は、前記層状構造物の表面の層から前記表面の層よりも深い層へ向かうと小さくなることを特徴とする耐プラズマ性部材である。   A tenth aspect of the invention is characterized in that, in the ninth aspect, a coarse portion of the dense structure becomes smaller when going from a layer on the surface of the layered structure to a layer deeper than the layer on the surface. It is a plasma resistant member.

この耐プラズマ性部材によれば、粗密構造のうちの粗の部分は、層状構造物の表面の層から表面の層よりも深い層へ向かうと小さくなる。そのため、微細な凹凸構造の凹部が層状構造物の表面の層よりも深い層において形成されやすい。これにより、アンカー効果が得られ、半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができ、半導体の製造プロセス中に発生するパーティクルを低減させることができる。   According to this plasma-resistant member, the coarse portion of the dense structure becomes smaller when going from the surface layer of the layered structure to a layer deeper than the surface layer. Therefore, the concave portion of the fine concavo-convex structure is easily formed in a layer deeper than the layer on the surface of the layered structure. As a result, an anchor effect can be obtained, and reaction products and particles generated in the semiconductor device manufacturing process can be reliably captured with high and stable adhesion strength by a fine uneven structure to obtain stable adhesion strength. In addition, particles generated during the semiconductor manufacturing process can be reduced.

第11の発明は、第9の発明において、前記粗密構造は、密の部分の中に密度が前記密の部分の密度よりも小さい粗の部分が三次元的に分布したことを特徴とする耐プラズマ性部材である。   An eleventh invention is characterized in that, in the ninth invention, the coarse-dense structure is characterized in that a coarse portion having a density smaller than the density of the dense portion is three-dimensionally distributed in the dense portion. It is a plasma member.

この耐プラズマ性部材によれば、粗密構造は、層状構造物の表面および厚さ方向(深さ方向)に三次元的に分布している。そのため、半導体デバイスの製造プロセス中で生成される反応生成物やパーティクルは、微細な凹凸構造により高く安定した密着強度で確実に捕獲し、安定した密着強度を得ることができ、半導体の製造プロセス中に発生するパーティクルを低減させることができる   According to the plasma-resistant member, the dense structure is three-dimensionally distributed on the surface of the layered structure and in the thickness direction (depth direction). Therefore, reaction products and particles generated in the semiconductor device manufacturing process can be reliably captured with a high and stable adhesion strength due to the fine uneven structure, and a stable adhesion strength can be obtained. Can reduce particles generated

第12の発明は、第1〜第11のいずれか1つの発明において、前記層状構造物は、加熱処理が施されることにより形成されることを特徴とする耐プラズマ性部材である。   A twelfth invention is the plasma-resistant member according to any one of the first to eleventh inventions, wherein the layered structure is formed by performing a heat treatment.

この耐プラズマ性部材によれば、半導体の製造プロセス中に発生するパーティクルを低減させることができ、チャンバーコンディションを安定的に維持することができるためのより好ましい層状構造物を得ることができる。   According to the plasma-resistant member, particles generated during the semiconductor manufacturing process can be reduced, and a more preferable layered structure for stably maintaining the chamber condition can be obtained.

本発明の態様によれば、パーティクルを低減させることができ、チャンバーコンディションを安定的に維持することができる耐プラズマ性部材が提供される。   According to the aspect of the present invention, there is provided a plasma-resistant member capable of reducing particles and stably maintaining chamber conditions.

本発明の実施の形態にかかる耐プラズマ性部材を備えた半導体製造装置を表す模式的断面図である。It is typical sectional drawing showing the semiconductor manufacturing apparatus provided with the plasma-resistant member concerning embodiment of this invention. 耐プラズマ性部材の表面に形成された層状構造物の表面を表す写真図である。It is a photograph figure showing the surface of the layered structure formed in the surface of a plasma-resistant member. 耐プラズマ性部材の表面に形成された層状構造物の立方晶に対する単斜晶の比および結晶子サイズと表面粗さSaのばらつきを表した表である。6 is a table showing the ratio of monoclinic crystals to cubic crystals of the layered structure formed on the surface of the plasma-resistant member and the variation of crystallite size and surface roughness Sa. 3次元表面性状パラメータを説明する模式図である。It is a schematic diagram explaining a three-dimensional surface property parameter.

以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
図1は、本発明の実施の形態にかかる耐プラズマ性部材を備えた半導体製造装置を表す模式的断面図である。
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
FIG. 1 is a schematic cross-sectional view showing a semiconductor manufacturing apparatus provided with a plasma-resistant member according to an embodiment of the present invention.

図1に表した半導体製造装置100は、チャンバー110と、耐プラズマ性部材120と、静電チャック160と、を備える。耐プラズマ性部材120は、例えば天板などと呼ばれ、チャンバー110の内部における上部に設けられている。静電チャック160は、チャンバー110の内部における下部に設けられている。つまり、耐プラズマ性部材120は、チャンバー110の内部において静電チャック160の上に設けられている。ウェーハ210等の被吸着物は、静電チャック160の上に載置される。   The semiconductor manufacturing apparatus 100 illustrated in FIG. 1 includes a chamber 110, a plasma resistant member 120, and an electrostatic chuck 160. The plasma-resistant member 120 is called, for example, a top plate or the like, and is provided in the upper part inside the chamber 110. The electrostatic chuck 160 is provided in the lower part inside the chamber 110. That is, the plasma resistant member 120 is provided on the electrostatic chuck 160 inside the chamber 110. An object to be attracted such as the wafer 210 is placed on the electrostatic chuck 160.

耐プラズマ性部材120は、例えば、アルミナ(Al)を含む基材の表面にイットリア(Y)多結晶体を含む層状構造物123が形成された構造を有する。イットリア多結晶体の層状構造物123は、「エアロゾルデポジション法」により形成されている。なお、基材の材料は、アルミナなどのセラミックスに限定されず、石英、アルマイト、金属あるいはガラスなどであってもよい。 The plasma-resistant member 120 has, for example, a structure in which a layered structure 123 including a yttria (Y 2 O 3 ) polycrystal is formed on the surface of a base material including alumina (Al 2 O 3 ). The layered structure 123 of yttria polycrystal is formed by the “aerosol deposition method”. The material of the substrate is not limited to ceramics such as alumina, and may be quartz, anodized, metal or glass.

「エアロゾルデポジション法」は、脆性材料を含む微粒子をガス中に分散させた「エアロゾル」をノズルから基材に向けて噴射し、金属やガラス、セラミックスやプラスチックなどの基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子に変形や破砕を起させしめてこれらを接合させ、基材上に微粒子の構成材料からなる層状構造物(膜状構造物ともいう)123をダイレクトに形成させる方法である。この方法によれば、特に加熱手段や冷却手段などを必要とせず、常温で層状構造物123の形成が可能であり、焼成体と同等以上の機械的強度を有する層状構造物123を得ることができる。また、微粒子を衝突させる条件や微粒子の形状、組成などを制御することにより、層状構造物123の密度や機械強度、電気特性などを多様に変化させることが可能である。   In the “Aerosol Deposition Method”, “Aerosol”, in which fine particles containing brittle materials are dispersed in a gas, is sprayed from a nozzle toward the base material, causing the fine particles to collide with a base material such as metal, glass, ceramics or plastic. A method of directly forming a layered structure (also referred to as a film-like structure) 123 made of a constituent material of fine particles on a base material by causing deformation and crushing of the brittle material fine particles by the impact of the collision and joining them. It is. According to this method, the layered structure 123 can be formed at room temperature without requiring any heating means or cooling means, and the layered structure 123 having mechanical strength equal to or higher than that of the fired body can be obtained. it can. In addition, the density, mechanical strength, electrical characteristics, and the like of the layered structure 123 can be changed in various ways by controlling the conditions under which the fine particles collide and the shape and composition of the fine particles.

なお、本願明細書において「多結晶」とは、結晶粒子が接合・集積してなる構造体をいう。結晶粒子は、実質的にひとつで結晶を構成する。結晶粒子の径は、通常5ナノメートル(nm)以上である。但し、微粒子が破砕されずに構造物中に取り込まれる場合には、結晶粒子は、多結晶である。   In the present specification, “polycrystal” refers to a structure formed by bonding and accumulating crystal particles. The crystal particles are substantially one and constitute a crystal. The diameter of the crystal particles is usually 5 nanometers (nm) or more. However, when the fine particles are taken into the structure without being crushed, the crystal particles are polycrystalline.

また、本願明細書において「微粒子」とは、一次粒子が緻密質粒子である場合には、粒度分布測定や走査型電子顕微鏡などにより同定される平均粒径が5マイクロメータ(μm)以下のものをいう。一次粒子が衝撃によって破砕されやすい多孔質粒子である場合には、平均粒径が50μm以下のものをいう。   In the present specification, the term “fine particles” means that when the primary particles are dense particles, the average particle diameter identified by particle size distribution measurement or scanning electron microscope is 5 micrometers (μm) or less. Say. When the primary particles are porous particles that are easily crushed by impact, the average particle size is 50 μm or less.

また、本願明細書において「エアロゾル」とは、ヘリウム、窒素、アルゴン、酸素、乾燥空気、これらを含む混合ガスなどのガス中に前述の微粒子を分散させた固気混合相体を指し、一部「凝集体」を含む場合もあるが、実質的には微粒子が単独で分散している状態をいう。エアロゾルのガス圧力と温度は任意であるが、ガス中の微粒子の濃度は、ガス圧を1気圧、温度を摂氏20度に換算した場合に、吐出口から噴射される時点において0.0003mL/L〜5mL/Lの範囲内であることが層状構造物123の形成にとって望ましい。   In the specification of the present application, “aerosol” refers to a solid-gas mixed phase body in which the aforementioned fine particles are dispersed in a gas such as helium, nitrogen, argon, oxygen, dry air, or a mixed gas containing these. Although it may contain an “aggregate”, it means a state in which fine particles are dispersed substantially alone. The gas pressure and temperature of the aerosol are arbitrary, but the concentration of fine particles in the gas is 0.0003 mL / L at the time when the gas is injected from the discharge port when the gas pressure is converted to 1 atm and the temperature is converted to 20 degrees Celsius. It is desirable for the formation of the layered structure 123 to be in the range of ˜5 mL / L.

エアロゾルデポジションのプロセスは、通常は常温で実施され、微粒子材料の融点より十分に低い温度、すなわち摂氏数100度以下で層状構造物123の形成が可能であるところにひとつの特徴がある。
なお、本願明細書において「常温」とは、セラミックスの焼結温度に対して著しく低い温度で、実質的には0〜100℃の室温環境をいう。
The aerosol deposition process is usually performed at room temperature, and has one feature that the layered structure 123 can be formed at a temperature sufficiently lower than the melting point of the fine particle material, that is, at a temperature of 100 degrees centigrade or less.
In the present specification, “normal temperature” refers to a room temperature environment that is substantially lower than the sintering temperature of ceramics and is substantially 0 to 100 ° C.

層状構造物123の原料となる粉体を構成する微粒子は、セラミックスや半導体などの脆性材料を主体とし、同一材質の微粒子を単独であるいは粒径の異なる微粒子を混合させて用いることができるほか、異種の脆性材料微粒子を混合させたり、複合させて用いることが可能である。また、金属材料や有機物材料などの微粒子を脆性材料微粒子に混合したり、脆性材料微粒子の表面にコーティングさせて用いることも可能である。これらの場合でも、層状構造物123の形成の主となるものは、脆性材料である。
なお、本願明細書において「粉体」とは、前述した微粒子が自然凝集した状態をいう。
The fine particles constituting the powder as the raw material of the layered structure 123 are mainly brittle materials such as ceramics and semiconductors, and the fine particles of the same material can be used alone or mixed with fine particles having different particle diameters. Different brittle material fine particles can be mixed or combined to be used. Moreover, it is also possible to mix fine particles such as metal materials and organic materials with brittle material fine particles, or to coat the surface of brittle material fine particles. Even in these cases, the main component of the formation of the layered structure 123 is a brittle material.
In the present specification, “powder” refers to a state in which the above-mentioned fine particles are naturally agglomerated.

この手法によって形成される複合構造物において、結晶性の脆性材料微粒子を原料として用いる場合、複合構造物の層状構造物123の部分は、その結晶粒子サイズが原料微粒子のそれに比べて小さい多結晶体であり、その結晶は実質的に結晶配向性がない場合が多い。また、脆性材料結晶同士の界面には、ガラス層からなる粒界層が実質的に存在しない。また多くの場合、複合構造物の層状構造物123部分は、基材の表面に食い込む「アンカー層」を形成する。このアンカー層が形成されている層状構造物123は、基材に対して極めて高い強度で強固に付着して形成される。   In the composite structure formed by this method, when crystalline brittle material fine particles are used as a raw material, the layered structure 123 portion of the composite structure is a polycrystalline body whose crystal particle size is smaller than that of the raw material fine particles. In many cases, the crystal has substantially no crystal orientation. Moreover, the grain boundary layer which consists of a glass layer does not exist substantially in the interface of brittle material crystals. In many cases, the layered structure 123 portion of the composite structure forms an “anchor layer” that bites into the surface of the substrate. The layered structure 123 in which the anchor layer is formed is formed by being firmly attached to the base material with extremely high strength.

エアロゾルデポジション法において、飛来してきた脆性材料微粒子が基材の上で破砕・変形を起していることは、原料として用いる脆性材料微粒子と、形成された脆性材料構造物の結晶子(結晶粒子)サイズとをX線回折法などで測定することにより確認できる。すなわち、エアロゾルデポジション法で形成された層状構造物123の結晶子サイズは、原料微粒子の結晶子サイズよりも小さい。微粒子が破砕や変形をすることで形成される「ずれ面」や「破面」には、もともとの微粒子の内部に存在し別の原子と結合していた原子が剥き出しの状態となった「新生面」が形成される。表面エネルギーが高く活性なこの新生面が、隣接した脆性材料微粒子の表面や同じく隣接した脆性材料の新生面あるいは基材の表面と接合することにより層状構造物123が形成されるものと考えられる。   In the aerosol deposition method, the brittle material fine particles that have come to the surface are crushed and deformed on the substrate. The brittle material fine particles used as the raw material and the crystallites (crystal particles of the formed brittle material structure) ) The size can be confirmed by measuring by an X-ray diffraction method or the like. That is, the crystallite size of the layered structure 123 formed by the aerosol deposition method is smaller than the crystallite size of the raw material fine particles. The “developed surface” or “fracture surface” formed by crushing or deforming fine particles is a “new surface” in which atoms that were originally present inside the fine particles and bonded to other atoms are exposed. Is formed. It is considered that the layered structure 123 is formed by joining this new surface having high surface energy and activity to the surface of the adjacent brittle material fine particles, the new surface of the adjacent brittle material, or the surface of the substrate.

半導体製造装置100では、高周波電力が供給され、図1に表した矢印A1のように例えばハロゲン系ガスなどの原料ガスがチャンバー110の内部に導入される。すると、チャンバー110の内部に導入された原料ガスは、静電チャック160と耐プラズマ性部材120との間の領域191においてプラズマ化する。   In the semiconductor manufacturing apparatus 100, high-frequency power is supplied, and a source gas such as a halogen-based gas is introduced into the chamber 110 as indicated by an arrow A1 shown in FIG. Then, the source gas introduced into the chamber 110 is turned into plasma in a region 191 between the electrostatic chuck 160 and the plasma resistant member 120.

耐プラズマ性部材120は、高密度プラズマを発生させるための重要な部材の1つである。ここで、チャンバー110の内部において発生したパーティクル221がウェーハ210に付着すると、製造された半導体デバイスに不具合が発生する場合がある。すると、半導体デバイスの歩留まりおよび生産性が低下する場合がある。そのため、耐プラズマ性部材120には、耐プラズマ性が要求される。   The plasma resistant member 120 is one of important members for generating high density plasma. Here, when the particles 221 generated inside the chamber 110 adhere to the wafer 210, a defect may occur in the manufactured semiconductor device. Then, the yield and productivity of the semiconductor device may be reduced. Therefore, the plasma resistance member 120 is required to have plasma resistance.

本実施形態の耐プラズマ性部材120は、イットリア多結晶体を含む層状構造物123がアルミナを含む基材の表面にエアロゾルデポジション法により形成された構造を有する。エアロゾルデポジション法により形成されたイットリア多結晶体の層状構造物123は、イットリア焼成体やイットリア溶射膜などと比較すると緻密な構造を有する。これにより、本実施形態の耐プラズマ性部材120の耐プラズマ性は、焼成体や溶射膜などの耐プラズマ性よりも高い。また、本実施形態の耐プラズマ性部材120がパーティクルの発生源になる確率は、焼成体や溶射膜などがパーティクルの発生源になる確率よりも低い。また、イットリア多結晶体を含む層状構造物123を緻密化させるために、製膜補助粒子として機能する微粒子を使用してもよい。ここで、製膜補助粒子とは、イットリア微粒子を変形あるいは破砕せしめて新生面を生じさせるためのもので、衝突後は反射し、不可避的に混入するものを除いて直接層状構造物の構成材料にはならない。   The plasma-resistant member 120 of this embodiment has a structure in which a layered structure 123 containing a yttria polycrystal is formed on the surface of a substrate containing alumina by an aerosol deposition method. The layered structure 123 of the yttria polycrystal formed by the aerosol deposition method has a dense structure as compared with the yttria fired body or the yttria sprayed film. Thereby, the plasma resistance of the plasma-resistant member 120 of this embodiment is higher than the plasma resistance of a fired body or a sprayed film. In addition, the probability that the plasma-resistant member 120 of this embodiment is a particle generation source is lower than the probability that a fired body or a sprayed coating is a particle generation source. Moreover, in order to densify the layered structure 123 containing the yttria polycrystal, fine particles that function as film forming auxiliary particles may be used. Here, the film-forming auxiliary particles are for deforming or crushing yttria fine particles to form a new surface, and after the collision, they are directly reflected in the constituent material of the layered structure except those that are reflected and inevitably mixed. Must not.

さらに、本実施形態の耐プラズマ性部材120は、図2に示すように粗面化された表面を有する。これによれば、本発明者は、耐プラズマ性部材120の耐プラズマ性を維持しつつ、パーティクルを低減することができる知見を得た。 以下、本実施形態の耐プラズマ性部材120の表面に形成された層状構造物123について、図面を参照しつつ説明する。   Furthermore, the plasma-resistant member 120 of this embodiment has a roughened surface as shown in FIG. According to this, the present inventor has obtained knowledge that particles can be reduced while maintaining the plasma resistance of the plasma resistant member 120. Hereinafter, the layered structure 123 formed on the surface of the plasma resistant member 120 of the present embodiment will be described with reference to the drawings.

本発明者は、耐プラズマ性部材120の表面に形成された層状構造物に加熱処理を施した後、化学的処理を施し層状構造物123の表面を粗面化した。加熱処理が施される層状構造物は緻密な構造を有している。
本願明細書において「加熱処理」とは、乾燥器、オーブン、焼成炉、レーザー、電子ビーム、イオンビーム、分子ビーム、原子ビーム、高周波、プラズマなどを用いて物体を加熱処理することを言う。また、加熱処理は層状構造物を作製するプロセス途中であっても作製後であってもよい。
また、本願明細書において本願明細書において「化学的処理」とは、水溶液中で水素イオンを生成するものを用いて物体の表面を処理することをいう。例えば、化学的処理としては、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、硫酸、フルオロスルホン酸、硝酸、塩酸、リン酸、ヘキサフルオロアンチモン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、クロム酸、ホウ酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸、ポリスチレンスルホン酸、酢酸、クエン酸、ギ酸、グルコン酸、乳酸、シュウ酸、酒石酸、フッ化水素酸、炭酸および硫化水素の少なくともいずれかを含む水溶液を用いた表面処理が挙げられる。
あるいは、本願明細書において「化学的処理」とは、水溶液中で水酸化物イオンを生成するものを用いて物体の表面を処理することをいう。例えば、化学的処理としては、水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化カルシウム、水酸化バリウム、水酸化銅、水酸化アルミニウムおよび水酸化鉄の少なくともいずれかを含む水溶液を用いた表面処理が挙げられる。
そして、本発明者は、加熱処理を施した後、化学的処理を施した層状構造物123の表面を観察した。その写真図は図2に示した通りである。
The present inventor performed heat treatment on the layered structure formed on the surface of the plasma-resistant member 120 and then performed chemical treatment to roughen the surface of the layered structure 123. The layered structure subjected to the heat treatment has a dense structure.
In this specification, “heat treatment” refers to heat treatment of an object using a dryer, oven, baking furnace, laser, electron beam, ion beam, molecular beam, atomic beam, high frequency, plasma, or the like. Further, the heat treatment may be performed during or after the process of manufacturing the layered structure.
In the present specification, the term “chemical treatment” refers to treating the surface of an object using a material that generates hydrogen ions in an aqueous solution. For example, chemical treatment includes hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, sulfuric acid, fluorosulfonic acid, nitric acid, hydrochloric acid, phosphoric acid, hexafluoroantimony Acid, tetrafluoroboric acid, hexafluorophosphoric acid, chromic acid, boric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, polystyrenesulfonic acid, acetic acid, citric acid, Examples include surface treatment using an aqueous solution containing at least one of formic acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, hydrofluoric acid, carbonic acid, and hydrogen sulfide.
Alternatively, “chemical treatment” in the present specification means that the surface of an object is treated with a substance that generates hydroxide ions in an aqueous solution. For example, the chemical treatment includes surface treatment using an aqueous solution containing at least one of sodium hydroxide, potassium hydroxide, ammonia, calcium hydroxide, barium hydroxide, copper hydroxide, aluminum hydroxide, and iron hydroxide. Can be mentioned.
Then, the inventor observed the surface of the layered structure 123 subjected to the chemical treatment after the heat treatment. The photograph is as shown in FIG.

図3は、層状構造物123の加熱処理温度と立方晶に対する単斜晶の比および結晶子サイズと表面粗さSaのばらつきの関係を示した表である。立方晶に対する単斜晶の比が0%以上60%以下の時、表面粗さのばらつきを0.2μm以下と小さくすることができ、チャンバーコンディションを安定的に維持することができる。また、加熱処理を施しても結晶子サイズは50nm以下と非常に小さいため、パーティクルを低減することができる。   FIG. 3 is a table showing the heat treatment temperature of the layered structure 123, the ratio of the monoclinic crystal to the cubic crystal, and the relationship between the crystallite size and the variation of the surface roughness Sa. When the ratio of the monoclinic crystal to the cubic crystal is 0% or more and 60% or less, the variation in surface roughness can be reduced to 0.2 μm or less, and the chamber condition can be stably maintained. Further, even when heat treatment is performed, the crystallite size is as small as 50 nm or less, so that particles can be reduced.

ここで、結晶子サイズおよび立方晶に対する単斜晶の比は、XRDを用いて測定した。立方晶に対する単斜晶の比は、2θ=29°近傍の立方晶に起因する最強ピーク強度と2θ=30°近傍の単斜晶に起因する最強ピーク強度から算出した。尚、立方晶に対する単斜晶の割合は、ピーク強度比でなくとも、ピーク面積比より算出してもよい。XRDとしては「X‘PertPRO/パナリティカル製」を使用した。管電圧45kV、管電流40mA、スキャンステップ0.017°を使用した。
尚、結晶子サイズの測定はTEM観察などの画像から算出してもよい。
Here, the crystallite size and the ratio of monoclinic crystal to cubic crystal were measured using XRD. The ratio of the monoclinic crystal to the cubic crystal was calculated from the strongest peak intensity attributed to the cubic crystal near 2θ = 29 ° and the strongest peak intensity attributed to the monoclinic crystal near 2θ = 30 °. Note that the ratio of the monoclinic crystal to the cubic crystal may be calculated from the peak area ratio instead of the peak intensity ratio. As XRD, “X'PertPRO / Panalytical” was used. A tube voltage of 45 kV, a tube current of 40 mA, and a scan step of 0.017 ° were used.
The crystallite size may be measured from an image such as TEM observation.

本発明者は、耐プラズマ性部材120の表面に形成された層状構造物123の表面粗さSaのばらつきを、レーザ顕微鏡を用いて測定した。レーザー顕微鏡としては、「OLS4000/オリンパス製」を使用した。対物レンズの倍率は50倍、ズームは1倍を使用した。カットオフについては80μmに設定した。   This inventor measured the dispersion | variation in the surface roughness Sa of the layered structure 123 formed in the surface of the plasma-resistant member 120 using the laser microscope. As the laser microscope, “OLS4000 / manufactured by Olympus” was used. The magnification of the objective lens was 50 times and the zoom was 1 time. The cut-off was set to 80 μm.

高さ方向の振幅平均(算術平均)Saとは、2次元の算術平均粗さRaを3次元に拡張したものであり、3次元粗さパラメータ(3次元高さ方向パラメータ)である。具体的には、算術平均Saは、表面形状曲面と平均面とで囲まれた部分の体積を測定面積で割ったものである。平均面をxy面、縦方向をz軸とし、測定された表面形状曲線をz(x、y)とすると、算術平均Saは、次式で定義される。ここで、式(1)の中の「A」は、測定面積である。
The amplitude average (arithmetic average) Sa in the height direction is obtained by extending the two-dimensional arithmetic average roughness Ra to three dimensions, and is a three-dimensional roughness parameter (three-dimensional height direction parameter). Specifically, the arithmetic average Sa is obtained by dividing the volume of the portion surrounded by the surface shape curved surface and the average surface by the measurement area. When the average plane is the xy plane, the vertical direction is the z-axis, and the measured surface shape curve is z (x, y), the arithmetic mean Sa is defined by the following equation. Here, “A” in the formula (1) is a measurement area.

次に、本発明者は、算術平均Sa、コア部の実体体積Vmc、コア部の中空体積Vvc、界面の展開面積率Sdr、および二乗平均平方根傾斜SΔqにより、耐プラズマ性部材120の表面に形成された層状構造物123の表面状態を、層状構造物123の表面の全体を網羅した形で表現し評価できると判断した。
図4は、3次元表面性状パラメータを説明する模式図である。なお、図4(a)は、高さ方向の振幅平均(算術平均)Saを説明するグラフ図である。図4(b)は、コア部の実体体積Vmcおよびコア部の中空体積Vvcを説明するグラフ図である。図4(c)は、定義したセグメンテーション内での突起(あるいは穴)密度を説明する模式的平面図である。
Next, the inventor forms on the surface of the plasma-resistant member 120 by the arithmetic mean Sa, the substantial volume Vmc of the core part, the hollow volume Vvc of the core part, the developed area ratio Sdr of the interface, and the root mean square slope SΔq. It was determined that the surface state of the layered structure 123 thus obtained can be expressed and evaluated in a form that covers the entire surface of the layered structure 123.
FIG. 4 is a schematic diagram for explaining the three-dimensional surface property parameter. FIG. 4A is a graph illustrating amplitude average (arithmetic average) Sa in the height direction. FIG. 4B is a graph illustrating the substantial volume Vmc of the core portion and the hollow volume Vvc of the core portion. FIG. 4C is a schematic plan view for explaining the protrusion (or hole) density in the defined segmentation.

本発明者は、レーザー顕微鏡を用いて層状構造物の表面状態を調べた。レーザ顕微鏡としては、「OLS4000/オリンパス製」を使用した。対物レンズの倍率は、100倍である。ズームは、5倍である。カットオフについては、2.5μmあるいは0.8μmに設定した。   The inventor examined the surface state of the layered structure using a laser microscope. As the laser microscope, “OLS4000 / manufactured by Olympus” was used. The magnification of the objective lens is 100 times. The zoom is 5 times. The cut-off was set to 2.5 μm or 0.8 μm.

負荷曲線から求めるコア部の実体体積Vmcおよびコア部の中空体積Vvcに関するパラメータは、図4(b)に表したグラフ図のように定義され、3次元体積パラメータである。すなわち、負荷面積率が10%のときの高さが、山部の実体体積Vmpと、コア部の実体体積Vmcおよびコア部の中空体積Vvcと、の境界となる。負荷面積率が80%のときの高さが、谷部の中空体積Vvvと、コア部の実体体積Vmcおよびコア部の中空体積Vvcと、の境界となる。山部の実体体積Vmp、コア部の実体体積Vmc、コア部の中空体積Vvcおよび谷部の中空体積Vvvは、単位面積あたりの体積(単位:m/m)を表す。 Parameters relating to the substantial volume Vmc of the core portion and the hollow volume Vvc of the core portion obtained from the load curve are defined as a graph shown in FIG. 4B and are three-dimensional volume parameters. That is, the height when the load area ratio is 10% is a boundary between the substantial volume Vmp of the mountain part, the substantial volume Vmc of the core part, and the hollow volume Vvc of the core part. The height when the load area ratio is 80% is a boundary between the hollow volume Vvv of the valley part, the substantial volume Vmc of the core part, and the hollow volume Vvc of the core part. The substantial volume Vmp of the peak part, the substantial volume Vmc of the core part, the hollow volume Vvc of the core part, and the hollow volume Vvv of the valley part represent a volume per unit area (unit: m 3 / m 2 ).

界面の展開面積率Sdrは、サンプリング面に対する界面の増加割合を示すパラメータである。界面の展開面積率Sdrは、四点で形成される小さな界面の展開面積の総和を測定面積で割った値であり、次式で定義される。ここで、式(2)の中の「A」は、定義したセグメンテーションの面積を表す。
The developed area ratio Sdr of the interface is a parameter indicating the increase rate of the interface with respect to the sampling surface. The developed area ratio Sdr of the interface is a value obtained by dividing the total developed area of the small interfaces formed by four points by the measured area, and is defined by the following equation. Here, “A” in Equation (2) represents the defined segmentation area.

二乗平均平方根傾斜SΔdは、サンプリング面での二次元の二乗平均傾斜角Δqを表す。あらゆる点において、表面傾斜は、次式で表される。
The root mean square slope SΔd represents a two-dimensional mean square slope angle Δq on the sampling surface. At every point, the surface slope is expressed as:


したがって、二乗平均平方根傾斜SΔqは、次式で表される。

Therefore, the root mean square slope SΔq is expressed by the following equation.

以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、半導体製造装置100などが備える各要素の形状、寸法、材質、配置などや耐プラズマ性部材120および静電チャック160の設置形態などは、例示したものに限定されるわけではなく適宜変更することができる。
また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
The embodiment of the present invention has been described. However, the present invention is not limited to these descriptions. As long as the features of the present invention are provided, those skilled in the art appropriately modified the design of the above-described embodiments are also included in the scope of the present invention. For example, the shape, size, material, arrangement, etc. of each element included in the semiconductor manufacturing apparatus 100 and the like, and the installation form of the plasma resistant member 120 and the electrostatic chuck 160 are not limited to those illustrated, but may be changed as appropriate. be able to.
Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.

100 半導体製造装置、 110 チャンバー、 120 耐プラズマ性部材、 123 層状構造物、 160 静電チャック、 191 領域、 210 ウェーハ、 221 パーティクル   DESCRIPTION OF SYMBOLS 100 Semiconductor manufacturing apparatus, 110 Chamber, 120 Plasma-resistant member, 123 Layered structure, 160 Electrostatic chuck, 191 area | region, 210 wafer, 221 particle

Claims (12)

基材と、前記基材の表面にエアロゾルデポジション法により形成されたイットリア多結晶体を含み耐プラズマ性を有する層状構造物とを備え、前記層状構造物を構成するイットリア多結晶体の結晶構造は、立方晶と単斜晶とが混在し、立方晶に対する単斜晶の比が60%以下であり、前記層状構造物を構成するイットリア多結晶体の結晶子サイズが50nm以下であることを特徴とする耐プラズマ性部材。   Crystal structure of yttria polycrystalline body comprising base material and layered structure having plasma resistance including yttria polycrystalline body formed by aerosol deposition method on surface of said base material Is a mixture of cubic and monoclinic crystals, the ratio of monoclinic to cubic crystals is 60% or less, and the crystallite size of the yttria polycrystal constituting the layered structure is 50 nm or less. A plasma-resistant member characterized. 前記層状構造物を構成するイットリア多結晶体は、酸素欠損量が30%未満であることを特徴とする請求項1に記載の耐プラズマ性部材。   2. The plasma-resistant member according to claim 1, wherein the yttria polycrystal constituting the layered structure has an oxygen deficiency of less than 30%. 前記層状構造物を構成するイットリア多結晶体は、粒子間の空隙が10nm未満であることを特徴とする請求項1または2に記載の耐プラズマ性部材。   3. The plasma-resistant member according to claim 1, wherein the yttria polycrystal constituting the layered structure has a gap between particles of less than 10 nm. 前記層状構造物を構成するイットリア多結晶体は、イットリア粒子表面のOH基を介して結合していることを特徴とする請求項3に記載の耐プラズマ性部材。   4. The plasma-resistant member according to claim 3, wherein the yttria polycrystals constituting the layered structure are bonded via OH groups on the surface of the yttria particles. 前記層状構造物は、結晶粒子サイズが原料粒子サイズに比べて小さいイットリア多結晶体であり、前記層状構造物の表面の一部に形成され結晶粒子の集団が脱落した空隙を有する第1の凹凸構造と、前記層状構造物の表面の全体において前記第1の凹凸構造に重畳して形成され前記第1の凹凸構造よりも微細な凹凸であって前記結晶粒子の大きさの微細な凹凸を有する第2の凹凸構造とを有することを特徴とする請求項1〜4のいずれか1つに記載の耐プラズマ性部材。   The layered structure is a yttria polycrystal having a crystal grain size smaller than the raw material particle size, and is formed in a part of the surface of the layered structure and has first voids in which a group of crystal grains are dropped. The structure and the entire surface of the layered structure are formed so as to overlap the first concavo-convex structure, and have fine concavo-convex that is finer than the first concavo-convex structure and have the size of the crystal grains. It has a 2nd uneven structure, The plasma-resistant member as described in any one of Claims 1-4 characterized by the above-mentioned. 前記層状構造物の表面の算術平均Saは、0.026μm以上0.075μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の実体体積Vmcは、0.03μm/μm以上0.079μm/μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の中空体積Vvcは、0.036μm/μm以上0.1μm/μm以下であり、前記層状構造物の表面の界面の展開面積率Sdrは、3.4以上28以下であることを特徴とする請求項5に記載の耐プラズマ性部材。 The arithmetic average Sa of the surface of the layered structure is 0.026 μm or more and 0.075 μm or less, and the substantial volume Vmc of the core portion obtained from the load curve of the surface of the layered structure is 0.03 μm 3 / μm 2. more 0.079μm 3 / μm 2 or less, the hollow volume Vvc core portion obtained from the load curve of the surface of the layered structure, 0.036μm 3 / μm is 2 or more 0.1 [mu] m 3 / [mu] m 2 or less 6. The plasma-resistant member according to claim 5, wherein a development area ratio Sdr of an interface of the surface of the layered structure is 3.4 or more and 28 or less. 前記第1の凹凸構造および前記第2の凹凸構造は、化学的処理が施されることにより形成されたことを特徴とする請求項5または6に記載の耐プラズマ性部材。   The plasma-resistant member according to claim 5 or 6, wherein the first concavo-convex structure and the second concavo-convex structure are formed by chemical treatment. 面解析におけるカットオフが0.8μmである場合において、前記層状構造物の表面の算術平均Saは、0.010μm以上0.033μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の実体体積Vmcは、0.01μm/μm以上0.034μm/μm以下であり、前記層状構造物の表面の負荷曲線から求められるコア部の中空体積Vvcは、0.012μm/μm以上0.045μm/μm以下であり、前記層状構造物の表面の界面の展開面積率Sdrは、1.1以上15以下であり、前記層状構造物の表面の二乗平均平方根傾斜SΔqは、0.15以上0.57以下であることを特徴と請求項5に記載のする耐プラズマ性部材。 When the cut-off in the surface analysis is 0.8 μm, the arithmetic average Sa of the surface of the layered structure is 0.010 μm or more and 0.033 μm or less, and the core is obtained from the load curve of the surface of the layered structure entity volume Vmc parts are, 0.01 [mu] m 3 / [mu] m is 2 or more 0.034μm 3 / μm 2 or less, the hollow volume Vvc core portion obtained from the load curve of the surface of the layered structure, 0.012 .mu.m 3 / Μm 2 or more and 0.045 μm 3 / μm 2 or less, the development area ratio Sdr of the interface of the surface of the layered structure is 1.1 or more and 15 or less, and the root mean square slope of the surface of the layered structure The plasma-resistant member according to claim 5, wherein SΔq is 0.15 or more and 0.57 or less. 前記層状構造物は、前記イットリア多結晶体の粗密構造を有することを特徴とする請求項5〜8のいずれか1つに記載の耐プラズマ性部材。   The plasma-resistant member according to any one of claims 5 to 8, wherein the layered structure has a dense structure of the yttria polycrystal. 前記粗密構造のうちの粗の部分は、前記層状構造物の表面の層から前記表面の層よりも深い層へ向かうと小さくなることを特徴とする請求項9に記載の耐プラズマ性部材。   10. The plasma-resistant member according to claim 9, wherein a rough portion of the dense structure becomes smaller when going from a surface layer of the layered structure to a deeper layer than the surface layer. 前記粗密構造は、密の部分の中に密度が前記密の部分の密度よりも小さい粗の部分が三次元的に分布したことを特徴とする請求項9に記載の耐プラズマ性部材。   10. The plasma-resistant member according to claim 9, wherein in the dense structure, coarse portions having a density smaller than the density of the dense portion are three-dimensionally distributed in the dense portion. 前記層状構造物は、加熱処理が施されることにより形成されることを特徴とする請求項1〜11のいずれか1つに記載の耐プラズマ性部材。   The said layered structure is formed by heat-processing, The plasma-resistant member as described in any one of Claims 1-11 characterized by the above-mentioned.
JP2014131779A 2014-06-26 2014-06-26 Plasma resistant member Pending JP2016008352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131779A JP2016008352A (en) 2014-06-26 2014-06-26 Plasma resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131779A JP2016008352A (en) 2014-06-26 2014-06-26 Plasma resistant member

Publications (1)

Publication Number Publication Date
JP2016008352A true JP2016008352A (en) 2016-01-18

Family

ID=55226136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131779A Pending JP2016008352A (en) 2014-06-26 2014-06-26 Plasma resistant member

Country Status (1)

Country Link
JP (1) JP2016008352A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051974A1 (en) * 2016-09-13 2018-03-22 Toto株式会社 Member for semiconductor manufacturing device
JP2018046278A (en) * 2016-09-13 2018-03-22 Toto株式会社 Members for semiconductor manufacturing apparatus
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
WO2023182747A1 (en) * 2022-03-24 2023-09-28 주식회사 펨빅스 Plasma-resistant two-layer coating film structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131943A (en) * 2005-10-12 2007-05-31 Toto Ltd Composite structure
JP2012136782A (en) * 2012-04-16 2012-07-19 Tocalo Co Ltd Method for modifying surface of white yttrium oxide thermal-sprayed coating, and coated member with yttrium oxide thermal-sprayed coating
JP2012191200A (en) * 2011-02-25 2012-10-04 Toshiba Corp Plasma processing apparatus
WO2013099890A1 (en) * 2011-12-28 2013-07-04 株式会社 フジミインコーポレーテッド Yttrium oxide coating film
JP5578383B2 (en) * 2012-12-28 2014-08-27 Toto株式会社 Plasma resistant material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131943A (en) * 2005-10-12 2007-05-31 Toto Ltd Composite structure
JP2012191200A (en) * 2011-02-25 2012-10-04 Toshiba Corp Plasma processing apparatus
WO2013099890A1 (en) * 2011-12-28 2013-07-04 株式会社 フジミインコーポレーテッド Yttrium oxide coating film
JP2012136782A (en) * 2012-04-16 2012-07-19 Tocalo Co Ltd Method for modifying surface of white yttrium oxide thermal-sprayed coating, and coated member with yttrium oxide thermal-sprayed coating
JP5578383B2 (en) * 2012-12-28 2014-08-27 Toto株式会社 Plasma resistant material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051974A1 (en) * 2016-09-13 2018-03-22 Toto株式会社 Member for semiconductor manufacturing device
JP2018046278A (en) * 2016-09-13 2018-03-22 Toto株式会社 Members for semiconductor manufacturing apparatus
CN108780750A (en) * 2016-09-13 2018-11-09 Toto株式会社 Member for use in semiconductor
CN108780750B (en) * 2016-09-13 2023-07-21 Toto株式会社 Component for semiconductor manufacturing device
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
WO2023182747A1 (en) * 2022-03-24 2023-09-28 주식회사 펨빅스 Plasma-resistant two-layer coating film structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5888458B2 (en) Plasma-resistant member and manufacturing method thereof
JP6808168B2 (en) Plasma resistant member
JP5578383B2 (en) Plasma resistant material
JP7089707B2 (en) Semiconductor manufacturing equipment and display manufacturing equipment equipped with semiconductor manufacturing equipment members and semiconductor manufacturing equipment members
JP2016102264A (en) Plasma resistant member
JP2016008352A (en) Plasma resistant member
JP3864958B2 (en) Member for semiconductor manufacturing apparatus having plasma resistance and method for manufacturing the same
JP2005217350A (en) Member for semiconductor production system having plasma resistance and its production process
KR20200104810A (en) Member for semiconductor manufacturing device and semiconductor manufacturing device with member for semiconductor manufacturing device and display manufacturing device
JP2009029686A (en) Corrosion-resistant member, its production method, and its treatment apparatus
JP2018164103A (en) Plasma resistant member
WO2023162741A1 (en) Composite structure, and semiconductor manufacturing device provided with composite structure
CN113582678B (en) Composite structure and semiconductor manufacturing apparatus provided with composite structure
TW202340118A (en) Film-forming material suitable for plasma etching device member etc. and production method thereof
CN116917544A (en) Composite structure and semiconductor manufacturing apparatus provided with composite structure
JP2023124888A (en) Composite structure and semiconductor manufacturing equipment with composite structure
JP2023124889A (en) Composite structure and semiconductor manufacturing equipment with composite structure
JP2023124887A (en) Composite structure and semiconductor manufacturing equipment with composite structure
KR20230146583A (en) Composite structures and semiconductor manufacturing devices with composite structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180910