JP6923289B2 - Oxygen absorption / release material - Google Patents

Oxygen absorption / release material Download PDF

Info

Publication number
JP6923289B2
JP6923289B2 JP2015215535A JP2015215535A JP6923289B2 JP 6923289 B2 JP6923289 B2 JP 6923289B2 JP 2015215535 A JP2015215535 A JP 2015215535A JP 2015215535 A JP2015215535 A JP 2015215535A JP 6923289 B2 JP6923289 B2 JP 6923289B2
Authority
JP
Japan
Prior art keywords
osc
ceria
zirconia
based composite
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015215535A
Other languages
Japanese (ja)
Other versions
JP2017087086A5 (en
JP2017087086A (en
Inventor
裕介 日高
裕介 日高
智晴 伊藤
智晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2015215535A priority Critical patent/JP6923289B2/en
Publication of JP2017087086A publication Critical patent/JP2017087086A/en
Publication of JP2017087086A5 publication Critical patent/JP2017087086A5/ja
Application granted granted Critical
Publication of JP6923289B2 publication Critical patent/JP6923289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

本発明は、セリア・ジルコニア系複合酸化物からなる酸素吸放出材料に関し、特に排ガス浄化触媒における助触媒として使用される酸素吸放出速度の大きな酸素吸放出材料に関するものである。 The present invention relates to an oxygen absorption / release material composed of a ceria-zirconia-based composite oxide, and more particularly to an oxygen absorption / release material having a high oxygen absorption / release rate, which is used as an auxiliary catalyst in an exhaust gas purification catalyst.

ガソリンエンジンの排ガス浄化に使用される三元触媒において、貴金属の働きを高めるためには、燃料と空気の比(空燃比)を一定に(理論空燃比に)保つのが好ましいが加速、減速、低速走行、高速走行等の運転状況に応じて空燃比は大きく変化する。このため、酸素センサーを用いたフィードバック制御によりエンジンの作動条件によって変動する空燃比(A/F)を一定に保つようにしているが、フィードバック時間に応じたA/Fの時間的な変動が発生するため、エンジン制御だけで排気ガス雰囲気を理論空燃比あるいはその近傍に保持することは難しい。 In the three-way catalyst used for exhaust gas purification of gasoline engines, in order to enhance the function of precious metals, it is preferable to keep the ratio of fuel and air (air-fuel ratio) constant (to the theoretical air-fuel ratio), but acceleration, deceleration, The air-fuel ratio changes greatly depending on the driving conditions such as low-speed driving and high-speed driving. For this reason, the air-fuel ratio (A / F), which fluctuates depending on the operating conditions of the engine, is kept constant by feedback control using an oxygen sensor, but the A / F fluctuates with time according to the feedback time. Therefore, it is difficult to maintain the exhaust gas atmosphere at or near the stoichiometric air-fuel ratio only by controlling the engine.

このため、触媒側で雰囲気を微調整する必要が有る。セリア(酸化セリウムCeO)は酸素吸放出能(Oxygen Storage Capacity、以下単に「OSC」ということがある)を有するため、自動車排ガス浄化用触媒の酸素分圧調整用の助触媒として広く用いられている。これはCe3+/Ce4+のレドックス反応を利用したものである。前記セリアは、一般にその特性を高めるためジルコニア(酸化ジルコニウムZrO)と固溶させたセリア・ジルコニア系複合酸化物として使用されている。 Therefore, it is necessary to fine-tune the atmosphere on the catalyst side. Ceria (cerium oxide CeO 2 ) has an oxygen absorption / release capacity (Oxygen Storage Capacity, hereinafter simply referred to as "OSC"), and is therefore widely used as an auxiliary catalyst for adjusting the oxygen partial pressure of an automobile exhaust gas purification catalyst. There is. This utilizes the redox reaction of Ce 3+ / Ce 4+. The ceria is generally used as a ceria-zirconia-based composite oxide dissolved in zirconia (zirconium oxide ZrO 2) in order to enhance its properties.

前記セリア・ジルコニア系複合酸化物は、一般に、触媒貴金属が担持された状態でアルミナに数%ないし数十%の割合で混合され、ハニカム担体表面に十数μmないし数百μmの厚さのウォッシュコート層に形成され、助触媒として機能する。 The ceria-zirconia-based composite oxide is generally mixed with alumina at a ratio of several% to several tens of percent in a state where a catalytic noble metal is supported, and is washed on the surface of the honeycomb carrier with a thickness of several tens of μm to several hundreds of μm. It is formed on the coat layer and functions as a co-catalyst.

ハニカム担体内部にウォッシュコートされた触媒は、流通する排ガスとの接触により浄化を行うが、ハニカム担体の全長は10cmからせいぜい30cm程度と短く、排ガスを浄化するための時間は非常に短い。この短い時間で浄化を完了させるためにはセリア・ジルコニアによる酸素分圧調整もミリ秒単位のごく短時間で完了する必要が有る。従来、セリア・ジルコニア系複合酸化物は排ガスとの接触面積を大きくするべく加熱耐久試験後の比表面積保持に注目して開発が行われてきた(特許文献1参照)。 The catalyst wash-coated inside the honeycomb carrier purifies by contact with the flowing exhaust gas, but the total length of the honeycomb carrier is as short as about 10 cm to about 30 cm at most, and the time for purifying the exhaust gas is very short. In order to complete the purification in this short time, it is necessary to complete the oxygen partial pressure adjustment by ceria zirconia in a very short time in milliseconds. Conventionally, ceria-zirconia-based composite oxides have been developed with a focus on maintaining the specific surface area after the heating durability test in order to increase the contact area with the exhaust gas (see Patent Document 1).

セリア・ジルコニア系酸化物の酸素放出速度に注目した開発としては、たとえば特許文献2、特許文献3が有る。特許文献2は還元開始後60秒までの酸素放出速度に注目したものであり、特許文献3ではパイロクロア構造を持つセリア・ジルコニアに蛍石型構造のセリア・ジルコニアを複合化させることによりOSC量が多く、放出速度の大きいセリア・ジルコニアを提案している。 For example, Patent Document 2 and Patent Document 3 are developments focusing on the oxygen release rate of ceria-zirconia-based oxides. Patent Document 2 focuses on the oxygen release rate up to 60 seconds after the start of reduction, and Patent Document 3 increases the amount of OSC by combining ceria zirconia having a pyrochloro structure with ceria zirconia having a fluorite-type structure. We are proposing ceria zirconia, which has a large release rate.

一方、セリア・ジルコニア系複合酸化物のイオン伝導性を測定した例としてたとえば非特許文献1が有る。 On the other hand, there is, for example, Non-Patent Document 1 as an example of measuring the ionic conductivity of a ceria-zirconia-based composite oxide.

特開2012−180271号公報Japanese Unexamined Patent Publication No. 2012-180271 特開2011−121851号公報Japanese Unexamined Patent Publication No. 2011-121851 国際公開第2012/105454号パンフレットInternational Publication No. 2012/105454 Pamphlet

「材料」、Vol60、No.3、pp.194−197(イットリア安定化立方晶ジルコニアの酸素緩和とイオン伝導性に及ぼすセリア添加の影響)、Mar.2011"Material", Vol60, No. 3, pp. 194-197 (Effect of Ceria Addition on Oxygen Relaxation and Ion Conductivity of Yttria Stabilized Cubic Zirconia), Mar. 2011

上述のように酸素吸放出材料としてのセリア・ジルコニア系酸化物は、これまで自動車排ガス浄化触媒等において高いOSC値やそれを維持する大きな比表面積が要求され、それらに対応した開発が行われてきた。しかしながら、エンジンの電子制御が普及し、燃費向上やエンジン性能向上のために燃料噴射の電子制御もますます複雑化している中でセリア・ジルコニア系酸化物に対する要求も変化してくる。具体的には、複雑な電子制御にも高速で応答できるOSC能を有するセリア・ジルコニア系酸化物である。 As described above, ceria-zirconia-based oxides as oxygen absorption / release materials have been required to have a high OSC value and a large specific surface area to maintain the OSC value in automobile exhaust gas purification catalysts and the like, and developments have been made in response to these values. rice field. However, as electronic control of engines has become widespread and electronic control of fuel injection has become more and more complicated in order to improve fuel efficiency and engine performance, the demand for ceria-zirconia oxides has also changed. Specifically, it is a ceria-zirconia-based oxide having an OSC ability capable of responding to complicated electronic control at high speed.

よって、これまでの酸素吸放出材料としてのセリア・ジルコニア系酸化物の開発は、特許文献1では、高いOSC(酸素吸放出能)値や優れた耐久性が得られるための添加元素等の組成検討のみであった。これまでOSC速度の要求は顕在化されていなかったので、セリア・ジルコニア系酸化物のOSC速度を向上させるということは殆ど試みられていなかったし、その評価方法すら明確でなかった。 Therefore, in the development of ceria-zirconia-based oxides as oxygen absorption / release materials so far, in Patent Document 1, the composition of additive elements and the like for obtaining a high OSC (oxygen absorption / release capacity) value and excellent durability is obtained. It was only a study. Since the requirement for OSC rate has not been clarified so far, almost no attempt has been made to improve the OSC rate of ceria-zirconia-based oxides, and even the evaluation method has not been clarified.

特許文献2では、セリア・ジルコニア系酸化物に特定量の酸化インジウムを含有させることでOSC応答速度を向上できるとしている。しかしながら、OSC応答速度の測定において還元剤として水素Hを使用しているが、現実の排ガス条件では一酸化炭素COで還元されるものであるので必要な特性を十分判断できていない。また、セリア・ジルコニア系酸化物をそのまま評価しているが、現実は貴金属を担持して使用されるので貴金属を担持した特性でOSC応答速度が向上するかどうか判断すべきであるが、その点については評価されていない。本発明者らの予備検討で、貴金属を担持した場合では酸化インジウムの含有では必ずしも一酸化炭素還元条件におけるOSC応答速度を向上できると限らないということが分かった。また、OSC材料とするセリア・ジルコニア系酸化物では、酸化インジウムは特殊で高価な添加剤であるので、酸化インジウムを使用しないでOSC応答速度を向上させる方法が望まれる。 Patent Document 2 states that the OSC response rate can be improved by adding a specific amount of indium oxide to the ceria-zirconia oxide. However, the use of the hydrogen H 2 as a reducing agent in the measurement of the OSC response speed in the real exhaust gas conditions not fully determine the required characteristics since those are reduced by carbon monoxide CO. In addition, although the ceria-zirconia oxide is evaluated as it is, in reality, it is used by supporting a noble metal, so it should be judged whether the OSC response speed is improved by the characteristic of supporting the noble metal. Has not been evaluated. Preliminary studies by the present inventors have found that the inclusion of indium oxide does not always improve the OSC response rate under carbon monoxide reduction conditions when a noble metal is supported. Further, in the ceria-zirconia-based oxide used as the OSC material, indium oxide is a special and expensive additive, so a method for improving the OSC response speed without using indium oxide is desired.

特許文献3では、パイロクロア構造のセリア・ジルコニア系酸化物は多くの酸素を吸放出でき、立方晶(蛍石構造)のセリア・ジルコニア系酸化物が酸素の吸放出速度が大きいとして、これらを複合したセリア・ジルコニア系酸化物が優れた触媒性能を示すとしている。OSC速度の評価基準は、リーンからリッチ変動後に雰囲気がストイキオメトリ(stoiciometry)に落ち着いた後のOSC特性で評価しており、本発明が対象としている雰囲気変動時直後のOSC速度を測定しておらず、十分な特性評価がされていない。 In Patent Document 3, it is assumed that the ceria-zirconia-based oxide having a pyrochlorostructure can absorb and release a large amount of oxygen, and the ceria-zirconia-based oxide having a cubic (fluorite structure) has a high oxygen absorption / release rate, and these are combined. Ceria-zirconia oxides are said to exhibit excellent catalytic performance. The evaluation standard of the OSC speed is the OSC characteristic after the atmosphere has settled to stoiciometry after the lean to rich fluctuation, and the OSC speed immediately after the atmosphere change, which is the object of the present invention, is measured. Not enough, and the characteristics have not been evaluated sufficiently.

非特許文献1では、セリア・ジルコニア系複合酸化物の内部摩擦強度を測定してイオン伝導率との関係を議論しているが、OSC材料として酸素の吸放出速度との関連づけはなされていない。 In Non-Patent Document 1, the internal frictional strength of the ceria-zirconia-based composite oxide is measured to discuss the relationship with the ionic conductivity, but the OSC material is not related to the oxygen absorption / release rate.

本発明者らは、酸素吸放出量が大きなセリア・ジルコニア系複合酸化物が必ずしもOSC速度が大きいわけではないことを見出した。したがって、最近のエンジン制御においては従来の酸素吸放出量の大きなセリア・ジルコニア系複合酸化物では不十分であり、むしろ酸素吸放出量は大きくなくてもOSC速度の大きなセリア・ジルコニア系複合酸化物の開発が求められているのが実情である。 The present inventors have found that a ceria-zirconia-based composite oxide having a large amount of oxygen absorption and release does not necessarily have a large OSC rate. Therefore, in recent engine control, the conventional ceria-zirconia-based composite oxide having a large amount of oxygen absorption / release is insufficient, and rather, the ceria-zirconia-based composite oxide having a large OSC rate even if the amount of oxygen absorption / release is not large is insufficient. The reality is that the development of is required.

本発明は、上記実情に鑑みてなしたものであり、OSC速度の大きなセリア・ジルコニア系複合酸化物からなる酸素吸放出材料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an oxygen absorbing / releasing material made of a ceria-zirconia-based composite oxide having a high OSC rate.

本発明者らは、上記課題を解決すべく鋭意研究し、その結果、酸素吸放出材料として酸素吸放出速度が大きく、また酸素吸放出量も大きなセリア・ジルコニア系複合酸化物は、イオン伝導率の大きなセリア・ジルコニア系複合酸化物であるということを見出し、本発明を完成するに至った。 The present inventors have diligently studied to solve the above problems, and as a result, the ceria-zirconia-based composite oxide having a high oxygen absorption / release rate and a large oxygen absorption / release amount as an oxygen absorption / release material has an ionic conductivity. The present invention was completed by discovering that it is a large ceria-zirconia-based composite oxide.

すなわち、本発明の要旨は、以下のとおりである。 That is, the gist of the present invention is as follows.

(1)セリア・ジルコニア系複合酸化物であって、4価未満の価数を有する金属イオンが含まれ、前記セリア・ジルコニア系複合酸化物におけるセリウムとジルコニウムのモル比が、セリウム/(セリウム+ジルコニウム)で0.33以上、0.83以下(但し、0.47を除く)であり、前記4価未満の価数を有する金属イオンは、前記セリア・ジルコニア系複合酸化物の総カチオンに対して3モル%以上15モル%以下含まれるCaイオンまたはPrイオンのいずれか一種であり、1450℃で焼結した前記セリア・ジルコニア系複合酸化物のイオン伝導率が400℃で1.0×10−5S/cm以上1.0×10−2S/cm以下であり、酸素吸放出速度(OSC速度)Δt 50 が17.0秒以上であり、酸素吸放出量(OSC量)が300μmol−O /g以上であることを特徴とする酸素吸放出材料。 (1) A ceria-zirconia-based composite oxide containing a metal ion having a valence of less than tetravalent, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is cerium / (cerium +). Metal ions having a valence of 0.33 or more and 0.83 or less (excluding 0.47) and less than tetravalent in zirconium) are relative to the total cations of the ceria-zirconia-based composite oxide. It is one of Ca ions or Pr ions contained in an amount of 3 mol% or more and 15 mol% or less, and the ionic conductivity of the ceria-zirconia-based composite oxide sintered at 1450 ° C. is 1.0 × 10 at 400 ° C. -5 S / cm and not more than 1.0 × 10 -2 S / cm der less is, the oxygen storage and release rate (OSC speed) Delta] t 50 is not less than 17.0 seconds, and releasing oxygen volume (OSC amount) 300μmol oxygen absorption and release material characterized der Rukoto more -O 2 / g.

以上のように、本発明のOSC速度の速いセリア・ジルコニア系複合酸化物からなる酸素吸放出材料を自動車排ガス浄化触媒に使用すれば走行状態に応じて刻々と変化する排ガガスの浄化を助け、これまで以上に貴金属の有害成分浄化性能が高くなる。 As described above, if the oxygen absorption / release material composed of the ceria-zirconia-based composite oxide having a high OSC speed of the present invention is used for the automobile exhaust gas purification catalyst, it helps to purify the exhaust gas that changes every moment according to the running condition. The purification performance of harmful components of precious metals will be higher than ever.

OSC速度測定装置の概略図である。It is the schematic of the OSC speed measuring apparatus.

本発明のセリア・ジルコニア系複合酸化物で酸素吸放出速度(OSC速度と言うことがある)の速い材料はイオン伝導率が大きいほど、OSC速度が大きく、また酸素吸放出量(OSC量と言うことがある)が大きく自動車排ガス浄化触媒に使用すれば走行状態に応じて刻々と変化する排ガスの浄化を助けることが出来る。 The ceria-zirconia-based composite oxide of the present invention having a high oxygen absorption / release rate (sometimes referred to as OSC rate) has a higher OSC rate as the ionic conductivity increases, and an oxygen absorption / release amount (referred to as OSC amount). If it is used as an automobile exhaust gas purification catalyst, it can help purify exhaust gas that changes from moment to moment depending on the running condition.

イオン伝導率が低いと、セリア・ジルコニア系複合酸化物内の酸素が移動しにくいため、OSC速度が低く、有害成分浄化性能は低い。 When the ionic conductivity is low, oxygen in the ceria-zirconia-based composite oxide is difficult to move, so that the OSC rate is low and the harmful component purification performance is low.

本発明のセリア・ジルコニア系複合酸化物とは、セリウムもしくはジルコニウムを4価未満の価数を有する金属イオン(Ca、Sc、Sr、Y、Ba、La、Pr、Nd、Sm、Pr、Yb等)で一部置換されているセリア・ジルコニア系複合酸化物である。特に効果がみられる置換金属元素として、Sc、Y、La、Nd、Pr等が挙げられる。各元素の置換効果としてSc、Y等は、イオン伝導率の向上、La、Nd、Pr等は、耐熱性の向上が挙げられる。置換量は、特に限定しないが、セリア・ジルコニア系酸化物の総カチオンに対して20モル%以下が好ましく、置換効果をより大きく得るためには3モル(mol)%以上20モル%以下、より好ましくは3モル%以上15モル%以下である。 The ceria-zirconia-based composite oxide of the present invention refers to metal ions (Ca, Sc, Sr, Y, Ba, La, Pr, Nd, Sm, Pr, Yb, etc.) having a valence of less than tetravalent cerium or zirconium. ) Is a ceria-zirconia-based composite oxide partially substituted. Examples of the substituted metal element that are particularly effective include Sc, Y, La, Nd, Pr and the like. Examples of the substitution effect of each element include improvement of ionic conductivity for Sc, Y and the like, and improvement of heat resistance for La, Nd, Pr and the like. The amount of substitution is not particularly limited, but is preferably 20 mol% or less with respect to the total cation of the ceria-zirconia oxide, and 3 mol (mol)% or more and 20 mol% or less in order to obtain a larger substitution effect. It is preferably 3 mol% or more and 15 mol% or less.

本発明に関わる酸素吸放出速度の速い材料(セリア・ジルコニア系複合酸化物)は交流インピーダンス法で測定された焼結体のイオン伝導率が400℃で1.0×10−5S/cm以上であることが望ましい。イオン伝導率の上限は特に限定するものではないが、望ましくは1.0×10−2S/cm以下である。イオン伝導率が高いと、粒子内酸素の移動が起こりやすくなり、浄化性能が高くなる。イオン伝導率が1.0×10−5S/cm未満の場合、粒子内酸素の移動が起こりにくいため、浄化性能が悪い。イオン伝導率を高めるために第三成分を添加するが、第三成分を増やした量だけ酸素吸放出を行うCeイオン量が減るために、イオン伝導率が1.0×10−2S/cmより高い材料の調製は難しい。したがって、4価未満の価数を有する金属イオンが含まれ、イオン伝導率が400℃で1.0×10−5S/cm以上とした。 The material having a high oxygen absorption / release rate (ceria / zirconia-based composite oxide) according to the present invention has an ionic conductivity of a sintered body measured by an AC impedance method of 1.0 × 10-5 S / cm or more at 400 ° C. Is desirable. The upper limit of the ionic conductivity is not particularly limited, but is preferably 1.0 × 10-2 S / cm or less. When the ionic conductivity is high, the movement of oxygen in the particles is likely to occur, and the purification performance is improved. When the ionic conductivity is less than 1.0 × 10-5 S / cm, the movement of oxygen in the particles is unlikely to occur, and the purification performance is poor. A third component is added to increase the ionic conductivity, but the amount of Ce ions that absorb and release oxygen decreases by the amount of the increased third component, so the ionic conductivity is 1.0 x 10-2 S / cm. Preparation of higher materials is difficult. Therefore, a metal ion having a valence of less than tetravalent was contained, and the ionic conductivity was set to 1.0 × 10-5 S / cm or more at 400 ° C.

また、本発明に関わる酸素吸放出速度の速い材料は、セリア・ジルコニア系複合酸化物のセリウムとジルコニウムのモル比が、セリウム/(セリウム+ジルコニウム)で0.83以下であるのが望ましく、より望ましくは0.66以下である。セリウム/(セリウム+ジルコニウム)が0.83を超えると、セリウム量が多く、セリウムの価数変動が起こりにくくなるため、酸素吸放出速度の向上には望ましくない。セリウム/(セリウム+ジルコニウム)のモル比は、0を超えれば、OSC速度の向上が図れるが、より大きな効果を得るためには、0.004以上であるのが好ましく、より好ましくは0.20以上である。 Further, in the material having a high oxygen absorption / release rate according to the present invention, it is desirable that the molar ratio of cerium to zirconium of the ceria-zirconia-based composite oxide is 0.83 or less in terms of cerium / (cerium + zirconium). Desirably, it is 0.66 or less. When cerium / (cerium + zirconium) exceeds 0.83, the amount of cerium is large and the valence fluctuation of cerium is less likely to occur, which is not desirable for improving the oxygen absorption / release rate. If the molar ratio of cerium / (cerium + zirconium) exceeds 0, the OSC rate can be improved, but in order to obtain a greater effect, it is preferably 0.004 or more, more preferably 0.20. That is all.

本発明のセリア・ジルコニア系複合酸化物は、速い酸素吸放出速度が得られるが、より速い酸素吸放出速度が得られると言う観点からは、セリウム/(セリウム+ジルコニウム)が0.33未満であるのがより好ましい。この場合、Ce4+よりも小さなイオン半径を有する金属イオンが含まれることが望ましい。小さなイオン半径を有する金属イオン、特にSc、Yを配合することにより原子間の酸素欠陥ができ、イオン半径の小さい元素は酸素の移動を阻害しないために、酸素の移動が起こりやすくなり、結果としてOSC速度を高める効果が有る。OSC速度を速くして、貴金属の有害成分浄化性能を向上させるには、OSC速度Δt50が17.0秒以上であることが望ましい。OSC速度Δt50は速い方が望ましく、上限は特に限定するものではないが30.0秒以下が現実的である。 The ceria-zirconia-based composite oxide of the present invention can obtain a high oxygen absorption / release rate, but from the viewpoint of obtaining a faster oxygen absorption / release rate, cerium / (cerium + zirconium) is less than 0.33. It is more preferable to have it. In this case, it is desirable that metal ions having an ionic radius smaller than Ce 4+ are contained. By blending metal ions having a small ionic radius, especially Sc and Y, oxygen defects are formed between atoms, and elements with a small ionic radius do not inhibit the movement of oxygen, so that the movement of oxygen is likely to occur, and as a result, the movement of oxygen is likely to occur. It has the effect of increasing the OSC speed. In order to increase the OSC speed and improve the harmful component purification performance of the noble metal, it is desirable that the OSC speed Δt 50 is 17.0 seconds or more. It is desirable that the OSC speed Δt 50 is high, and the upper limit is not particularly limited, but 30.0 seconds or less is realistic.

また、本発明のセリア・ジルコニア系複合酸化物は、特により大きな酸素吸放出量が得られると言う観点からは、セリウム/(セリウム+ジルコニウム)が0.33以上0.83以下、より好ましくは0.33以上0.66以下である。この場合、Ce4+イオンよりも大きなイオン半径を有する金属イオン、特にLa、Pr、Ndが含まれることが望ましい。大きなイオン半径を有する金属イオンを配合することにより複合酸化物の結晶格子が広がるため、Ce4+からCe3+への価数変化に伴うイオン半径変化が起こりやすくなり、酸素のOSC量を高める効果が有り、OSC量は300μmol−O/g以上であることが望ましい。OSC量は多い方が好ましく、上限は特に限定するものではないが420μmol−O/gが現実的である。 Further, the ceria-zirconia-based composite oxide of the present invention has a cerium / (cerium + zirconium) of 0.33 or more and 0.83 or less, more preferably 0.83 or less, particularly from the viewpoint that a larger oxygen absorption / release amount can be obtained. It is 0.33 or more and 0.66 or less. In this case, it is desirable that metal ions having an ionic radius larger than that of Ce 4+ ions, particularly La, Pr, and Nd, are contained. By blending metal ions with a large ionic radius, the crystal lattice of the composite oxide expands, so that the ionic radius changes easily with the change in valence from Ce 4+ to Ce 3+ , which has the effect of increasing the OSC amount of oxygen. Yes, the amount of OSC is preferably 300 μmol-O 2 / g or more. A large amount of OSC is preferable, and the upper limit is not particularly limited, but 420 μmol-O 2 / g is realistic.

本発明で測定されるOSC速度は以下のように測定される。OSC速度測定装置の概略図を示す図1を用いて説明すると、まず、反応管1の中に何も充填されていない状態で測定を行う(Blank試験)。すなわち、Oボンベ2(3mass%O、Nbalance)からのO流通下で反応管1を電気炉3で加熱して400℃に昇温する。反応管1内の温度は熱電対4により測定する。Nボンベ5からのNで反応管1内をパージし、COボンベ6(1.5mass%CO、Nbalance)からCOを流通させる。O、CO、Nの流量は流量表示計7で測定する。反応炉1から排出されるO、COは、それぞれO計8、CO計9で測定する。CO濃度が流通させたCO濃度の半分になった時の時間(t50(Blank))を求める。次に反応管1にPdを0.5mass%含浸担持したセリア・ジルコニア系複合酸化物紛体を反応層10に充填した状態で測定を行う(Sample測定)。O流通下で反応管1を400℃に昇温する。Nでパージし、COを流通させる。CO濃度が流通させたCO濃度の半分になった時の時間(t50(Sample))を求め下記式によりOSC速度Δt50を求める。 The OSC speed measured in the present invention is measured as follows. Explaining with reference to FIG. 1, which shows a schematic view of an OSC speed measuring device, first, measurement is performed in a state where nothing is filled in the reaction tube 1 (Blank test). That is, the reaction tube 1 is heated in the electric furnace 3 under the O 2 distribution from the O 2 cylinder 2 (3 mass% O 2 , N 2 balance) to raise the temperature to 400 ° C. The temperature inside the reaction tube 1 is measured by a thermocouple 4. The inside of the reaction tube 1 is purged with N 2 from the N 2 cylinder 5, and CO is circulated from the CO cylinder 6 (1.5 mass% CO, N 2 balance). The flow rates of O 2 , CO, and N 2 are measured by the flow rate indicator 7. O 2 and CO discharged from the reactor 1 are measured by a total of 8 O 2 and a total of 9 CO, respectively. The time (t 50 (Blank) ) when the CO concentration becomes half of the distributed CO concentration is calculated. Next, measurement is carried out in a state where the reaction layer 10 is filled with a ceria-zirconia-based composite oxide powder in which the reaction tube 1 is impregnated with 0.5 mass% of Pd and supported (Sample measurement). The temperature of the reaction tube 1 is raised to 400 ° C. under O 2 circulation. Purge with N 2 and distribute CO. The time (t 50 (Sample) ) when the CO concentration becomes half of the distributed CO concentration is calculated, and the OSC speed Δt 50 is calculated by the following formula.

Δt50=t50(Blank)−t50(Sample)の式より、OSC速度であるΔt50を算出する。Δt50が17.0秒以上、すなわちイオン伝導率が1×10−5S/cm以上となるセリア・ジルコニア系複合酸化物は酸素吸放出特性が優れ、OSC速度が速く、貴金属の有害成分浄化性能を向上させることができる。 From the equation of Δt 50 = t 50 (Blank) −t 50 (Sample) , the OSC velocity Δt 50 is calculated. The ceria-zirconia-based composite oxide having Δt 50 of 17.0 seconds or more, that is, an ionic conductivity of 1 × 10-5 S / cm or more has excellent oxygen absorption / release characteristics, a high OSC rate, and purification of harmful components of precious metals. Performance can be improved.

以下に実施例(発明例)、参考例、比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples (Invention Examples), Reference Examples, and Comparative Examples, but the present invention is not limited thereto.

イオン伝導率は以下のように測定される。試料(セリア・ジルコニア系複合酸化物)を1200℃で仮焼きし、湿式ボールミルにて粉砕を行う。バインダーとしてPVAを試料500gに対して1mass%添加して、1ton/mの圧力を掛け、ペレットを作製する。その後1450℃で焼結し、ペレットに銀ペーストを塗る。銀ペーストを塗ったペレットをJIS R1661 交流インピータンスで測定を行った。 Ion conductivity is measured as follows. The sample (ceria-zirconia-based composite oxide) is calcined at 1200 ° C. and pulverized with a wet ball mill. PVA as a binder is added in an amount of 1 mass% to 500 g of a sample, and a pressure of 1 ton / m 2 is applied to prepare pellets. It is then sintered at 1450 ° C. and the pellets are coated with silver paste. Pellets coated with silver paste were measured by JIS R1661 AC impedance.

OSC速度は前述した測定方法で測定し、OSC量は以下のように測定される。アルミナパンに試料(セリア・ジルコニア系複合酸化物)を10mg程度充填し、熱重量分析計にセットする。試料を5%H/Ar流通下、400℃で1時間還元処理を行う。その後、400℃で100%Oを10分流通させ、酸化処理を行う。酸化処理前後における重量変化を試料のOSC量として算出した。 The OSC speed is measured by the measurement method described above, and the OSC amount is measured as follows. The alumina pan is filled with about 10 mg of a sample (ceria-zirconia-based composite oxide) and set in a thermogravimetric analyzer. The sample is reduced at 400 ° C. for 1 hour under 5% H 2 / Ar circulation. Then, 100% O 2 is circulated at 400 ° C. for 10 minutes for oxidation treatment. The weight change before and after the oxidation treatment was calculated as the OSC amount of the sample.

参考例1)
塩化セリウム溶液、オキシ塩化ジルコニウム溶液、塩化イットリウム溶液と純水を混合し、モル比でCeO:ZrO:Y23=25:63:12、0.4mol/lとなるような溶液1l(リットル)を得た。得られた混合溶液にペルオキソ二硫酸アンモニウムを15g添加し、撹拌しながら95℃まで加熱し、セリウム・ジルコニウム複合硫酸塩を得た。得られた硫酸塩スラリーを60℃まで冷却後、アンモニア水を加えて中和し水酸化物を含むスラリーを得た。得られた水酸化物スラリーに対して濾過−洗浄操作を4回繰り返してセリウム・ジルコニウム複合水酸化物ケーキを得た。得られた複合水酸化物ケーキを120℃で乾燥して複合水酸化物粉末を得、これを坩堝につめ電気炉で700℃にて3時間焼成し、セリア・ジルコニア系複合酸化物粉末を得た。
( Reference example 1)
1 l of a solution obtained by mixing pure water with a cerium chloride solution, a zirconium oxychloride solution, an yttrium chloride solution, and a molar ratio of CeO 2 : ZrO 2 : Y 2 O 3 = 25: 63: 12, 0.4 mol / l. Obtained (liter). 15 g of ammonium peroxodisulfate was added to the obtained mixed solution, and the mixture was heated to 95 ° C. with stirring to obtain a cerium-zirconium composite sulfate. The obtained sulfate slurry was cooled to 60 ° C. and then neutralized by adding aqueous ammonia to obtain a slurry containing a hydroxide. The obtained hydroxide slurry was subjected to a filtration-washing operation four times to obtain a cerium-zirconium composite hydroxide cake. The obtained composite hydroxide cake was dried at 120 ° C. to obtain a composite hydroxide powder, which was packed in a crucible and baked at 700 ° C. for 3 hours in an electric furnace to obtain a ceria-zirconia-based composite oxide powder. rice field.

得られた粉末を前述の方法でイオン伝導率を測定したところ、1.30×10−3(S/cm)であった。 When the ionic conductivity of the obtained powder was measured by the above-mentioned method, it was 1.30 × 10 -3 (S / cm).

さらに得られた粉末に対してPdを0.5mass%の割合で含浸担持し、OSC速度(Δt50)、OSC量の測定を行ったところ、OSC速度であるΔt50が29.0秒、OSC量が303μmol−O/gとの結果が得られた。 Further, Pd was impregnated and carried at a ratio of 0.5 mass% to the obtained powder, and the OSC rate (Δt 50 ) and the amount of OSC were measured. As a result, the OSC rate of Δt 50 was 29.0 seconds and the OSC. The result was that the amount was 303 μmol-O 2 / g.

参考例2)
表1に示すように、配合組成をCeO:ZrO:Sc=25:68.7:6.3とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
( Reference example 2)
As shown in Table 1, the ceria-zirconia-based composite oxide powder is the same as in Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Sc 2 O 3 = 25: 68.7: 6.3. Got

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ8.95×10−5(S/cm)、Δt50が18.5秒、OSC量が300μmol−O/gであった。 When the ionic conductivity, OSC velocity, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, 8.95 × 10-5 (S / cm), Δt 50 was 18.5 seconds, and the OSC amount was 300 μmol. It was −O 2 / g.

参考例3)
表1に示すように、配合組成をCeO:ZrO:Y:La=34:52:8:6とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
( Reference example 3)
As shown in Table 1, the ceria-zirconia-based composite is the same as in Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Y 2 O 3 : La 2 O 3 = 34: 52: 8: 6. Oxide powder was obtained.

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ3.07×10−5(S/cm)、Δt50が20.4秒、OSC量が327μmol−O/gであった。 When the ionic conductivity, OSC rate, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, 3.07 × 10-5 (S / cm), Δt 50 was 20.4 seconds, and the OSC amount was 327 μmol. It was −O 2 / g.

参考例4)
表1に示すように、配合組成をCeO:ZrO:Y:Pr=32.6:57:6.2:4.1とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
( Reference example 4)
As shown in Table 1, the composition is the same as that of Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Y 2 O 3 : Pr 2 O 3 = 32.6: 57: 6.2: 4.1. To obtain a ceria-zirconia-based composite oxide powder.

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ7.43×10−5S/cm以上、Δt50が17.8秒、OSC量が315μmol−O/gであった。 When the ionic conductivity, OSC rate, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, they were 7.43 × 10-5 S / cm or more, Δt 50 was 17.8 seconds, and the OSC amount was 315 μmol-. It was O 2 / g.

(実施例
表1に示すように、配合組成をCeO:ZrO:Pr=75:15.6:9.4とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Example 1 )
As shown in Table 1, the ceria-zirconia-based composite oxide powder is the same as in Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Pr 2 O 3 = 75: 15.6: 9.4. Got

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ8.31×10−5S/cm以上、Δt50が18,2秒、OSC量が337μmol−O/gであった。 When the ionic conductivity, OSC velocity, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, they were 8.31 × 10-5 S / cm or more, Δt 50 was 18.2 seconds, and the OSC amount was 337 μmol-. It was O 2 / g.

(実施例
表1に示すように、配合組成をCeO:ZrO:CaO=37.5:53.1:9.4とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得
た。
(Example 2 )
As shown in Table 1, the ceria-zirconia-based composite oxide powder was prepared in the same manner as in Reference Example 1 except that the compounding composition was CeO 2 : ZrO 2 : CaO = 37.5: 53.1: 9.4. Obtained.

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ2.41×10−5S/cm以上、Δt50が20,2秒、OSC量が350μmol−O/gであった。 When the ionic conductivity, OSC rate, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, they were 2.41 × 10-5 S / cm or more, Δt 50 was 20,2 seconds, and the OSC amount was 350 μmol-. It was O 2 / g.

(参考例
表1に示すように、配合組成をCeO:ZrO:Y:Nd=42.2:47.1:6.4:4.3とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Reference example 5 )
As shown in Table 1, the composition is different from that of Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Y 2 O 3 : Nd 2 O 3 = 42.2: 47.1: 6.4: 4.3. Similarly, a ceria-zirconia-based composite oxide powder was obtained.

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ2.94×10−5S/cm以上、Δt50が17.4秒、OSC量が400μmol−O/gであった。 When the ionic conductivity, OSC rate, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, they were 2.94 × 10-5 S / cm or more, Δt 50 was 17.4 seconds, and the OSC amount was 400 μmol-. It was O 2 / g.

(比較例1)
表1に示すように、配合組成をCeO:ZrO:La=12.5:81.2:6.3とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Comparative Example 1)
As shown in Table 1, the ceria-zirconia-based composite oxidation is the same as in Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : La 2 O 3 = 12.5: 81.2: 6.3. A product powder was obtained.

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ8.06×10−6(S/cm)、Δt50が16.4秒、OSC量が210μmol−O/gであった。 When the ionic conductivity, OSC velocity, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, 8.06 × 10-6 (S / cm), Δt 50 was 16.4 seconds, and the OSC amount was 210 μmol. It was −O 2 / g.

(比較例2)
表1に示すように、配合組成をCeO:ZrO:Y=75:18.7:6.3とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Comparative Example 2)
As shown in Table 1, the ceria-zirconia-based composite oxide powder is the same as in Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Y 2 O 3 = 75: 18.7: 6.3. Got

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ3.65×10−6(S/cm)、Δt50が12.5秒、OSC量が194μmol−O/gであった。 When the ionic conductivity, OSC velocity, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, 3.65 × 10-6 (S / cm), Δt 50 was 12.5 seconds, and the OSC amount was 194 μmol. It was −O 2 / g.

(比較例3)
表1に示すように、配合組成をCeO:ZrO:Y=50:40.6:9.4とした以外は、参考例1と同様にしてセリア・ジルコニア系複合酸化物粉末を得た。
(Comparative Example 3)
As shown in Table 1, the ceria-zirconia-based composite oxide powder is the same as in Reference Example 1 except that the compounding composition is CeO 2 : ZrO 2 : Y 2 O 3 = 50: 40.6: 9.4. Got

得られた粉末を参考例1と同様にイオン伝導率、OSC速度、OSC量を測定したところそれぞれ2.41×10−6(S/cm)、Δt50が14.3秒、OSC量が202μmol−O/gであった。 When the ionic conductivity, OSC velocity, and OSC amount of the obtained powder were measured in the same manner as in Reference Example 1, 2.41 × 10-6 (S / cm), Δt 50 was 14.3 seconds, and the OSC amount was 202 μmol. It was −O 2 / g.

Figure 0006923289
Figure 0006923289

表1より実施例1〜で得られたセリア・ジルコニア系複合酸化物は、4価未満の価数を有する金属イオンが含まれ、イオン伝導率が400℃で1.0×10−5S/cm以上である酸素吸放出材料となっていて、OSC速度、OSC量に優れた特性を満たしていた。
From Table 1, the ceria-zirconia-based composite oxides obtained in Examples 1 and 2 contain metal ions having a valence of less than tetravalent, and have an ionic conductivity of 1.0 × 10-5 S at 400 ° C. It was an oxygen absorption / release material of / cm or more, and satisfied the characteristics of excellent OSC speed and OSC amount.

一方で、比較例1、2、3で得られたセリア・ジルコニア系複合酸化物のイオン伝導率は1.0×10 −5S/cm未満であり、OSC速度、OSC量が低い値を示しており、酸素吸放出材料の性能は実施例よりも劣っていた。
以上の通り、本発明によれば、OSC速度が大きく、そしてOSC量も大きいセリア・ジルコニア系複合酸化物が得られていることが確認できた。
On the other hand, the ionic conductivity of the obtained ceria-zirconia composite oxide in Comparative Example 1, 2 and 3 is less than 1.0 × 10 -5 S / cm, OSC speed, OSC amount indicates a lower value The performance of the oxygen absorbing / releasing material was inferior to that of the examples.
As described above, according to the present invention, it was confirmed that a ceria-zirconia-based composite oxide having a high OSC rate and a large amount of OSC was obtained.

本発明の酸素吸放出速度の速い材料を自動車排ガス浄化触媒の助触媒として使用すれば、走行状態に応じて刻々と変化する排ガスの浄化を助け、これまで以上に貴金属の有害成分浄化性能の向上が図れる。 If the material having a high oxygen absorption / release rate of the present invention is used as an auxiliary catalyst for an automobile exhaust gas purification catalyst, it helps to purify the exhaust gas that changes every moment according to the running condition, and improves the harmful component purification performance of precious metals more than ever. Can be planned.

1 反応管
2 Oボンベ
3 電気炉
4 熱電対
5 Nボンベ
6 COボンベ
7 流量表示計
8 O
9 CO計
10 反応層
1 Reaction tube 2 O 2 Cylinder 3 Electric furnace 4 Thermocouple 5 N 2 Cylinder 6 CO Cylinder 7 Flow indicator 8 O 2 Total 9 CO Total 10 Reaction layer

Claims (1)

セリア・ジルコニア系複合酸化物酸素吸放出材料であって、4価未満の価数を有する金属イオンが含まれ、前記セリア・ジルコニア系複合酸化物におけるセリウムとジルコニウムのモル比が、セリウム/(セリウム+ジルコニウム)で0.33以上、0.83以下(但し、0.47を除く)であり、前記4価未満の価数を有する金属イオンは、前記セリア・ジルコニア系複合酸化物の総カチオンに対して3モル%以上15モル%以下含まれるCaイオンまたはPrイオンのいずれか一種であり、1450℃で焼結した前記セリア・ジルコニア系複合酸化物のイオン伝導率が400℃で1.0×10−5S/cm以上1.0×10−2S/cm以下であり、酸素吸放出速度(OSC速度)Δt 50 が17.0秒以上であり、酸素吸放出量(OSC量)が300μmol−O /g以上であることを特徴とする酸素吸放出材料。 A ceria-zirconia-based composite oxide oxygen absorbing / releasing material containing a metal ion having a valence of less than tetravalent, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is cerium / (cerium). + Zirconium) is 0.33 or more and 0.83 or less (excluding 0.47), and the metal ion having a valence of less than the tetravalent is used as the total cation of the ceria-zirconia-based composite oxide. On the other hand, it is one of Ca ion or Pr ion contained in an amount of 3 mol% or more and 15 mol% or less, and the ionic conductivity of the ceria-zirconia-based composite oxide sintered at 1450 ° C. is 1.0 × at 400 ° C. 10 -5 S / cm or more and 1.0 × 10 -2 S / cm der less is, the oxygen storage and release rate (OSC speed) Delta] t 50 is not less than 17.0 seconds, and releasing oxygen volume (OSC amount) oxygen absorption and release material characterized der Rukoto more 300μmol-O 2 / g.
JP2015215535A 2015-11-02 2015-11-02 Oxygen absorption / release material Active JP6923289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215535A JP6923289B2 (en) 2015-11-02 2015-11-02 Oxygen absorption / release material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215535A JP6923289B2 (en) 2015-11-02 2015-11-02 Oxygen absorption / release material

Publications (3)

Publication Number Publication Date
JP2017087086A JP2017087086A (en) 2017-05-25
JP2017087086A5 JP2017087086A5 (en) 2018-10-18
JP6923289B2 true JP6923289B2 (en) 2021-08-18

Family

ID=58771221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215535A Active JP6923289B2 (en) 2015-11-02 2015-11-02 Oxygen absorption / release material

Country Status (1)

Country Link
JP (1) JP6923289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020008897A2 (en) * 2017-11-06 2020-10-20 Nippon Denko Co., Ltd. oxygen storage and release material, catalyst, exhaust gas purification system, and exhaust gas treatment method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294629A (en) * 1992-04-17 1993-11-09 Nippon Telegr & Teleph Corp <Ntt> Oxygen ionic conductor and solid fuel cell
JP2003277059A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc Ceria-zirconia compound oxide
JP4622753B2 (en) * 2005-09-05 2011-02-02 マツダ株式会社 Diesel particulate filter with catalyst
JP4928931B2 (en) * 2006-12-20 2012-05-09 日本電工株式会社 Ceria-zirconia composite oxide and method for producing the same
JP2008212833A (en) * 2007-03-05 2008-09-18 Mazda Motor Corp Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst containing this composite oxide
JP2009131774A (en) * 2007-11-30 2009-06-18 Nissan Motor Co Ltd Pm oxidation catalyst and exhaust gas cleaning catalyst comprising the same
JP5190308B2 (en) * 2008-06-30 2013-04-24 Agcセイミケミカル株式会社 Exhaust gas purification catalyst
JP2011121851A (en) * 2009-12-10 2011-06-23 Daiichi Kigensokagaku Kogyo Co Ltd Cerium-zirconium based compound oxide and manufacturing method of the same
FR2961411B1 (en) * 2010-06-16 2013-08-09 Saint Gobain Ct Recherches ELECTROCHEMICAL CATALYSIS SYSTEM
JP5580722B2 (en) * 2010-11-26 2014-08-27 トヨタ自動車株式会社 Exhaust gas purification catalyst and process for producing the same
JP5633755B2 (en) * 2012-03-27 2014-12-03 株式会社豊田中央研究所 Catalyst deterioration diagnosis method

Also Published As

Publication number Publication date
JP2017087086A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5724856B2 (en) Exhaust gas purification catalyst
JP5910833B2 (en) Exhaust gas purification catalyst
JP6034356B2 (en) Exhaust gas purification catalyst
JP5815496B2 (en) Composite oxide material and exhaust gas purification catalyst using the same
WO2016092862A1 (en) Exhaust gas purifying catalyst
JP6906624B2 (en) Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
US9707543B2 (en) Exhaust-gas-purification catalyst carrier
JP2014522725A (en) Palladium solid solution catalyst and production method
JPH0243951A (en) Catalyst for purifying exhaust gas and preparation thereof
JP6727235B2 (en) Ceria-zirconia-based composite oxide oxygen absorbing/releasing material, exhaust gas purifying catalyst, and exhaust gas purifying honeycomb structure
JP5900395B2 (en) Composite oxide particles and exhaust gas purification catalyst using the same
JP5580722B2 (en) Exhaust gas purification catalyst and process for producing the same
JP6701581B2 (en) Oxygen absorbing/releasing material
WO2016158656A1 (en) Exhaust purification catalyst
WO2014091862A1 (en) Composite oxide material and exhaust gas purification catalyst using same
JP2008284516A (en) Oxygen absorbing-releasing material and exhaust gas purifying catalyst containing the same
JP6146436B2 (en) Exhaust gas purification catalyst
JP2007069076A (en) Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst
JP5827286B2 (en) Automotive exhaust gas purification catalyst
JP6923289B2 (en) Oxygen absorption / release material
JP2008284512A (en) Oxygen absorbing-releasing material and exhaust gas purifying catalyst containing the same
JP2018038999A (en) Exhaust gas purification catalyst
JP2011092859A (en) Oxygen absorption/emission material and catalyst for cleaning exhaust gas containing the same
JP2012187519A (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200123

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200128

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200319

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200326

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201117

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210412

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210622

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210701

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210729

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210729

R150 Certificate of patent or registration of utility model

Ref document number: 6923289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150