JP2018046245A - Boiling cooling device - Google Patents

Boiling cooling device Download PDF

Info

Publication number
JP2018046245A
JP2018046245A JP2016181920A JP2016181920A JP2018046245A JP 2018046245 A JP2018046245 A JP 2018046245A JP 2016181920 A JP2016181920 A JP 2016181920A JP 2016181920 A JP2016181920 A JP 2016181920A JP 2018046245 A JP2018046245 A JP 2018046245A
Authority
JP
Japan
Prior art keywords
wall portion
refrigerant
radiating fins
refrigerant flows
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016181920A
Other languages
Japanese (ja)
Other versions
JP6680160B2 (en
Inventor
田中 徹
Toru Tanaka
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016181920A priority Critical patent/JP6680160B2/en
Publication of JP2018046245A publication Critical patent/JP2018046245A/en
Application granted granted Critical
Publication of JP6680160B2 publication Critical patent/JP6680160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of accelerating separation of air bubbles from a radiation fin.SOLUTION: A boiling cooling device 2 comprises: an inlet 12 in which a refrigerant flows; an outlet 14 from which the refrigerant flows out; and a boiler 16 in which the refrigerant flows from the inlet 12 to the outlet 14. The boiler 16 comprises: a radiation plate 40 disposed on the internal face of a bottom part 24 and thermally connected to a heat generator 60 on the external face thereof; a plurality of radiation fins 50 projecting from an internal face of the radiation plate 40; and an upper wall part 22 opposite to the respective leading ends of the plurality of radiation fins 50 with spaces between them. The flow rate of the refrigerant in the boiler 16 in an area from the leading ends of the plurality of radiation fins 50 to the internal face of the upper wall part 22 is higher than that in an area from the internal face of the radiation plate 40 to the leading ends of the plurality of radiation fins 50. Each of the plurality of radiation fins 50 is formed in the shape of a pin, and its leading end inclines toward the upper wall part 22 along the direction in which the refrigerant flows.SELECTED DRAWING: Figure 1

Description

本明細書で開示する技術は、沸騰冷却装置に関する。   The technology disclosed in the present specification relates to a boiling cooling apparatus.

冷媒が流入する入口と、冷媒が流出する出口と、入口から出口に向かって冷媒が流れる沸騰器と、を備える沸騰冷却装置が知られている。沸騰器は、その外面が発熱体と熱的に接続される底壁部と、底壁部の内面から突出する複数の放熱フィンと、複数の放熱フィンの先端に間隔をあけて対向する上壁部と、を有する。沸騰器内における冷媒の流速は、例えば放熱フィンによる抵抗によって、底壁部の内面から複数の放熱フィンの先端までの領域(即ち、放熱フィンが存在する領域)よりも、複数の放熱フィンの先端から上壁部の内面までの領域(即ち、放熱フィンが存在しない領域)で速くなる。このような流速差により、放熱フィンにおいて冷媒が沸騰し易くなり、発熱体から多くの熱を回収することができる。このような沸騰冷却装置の一例が、特許文献1に開示されている。   A boiling cooling device is known that includes an inlet through which a refrigerant flows, an outlet through which the refrigerant flows out, and a boiling device through which the refrigerant flows from the inlet toward the outlet. The boiling device has a bottom wall portion whose outer surface is thermally connected to the heating element, a plurality of radiating fins protruding from the inner surface of the bottom wall portion, and an upper wall facing the tips of the plurality of radiating fins with a space therebetween Part. The flow rate of the refrigerant in the boiling device is, for example, due to the resistance of the radiation fins, rather than the region from the inner surface of the bottom wall portion to the tips of the plurality of radiation fins (that is, the region where the radiation fins are present). To the inner surface of the upper wall portion (that is, a region where there is no radiating fin). Such a flow velocity difference makes it easier for the refrigerant to boil in the radiating fin, and a large amount of heat can be recovered from the heating element. An example of such a boiling cooling device is disclosed in Patent Document 1.

特開2013−16589号公報JP 2013-16589 A

沸騰冷却装置では、冷媒が沸騰することによって、放熱フィンの表面に気泡が発生する。このとき、発生した気泡が放熱フィンに付着し続けると、新たな冷媒と放熱フィンとの接触が阻害され、冷却性能が低下するおそれがある。本明細書では、放熱フィンから気泡が離脱することを促進し得る技術を提供する。   In the boiling cooling device, bubbles are generated on the surface of the heat radiation fins when the refrigerant boils. At this time, if the generated bubbles continue to adhere to the radiating fins, the contact between the new refrigerant and the radiating fins is hindered, and the cooling performance may be deteriorated. In this specification, the technique which can accelerate | stimulate that a bubble detach | leaves from a thermal radiation fin is provided.

本明細書が開示する沸騰冷却装置は、冷媒が流入する入口と、冷媒が流出する出口と、入口から出口に向かって冷媒が流れる沸騰器と、を備える。沸騰器は、その外面が発熱体と熱的に接続される底壁部と、底壁部の内面から突出する複数の放熱フィンと、複数の放熱フィンの先端に間隔をあけて対向する上壁部と、を有する。沸騰器内における冷媒の流速は、底壁部の内面から複数の放熱フィンの先端までの領域よりも、複数の放熱フィンの先端から上壁部の内面までの領域で速い。複数の放熱フィンのそれぞれは、ピン状に形成されており、先端は、冷媒が流れる方向に沿って上壁部へ近づくように傾斜している。   The boiling cooling device disclosed in the present specification includes an inlet through which a refrigerant flows, an outlet through which the refrigerant flows out, and a boiling device through which the refrigerant flows from the inlet toward the outlet. The boiling device has a bottom wall portion whose outer surface is thermally connected to the heating element, a plurality of radiating fins protruding from the inner surface of the bottom wall portion, and an upper wall facing the tips of the plurality of radiating fins with a space therebetween Part. The flow rate of the refrigerant in the boiling device is faster in the region from the tips of the plurality of radiating fins to the inner surface of the upper wall portion than in the region from the inner surface of the bottom wall portion to the tips of the radiating fins. Each of the plurality of radiating fins is formed in a pin shape, and the tip thereof is inclined so as to approach the upper wall portion along the direction in which the refrigerant flows.

ここで、「底壁部」、「上壁部」の各語は、沸騰器の設置向きを限定するものではない。従って、例えば、底壁部が上方に位置し、上壁部が下方に位置するような向きで沸騰器が設置されてもよい。また、「その外面が発熱体と熱的に接続される底壁部」の語は、底壁部の外面が発熱体と直接接触する場合に限られず、底壁部の外面と発熱体とが熱的に接続(即ち、熱を伝達できる状態で接続)される限り、底壁部の外面と発熱体との間に他の物体が介在してもよい。   Here, the terms “bottom wall” and “upper wall” do not limit the orientation of the boiling device. Therefore, for example, the boiling device may be installed in such a direction that the bottom wall portion is located above and the top wall portion is located below. The term “bottom wall portion whose outer surface is thermally connected to the heating element” is not limited to the case where the outer surface of the bottom wall portion is in direct contact with the heating element. Other objects may be interposed between the outer surface of the bottom wall portion and the heating element as long as they are thermally connected (that is, connected in a state where heat can be transferred).

上記の沸騰冷却装置では、冷媒の流速差により、放熱フィンが存在する領域よりも、放熱フィンが存在しない領域において圧力が低くなる。この圧力差により、複数の放熱フィンから離れる方向へ冷媒の流れが形成され、放熱フィンに付着した気泡の離脱が促進される。さらに、上記の沸騰冷却装置では、複数の放熱フィンのそれぞれは、ピン状に形成されており、その先端は、冷媒が流れる方向に沿って上壁部へ近づくように傾斜している。そのため、この形状の放熱フィンに沿って冷媒が流れることによって、複数の放熱フィンから離れる方向への冷媒の流れがより形成され易くなる。これにより、冷媒が沸騰する際に発生する気泡が放熱フィンから離脱し易くなる。従って、上記の沸騰冷却装置によると、放熱フィンからの気泡の離脱を促進し得る。   In the above boiling cooling device, the pressure is lower in the region where the radiating fins are not present than in the region where the radiating fins are present due to the flow rate difference of the refrigerant. Due to this pressure difference, a refrigerant flow is formed in a direction away from the plurality of radiating fins, and the separation of bubbles attached to the radiating fins is promoted. Furthermore, in the above-described boiling cooling device, each of the plurality of radiating fins is formed in a pin shape, and the tip thereof is inclined so as to approach the upper wall portion along the direction in which the refrigerant flows. Therefore, when the refrigerant flows along the heat radiating fins having this shape, the flow of the refrigerant in the direction away from the plurality of radiating fins is more easily formed. As a result, bubbles generated when the refrigerant boils are easily separated from the radiation fins. Therefore, according to the above-described boiling cooling device, the separation of bubbles from the heat radiating fins can be promoted.

実施例の沸騰冷却装置の構成を説明する図。The figure explaining the structure of the boiling cooling device of an Example. 気泡が放熱フィンから離脱する様子を模式的に説明する図。The figure which illustrates a mode that a bubble isolate | separates from a radiation fin.

(実施例)
図1に本実施例の沸騰冷却装置2を示す。この沸騰冷却装置2は、発熱体60の熱によって沸騰器16内を流れる冷媒を沸騰させて発熱体60を冷却する冷却装置である。本実施例では、冷媒として、車両用のエンジンの冷却に用いられるLLC(Long Life Coolant)が用いられる。他の例では、これ以外の冷媒が用いられてもよい。冷却対象の発熱体60は、例えば、スイッチング素子である。
(Example)
FIG. 1 shows a boiling cooling device 2 of this embodiment. The boiling cooling device 2 is a cooling device that cools the heating element 60 by boiling the refrigerant flowing in the boiling device 16 by the heat of the heating element 60. In the present embodiment, LLC (Long Life Coolant) used for cooling a vehicle engine is used as the refrigerant. In other examples, other refrigerants may be used. The heating element 60 to be cooled is, for example, a switching element.

沸騰冷却装置2は、入口12と、出口14と、沸騰器16と、を備える。入口12は冷媒の入口である。冷媒は入口12を通して沸騰器16内に流入する。図1に示すように、入口12には仕切り板13が設けられており、冷媒の流入経路を二つに分断している。出口14は冷媒の出口である。沸騰器16内の冷媒は出口14を介して外部に流出する。図1中の矢印F1〜F6は冷媒の流れを示す。沸騰器16内において、冷媒は、主に図1中の座標系のX軸の正方向に向かって流れる。以下では、X軸の正方向側のことを「下流側」と呼び、X軸の負方向側のことを「上流側」と呼ぶ場合がある。本実施例では、入口12の径は、出口14の径よりも大きい。他の例では、入口12の径と出口14の径が略等しくてもよい。   The boiling cooling device 2 includes an inlet 12, an outlet 14, and a boiling device 16. The inlet 12 is a refrigerant inlet. The refrigerant flows into the boiling device 16 through the inlet 12. As shown in FIG. 1, a partition plate 13 is provided at the inlet 12, and the refrigerant inflow path is divided into two. The outlet 14 is a refrigerant outlet. The refrigerant in the boiler 16 flows out through the outlet 14. Arrows F1 to F6 in FIG. 1 indicate the flow of the refrigerant. In the boiling device 16, the refrigerant mainly flows in the positive direction of the X axis of the coordinate system in FIG. Hereinafter, the positive direction side of the X axis may be referred to as “downstream side”, and the negative direction side of the X axis may be referred to as “upstream side”. In this embodiment, the diameter of the inlet 12 is larger than the diameter of the outlet 14. In another example, the diameter of the inlet 12 and the diameter of the outlet 14 may be substantially equal.

沸騰器16は、筐体20と、放熱板40と、複数の放熱フィン50と、を備える。筐体20は、沸騰器16の本体を構成する箱状のケースである。筐体20は、上壁部22、底壁部24、上流側壁部26、下流側壁部28、及び、側壁部30、32を有する。   The boiling device 16 includes a housing 20, a heat radiating plate 40, and a plurality of heat radiating fins 50. The housing 20 is a box-shaped case that constitutes the main body of the boiling device 16. The housing 20 includes an upper wall part 22, a bottom wall part 24, an upstream side wall part 26, a downstream side wall part 28, and side wall parts 30 and 32.

上壁部22は、沸騰器16の各壁部のうち、図1中の座標系のXY平面に平行であり、Z軸の正方向側に位置する壁部である。以下では、図1中のZ軸の正方向側のことを「上側」と呼び、Z軸の負方向側のことを「下側」と呼ぶ場合がある。上記の出口14は、上壁部22のうちの下流側寄りに形成されている。底壁部24は、XY平面に平行であり、下側に位置する壁部である。底壁部24には、開口部34が形成されている。上流側壁部26は、YZ平面に平行であり、上流側に位置する壁部である。上記の入口12は上流側壁部26に形成されている。下流側壁部28は、YZ平面に平行であり、下流側に位置する壁部である。側壁部30、32は、それぞれ、XZ平面に平行な壁部である。   The upper wall portion 22 is a wall portion that is parallel to the XY plane of the coordinate system in FIG. 1 and is located on the positive side of the Z axis among the wall portions of the boiling device 16. Hereinafter, the positive direction side of the Z axis in FIG. 1 may be referred to as “upper side” and the negative direction side of the Z axis may be referred to as “lower side”. The outlet 14 is formed on the downstream side of the upper wall portion 22. The bottom wall portion 24 is a wall portion that is parallel to the XY plane and located on the lower side. An opening 34 is formed in the bottom wall portion 24. The upstream side wall portion 26 is a wall portion that is parallel to the YZ plane and located on the upstream side. The inlet 12 is formed in the upstream side wall portion 26. The downstream side wall portion 28 is a wall portion that is parallel to the YZ plane and located on the downstream side. The side wall portions 30 and 32 are each a wall portion parallel to the XZ plane.

放熱板40は、板状の部材であり、底壁部24の内面に配置される。放熱板40は、底壁部24の開口部34を閉塞するように配置される。これにより、沸騰器16内を流れる冷媒が開口部34から外部に漏出することが防止される。沸騰冷却装置2を使用する際には、放熱板40の外面(即ち図中のZ軸の負方向側の面)に発熱体60を接触させる。また、沸騰冷却装置2を使用しない間は、放熱板40を底壁部24の内面から取り外すことができる。本実施例における放熱板40と底壁部24との組合せが請求項の「底壁部」の一例である。   The heat radiating plate 40 is a plate-like member and is disposed on the inner surface of the bottom wall portion 24. The heat radiating plate 40 is disposed so as to close the opening 34 of the bottom wall portion 24. As a result, the refrigerant flowing in the boiling device 16 is prevented from leaking out from the opening 34. When the boiling cooling device 2 is used, the heating element 60 is brought into contact with the outer surface of the heat radiating plate 40 (that is, the surface on the negative direction side of the Z axis in the drawing). Further, the heat radiating plate 40 can be removed from the inner surface of the bottom wall portion 24 while the boiling cooling device 2 is not used. The combination of the heat sink 40 and the bottom wall portion 24 in this embodiment is an example of the “bottom wall portion” in the claims.

複数の放熱フィン50は、それぞれ、放熱板40の内面(即ちZ軸の正方向側の面)から上側に向けて突出する部材である。以下では、複数の放熱フィン50のそれぞれを区別せずに呼ぶ場合に単に「放熱フィン50」と呼ぶ場合がある。放熱フィン50はピン状に形成されている。放熱フィン50の先端は、上壁部22と間隔をあけて対向している。放熱フィン50の先端は、冷媒が流れる方向(即ち、図1の矢印F3、F4の方向)に対して角度を成す傾斜面となっており、冷媒が流れる方向に沿って、上壁部22に近づくように傾斜している。各放熱フィン50は、互いに一定の間隔を保って配置されている。沸騰器16内に流入した冷媒の一部は、各放熱フィン50の間を流れる(図1の矢印F4参照)。各放熱フィン50には放熱板40を介して発熱体60の熱が伝わるため、各放熱フィン50は高温になる。そのため、放熱フィン50の間を流れる冷媒が放熱フィン50に触れると、冷媒は放熱フィン50の熱を回収(即ち吸熱)して沸騰する。   The plurality of radiating fins 50 are members that protrude upward from the inner surface of the radiating plate 40 (that is, the surface on the positive side of the Z axis). Hereinafter, when each of the plurality of heat radiation fins 50 is referred to without distinction, it may be simply referred to as “heat radiation fin 50”. The radiation fin 50 is formed in a pin shape. The tips of the radiating fins 50 are opposed to the upper wall portion 22 with a space therebetween. The tips of the radiating fins 50 are inclined surfaces that form an angle with respect to the direction in which the refrigerant flows (that is, the directions of arrows F3 and F4 in FIG. 1). Inclined to approach. The radiating fins 50 are arranged at a constant interval from each other. A part of the refrigerant that has flowed into the boiling device 16 flows between the radiation fins 50 (see arrow F4 in FIG. 1). Since the heat of the heat generating element 60 is transmitted to each radiation fin 50 via the heat radiation plate 40, each radiation fin 50 becomes high temperature. Therefore, when the refrigerant flowing between the radiating fins 50 touches the radiating fins 50, the refrigerant collects the heat of the radiating fins 50 (ie, absorbs heat) and boils.

本実施例では、図2に示すように、沸騰器16内では、放熱フィン50による抵抗等の要因によって、底壁部24の内面から放熱フィン50の先端までの領域(即ち、放熱フィン50が存在する領域)における冷媒の流速V1よりも、放熱フィン50の先端から上壁部22の内面までの領域(即ち、放熱フィン50が存在しない領域)における冷媒の流速V2の方が速い。このような流速差により、放熱フィン50において冷媒が沸騰し易くなり、発熱体60から多くの熱を回収することができる。   In the present embodiment, as shown in FIG. 2, the region from the inner surface of the bottom wall portion 24 to the tip of the radiating fin 50 (that is, the radiating fin 50 is disposed in the boiling device 16 due to resistance caused by the radiating fin 50 or the like. The flow velocity V2 of the refrigerant in the region from the tip of the radiating fin 50 to the inner surface of the upper wall portion 22 (that is, the region where the radiating fin 50 does not exist) is faster than the flow velocity V1 of the refrigerant in the existing region. Such a flow velocity difference makes it easier for the refrigerant to boil in the radiating fin 50, and a large amount of heat can be recovered from the heating element 60.

放熱フィン50において冷媒が沸騰する際に、放熱フィン50の表面には気泡(即ち、気相の冷媒)が発生する。このとき、発生した気泡が放熱フィン50に付着し続けると、新たな冷媒と放熱フィンとの接触が阻害され、冷却性能が低下するおそれがある。   When the refrigerant boils in the radiating fin 50, bubbles (that is, a gas-phase refrigerant) are generated on the surface of the radiating fin 50. At this time, if the generated bubbles continue to adhere to the radiating fins 50, the contact between the new refrigerant and the radiating fins is hindered, and the cooling performance may be deteriorated.

この点に関して、本実施例の沸騰冷却装置2では、上記の冷媒の流速差により、放熱フィン50が存在する領域よりも、放熱フィン50が存在しない領域において圧力が低くなる。この圧力差により、図2の矢印F10に示すように、各放熱フィン50から離れる方向へ冷媒の流れが形成される。これにより、放熱フィン50に付着した気泡の離脱が促進される(図2の符号B参照)。上記した冷媒の流速差は、入口12の形状、仕切り板13の位置や向き、冷媒が流れる流路の断面積などを変更することによって、より高めることができる。   In this regard, in the boiling cooling device 2 of the present embodiment, the pressure is lower in the region where the radiating fins 50 are not present than in the region where the radiating fins 50 are present due to the difference in flow rate of the refrigerant. Due to this pressure difference, as shown by an arrow F10 in FIG. 2, a refrigerant flow is formed in a direction away from each radiation fin 50. Thereby, the separation of the bubbles adhering to the heat radiating fins 50 is promoted (see symbol B in FIG. 2). The above-described flow rate difference of the refrigerant can be further increased by changing the shape of the inlet 12, the position and orientation of the partition plate 13, the cross-sectional area of the flow path through which the refrigerant flows, and the like.

さらに、本実施例の沸騰冷却装置2では、放熱フィン50がピン状に形成されており、その先端は、冷媒が流れる方向に沿って上壁部22へ近づくように傾斜している。このため、この形状の放熱フィン50に沿って冷媒が流れることによって、複数の放熱フィン50から離れる方向への冷媒の流れがより形成され易くなる。より詳しく言うと、放熱フィン50の先端の傾斜に沿って冷媒が流れることによって、複数の放熱フィン50から離れる方向への冷媒の流れが出来易くなる。これにより、冷媒が沸騰する際に発生する気泡が放熱フィン50から離脱し易くなる。本実施例の沸騰冷却装置2によると、放熱フィン50からの気泡の離脱を促進することができる。その結果、冷却性能の低下を抑制することができる。   Furthermore, in the boiling cooling device 2 of the present embodiment, the radiating fins 50 are formed in a pin shape, and the tips thereof are inclined so as to approach the upper wall portion 22 along the direction in which the refrigerant flows. For this reason, when the refrigerant flows along the heat radiating fins 50 having this shape, the flow of the refrigerant in the direction away from the plurality of the heat radiating fins 50 is more easily formed. More specifically, when the refrigerant flows along the inclination of the tips of the radiating fins 50, the refrigerant can easily flow away from the plurality of radiating fins 50. Thereby, bubbles generated when the refrigerant boils easily separate from the heat radiation fin 50. According to the boiling cooling device 2 of the present embodiment, it is possible to promote the detachment of the bubbles from the radiating fins 50. As a result, a decrease in cooling performance can be suppressed.

以上、本明細書に開示の技術の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of the technique disclosed by this specification was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

(変形例1)上記の実施例では、沸騰器16は、底壁部24が下側に位置し、上壁部22が上側に位置するような向きで設置される。但し、沸騰器16を設置する向きはこれに限られず、任意の向きに配置することができる。例えば、沸騰器16は、底壁部24が上側に位置し、上壁部22が下側に位置するような向きで設置されてもよい。 (Modification 1) In the above embodiment, the boiling device 16 is installed in such an orientation that the bottom wall portion 24 is located on the lower side and the upper wall portion 22 is located on the upper side. However, the direction in which the boiling device 16 is installed is not limited to this, and can be arranged in an arbitrary direction. For example, the boiling device 16 may be installed in such an orientation that the bottom wall portion 24 is located on the upper side and the upper wall portion 22 is located on the lower side.

(変形例2)上記の実施例では、放熱板40の外面が発熱体60と直接接触している。これに限られず、放熱板40の外面と発熱体60とが熱的に接続(即ち、熱を伝達できる状態で接続)される限り、放熱板40の外面と発熱体60との間に他の物体が介在してもよい。 (Modification 2) In the above embodiment, the outer surface of the heat sink 40 is in direct contact with the heating element 60. Not limited to this, as long as the outer surface of the heat radiating plate 40 and the heating element 60 are thermally connected (that is, connected in a state where heat can be transferred), other heat sink 40 is connected between the outer surface of the heat radiating plate 40 and the heating element 60. An object may intervene.

(変形例3)上記の実施例では、放熱板40は底壁部24と別個に形成されている。これに限られず、放熱板40が底壁部24と一体に形成されていてもよい。 (Modification 3) In the above embodiment, the heat sink 40 is formed separately from the bottom wall 24. However, the heat radiating plate 40 may be formed integrally with the bottom wall 24.

また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

2:沸騰冷却装置
12:入口
13:仕切り板
14:出口
16:沸騰器
20:筐体
22:上壁部
24:底壁部
26:上流側壁部
28:下流側壁部
30:側壁部
32:側壁部
34:開口部
40:放熱板
50:放熱フィン
60:発熱体
2: Boiling cooling device 12: Inlet 13: Partition plate 14: Outlet 16: Boiler 20: Housing 22: Upper wall part 24: Bottom wall part 26: Upstream side wall part 28: Downstream side wall part 30: Side wall part 32: Side wall Portion 34: Opening 40: Radiation plate 50: Radiation fin 60: Heating element

Claims (1)

冷媒が流入する入口と、
前記冷媒が流出する出口と、
前記入口から前記出口に向かって前記冷媒が流れる沸騰器と、を備え、
前記沸騰器は、その外面が発熱体と熱的に接続される底壁部と、前記底壁部の内面から突出する複数の放熱フィンと、前記複数の放熱フィンの先端に間隔をあけて対向する上壁部と、を有し、
前記沸騰器内における冷媒の流速は、前記底壁部の内面から前記複数の放熱フィンの先端までの領域よりも、前記複数の放熱フィンの先端から前記上壁部の内面までの領域で速く、
前記複数の放熱フィンのそれぞれは、ピン状に形成されており、前記先端は、前記冷媒が流れる方向に沿って前記上壁部へ近づくように傾斜している、
沸騰冷却装置。
An inlet through which refrigerant flows,
An outlet through which the refrigerant flows;
A boiler through which the refrigerant flows from the inlet toward the outlet;
The boiling device has a bottom wall portion whose outer surface is thermally connected to a heating element, a plurality of radiating fins protruding from the inner surface of the bottom wall portion, and a front end of the plurality of radiating fins with a space therebetween. And an upper wall portion to be
The flow rate of the refrigerant in the boiling device is faster in the region from the front ends of the plurality of radiating fins to the inner surface of the upper wall portion than in the region from the inner surface of the bottom wall portion to the tips of the plurality of radiating fins,
Each of the plurality of radiating fins is formed in a pin shape, and the tip is inclined so as to approach the upper wall portion along a direction in which the refrigerant flows.
Boiling cooler.
JP2016181920A 2016-09-16 2016-09-16 Boiling cooler Active JP6680160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016181920A JP6680160B2 (en) 2016-09-16 2016-09-16 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181920A JP6680160B2 (en) 2016-09-16 2016-09-16 Boiling cooler

Publications (2)

Publication Number Publication Date
JP2018046245A true JP2018046245A (en) 2018-03-22
JP6680160B2 JP6680160B2 (en) 2020-04-15

Family

ID=61695164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181920A Active JP6680160B2 (en) 2016-09-16 2016-09-16 Boiling cooler

Country Status (1)

Country Link
JP (1) JP6680160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831163B (en) * 2022-03-25 2024-02-01 邁萪科技股份有限公司 Immersed heat sink

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302898A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Heat sink
US20070121299A1 (en) * 2005-11-30 2007-05-31 International Business Machines Corporation Heat transfer apparatus, cooled electronic module and methods of fabrication thereof employing thermally conductive composite fins
JP2013016589A (en) * 2011-07-01 2013-01-24 Toyota Motor Corp Boil cooling device, and cooling system for vehicle using boil cooling device
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
JP2013044496A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Evaporative cooling device and cooling system for vehicle using the same
US20150121701A1 (en) * 2009-10-03 2015-05-07 Wolverine Tube, Inc. Cold Plate with Pins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302898A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Heat sink
US20070121299A1 (en) * 2005-11-30 2007-05-31 International Business Machines Corporation Heat transfer apparatus, cooled electronic module and methods of fabrication thereof employing thermally conductive composite fins
US20150121701A1 (en) * 2009-10-03 2015-05-07 Wolverine Tube, Inc. Cold Plate with Pins
JP2013016589A (en) * 2011-07-01 2013-01-24 Toyota Motor Corp Boil cooling device, and cooling system for vehicle using boil cooling device
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
JP2013044496A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Evaporative cooling device and cooling system for vehicle using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831163B (en) * 2022-03-25 2024-02-01 邁萪科技股份有限公司 Immersed heat sink

Also Published As

Publication number Publication date
JP6680160B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
CN105637632B (en) Cooler and the semiconductor module for using the cooler
US9888617B2 (en) Semiconductor device having multiple power modules and cooling mechanism for the power modules
JP5454586B2 (en) Cooler
US20150059360A1 (en) Liquid cooling device having diversion mechanism
JP2017143171A (en) Cooler and flow passage unit
TWI651039B (en) Heat dissipation module and electronic device
JP2016178212A (en) Electronic device
US20130239589A1 (en) Peltier Cooler Equipped With Synthetic Jet Ejectors
US20150075754A1 (en) Single-pass cold plate assembly
JP2008288330A (en) Semiconductor device
JP2018044747A (en) Boiling/cooling device
US11156906B2 (en) Projector with air inlets to cool light emitting module
JP2010278286A (en) Heat sink apparatus
JP6680160B2 (en) Boiling cooler
JP2013016589A (en) Boil cooling device, and cooling system for vehicle using boil cooling device
US11984383B2 (en) Semiconductor device
JP2008091700A (en) Semiconductor device
JP6917230B2 (en) Dissipator and liquid-cooled cooling device using it
WO2018196141A1 (en) Power amplifier
TWI588437B (en) Heat dissipator and heat dissipating device
JP2019114682A (en) Liquid-cooled cooler
WO2014162978A1 (en) Storage battery cooling device
TWI414225B (en) Electric device
SE538362C2 (en) Radiator arrangement in a motor vehicle
JP6190914B1 (en) Electric equipment with refrigerant flow path

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6680160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151