JP2018047425A - Oxygen absorbing and releasing material - Google Patents

Oxygen absorbing and releasing material Download PDF

Info

Publication number
JP2018047425A
JP2018047425A JP2016184426A JP2016184426A JP2018047425A JP 2018047425 A JP2018047425 A JP 2018047425A JP 2016184426 A JP2016184426 A JP 2016184426A JP 2016184426 A JP2016184426 A JP 2016184426A JP 2018047425 A JP2018047425 A JP 2018047425A
Authority
JP
Japan
Prior art keywords
ceria
composite oxide
lattice constant
zirconia
osc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016184426A
Other languages
Japanese (ja)
Other versions
JP2018047425A5 (en
JP6862646B2 (en
Inventor
裕介 日高
Yusuke Hidaka
裕介 日高
智晴 伊藤
Tomoharu Ito
智晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Denko Co Ltd
Original Assignee
Shin Nihon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Denko Co Ltd filed Critical Shin Nihon Denko Co Ltd
Priority to JP2016184426A priority Critical patent/JP6862646B2/en
Publication of JP2018047425A publication Critical patent/JP2018047425A/en
Publication of JP2018047425A5 publication Critical patent/JP2018047425A5/ja
Application granted granted Critical
Publication of JP6862646B2 publication Critical patent/JP6862646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen absorbing and releasing material composed of a ceria-zirconia-based composite oxide as a cubic crystal system (a fluorite type crystal structure) in which the content of Ce is 30 mol% or more and the Ce utilization factor is 90% or more.SOLUTION: There is provided an oxygen absorbing and releasing material which is a ceria-zirconia-based composite oxide, CeZrMO, where the content x of Ce is more than 0.30, the content y of a substitution element M is more than 0 and 0.2 or less, the substitution element M includes rare earth-elements and alkaline earth metal elements excluding at least three kinds of Ce having an ionic radius larger than that of Ceions, the composite oxide is a cubic crystal system and the lattice constant a of crystals is 534 pm or more.SELECTED DRAWING: Figure 2

Description

本発明は、セリア・ジルコニア系複合酸化物からなる酸素吸放出材料に関し、特に排ガス浄化触媒における助触媒として使用される酸素吸放出量の大きな酸素吸放出材料に関するものである。   The present invention relates to an oxygen storage / release material comprising a ceria / zirconia composite oxide, and more particularly to an oxygen storage / release material having a large oxygen storage / release amount used as a co-catalyst in an exhaust gas purification catalyst.

ガソリンエンジンの排ガス浄化に使用される三元触媒において、貴金属の働きを高めるためには、燃料と空気の比(空燃比)を一定(理論空燃比)に保つのが好ましいが加速、減速、低速走行、高速走行等の運転状況に応じて空燃比は大きく変化する。このため、酸素センサーを用いたフィードバック制御によりエンジンの作動条件によって変動する空燃比A(空気)/F(燃料)を一定に保つようにしているが、フィードバック時間に応じたA/Fの時間的な変動が発生するため、エンジン制御のみで排気ガス雰囲気を理論空燃比あるいはその近傍に保持することは難しいため、触媒側で排ガス雰囲気を微調整する必要が有る。   In the three-way catalyst used for exhaust gas purification of gasoline engines, it is preferable to keep the ratio of fuel to air (air-fuel ratio) constant (theoretical air-fuel ratio) to enhance the function of precious metals, but acceleration, deceleration, and low-speed The air-fuel ratio changes greatly depending on the driving situation such as running and high-speed running. For this reason, the air-fuel ratio A (air) / F (fuel), which fluctuates depending on the operating conditions of the engine, is kept constant by feedback control using an oxygen sensor. Therefore, it is difficult to maintain the exhaust gas atmosphere at or near the stoichiometric air-fuel ratio only by engine control, so it is necessary to finely adjust the exhaust gas atmosphere on the catalyst side.

すなわち、触媒側で雰囲気を排ガス中の酸素濃度が高いときには酸素を吸蔵し、排ガス中の酸素濃度が低いときには酸素を放出して微調整する必要が有り、セリア(酸化セリウムCeO)は、排ガス中の酸素濃度が高いときに酸素を吸蔵でき、排ガス中の酸素濃度が低いときに酸素を放出できる酸素吸放出能(Oxygen Storage Capacity、以下単に「OSC」ということがある)を有するため、自動車排ガス浄化用触媒の酸素分圧調整用の助触媒として広く用いられている。これはCe3+/Ce4+のレドックス反応を利用したものである。前記セリアは、一般にその特性を高めるためジルコニア(酸化ジルコニウムZrO)と固溶させたセリア・ジルコニア系複合酸化物として使用されている。セリア・ジルコニア系複合酸化物に求められるOSC能として酸素吸放出量(以下単に「OSC量」ということがある)がある。排ガス雰囲気を理論空燃比に長く保持するために、OSC量が高い、すなわちCe利用率[複合酸化物のOSC理論値(Ceが100%OSCに使用された場合のOSC)に対する、OSC実測値の割合(実測値/理論値)]が高いセリア・ジルコニア複合酸化物が求められている。 That is, when the oxygen concentration in the exhaust gas is high on the catalyst side, oxygen must be occluded, and when the oxygen concentration in the exhaust gas is low, oxygen must be released and finely adjusted. Ceria (cerium oxide CeO 2 ) Oxygen storage capacity (hereinafter sometimes simply referred to as “OSC”) that can store oxygen when the oxygen concentration in the exhaust gas is high and can release oxygen when the oxygen concentration in the exhaust gas is low. It is widely used as a co-catalyst for adjusting the oxygen partial pressure of exhaust gas purification catalysts. This utilizes the redox reaction of Ce 3+ / Ce 4+ . In general, the ceria is used as a ceria / zirconia-based composite oxide which is solid-solved with zirconia (zirconium oxide ZrO 2 ) in order to enhance its properties. As the OSC ability required for the ceria / zirconia composite oxide, there is an oxygen absorption / release amount (hereinafter sometimes simply referred to as “OSC amount”). In order to keep the exhaust gas atmosphere at the stoichiometric air-fuel ratio for a long time, the amount of OSC is high, that is, the Ce utilization factor [the OSC theoretical value of composite oxide (OSC when Ce is used for 100% OSC)] A ceria / zirconia composite oxide having a high ratio (measured value / theoretical value) is required.

セリア・ジルコニア系酸化物のOSC量に関する先行技術としては、例えば、特許文献1、特許文献2、特許文献3が有り、OSC量の増加に向けて組成や構造より開発がなされていた。   For example, Patent Document 1, Patent Document 2, and Patent Document 3 are prior arts related to the amount of OSC of ceria / zirconia-based oxide, and development has been made from the composition and structure to increase the amount of OSC.

すなわち、特許文献1では、Ce含有量が5〜15mass%のセリア・ジルコニア系酸化物に特定量の希土類元素を含有させることでCe利用率が90%以上にできるとしている。しかしながら、Ce含有量が5〜15mass%のセリア・ジルコニア系酸化物のOSC理論量は73〜220μmol−O/gであり、一般的なセリア・ジルコニア複合酸化物と比較してOSC量が高い材料ではない。 That is, in Patent Document 1, the Ce utilization rate can be increased to 90% or more by adding a specific amount of rare earth element to a ceria / zirconia oxide having a Ce content of 5 to 15 mass%. However, the ceria / zirconia-based oxide having a Ce content of 5 to 15 mass% has a theoretical amount of OSC of 73 to 220 μmol-O 2 / g, and the amount of OSC is higher than that of a general ceria / zirconia composite oxide. Not a material.

特許文献2では、コアが平均粒子径D50は、9nm〜25nmであるジルコニア、コアの表面にセリア・ジルコニアが存在しているOSC材であり、そのOSC材のCe利用率は800℃において91%〜97%を示す材料であるとしている。しかしながら、Ce含有量が10〜20mol%のセリア・ジルコニア系酸化物のOSC理論量は73〜220μmol%−O2/gであり、一般的なセリア・ジルコニア複合酸化物と比較してOSC量が高い材料ではない。   In Patent Document 2, the core is an OSC material having an average particle diameter D50 of 9 nm to 25 nm and ceria / zirconia on the surface of the core, and the Ce utilization rate of the OSC material is 91% at 800 ° C. It is said that the material exhibits ˜97%. However, the ceria / zirconia-based oxide having a Ce content of 10 to 20 mol% has a theoretical OSC amount of 73 to 220 μmol% -O 2 / g, and has a higher OSC amount than a general ceria / zirconia composite oxide. Not a material.

特許文献3では、パイロクロア構造のセリア・ジルコニア系酸化物は多くの酸素を吸放出でき、Ce利用率は100%程度を示す。しかし、パイロクロア構造にするためにはセリア・ジルコニアの調製工程に還元雰囲気かつ高温での焼成工程が追加されるために、製造コストの面でデメリットが生じる。また、高温での焼成を行うために比表面積が数m/gと小さく、ガスとの接触面積が少ない点もデメリットとして挙げられる。 In Patent Document 3, the ceria / zirconia oxide having a pyrochlore structure can absorb and release a large amount of oxygen, and the Ce utilization rate is about 100%. However, since a pyrochlore structure is added to the ceria / zirconia preparation process, a reducing atmosphere and a high-temperature baking process are added, resulting in a disadvantage in terms of manufacturing cost. Another disadvantage is that the specific surface area is as small as several m 2 / g and the contact area with the gas is small in order to perform firing at a high temperature.

特表2011−520745号公報Special table 2011-520745 gazette 特開2014−030801号公報JP 2014-030801 A 国際公開第2015/145788号パンフレットInternational Publication No. 2015/145788 Pamphlet

上述のようにセリア・ジルコニア系酸化物は、これまで自動車排ガス浄化触媒等において貴金属の働きを高めるため、高いOSC値や大きな比表面積が要求され、それらに対応した開発が行われてきた。   As described above, ceria / zirconia oxides have so far been required to have a high OSC value and a large specific surface area in order to enhance the action of noble metals in automobile exhaust gas purification catalysts and the like, and have been developed accordingly.

しかし、蛍石型結晶構造かつCe含有量が30mol%以上のセリア・ジルコニア系酸化物においてCe利用率が高いOSC材はなかったのが実情である。   However, there is no OSC material having a high Ce utilization rate in ceria / zirconia oxides having a fluorite crystal structure and a Ce content of 30 mol% or more.

本発明は、上記実情に鑑みてなしたものであり、Ce含有量が30mol%以上でCe利用率が90%以上となる立方晶系(蛍石型結晶構造)であるセリア・ジルコニア系複合酸化物からなる酸素吸放出材料を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a ceria-zirconia composite oxide that is a cubic system (fluorite-type crystal structure) in which the Ce content is 30 mol% or more and the Ce utilization rate is 90% or more. An object of the present invention is to provide an oxygen storage / release material composed of a material.

本発明者らは、上記課題を解決すべく鋭意研究し、セリア・ジルコニア系複合酸化物は格子定数534pm以上にすることで、OSC量が高い、すなわちCe利用率が90%以上である酸素吸放出材料とすることができることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above-mentioned problems, and by setting the ceria-zirconia composite oxide to have a lattice constant of 534 pm or higher, the oxygen absorption is high, that is, the Ce utilization is 90% or higher. The present inventors have found that the material can be a release material and have completed the present invention.

すなわち、本発明の要旨は、以下のとおりである。   That is, the gist of the present invention is as follows.

(1)セリア・ジルコニア系複合酸化物CeZr1−x−y2−y/2であって、Ce含有量xが0.30を超え、置換元素Mの含有量yが0を超え0.2以下で、MにはCe4+イオン半径より大きなイオン半径を有する少なくとも3種類のCeを除く希土類元素およびアルカリ土類金属元素を含み、立方晶系であって結晶の格子定数aが534pm以上であることを特徴とする酸素吸放出材料。 (1) Ceria / zirconia composite oxide Ce x Zr 1- xy My O 2 -y / 2 , Ce content x exceeds 0.30, and substitution element M content y is 0 More than 0.2 and less than or equal to 0.2, and M contains at least three kinds of rare earth elements and alkaline earth metal elements excluding Ce having an ion radius larger than the Ce 4+ ion radius, is a cubic system, and has a crystal lattice constant a Oxygen storage / release material, characterized in that is 534 pm or more.

(2)前記置換元素Mの含有量yが0.1を超え0.2以下であることを特徴とする上記(1)または(2)記載の酸素吸放出材料。   (2) The oxygen storage / release material according to (1) or (2), wherein the content y of the substitution element M is more than 0.1 and 0.2 or less.

(3)前記置換元素Mの含有量yが0.15を超え0.2以下であることを特徴とする上記(1)または(2)記載の酸素吸放出材料。   (3) The oxygen storage / release material as described in (1) or (2) above, wherein the content y of the substitution element M is more than 0.15 and 0.2 or less.

(4)前記置換元素MとしてY、Nd、Laのうち少なくとも1元素が置換されている上記(1)〜(3)のいずれかに記載の酸素吸放出材料。   (4) The oxygen storage / release material according to any one of (1) to (3), wherein at least one element of Y, Nd, and La is substituted as the substitution element M.

本発明のCe含有量が30mol%以上であるセリア・ジルコニア系複合酸化物からなるCe利用率が90%以上の酸素吸放出材料を自動車排ガス浄化触媒に使用すれば、走行状態に応じて刻々と変化する排ガス雰囲気の変動を緩和し、排ガス雰囲気を理論空燃比に長く保持することが出来、これまで以上に貴金属の有害成分浄化性能が高くなる。   If an oxygen storage / release material having a Ce utilization ratio of 90% or more made of a ceria / zirconia composite oxide having a Ce content of 30 mol% or more according to the present invention is used for an automobile exhaust gas purification catalyst, it is momentarily according to the running state. The fluctuation of the changing exhaust gas atmosphere can be alleviated, and the exhaust gas atmosphere can be maintained at the stoichiometric air-fuel ratio for a long time.

比較例と実施例のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a comparative example and an Example. 格子定数とCe利用率の関係を示す図である。It is a figure which shows the relationship between a lattice constant and Ce utilization.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明のセリア・ジルコニア系複合酸化物CeZr1−x−y2−y/2とは、Ce含有量xが0.30以上であって、置換元素Mは少なくとも3種類のCeを除く希土類元素(Y、La、Pr、Nd、Sm、Yb等)およびアルカリ土類金属元素(Ca、Sr等)を含み、置換元素Mにより一部置換されていて、立方晶系であって結晶の格子定数aが534pm以上であるセリア・ジルコニア系複合酸化物である。 The ceria-zirconia-based composite oxide Ce x Zr 1- xy My O 2-y / 2 of the present invention has a Ce content x of 0.30 or more, and the substitution element M includes at least three kinds It contains rare earth elements (Y, La, Pr, Nd, Sm, Yb, etc.) excluding Ce and alkaline earth metal elements (Ca, Sr, etc.), and is partially substituted by the substitution element M, and has a cubic system. This is a ceria / zirconia composite oxide having a crystal lattice constant a of 534 pm or more.

Ce含有量xの範囲は0.30以上が好ましい。一般的にCe含有量xが0.30未満のセリア・ジルコニア複合酸化物のCe利用率は100%程度を示すため、Ce含有量xの範囲は0.30以上とした。より好ましくは0.33以上である。Ce含有量の上限は0.90以下であるのが望ましい。Ce含有量が0.90を超えると、Ce量が多く、Ceの価数変動が起こりにくくなるためである。特に効果がみられる置換元素として、Y、La、Ndが挙げられる。置換元素の選定としてはCe4+よりもイオン半径が大きい元素である。(例えば、Ce4+:97pm、Y3+:101.9pm、La3+:116pm、Pr3+:112.6pm、Nd3+:110.9pm、Sm3+:107.9pm、Yb3+:98.5pm、Ca2+:112pm、Sr2+:126pm)。Ce4+のイオン半径よりも大きい元素を3種類以上置換することによって、セリア・ジルコニア複合酸化物内に各置換元素が一様に分布するため、セリア・ジルコニアの格子が広がる。置換元素の種類数の上限は特に限定するものではないが、効果が飽和するので5種以下とすることが好ましい。置換元素が2種類以下になると置換元素同士で分布してしまうため、置換元素が2種類以下では格子を広げる効果は見られない。したがって、本発明では置換元素を少なくとも3種以上とした。 The range of Ce content x is preferably 0.30 or more. In general, the Ce utilization rate of a ceria-zirconia composite oxide having a Ce content x of less than 0.30 is about 100%, so the range of the Ce content x is 0.30 or more. More preferably, it is 0.33 or more. The upper limit of Ce content is desirably 0.90 or less. This is because when the Ce content exceeds 0.90, the amount of Ce is large and the valence fluctuation of Ce is difficult to occur. Examples of substitution elements that are particularly effective include Y, La, and Nd. The substitution element is selected with an ionic radius larger than that of Ce 4+ . (For example, Ce 4+ : 97 pm, Y 3+ : 101.9 pm, La 3+ : 116 pm, Pr 3+ : 112.6 pm, Nd 3+ : 110.9 pm, Sm 3+ : 107.9 pm, Yb 3+ : 98.5 pm, Ca 2+ : 112 pm, Sr 2+ : 126 pm). By substituting three or more elements larger than the ion radius of Ce 4+ , each substitution element is uniformly distributed in the ceria / zirconia composite oxide, so that the ceria / zirconia lattice is expanded. The upper limit of the number of types of substitution elements is not particularly limited, but is preferably 5 or less because the effect is saturated. When the number of substitution elements is two or less, the substitution elements are distributed with each other. Therefore, when the number of substitution elements is two or less, the effect of expanding the lattice is not observed. Accordingly, in the present invention, at least three or more substitution elements are used.

本発明に関わるCe利用率90%以上の酸素吸放出材料としてのセリア・ジルコニア系複合酸化物CeZr1−x−y2−y/2は、X線回折装置で測定された(111)面の格子定数が534pm以上であることが望ましい。セリア・ジルコニア系複合酸化物の格子定数の上限は特に限定するものではないが、望ましくは541pm以下である。 The ceria-zirconia-based composite oxide Ce x Zr 1- xy My O 2-y / 2 as an oxygen storage / release material having a Ce utilization rate of 90% or more according to the present invention was measured with an X-ray diffractometer. It is desirable that the lattice constant of the (111) plane is 534 pm or more. The upper limit of the lattice constant of the ceria / zirconia composite oxide is not particularly limited, but is desirably 541 pm or less.

Ce利用率を向上させるためには立方晶系の結晶の格子定数(以下単に格子定数ということがある)を534pm以上にすることが必要で、立方晶系の結晶の格子定数を534pm以上にするためには、置換量は特に限定しないが、セリア・ジルコニア系酸化物の置換元素量yは0.1を超え0.2以下が好ましく、置換効果をより大きく得るためには0.1以上0.2以下、より好ましくは0.15以上0.2以下である。   In order to improve the Ce utilization rate, it is necessary to set the lattice constant of the cubic crystal (hereinafter sometimes simply referred to as “lattice constant”) to 534 pm or more, and to set the lattice constant of the cubic crystal to 534 pm or more. For this purpose, the amount of substitution is not particularly limited, but the amount of substitution element y of the ceria / zirconia oxide is preferably more than 0.1 and not more than 0.2. .2 or less, more preferably 0.15 or more and 0.2 or less.

格子定数を534pm以上とするとCe利用率が向上する理由は完全には解明されていないが、以下のように推定している。すなわち、セリア・ジルコニア複合酸化物ではCeが4価から3価に変化することにより、酸素が放出される。Ceのイオン半径はCe3+とCe4+で異なり、Ce3+の方が大きく、酸素を放出する際はCeのイオン半径は大きくなる。Ceのイオン半径が大きくなるためには格子内にスペースが必要だが、従来のセリア・ジルコニア複合酸化物ではCe4+がCe3+となるための十分なスペースがない。 The reason why the Ce utilization rate is improved when the lattice constant is 534 pm or more has not been completely clarified, but is estimated as follows. That is, in the ceria-zirconia composite oxide, oxygen is released by changing Ce from tetravalent to trivalent. The ionic radius of Ce is different between Ce 3+ and Ce 4+ . Ce 3+ is larger, and when oxygen is released, the ionic radius of Ce is larger. In order to increase the ion radius of Ce, a space is required in the lattice. However, in the conventional ceria / zirconia composite oxide, there is not enough space for Ce 4+ to become Ce 3+ .

その理由としてはZr4+のイオン半径はCe4+よりも小さく、主にCeとZrで構成されるセリア・ジルコニア複合酸化物の格子の大きさ(格子定数)はCe4+にとって小さいためである。Ce3+と比較して小さいCe4+にとっても小さい格子のなかでさらに大きなCe3+への変化は難しくその結果、従来のセリア・ジルコニア複合酸化物においてすべてのセリアが価数変動できないため、OSC理論量で発揮できるセリア・ジルコニアが存在しないと推定される。ここで、セリア・ジルコニア系複合酸化物の格子定数を534pm以上とすると、パイロクロア構造のセリア・ジルコニア系複合酸化物の(222)面から計算される格子定数の大きさとほぼ等しくなる。セリア・ジルコニア系複合酸化物の格子定数をパイロクロア構造のセリア・ジルコニア系複合酸化物と同等以上の格子にすることで、粒子内のCeの価数変動が容易となり配合されたほぼ全てのCeが価数変化できるようになり、Ce利用率が高まる。 This is because the ion radius of Zr 4+ is smaller than that of Ce 4+ and the lattice size (lattice constant) of the ceria / zirconia composite oxide mainly composed of Ce and Zr is small for Ce 4+ . Change in addition to a large Ce 3+ among very small lattice small ce 4+ compared to Ce 3+ is difficult as a result, since all the ceria in the conventional ceria-zirconia composite oxide is not a valence, OSC theory It is estimated that there is no ceria or zirconia that can be exhibited in Here, when the lattice constant of the ceria / zirconia composite oxide is 534 pm or more, the lattice constant is approximately equal to the size of the lattice constant calculated from the (222) plane of the ceria / zirconia composite oxide having a pyrochlore structure. By making the lattice constant of the ceria-zirconia composite oxide to be equal to or greater than that of the pyrochlore-structured ceria-zirconia composite oxide, the valence change of Ce in the particles is facilitated and almost all of the blended Ce is contained. The valence can be changed, and the Ce utilization rate is increased.

格子定数を高めるためにCe、Zr以外の元素Mを置換するが、置換元素Mを増やした量だけ酸素吸放出を行うCeイオン量が減ることや第三成分が多いと格子歪みが生じ、蛍石構造を保つことが難しくなる問題があり、格子定数は541pm程度より大きくする必要はない。格子定数が534pm未満の場合、セリウムの価数変動が起こりにくく、Ce利用率が大きくならない。したがって、本発明では立方晶系であって結晶の格子定数aが534pm以上と規定した。   In order to increase the lattice constant, elements M other than Ce and Zr are substituted. However, when the amount of Ce ions that absorb and release oxygen is reduced by the increased amount of the substituted element M or when the third component is large, lattice distortion occurs and There is a problem that it is difficult to maintain the stone structure, and the lattice constant does not need to be larger than about 541 pm. When the lattice constant is less than 534 pm, the valence change of cerium hardly occurs and the Ce utilization rate does not increase. Therefore, in the present invention, the crystal system is cubic and the crystal lattice constant a is defined to be 534 pm or more.

本発明のセリア・ジルコニア系複合酸化物でOSC量が高い自動車排ガス浄化触媒に使用すれば、変化する排ガス雰囲気を理論空燃比に長く保持することが出来る。   If the ceria / zirconia composite oxide of the present invention is used for an automobile exhaust gas purification catalyst having a high OSC amount, the changing exhaust gas atmosphere can be maintained at a stoichiometric air-fuel ratio for a long time.

以下に実施例(発明例)、比較例を用いて本発明の作用効果を具体的に説明するが、本発明はこれらに限定されるものではない。   Although the effect of this invention is concretely demonstrated using an Example (invention example) and a comparative example below, this invention is not limited to these.

まず、OSC量(μmol%−O/g)、Ce利用率(%)および格子定数a(pm)の算出方法について説明する。 First, a method for calculating the OSC amount (μmol% −O 2 / g), the Ce utilization rate (%), and the lattice constant a (pm) will be described.

OSC量は以下のように測定される。アルミナパンに試料(セリア・ジルコニア系複合酸化物)を20mg程度充填し、熱重量分析計にセットする。試料を5%H2/Ar流通下、800℃で1時間還元処理を行う。還元処理前後における重量変化を試料のOSC量として算出した。   The amount of OSC is measured as follows. About 20 mg of a sample (ceria / zirconia composite oxide) is filled in an alumina pan and set in a thermogravimetric analyzer. The sample is subjected to reduction treatment at 800 ° C. for 1 hour under 5% H2 / Ar flow. The change in weight before and after the reduction treatment was calculated as the OSC amount of the sample.

また、Ce利用率(%)は、下記のように算出する。セリア・ジルコニア系複合酸化物内のセリアの価数変動は下記式(1)のように起こる。   Further, the Ce utilization rate (%) is calculated as follows. Ceria valence fluctuation in the ceria-zirconia composite oxide occurs as shown in the following formula (1).

4CeO ⇔ 2Ce+O ・・・(1)
式(1)よりCeが4molに対して、酸素は1mol放出される。CZが1gで放出されるOSC量は下記式(2)のように表される。
4CeO 2 ⇔ 2Ce 2 O 3 + O 2 (1)
From the formula (1), 1 mol of oxygen is released with respect to 4 mol of Ce. The amount of OSC released by 1 g of CZ is expressed as the following formula (2).

OSC量=CCe÷(MCe+2×M)÷4÷100・・・(2)
ここで、CCe:試料内のCe含有量(mass%)、MCe:Ce原子量(140.116g/mol)、M:O原子量(16.000g/mol)
OSC amount = C Ce ÷ (M Ce + 2 × M O ) ÷ 4 ÷ 100 (2)
Here, C Ce : Ce content (mass%) in the sample, M Ce : Ce atomic weight (140.116 g / mol), M O : O atomic weight (16.000 g / mol)

実測したOSC量を式(2)より算出したOSC量で割り、パーセント表記にした値をCe利用率とした。まとめると、下記式(3)のようになる。   The measured OSC amount was divided by the OSC amount calculated from the equation (2), and the value expressed in percent was used as the Ce utilization rate. In summary, the following equation (3) is obtained.

Ce利用率(%)=A(μmol-O2/g)/{Cce÷(140.116+32)÷4÷100×106}・・・(3)
ここで、A:試料のOSC量(μmol−O/%)、CCe:試料内のCe含有量(mass%)
Ce utilization rate (%) = A (μmol-O 2 / g) / {C ce ÷ (140.116 + 32) ÷ 4 ÷ 100 × 10 6 } (3)
Here, A: OSC amount of sample (μmol-O 2 /%), C Ce : Ce content in sample (mass%)

また、格子定数は以下のように測定される。リガク製RINT2000を使用、X線源としてCuKαを用い、管電流40mA、管電圧30kV、2θ=10.00°〜70.09°、ステップ幅:0.03°、計測速度:0.111°/secondの条件でX線回折パターンを測定した。得られたX線回折パターンにおいて2θ=28〜30°付近に現れるセリア・ジルコニア系酸化物のミラー指数(111)面のピークを用いて、結晶の格子定数a(pm)を算出した。格子定数aを算出するために、下記の数式(4)のブラッグの式より結晶面の間隔dを算出した。   The lattice constant is measured as follows. Rigaku RINT2000 is used, CuKα is used as the X-ray source, tube current 40 mA, tube voltage 30 kV, 2θ = 10.00 ° to 70.09 °, step width: 0.03 °, measurement speed: 0.111 ° / The X-ray diffraction pattern was measured under the second condition. The crystal lattice constant a (pm) was calculated using the peak of the Miller index (111) plane of the ceria / zirconia oxide appearing in the vicinity of 2θ = 28-30 ° in the obtained X-ray diffraction pattern. In order to calculate the lattice constant a, the distance d between crystal planes was calculated from the Bragg equation of the following equation (4).

d=nλ/2sinθ ・・・(4)
ここで、d:結晶面の間隔、θ:結晶面とX線が成す角度、λ:X線の波長(154.18pm=1.5418Å)、n:整数
d = nλ / 2 sin θ (4)
Here, d: crystal plane spacing, θ: angle formed by the crystal plane and X-ray, λ: wavelength of X-ray (154.18 pm = 1.5418Å), n: integer

得られるセリア・ジルコニア系複合酸化物は立方晶系であるため、下記式(5)より格子定数aを算出した。   Since the obtained ceria / zirconia composite oxide is cubic, the lattice constant a was calculated from the following formula (5).

a=(h2+j2+l21/2×d=31/2×d ・・・ (5)
ここで、d:結晶面の間隔、θ:結晶面とX線が成す角度、ミラー指数(hkl):(111)
a = (h 2 + j 2 + l 2 ) 1/2 × d = 3 1/2 × d (5)
Where d: crystal plane spacing, θ: angle between crystal plane and X-ray, Miller index (hkl): (111)

式(4)を式(5)に代入すると、格子定数a(pm)は下記式(6)のようになる。   Substituting equation (4) into equation (5), the lattice constant a (pm) is as shown in equation (6) below.

a(pm)=154.18×31/2/2sinθ ・・・ (6)
ここで、θ:結晶面とX線が成す角度
a (pm) = 154.18 × 3 1/2 / 2 sin θ (6)
Where θ is the angle formed by the crystal plane and the X-ray

(実施例1)
塩化セリウム溶液、オキシ塩化ジルコニウム溶液、塩化プラセオジム溶液と純水を混合し、モル比でCeO:ZrO:La:Y:Nd=57.9:26.0:10.2:4.0:1.9、0.4mol/lとなるような溶液1l(リットル)を得た。得られた混合溶液にペルオキソ二硫酸アンモニウムを15g添加し、撹拌しながら95℃まで加熱し、セリウム・ジルコニウム複合硫酸塩を得た。得られた硫酸塩スラリーを60℃まで冷却後、アンモニア水を加えて中和し水酸化物を含むスラリーを得た。得られた水酸化物スラリーに対して濾過−洗浄操作を4回繰り返してセリウム・ジルコニウム複合水酸化物ケーキを得た。得られた複合水酸化物ケーキを120℃で乾燥して複合水酸化物粉末を得、これを坩堝につめ電気炉で700℃にて3時間焼成し、セリア・ジルコニア系複合酸化物粉末を得た。
Example 1
A cerium chloride solution, a zirconium oxychloride solution, a praseodymium chloride solution and pure water are mixed, and CeO 2 : ZrO 2 : La 2 O 3 : Y 2 O 3 : Nd 2 O 3 = 57.9: 26.0 in a molar ratio. A solution of 1 l (liter) was obtained that had a ratio of 10.2: 4.0: 1.9 and 0.4 mol / l. 15 g of ammonium peroxodisulfate was added to the obtained mixed solution and heated to 95 ° C. with stirring to obtain a cerium-zirconium composite sulfate. The obtained sulfate slurry was cooled to 60 ° C. and neutralized by adding ammonia water to obtain a slurry containing hydroxide. Filtration-washing operation was repeated 4 times for the obtained hydroxide slurry to obtain a cerium-zirconium composite hydroxide cake. The obtained composite hydroxide cake was dried at 120 ° C. to obtain a composite hydroxide powder, which was put into a crucible and fired at 700 ° C. for 3 hours in an electric furnace to obtain a ceria / zirconia composite oxide powder. It was.

得られた粉末を前述のX線回折方法で格子定数を測定したところ、541pmであった。   When the lattice constant of the obtained powder was measured by the aforementioned X-ray diffraction method, it was 541 pm.

さらに得られた粉末に対してPdを0.5mass%の割合で含浸担持し、OSC量の測定を行ったところ、OSC量が909μmol−O/g、Ce利用率が98%との結果が得られた。 Furthermore, Pd was impregnated and supported on the obtained powder at a ratio of 0.5 mass%, and the amount of OSC was measured. As a result, the OSC amount was 909 μmol-O 2 / g, and the Ce utilization rate was 98%. Obtained.

(実施例2)
表1に示すように、配合組成をCeO:ZrO:La:Y:Nd=49.6:34.7:8.7:5.3:1.7とした以外は、実施例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Example 2)
As shown in Table 1, the composition was changed to CeO 2 : ZrO 2 : La 2 O 3 : Y 2 O 3 : Nd 2 O 3 = 49.6: 34.7: 8.7: 5.3: 1.7 A ceria / zirconia composite oxide powder was obtained in the same manner as in Example 1 except that.

得られた粉末を前述のX線回折方法で格子定数を測定したところ、538pmであった。   When the lattice constant of the obtained powder was measured by the aforementioned X-ray diffraction method, it was 538 pm.

さらに得られた粉末に対してPdを0.5mass%の割合で含浸担持し、OSC量の測定を行ったところ、OSC量が801μmol−O/g、Ce利用率が98%との結果が得られた。
(実施例3〜10)
表1に示すように、配合組成を変化させて実施例1と同様に実施し、得られたOSC量及びCe利用率を表1に併記した。
Furthermore, Pd was impregnated and supported on the obtained powder at a ratio of 0.5 mass%, and the amount of OSC was measured. As a result, the OSC amount was 801 μmol-O 2 / g, and the Ce utilization rate was 98%. Obtained.
(Examples 3 to 10)
As shown in Table 1, the composition was changed and the same procedure as in Example 1 was carried out. The obtained OSC amount and Ce utilization were also shown in Table 1.

(比較例1)
表1に示すように、配合組成をCeO:ZrO=50.0:50.0とした以外は、実施例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。得られた粉末を前述の方法で格子定数を測定したところ、526pmであった。
(Comparative Example 1)
As shown in Table 1, ceria / zirconia composite oxide powder was obtained in the same manner as in Example 1 except that the composition was CeO 2 : ZrO 2 = 50.0: 50.0. When the lattice constant of the obtained powder was measured by the method described above, it was 526 pm.

さらに得られた粉末に対してPdを0.5mass%の割合で含浸担持し、OSC量の測定を行ったところ、OSC量が573μmol−O/g、Ce利用率が68%との結果が得られた。 Furthermore, Pd was impregnated and supported on the obtained powder at a ratio of 0.5 mass%, and the amount of OSC was measured. As a result, the OSC amount was 573 μmol-O 2 / g and the Ce utilization rate was 68%. Obtained.

(比較例2)
表1に示すように、配合組成をCeO:ZrO:La=50.0:37.5:12.5とした以外は、実施例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Comparative Example 2)
As shown in Table 1, ceria and zirconia composite oxidation was carried out in the same manner as in Example 1 except that the composition was CeO 2 : ZrO 2 : La 2 O 3 = 50.0: 37.5: 12.5. A product powder was obtained.

得られた粉末を前述の方法で格子定数を測定したところ、533pmであった。   When the lattice constant of the obtained powder was measured by the method described above, it was 533 pm.

さらに得られた粉末に対してPdを0.5mass%の割合で含浸担持し、OSC量の測定を行ったところ、OSC量が607μmol−O/g、Ce利用率が74%との結果が得られた。 Furthermore, Pd was impregnated and supported on the obtained powder at a ratio of 0.5 mass%, and the amount of OSC was measured. As a result, the OSC amount was 607 μmol-O 2 / g, and the Ce utilization rate was 74%. Obtained.

(比較例3、4)
表1に示すように、配合組成を変化させて実施例1と同様に実施し、得られた格子定数、OSC量及びCe利用率を表1に併記した。
(Comparative Examples 3 and 4)
As shown in Table 1, the composition was changed and the same procedure as in Example 1 was performed. The obtained lattice constant, OSC amount, and Ce utilization were also shown in Table 1.

Figure 2018047425
Figure 2018047425

図1に比較例と実施例のX線回折パターンを示す。図1より実施例1におけるX線回折パターンにおいて(111)面のピークは28.7°付近に見られた。比較例1におけるX線回折パターンにおいて(111)面のピークは29.4°付近に見られた。式(2)を用いて格子定数を算出すると、実施例1の格子定数は539pm、比較例の格子定数は526pmであった。比較例2〜4に関しても比較例1と同様な傾向を示し、格子定数は526〜531pmであった。実施例2〜10に関しても実施例1と同様な傾向を示し、格子定数は535〜541pmであった。実施例の格子定数は比較例より高い値を示している。   FIG. 1 shows X-ray diffraction patterns of the comparative example and the example. As shown in FIG. 1, in the X-ray diffraction pattern of Example 1, the peak of the (111) plane was found near 28.7 °. In the X-ray diffraction pattern of Comparative Example 1, the peak of the (111) plane was found near 29.4 °. When the lattice constant was calculated using Equation (2), the lattice constant of Example 1 was 539 pm, and the lattice constant of the comparative example was 526 pm. Regarding Comparative Examples 2 to 4, the same tendency as Comparative Example 1 was exhibited, and the lattice constant was 526 to 531 pm. Examples 2 to 10 also showed the same tendency as Example 1, and the lattice constant was 535 to 541 pm. The lattice constant of the example is higher than that of the comparative example.

表1より実施例1〜10で得られたセリア・ジルコニア系複合酸化物は、4価未満の価数を有する金属イオンが含まれ、格子定数が534pm以上である酸素吸放出材料となっていて、OSC量、Ce利用率に優れた特性を満たしていた。   The ceria / zirconia composite oxides obtained in Examples 1 to 10 from Table 1 contain oxygen ions having a valence of less than 4 and are oxygen storage / release materials having a lattice constant of 534 pm or more. , OSC amount and Ce utilization ratio were satisfied.

一方で、比較例1〜4で得られたセリア・ジルコニア系複合酸化物の格子定数が533pm以下であり、OSC量、Ce利用率が低い値を示しており、OSC能は実施例よりも劣っていた。図2に格子定数とCe利用率の関係を示した。   On the other hand, the ceria / zirconia composite oxides obtained in Comparative Examples 1 to 4 have a lattice constant of 533 pm or less, the OSC amount and Ce utilization are low, and the OSC ability is inferior to that of the examples. It was. FIG. 2 shows the relationship between the lattice constant and the Ce utilization rate.

以上の通り、本発明によれば、格子定数が535pm以上、OSC量が628μmol−O/g以上と高く、Ce利用率90%以上のセリア・ジルコニア系複合酸化物が得られていることが確認できた。 As described above, according to the present invention, a ceria / zirconia composite oxide having a lattice constant of 535 pm or more, an OSC amount of 628 μmol-O 2 / g or more, and a Ce utilization rate of 90% or more is obtained. It could be confirmed.

本発明のOSC材料を自動車排ガス浄化触媒の助触媒として使用すれば、排ガス雰囲気変動を緩和し、これまで以上に貴金属の有害成分浄化性能の向上が図れる。   If the OSC material of the present invention is used as a promoter for an automobile exhaust gas purification catalyst, fluctuations in the exhaust gas atmosphere can be mitigated, and the noble metal purification performance can be improved more than ever.

Claims (4)

セリア・ジルコニア系複合酸化物CeZr1−x−y2−y/2であって、Ce含有量xが0.30を超え、置換元素Mの含有量yが0を超え0.2以下で、MにはCe4+イオン半径より大きなイオン半径を有する少なくとも3種類のCeを除く希土類元素およびアルカリ土類金属元素を含み、立方晶系であって結晶の格子定数aが534pm以上であることを特徴とする酸素吸放出材料。 Ceria-zirconia-based composite oxide Ce x Zr 1-xy M y O 2-y / 2 , wherein the Ce content x exceeds 0.30, and the content y of the substitution element M exceeds 0 and 0 .2 or less, and M includes a rare earth element and an alkaline earth metal element excluding at least three kinds of Ce having an ion radius larger than the Ce 4+ ion radius, is cubic, and has a crystal lattice constant a of 534 pm or more. An oxygen storage / release material characterized in that 前記置換元素Mの含有量yが0.1を超え0.2以下であることを特徴とする請求項1記載の酸素吸放出材料。   The oxygen storage / release material according to claim 1, wherein the content y of the substitution element M is more than 0.1 and 0.2 or less. 前記置換元素Mの含有量yが0.15を超え0.2以下であることを特徴とする請求項1または2記載の酸素吸放出材料。   The oxygen storage / release material according to claim 1 or 2, wherein the content y of the substitution element M is more than 0.15 and not more than 0.2. 前記置換元素MとしてY、Nd、Laのうち少なくとも1元素が置換されている請求項1〜3のいずれかに記載の酸素吸放出材料。   The oxygen storage / release material according to any one of claims 1 to 3, wherein at least one element of Y, Nd, and La is substituted as the substitution element M.
JP2016184426A 2016-09-21 2016-09-21 Oxygen absorption / release material Active JP6862646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016184426A JP6862646B2 (en) 2016-09-21 2016-09-21 Oxygen absorption / release material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184426A JP6862646B2 (en) 2016-09-21 2016-09-21 Oxygen absorption / release material

Publications (3)

Publication Number Publication Date
JP2018047425A true JP2018047425A (en) 2018-03-29
JP2018047425A5 JP2018047425A5 (en) 2019-08-29
JP6862646B2 JP6862646B2 (en) 2021-04-21

Family

ID=61765751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184426A Active JP6862646B2 (en) 2016-09-21 2016-09-21 Oxygen absorption / release material

Country Status (1)

Country Link
JP (1) JP6862646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172584A1 (en) 2021-02-09 2022-08-18 三井金属鉱業株式会社 Composite oxide and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070244002A1 (en) * 2006-04-13 2007-10-18 Kozlov Alexandr I Ce-Zr based solid solutions and methods for making and using the same
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
WO2009130202A2 (en) * 2008-04-23 2009-10-29 Rhodia Operations Composition containing zirconium, cerium and yttrium oxides having a high reducibility, method for preparing same and use thereof in catalysis
WO2011138255A2 (en) * 2010-05-06 2011-11-10 Rhodia Operations Composition containing oxides of zirconium, cerium and at least one other rare earth and having a specific porosity, method for preparing same and use thereof in catalysis
WO2016127802A1 (en) * 2015-02-09 2016-08-18 有研稀土新材料股份有限公司 Cerium-zirconium composite oxide, preparation method therefor and use thereof in catalyst
WO2016143722A1 (en) * 2015-03-12 2016-09-15 Toyota Jidosha Kabushiki Kaisha Core-shell support, method for producing the same, catalyst for purification of exhaust gas using the core- shell support, method for producing the same, and method for purification of exhaust gas using the catalyst for purification of exhaust gas
JP2016168586A (en) * 2015-03-12 2016-09-23 株式会社豊田中央研究所 Core shell carrier and production method therefor, exhaust emission control catalyst using the core shell carrier and production method therefor, and exhaust emission control method using the exhaust emission control catalyst
WO2017004414A1 (en) * 2015-07-01 2017-01-05 Basf Corporation Nitrous oxide removal catalysts for exhaust systems

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
US20070244002A1 (en) * 2006-04-13 2007-10-18 Kozlov Alexandr I Ce-Zr based solid solutions and methods for making and using the same
WO2009130202A2 (en) * 2008-04-23 2009-10-29 Rhodia Operations Composition containing zirconium, cerium and yttrium oxides having a high reducibility, method for preparing same and use thereof in catalysis
CN102015069A (en) * 2008-04-23 2011-04-13 罗地亚管理公司 Composition containing zirconium, cerium and yttrium oxides having a high reducibility, method for preparing same and use thereof in catalysis
JP2011520745A (en) * 2008-04-23 2011-07-21 ロデイア・オペラシヨン Zirconium oxide, cerium oxide, and yttrium oxide-containing catalyst composition and use thereof in exhaust gas treatment
WO2011138255A2 (en) * 2010-05-06 2011-11-10 Rhodia Operations Composition containing oxides of zirconium, cerium and at least one other rare earth and having a specific porosity, method for preparing same and use thereof in catalysis
CN102883808A (en) * 2010-05-06 2013-01-16 罗地亚经营管理公司 Composition containing oxides of zirconium, cerium and at least one other rare earth and having a specific porosity, method for preparing same and use thereof in catalysis
JP2013525255A (en) * 2010-05-06 2013-06-20 ロデイア・オペラシヨン Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis
WO2016127802A1 (en) * 2015-02-09 2016-08-18 有研稀土新材料股份有限公司 Cerium-zirconium composite oxide, preparation method therefor and use thereof in catalyst
CN105983403A (en) * 2015-02-09 2016-10-05 有研稀土新材料股份有限公司 Cerium-zirconium composite oxide, preparation method of cerium-zirconium composite oxide and use of catalyst
JP2018506424A (en) * 2015-02-09 2018-03-08 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. Cerium-zirconium composite oxide, production method thereof and use of catalyst
WO2016143722A1 (en) * 2015-03-12 2016-09-15 Toyota Jidosha Kabushiki Kaisha Core-shell support, method for producing the same, catalyst for purification of exhaust gas using the core- shell support, method for producing the same, and method for purification of exhaust gas using the catalyst for purification of exhaust gas
JP2016168586A (en) * 2015-03-12 2016-09-23 株式会社豊田中央研究所 Core shell carrier and production method therefor, exhaust emission control catalyst using the core shell carrier and production method therefor, and exhaust emission control method using the exhaust emission control catalyst
CN107427822A (en) * 2015-03-12 2017-12-01 丰田自动车株式会社 Nucleocapsid carrier, its manufacture method, use the exhaust emission control catalyst of the nucleocapsid carrier, its manufacture method and the method using exhaust emission control catalyst purification exhaust
WO2017004414A1 (en) * 2015-07-01 2017-01-05 Basf Corporation Nitrous oxide removal catalysts for exhaust systems
CN107921416A (en) * 2015-07-01 2018-04-17 巴斯夫公司 Nitrous oxide for exhaust system removes catalyst
JP2018528847A (en) * 2015-07-01 2018-10-04 ビーエーエスエフ コーポレーション Nitrous oxide removal catalyst for exhaust system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172584A1 (en) 2021-02-09 2022-08-18 三井金属鉱業株式会社 Composite oxide and method for producing same

Also Published As

Publication number Publication date
JP6862646B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
CN107106981B (en) Exhaust gas purifying catalyst
CN107206316B (en) Exhaust gas purifying catalyst
JP6034356B2 (en) Exhaust gas purification catalyst
WO2003097232A1 (en) Particulate oxidizing material and oxidation catalyst
JP2005231951A (en) Multiple oxide and catalyst for purification of exhaust gas
JP5533783B2 (en) Catalyst for exhaust gas purification of internal combustion engine
CN108495818B (en) Ceria-zirconia composite oxide oxygen absorbing/releasing material, exhaust gas purification catalyst, and exhaust gas purification honeycomb structure
JP6701581B2 (en) Oxygen absorbing/releasing material
JP5754691B2 (en) Exhaust gas purification three-way catalyst
WO2016158656A1 (en) Exhaust purification catalyst
JP6180032B2 (en) Composite metal oxide and method for producing the same, nitrogen oxide decomposition catalyst using the composite metal oxide, and method for decomposing nitrogen oxide using the nitrogen oxide decomposition catalyst
WO2012144098A1 (en) Carrier for internal-combustion engine exhaust gas purification catalyst
JP2018047425A (en) Oxygen absorbing and releasing material
JP2017189761A (en) Method for producing catalyst for exhaust purification
JP6322218B2 (en) Oxygen storage material and method for producing the same
JP7237048B2 (en) Oxygen storage material and its manufacturing method
JP6799885B2 (en) Ceria-zirconia oxide-based oxygen absorption / release material in which rare earth oxide phases are hybridized
JP2010119969A (en) Compound oxide catalyst, diesel particulate filter using the same and method for producing the catalyst
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP2018038999A (en) Exhaust gas purification catalyst
JP6923289B2 (en) Oxygen absorption / release material
JP2005104799A (en) Compound oxide and catalyst for cleaning exhaust gas
JP5287222B2 (en) PM oxidation catalyst, particulate filter, and method for producing PM oxidation catalyst
JP2009220095A (en) Oxidation catalyst and its preparation method
JP4305748B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190718

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6862646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250