WO2014162978A1 - Storage battery cooling device - Google Patents

Storage battery cooling device Download PDF

Info

Publication number
WO2014162978A1
WO2014162978A1 PCT/JP2014/058874 JP2014058874W WO2014162978A1 WO 2014162978 A1 WO2014162978 A1 WO 2014162978A1 JP 2014058874 W JP2014058874 W JP 2014058874W WO 2014162978 A1 WO2014162978 A1 WO 2014162978A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
cooling device
cooling
refrigerant
flow path
Prior art date
Application number
PCT/JP2014/058874
Other languages
French (fr)
Japanese (ja)
Inventor
達生 川口
大塚 隆
季之 本橋
哲 佐久間
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2014162978A1 publication Critical patent/WO2014162978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery cooling device.
  • a refrigerant inlet or a refrigerant outlet is formed near the center of both end faces of the cooling member, and the refrigerant flows from the end face where the inlet is formed toward the end face where the outlet is provided to cool the unit cell. This is disclosed in JP2012-156124A.
  • the present invention was invented to solve such a problem, and the length of the cooling device in the refrigerant flow direction is shortened so that the vicinity of the terminal portion of the unit cell can be concentrated and cooled.
  • a cooling device for a storage battery is a cooling device for a storage battery that cools the storage battery.
  • the storage battery cooling device extends along the wall surface of the storage battery, and a flow path through which a refrigerant flows is formed in parallel.
  • the supply hole is formed so that the flow rate of the refrigerant in the first flow path provided at a location where the distance from the terminal portion is short is higher than the flow rate of the refrigerant in the second flow path provided at a location where the distance from the terminal portion is long. Is done.
  • the supply section is extended along the parallel direction of the flow paths, and the flow rate of the refrigerant in the first flow path with a short distance from the terminal portion of the storage battery is in the second flow path with a long distance from the storage battery.
  • FIG. 1 is a front view of the storage battery and the cooling device of the first embodiment.
  • FIG. 2 is a top view of the storage battery and the cooling device of the first embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a top view of the cooling device.
  • 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is a diagram illustrating the position of the terminal portion of the storage battery in the second embodiment.
  • FIG. 7 is a top view of the cooling device of the second embodiment.
  • 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a diagram showing the positions of the terminal portions of the storage battery in the third embodiment.
  • FIG. 10 is a top view of the cooling device of the third embodiment.
  • 11 is a cross-sectional view taken along the line XI-XI in FIG.
  • FIG. 12 is a diagram showing a modification of the present embodiment.
  • FIG. 1 is a front view of the storage battery 6 and the cooling device 1.
  • FIG. 2 is a top view of the storage battery 6 and the cooling device 1.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the cooling device 1 is accommodated in the case 9 together with the storage battery 6 and attached to the case 9.
  • a storage battery 6 is provided on the cooling device 1.
  • the cooling device 1 is placed along the horizontal direction.
  • the storage battery 6 is an assembled battery in which a plurality of unit cells 7 are arranged, the terminal portion 8 of the unit cell 7 is formed on the side surface 7b of the unit cell 7, and the terminal unit 8 is arranged to face the same direction.
  • FIG. 4 is a top view of the cooling device 1.
  • 5 is a cross-sectional view taken along the line VV of FIG.
  • the cooling device 1 includes a cooling unit 2, a supply unit 3, and a discharge unit 4.
  • the cooling device 1 contacts the lower surface 6 a of the storage battery 6 (the lower surface of the unit cell 7) and cools the storage battery 6 from the lower surface 6 a side of the storage battery 6.
  • the cooling unit 2 extends along the direction in which the cells 7 are arranged, that is, along the lower surface 6 a of the storage battery 6.
  • the cooling unit 2 is joined to the upper surface part 20 that contacts the lower surface 6 a of the storage battery 6, and the lower surface part 21 that joins the upper surface part 20 by caulking, brazing, etc. and forms a gap through which refrigerant flows between the upper surface part 20.
  • a partition portion 22 that partitions the gap formed by the upper surface portion 20 and the lower surface portion 21 into a plurality of flow paths 23a to 23d.
  • a heat transfer member may be provided between the storage battery 6 and the cooling unit 2.
  • a plurality of partition portions 22 are formed in parallel with the arrangement direction of the cells 7 (longitudinal direction of the cooling portion 2).
  • the upper surface portion 20, the lower surface portion 21, and the partition portion 22 form a plurality of flow paths 23a to 23d in the cooling unit 2 along the arrangement direction of the cells 7, and the refrigerant flows through the flow paths 23a to 23d.
  • the partition 22 may be formed by deforming a part of the lower surface 21 or the upper surface 20, or may be formed by a member different from the lower surface 21 and the upper surface 20.
  • the lower surface portion 21 is formed with a first supply hole 24 for supplying the refrigerant from the supply unit 3 to the cooling unit 2 and a first discharge hole 25 for discharging the refrigerant of the cooling unit 2 to the discharge unit 4.
  • the refrigerant flow rate in the flow path 23 a having a short distance from the terminal portion 8 is higher than the refrigerant flow rate in the flow path 23 d having a long distance from the terminal portion 8.
  • the first supply hole 24 and the first discharge hole 25 are formed on the extension of the flow path 23 a having a short distance from the terminal portion 8, and the distance from the terminal portion 8. Is formed on both ends of the flow path 23a so as to sandwich the short flow path 23a.
  • the supply unit 3 extends along the parallel direction of the flow paths 23a to 23d.
  • the supply unit 3 includes a first flat portion 30 formed by pressing the tip side of a cylindrical tube in the vertical direction.
  • the first flat portion 30 has a length in the vertical direction shorter than a length in the longitudinal direction of the cooling portion 2, and a second supply hole 31 is formed on the lower surface portion 21 side according to the position and shape of the first supply hole 24.
  • the second supply hole 31 is formed on the extension of the flow path 23 a that is short from the terminal portion 8.
  • the first flat portion 30 is joined to the lower surface portion 21.
  • the tip of the first flat part 30 is closed.
  • the supply unit 3 is connected to a pipe (not shown) provided outside the case 9, and supplies the refrigerant to the cooling unit 2 through the first flat portion 30 and the second supply hole 31.
  • the refrigerant is supplied from the second supply hole 31 to the cooling unit 2 in the vertical direction upward.
  • the discharge part 4 is formed with a second flat part 40 as in the case of the supply part 3, and detailed description is omitted, but a second discharge hole 41 is formed according to the position and shape of the first discharge hole 25. Yes.
  • the discharge unit 4 is connected to a pipe (not shown) provided outside the case 9 and discharges the refrigerant from the cooling unit 2 via the second discharge hole 41.
  • the first supply hole 24 and the second supply hole 31, the first discharge hole 25, and the second discharge hole 41 sandwich both ends of the flow path 23a that is short from the terminal portion 8. Is formed.
  • the unit cell 7 is known to generate a large amount of heat at the terminal portion 8, and the temperature on the terminal portion 8 side becomes high. For this reason, it is desirable to flow a large amount of refrigerant through the channel 23a on the terminal portion 8 side.
  • the supply unit 3 and the discharge unit 4 are provided along the parallel direction of the flow paths 23a to 23d, and the supply unit 3 causes the first supply hole 24 (second supply hole 31) to extend upward in the vertical direction.
  • the refrigerant is supplied to the cooling unit 2.
  • the refrigerant supplied to the cooling unit 2 flows through the flow paths 23a to 23d, cools the storage battery 6 from the lower surface 6a side, and is discharged from the cooling unit 2 through the second discharge hole 41.
  • the first supply hole 24 (second supply hole 31) and the first discharge hole 25 (second discharge hole 41) is provided.
  • the refrigerant supplied to the cooling unit 2 through the supply hole 24 is more likely to flow through the flow path 23a having a shorter distance from the terminal unit 8 than the flow path 23d having a longer distance from the terminal unit 8. Therefore, the flow rate of the refrigerant in the flow path 23a having a short distance from the terminal portion 8 is higher than the flow rate of the refrigerant in the flow path 23d having a long distance from the terminal portion 8, and the storage battery 6 on the terminal portion 8 side is concentrated. To be cooled.
  • the supply unit 3 extending along the flow paths 23a to 23d is provided, and the coolant is supplied from the supply unit 3 to the cooling unit 2 in the vertical direction. Then, the first supply is made to the lower surface portion 21 so that the flow rate of the refrigerant in the flow path 23a with a short distance from the terminal portion 8 of the storage battery 6 is higher than the flow rate of the refrigerant in the flow path 23d with a long distance from the terminal portion 8. Hole 24 is formed. Thereby, the vicinity of the terminal portion 8 having a large amount of generated heat can be concentrated and cooled by the refrigerant, and the temperature of the storage battery 6 in the vicinity of the terminal portion 8 can be suppressed from increasing. Further, the length of the cooling device 1 in the refrigerant flow direction can be shortened.
  • the supply unit 3 is formed by pressing the tip of a cylindrical tube in the vertical direction, and includes a first flat unit 30 having a vertical length shorter than the length of the cooling unit 2 in the longitudinal direction. Through the second supply hole 31 formed in the part 30, the coolant is supplied from the supply part 3 to the cooling part 2 in the vertical direction.
  • the discharge unit 4 includes a second flat portion 40 and discharges the refrigerant from the cooling unit 2. Thereby, the length of the cooling device 1 in the vertical direction can be shortened. Moreover, the refrigerant
  • the flow rate of the refrigerant in the flow path 23a can be increased, and the temperature of the storage battery 6 near the terminal portion 8 is increased. It can suppress becoming high. Furthermore, by forming the first discharge hole 25 on the extension of the flow path 23a having a short distance from the terminal portion 8, the flow rate of the refrigerant in the flow path 23a can be increased, and the storage battery 6 near the terminal portion 8 It can suppress that temperature becomes high.
  • the adjacent flow paths 23a to 23d are formed by being partitioned by the partition portion 22, the refrigerant flowing through the flow path 23a having a short distance from the terminal portion 8 is prevented from flowing into the other flow paths 23b to 23d, The storage battery 6 on the terminal 8 side can be concentrated and cooled.
  • the terminal portion 8 side can be concentrated and cooled by a refrigerant.
  • FIG. 6 is a diagram showing the position of the terminal portion 8 of the unit cell 7 in the present embodiment.
  • FIG. 7 is a top view of the cooling device 1 of the present embodiment.
  • 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • the terminal portion 8 is formed on the upper surface 7 c of the unit cell 7, and the first supply hole 24, the second supply hole 31, the first discharge hole 25, and the second discharge hole are aligned with the position of the terminal portion 8.
  • the position 41 is changed compared to the first embodiment.
  • the first supply hole 24, the second supply hole 31, and the first supply hole 24 are formed so that a large amount of refrigerant flows through the flow paths 23b and 23c formed on the center side.
  • a discharge hole 25 and a second discharge hole 41 are formed.
  • the first supply hole 24, the second supply hole 31, the first discharge hole 25, and the second discharge hole 41 on the extension of the partition portion 22 formed between the flow path 23 b and the flow path 23 c. Is formed.
  • the first supply hole 24, the second supply hole 31, and the first discharge hole are aligned with the position of the terminal unit 8.
  • 25 and the second discharge hole 41 can increase the flow rate of the refrigerant in the flow paths 23b and 23c having a short distance from the terminal portion 8, and the vicinity of the terminal portion 8 can be formed as in the first embodiment. Concentrating and cooling can suppress the temperature of the storage battery 6 in the vicinity of the terminal portion 8 from increasing.
  • FIG. 9 is a diagram showing the position of the terminal portion 8 of the cell 7 in the present embodiment.
  • FIG. 10 is a top view of the cooling device 1 of the present embodiment.
  • 11 is a cross-sectional view taken along the line XX of FIG.
  • each of the terminal portions 8 is a single cell 7 formed on each of the side surfaces 7 b and 7 d of the single cell 7, and the first supply hole 24 and the second supply hole are aligned with the position of the terminal portion 8.
  • the number of 31, the position of the 1st discharge hole 25, and the 2nd discharge hole 41 is changed compared with 1st Embodiment.
  • the first supply hole 24 and the second supply are provided so that the flow rate of the refrigerant in the flow paths 23a and 23d formed on both ends is increased.
  • a hole 31, a first discharge hole 25, and a second discharge hole 41 are formed. Specifically, one first supply hole 24 and one second supply hole 31 are formed on the extension of the flow path 23a and on the extension of the flow path 23d, respectively, and between the flow paths 23b and 23c.
  • a first discharge hole 25 and a second discharge hole 41 are formed on the extension of the formed partition portion 22. One first discharge hole 25 and one second discharge hole 41 may be formed on the extension of the flow path 23b and on the extension of the flow path 23c.
  • the first supply hole 24, the second supply hole 31, and the first discharge are arranged in accordance with the position of the terminal unit 8.
  • the hole 25 and the second discharge hole 41 By forming the hole 25 and the second discharge hole 41, the flow rate of the refrigerant in the flow paths 23a and 23d having a short distance from the terminal portion 8 can be increased, and the vicinity of the terminal portion 8 is the same as in the first embodiment.
  • the temperature of the storage battery 6 in the vicinity of the terminal portion 8 can be suppressed from being increased.
  • the first supply hole 24, the second supply hole 31, the first discharge hole 25, and the second discharge hole 41 are provided on the extensions of the flow paths 23a to 23d as shown in FIG. May be changed so that the flow rate of the refrigerant in the flow path having a short distance from the terminal portion 8 is increased.
  • the first supply hole 24, the second supply hole 31, and the second supply hole 31 become closer to the flow path 23a as shown in FIG.
  • the 1 discharge hole 25 and the 2nd discharge hole 41 become large.

Abstract

This storage battery cooling device makes it possible to sufficiently cool the vicinity of the terminal area of the battery cells. This cooling device (1) is provided with: a cooling unit (2) which extends along a wall surface of the storage battery, comprises internal flow paths (23a-d) arranged in parallel through which a refrigerant flows, and cools the storage battery from the wall surface side; and a supply unit (3) which supplies a refrigerant to the cooling unit along a direction perpendicular to the wall surface. Furthermore, a supply hole (24) is formed in the cooling unit (2) such that the flow speed in a flow path (23a) provided in a position a short distance from the terminal area of the storage battery is faster than the flow speed in the flow path (23d) provided in a position a long distance from the terminal area.

Description

蓄電池の冷却装置Battery cooling device
 本発明は蓄電池の冷却装置に関するものである。 The present invention relates to a storage battery cooling device.
 従来、冷却部材の両端面の中央付近に、冷媒の流入口、または冷媒の流出口を形成し、流入口を形成した端面から流出口を設けた端面に向けて冷媒を流し、単電池を冷却するものがJP2012-156124Aに開示されている。 Conventionally, a refrigerant inlet or a refrigerant outlet is formed near the center of both end faces of the cooling member, and the refrigerant flows from the end face where the inlet is formed toward the end face where the outlet is provided to cool the unit cell. This is disclosed in JP2012-156124A.
 しかし、上記の技術では、流入口に冷媒を導入する導入管を接続し、流出口から冷媒を排出する排出管を接続すると、冷媒の流れ方向における冷却装置の長さが長くなる、といった問題点がある。 However, in the above-described technology, there is a problem that the length of the cooling device in the refrigerant flow direction becomes longer when an inlet pipe for introducing the refrigerant is connected to the inlet and an outlet pipe for discharging the refrigerant from the outlet is connected. There is.
 これに対して、端面と直交する側面に流入口と流出口とを形成することも考えられる。この場合、流入口を介して冷却部材に供給された冷媒の多くは、流入口が形成された側面と向かい合う側面に向けて流れ、流入口が形成された側面側を流れる冷媒の流速は低い。そのため、発熱量が多くなる単電池の端子部が流入口を設けた側面側に配置された場合に、端子部付近を十分に冷却することができない。 On the other hand, it is also conceivable to form an inlet and an outlet on the side surface orthogonal to the end face. In this case, most of the refrigerant supplied to the cooling member via the inflow port flows toward the side surface facing the side surface where the inflow port is formed, and the flow rate of the refrigerant flowing through the side surface side where the inflow port is formed is low. Therefore, when the terminal portion of the unit cell that generates a large amount of heat is disposed on the side surface provided with the inlet, the vicinity of the terminal portion cannot be sufficiently cooled.
 本発明はこのような問題点を解決するために発明されたもので、冷媒の流れ方向における冷却装置の長さを短くし、単電池の端子部付近を集中して冷却可能にする。 The present invention was invented to solve such a problem, and the length of the cooling device in the refrigerant flow direction is shortened so that the vicinity of the terminal portion of the unit cell can be concentrated and cooled.
 本発明のある態様に係る蓄電池の冷却装置は、蓄電池を冷却する蓄電池の冷却装置であって、蓄電池の壁面に沿って延設され、内部に冷媒が流れる流路が並列して形成され、壁面側から蓄電池を冷却する冷却部と、流路の並列方向に沿って延設され、壁面と直交する方向に沿って冷却部に冷媒を供給する供給部とを備え、冷却部には、蓄電池の端子部からの距離が短い箇所に設けた第1流路における冷媒の流速が、端子部からの距離が長い箇所に設けた第2流路における冷媒の流速よりも高くなるように供給孔が形成される。 A cooling device for a storage battery according to an aspect of the present invention is a cooling device for a storage battery that cools the storage battery. The storage battery cooling device extends along the wall surface of the storage battery, and a flow path through which a refrigerant flows is formed in parallel. A cooling unit that cools the storage battery from the side, and a supply unit that extends along the parallel direction of the flow path and that supplies the coolant to the cooling unit along a direction orthogonal to the wall surface. The supply hole is formed so that the flow rate of the refrigerant in the first flow path provided at a location where the distance from the terminal portion is short is higher than the flow rate of the refrigerant in the second flow path provided at a location where the distance from the terminal portion is long. Is done.
 この態様によると、供給部を流路の並列方向に沿って延設し、蓄電池の端子部からの距離が短い第1流路における冷媒の流速が、蓄電池からの距離が長い第2流路における冷媒の流速よりも高くなるように供給孔を設けることで、流路を流れる冷媒の流れ方向における長さを短くし、かつ蓄電池の端子部付近を集中して冷却することができる。 According to this aspect, the supply section is extended along the parallel direction of the flow paths, and the flow rate of the refrigerant in the first flow path with a short distance from the terminal portion of the storage battery is in the second flow path with a long distance from the storage battery. By providing the supply hole so as to be higher than the flow rate of the refrigerant, the length in the flow direction of the refrigerant flowing through the flow path can be shortened, and the vicinity of the terminal portion of the storage battery can be concentrated and cooled.
図1は第1実施形態の蓄電池、及び冷却装置の正面図である。FIG. 1 is a front view of the storage battery and the cooling device of the first embodiment. 図2は第1実施形態の蓄電池、及び冷却装置の上面図である。FIG. 2 is a top view of the storage battery and the cooling device of the first embodiment. 図3は図2のIII-III断面図である。3 is a cross-sectional view taken along the line III-III in FIG. 図4は冷却装置の上面図である。FIG. 4 is a top view of the cooling device. 図5は図4のV-V断面図である。5 is a cross-sectional view taken along the line VV in FIG. 図6は第2実施形態における蓄電池の端子部の位置を示す図である。FIG. 6 is a diagram illustrating the position of the terminal portion of the storage battery in the second embodiment. 図7は第2実施形態の冷却装置の上面図である。FIG. 7 is a top view of the cooling device of the second embodiment. 図8は図7のVIII-VIII断面図である。8 is a cross-sectional view taken along the line VIII-VIII in FIG. 図9は第3実施形態における蓄電池の端子部の位置を示す図である。FIG. 9 is a diagram showing the positions of the terminal portions of the storage battery in the third embodiment. 図10は第3実施形態の冷却装置の上面図である。FIG. 10 is a top view of the cooling device of the third embodiment. 図11は図10のXI-XI断面図である。11 is a cross-sectional view taken along the line XI-XI in FIG. 図12は本実施形態の変形例を示す図である。FIG. 12 is a diagram showing a modification of the present embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 本発明の第1実施形態の構成について図1~図3を用いて説明する。図1は蓄電池6、及び冷却装置1の正面図である。図2は蓄電池6、及び冷却装置1の上面図である。図3は図2のIII-III断面図である。 The configuration of the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of the storage battery 6 and the cooling device 1. FIG. 2 is a top view of the storage battery 6 and the cooling device 1. 3 is a cross-sectional view taken along the line III-III in FIG.
 冷却装置1は、蓄電池6と共にケース9に収容され、ケース9に取り付けられる。冷却装置1の上に蓄電池6が設けられる。ここでは、冷却装置1が水平方向に沿って置かれているものとする。なお、蓄電池6は複数の単電池7を並べて構成される組電池であり、単電池7の端子部8が単電池7の側面7bに形成され、端子部8は同じ方向を向くように配置される。 The cooling device 1 is accommodated in the case 9 together with the storage battery 6 and attached to the case 9. A storage battery 6 is provided on the cooling device 1. Here, it is assumed that the cooling device 1 is placed along the horizontal direction. In addition, the storage battery 6 is an assembled battery in which a plurality of unit cells 7 are arranged, the terminal portion 8 of the unit cell 7 is formed on the side surface 7b of the unit cell 7, and the terminal unit 8 is arranged to face the same direction. The
 次に冷却装置1について図4、図5をさらに用いて説明する。図4は冷却装置1の上面図である。図5は図4のV-V断面図である。 Next, the cooling device 1 will be described with reference to FIGS. FIG. 4 is a top view of the cooling device 1. 5 is a cross-sectional view taken along the line VV of FIG.
 冷却装置1は、冷却部2と、供給部3と、排出部4とを備える。冷却装置1は、蓄電池6の下面6a(単電池7の下面)に当接し、蓄電池6を蓄電池6の下面6a側から冷却する。 The cooling device 1 includes a cooling unit 2, a supply unit 3, and a discharge unit 4. The cooling device 1 contacts the lower surface 6 a of the storage battery 6 (the lower surface of the unit cell 7) and cools the storage battery 6 from the lower surface 6 a side of the storage battery 6.
 冷却部2は、単電池7の並び方向、つまり蓄電池6の下面6aに沿って延設される。冷却部2は、蓄電池6の下面6aと当接する上面部20と、上面部20と加締め加工、ロウ付けなどにより接合し、上面部20との間に冷媒が流れる隙間を形成する下面部21と、上面部20と下面部21とによって形成された隙間を複数の流路23a~23dに仕切る仕切部22とを備える。なお、蓄電池6と冷却部2との間に伝熱部材を設けてもよい。 The cooling unit 2 extends along the direction in which the cells 7 are arranged, that is, along the lower surface 6 a of the storage battery 6. The cooling unit 2 is joined to the upper surface part 20 that contacts the lower surface 6 a of the storage battery 6, and the lower surface part 21 that joins the upper surface part 20 by caulking, brazing, etc. and forms a gap through which refrigerant flows between the upper surface part 20. And a partition portion 22 that partitions the gap formed by the upper surface portion 20 and the lower surface portion 21 into a plurality of flow paths 23a to 23d. A heat transfer member may be provided between the storage battery 6 and the cooling unit 2.
 仕切部22は、単電池7の並び方向(冷却部2の長手方向)に平行して複数形成される。これにより、上面部20、下面部21、及び仕切部22によって冷却部2に単電池7の並び方向に沿った複数の流路23a~23dが形成され、流路23a~23dを冷媒が流れる。なお、仕切部22は、下面部21、または上面部20の一部を変形させて形成してもよく、また下面部21、及び上面部20と異なる部材によって形成してもよい。 A plurality of partition portions 22 are formed in parallel with the arrangement direction of the cells 7 (longitudinal direction of the cooling portion 2). As a result, the upper surface portion 20, the lower surface portion 21, and the partition portion 22 form a plurality of flow paths 23a to 23d in the cooling unit 2 along the arrangement direction of the cells 7, and the refrigerant flows through the flow paths 23a to 23d. The partition 22 may be formed by deforming a part of the lower surface 21 or the upper surface 20, or may be formed by a member different from the lower surface 21 and the upper surface 20.
 下面部21には、供給部3から冷却部2に冷媒を供給する第1供給孔24と、冷却部2の冷媒を排出部4に排出する第1排出孔25とが形成される。第1供給孔24と第1排出孔25とは、端子部8からの距離が短い流路23aにおける冷媒の流速が、端子部8からの距離が長い流路23dにおける冷媒の流速よりも高くなるように形成される。具体的には、図4に示すように、第1供給孔24と第1排出孔25とは、端子部8からの距離が短い流路23aの延長上に形成され、端子部8との距離が短い流路23aを挟むように流路23aの両端側に形成される。 The lower surface portion 21 is formed with a first supply hole 24 for supplying the refrigerant from the supply unit 3 to the cooling unit 2 and a first discharge hole 25 for discharging the refrigerant of the cooling unit 2 to the discharge unit 4. In the first supply hole 24 and the first discharge hole 25, the refrigerant flow rate in the flow path 23 a having a short distance from the terminal portion 8 is higher than the refrigerant flow rate in the flow path 23 d having a long distance from the terminal portion 8. Formed as follows. Specifically, as shown in FIG. 4, the first supply hole 24 and the first discharge hole 25 are formed on the extension of the flow path 23 a having a short distance from the terminal portion 8, and the distance from the terminal portion 8. Is formed on both ends of the flow path 23a so as to sandwich the short flow path 23a.
 供給部3は、流路23a~23dの並列方向に沿って延設される。供給部3は、円筒状の管の先端側を鉛直方向に押圧して形成される第1扁平部30を備える。 The supply unit 3 extends along the parallel direction of the flow paths 23a to 23d. The supply unit 3 includes a first flat portion 30 formed by pressing the tip side of a cylindrical tube in the vertical direction.
 第1扁平部30は、鉛直方向の長さが冷却部2の長手方向の長さよりも短く、第1供給孔24の位置、形状に合わせて第2供給孔31が下面部21側に形成される。第2供給孔31は、端子部8からの距離が短い流路23aの延長上に形成される。第1扁平部30は下面部21に接合される。第1扁平部30の先端は閉塞されている。 The first flat portion 30 has a length in the vertical direction shorter than a length in the longitudinal direction of the cooling portion 2, and a second supply hole 31 is formed on the lower surface portion 21 side according to the position and shape of the first supply hole 24. The The second supply hole 31 is formed on the extension of the flow path 23 a that is short from the terminal portion 8. The first flat portion 30 is joined to the lower surface portion 21. The tip of the first flat part 30 is closed.
 供給部3は、ケース9の外部に設けた配管(図示せず)に連結しており、第1扁平部30、及び第2供給孔31を介して冷媒を冷却部2に供給する。冷媒は、第2供給孔31から鉛直方向上向きに冷却部2に供給される。 The supply unit 3 is connected to a pipe (not shown) provided outside the case 9, and supplies the refrigerant to the cooling unit 2 through the first flat portion 30 and the second supply hole 31. The refrigerant is supplied from the second supply hole 31 to the cooling unit 2 in the vertical direction upward.
 排出部4は、供給部3と同様に第2扁平部40が形成されており、詳しい説明は省略するが、第1排出孔25の位置、形状に合わせて第2排出孔41が形成されている。排出部4は、ケース9の外部に設けた配管(図示せず)に連結しており、第2排出孔41を介して冷却部2から冷媒を排出する。 The discharge part 4 is formed with a second flat part 40 as in the case of the supply part 3, and detailed description is omitted, but a second discharge hole 41 is formed according to the position and shape of the first discharge hole 25. Yes. The discharge unit 4 is connected to a pipe (not shown) provided outside the case 9 and discharges the refrigerant from the cooling unit 2 via the second discharge hole 41.
 本実施形態では、第1供給孔24、及び第2供給孔31と、第1排出孔25、及び第2排出孔41とが端子部8からの距離が短い流路23aの両端を挟むように形成されている。 In the present embodiment, the first supply hole 24 and the second supply hole 31, the first discharge hole 25, and the second discharge hole 41 sandwich both ends of the flow path 23a that is short from the terminal portion 8. Is formed.
 次に本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.
 単電池7は端子部8の発熱量が大きいことが知られており、端子部8側の温度が高くなる。そのため、端子部8側の流路23aに冷媒を多く流すことが望ましい。 The unit cell 7 is known to generate a large amount of heat at the terminal portion 8, and the temperature on the terminal portion 8 side becomes high. For this reason, it is desirable to flow a large amount of refrigerant through the channel 23a on the terminal portion 8 side.
 本実施形態では、流路23a~23dの並列方向に沿って供給部3、及び排出部4を設け、供給部3により第1供給孔24(第2供給孔31)を介して鉛直方向上向きに冷媒を冷却部2に供給する。冷却部2に供給された冷媒は、流路23a~23dを流れ、蓄電池6を下面6a側から冷却し、第2排出孔41を介して冷却部2から排出される。端子部8からの距離が短い流路23aの延長上に、第1供給孔24(第2供給孔31)と、第1排出孔25(第2排出孔41)とを設けることで、第1供給孔24を介して冷却部2に供給された冷媒は、端子部8からの距離が長い流路23dよりも端子部8からの距離が短い流路23aを流れ易くなる。そのため、端子部8からの距離が短い流路23aにおける冷媒の流速が、端子部8からの距離が長い流路23dにおける冷媒の流速よりも高くなり、端子部8側の蓄電池6が集中して冷却される。 In the present embodiment, the supply unit 3 and the discharge unit 4 are provided along the parallel direction of the flow paths 23a to 23d, and the supply unit 3 causes the first supply hole 24 (second supply hole 31) to extend upward in the vertical direction. The refrigerant is supplied to the cooling unit 2. The refrigerant supplied to the cooling unit 2 flows through the flow paths 23a to 23d, cools the storage battery 6 from the lower surface 6a side, and is discharged from the cooling unit 2 through the second discharge hole 41. By providing the first supply hole 24 (second supply hole 31) and the first discharge hole 25 (second discharge hole 41) on the extension of the flow path 23a having a short distance from the terminal portion 8, the first supply hole 24 (second supply hole 31) is provided. The refrigerant supplied to the cooling unit 2 through the supply hole 24 is more likely to flow through the flow path 23a having a shorter distance from the terminal unit 8 than the flow path 23d having a longer distance from the terminal unit 8. Therefore, the flow rate of the refrigerant in the flow path 23a having a short distance from the terminal portion 8 is higher than the flow rate of the refrigerant in the flow path 23d having a long distance from the terminal portion 8, and the storage battery 6 on the terminal portion 8 side is concentrated. To be cooled.
 本実施形態の効果について説明する。 The effect of this embodiment will be described.
 流路23a~23dに沿って延設される供給部3を設け、供給部3から鉛直方向上向きに冷媒を冷却部2に供給する。そして、蓄電池6の端子部8からの距離が短い流路23aにおける冷媒の流速が、端子部8からの距離が長い流路23dにおける冷媒の流速よりも高くなるように下面部21に第1供給孔24を形成する。これにより、発熱量が多い端子部8付近を冷媒によって集中して冷却し、端子部8付近の蓄電池6の温度が高くなることを抑制することができる。また、冷媒の流れ方向における冷却装置1の長さを短くすることができる。 The supply unit 3 extending along the flow paths 23a to 23d is provided, and the coolant is supplied from the supply unit 3 to the cooling unit 2 in the vertical direction. Then, the first supply is made to the lower surface portion 21 so that the flow rate of the refrigerant in the flow path 23a with a short distance from the terminal portion 8 of the storage battery 6 is higher than the flow rate of the refrigerant in the flow path 23d with a long distance from the terminal portion 8. Hole 24 is formed. Thereby, the vicinity of the terminal portion 8 having a large amount of generated heat can be concentrated and cooled by the refrigerant, and the temperature of the storage battery 6 in the vicinity of the terminal portion 8 can be suppressed from increasing. Further, the length of the cooling device 1 in the refrigerant flow direction can be shortened.
 供給部3は、円筒状の管の先端部を鉛直方向に押圧して形成され、鉛直方向の長さが冷却部2の長手方向の長さよりも短い第1扁平部30を備え、第1扁平部30に形成した第2供給孔31を介して、供給部3から鉛直方向上向きに冷媒を冷却部2に供給する。また、排出部4も供給部3と同様に第2扁平部40を備え、冷却部2から冷媒を排出する。これらにより、鉛直方向の冷却装置1の長さを短くすることができる。また、第1扁平部30によって流速が高くなった冷媒を冷却部2に供給することができ、蓄電池6を素早く冷却することができる。 The supply unit 3 is formed by pressing the tip of a cylindrical tube in the vertical direction, and includes a first flat unit 30 having a vertical length shorter than the length of the cooling unit 2 in the longitudinal direction. Through the second supply hole 31 formed in the part 30, the coolant is supplied from the supply part 3 to the cooling part 2 in the vertical direction. Similarly to the supply unit 3, the discharge unit 4 includes a second flat portion 40 and discharges the refrigerant from the cooling unit 2. Thereby, the length of the cooling device 1 in the vertical direction can be shortened. Moreover, the refrigerant | coolant whose flow velocity became high by the 1st flat part 30 can be supplied to the cooling part 2, and the storage battery 6 can be cooled rapidly.
 第1供給孔24を端子部8からの距離が短い流路23aの延長上に形成することで、流路23aにおける冷媒の流速を高くすることができ、端子部8付近の蓄電池6の温度が高くなることを抑制することができる。さらに、第1排出孔25を端子部8からの距離が短い流路23aの延長上に形成することで、流路23aにおける冷媒の流速を高くすることができ、端子部8付近の蓄電池6の温度が高くなることを抑制することができる。 By forming the first supply hole 24 on the extension of the flow path 23a having a short distance from the terminal portion 8, the flow rate of the refrigerant in the flow path 23a can be increased, and the temperature of the storage battery 6 near the terminal portion 8 is increased. It can suppress becoming high. Furthermore, by forming the first discharge hole 25 on the extension of the flow path 23a having a short distance from the terminal portion 8, the flow rate of the refrigerant in the flow path 23a can be increased, and the storage battery 6 near the terminal portion 8 It can suppress that temperature becomes high.
 隣接する流路23a~23dが仕切部22によって仕切られて形成されるので、端子部8からの距離が短い流路23aを流れる冷媒が他の流路23b~23dに流入することを防止し、端子部8側の蓄電池6を集中して冷却することができる。 Since the adjacent flow paths 23a to 23d are formed by being partitioned by the partition portion 22, the refrigerant flowing through the flow path 23a having a short distance from the terminal portion 8 is prevented from flowing into the other flow paths 23b to 23d, The storage battery 6 on the terminal 8 side can be concentrated and cooled.
 端子部8が多く、発熱量が多い組電池においても、端子部8側を冷媒によって集中して冷却することができる。 Even in an assembled battery having a large number of terminal portions 8 and a large amount of heat generation, the terminal portion 8 side can be concentrated and cooled by a refrigerant.
 次に本発明の第2実施形態について図6~図8を用いて説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS.
 図6は、本実施形態における単電池7の端子部8の位置を示す図である。図7は本実施形態の冷却装置1の上面図である。図8は図7のVIII-VIII断面図である。 FIG. 6 is a diagram showing the position of the terminal portion 8 of the unit cell 7 in the present embodiment. FIG. 7 is a top view of the cooling device 1 of the present embodiment. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
 本実施形態では、端子部8が単電池7の上面7cに形成され、端子部8の位置に合わせて、第1供給孔24、第2供給孔31、第1排出孔25、第2排出孔41の位置が第1実施形態に比較して変更されている。 In the present embodiment, the terminal portion 8 is formed on the upper surface 7 c of the unit cell 7, and the first supply hole 24, the second supply hole 31, the first discharge hole 25, and the second discharge hole are aligned with the position of the terminal portion 8. The position 41 is changed compared to the first embodiment.
 端子部8が単電池7の上面7cの中央付近に設けられると、中央側に形成された流路23b、23cに冷媒が多く流れるように第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41が形成される。具体的には、流路23bと流路23cとの間に形成された仕切部22の延長上に第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41が形成される。なお、流路23b、23cの延長上に第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41をそれぞれ形成してもよい。 When the terminal portion 8 is provided in the vicinity of the center of the upper surface 7c of the unit cell 7, the first supply hole 24, the second supply hole 31, and the first supply hole 24 are formed so that a large amount of refrigerant flows through the flow paths 23b and 23c formed on the center side. A discharge hole 25 and a second discharge hole 41 are formed. Specifically, the first supply hole 24, the second supply hole 31, the first discharge hole 25, and the second discharge hole 41 on the extension of the partition portion 22 formed between the flow path 23 b and the flow path 23 c. Is formed. In addition, you may form the 1st supply hole 24, the 2nd supply hole 31, the 1st discharge hole 25, and the 2nd discharge hole 41 on the extension of the flow paths 23b and 23c, respectively.
 本実施形態の効果について説明する。 The effect of this embodiment will be described.
 単電池7の端子部8が単電池7の上面7cの中央付近に設けられた場合には、端子部8の位置に合わせて、第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41を形成することで、端子部8からの距離が短い流路23b、23cにおける冷媒の流速を高くすることができ、第1実施形態と同様に端子部8付近を集中して冷却し、端子部8付近の蓄電池6の温度が高くなることを抑制することができる。 When the terminal portion 8 of the unit cell 7 is provided near the center of the upper surface 7 c of the unit cell 7, the first supply hole 24, the second supply hole 31, and the first discharge hole are aligned with the position of the terminal unit 8. 25 and the second discharge hole 41 can increase the flow rate of the refrigerant in the flow paths 23b and 23c having a short distance from the terminal portion 8, and the vicinity of the terminal portion 8 can be formed as in the first embodiment. Concentrating and cooling can suppress the temperature of the storage battery 6 in the vicinity of the terminal portion 8 from increasing.
 次に本発明の第3実施形態について図9~図11を用いて説明する。 Next, a third embodiment of the present invention will be described with reference to FIGS.
 図9は、本実施形態における単電池7の端子部8の位置を示す図である。図10は、本実施形態の冷却装置1の上面図である。図11は、図9のX-X断面図である。 FIG. 9 is a diagram showing the position of the terminal portion 8 of the cell 7 in the present embodiment. FIG. 10 is a top view of the cooling device 1 of the present embodiment. 11 is a cross-sectional view taken along the line XX of FIG.
 本実施形態では、端子部8が単電池7の側面7b、7dにそれぞれ1つ形成された単電池7であり、端子部8の位置に合わせて、第1供給孔24、及び第2供給孔31の数、第1排出孔25、及び第2排出孔41の位置が第1実施形態に比較して変更されている。 In the present embodiment, each of the terminal portions 8 is a single cell 7 formed on each of the side surfaces 7 b and 7 d of the single cell 7, and the first supply hole 24 and the second supply hole are aligned with the position of the terminal portion 8. The number of 31, the position of the 1st discharge hole 25, and the 2nd discharge hole 41 is changed compared with 1st Embodiment.
 端子部8が単電池7の側面7b、7dにそれぞれ1つ形成されると、両端側に形成された流路23a、23dにおける冷媒の流速が高くなるように第1供給孔24、第2供給孔31、第1排出孔25、第2排出孔41が形成される。具体的には、流路23aの延長上、及び流路23dの延長上に第1供給孔24、及び第2供給孔31がそれぞれ1つ形成され、流路23bと流路23cとの間に形成された仕切部22の延長上に第1排出孔25、及び第2排出孔41が形成される。なお、流路23bの延長上、及び流路23cの延長上に第1排出孔25、及び第2排出孔41がそれぞれ1つ形成されてもよい。 When one terminal portion 8 is formed on each of the side surfaces 7b and 7d of the unit cell 7, the first supply hole 24 and the second supply are provided so that the flow rate of the refrigerant in the flow paths 23a and 23d formed on both ends is increased. A hole 31, a first discharge hole 25, and a second discharge hole 41 are formed. Specifically, one first supply hole 24 and one second supply hole 31 are formed on the extension of the flow path 23a and on the extension of the flow path 23d, respectively, and between the flow paths 23b and 23c. A first discharge hole 25 and a second discharge hole 41 are formed on the extension of the formed partition portion 22. One first discharge hole 25 and one second discharge hole 41 may be formed on the extension of the flow path 23b and on the extension of the flow path 23c.
 本実施形態の効果について説明する。 The effect of this embodiment will be described.
 単電池7の端子部8が単電池7の側面7b、7dに1つ設けられた場合には、端子部8の位置に合わせて、第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41を形成することで、端子部8からの距離が短い流路23a、23dにおける冷媒の流速を高くすることができ、第1実施形態と同様に端子部8付近を集中して冷却し、端子部8付近の蓄電池6の温度が高くなることを抑制することができる。 When one terminal portion 8 of the unit cell 7 is provided on the side surfaces 7 b and 7 d of the unit cell 7, the first supply hole 24, the second supply hole 31, and the first discharge are arranged in accordance with the position of the terminal unit 8. By forming the hole 25 and the second discharge hole 41, the flow rate of the refrigerant in the flow paths 23a and 23d having a short distance from the terminal portion 8 can be increased, and the vicinity of the terminal portion 8 is the same as in the first embodiment. The temperature of the storage battery 6 in the vicinity of the terminal portion 8 can be suppressed from being increased.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 なお、第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41を図11に示すように流路23a~23dの延長上にそれぞれ設け、各孔の大きさを変更して端子部8からの距離が短い流路における冷媒の流速が高くなるようにしてもよい。例えば第1実施形態と同じ位置に蓄電池6の端子部8が設けられている場合には、図11に示すように流路23a側になるにつれて第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41が大きくなる。このように、複数の第1供給孔24、第2供給孔31、第1排出孔25、及び第2排出孔41を設けた場合でも、孔の大きさを変更することで、本実施形態の効果を得ることができる。 The first supply hole 24, the second supply hole 31, the first discharge hole 25, and the second discharge hole 41 are provided on the extensions of the flow paths 23a to 23d as shown in FIG. May be changed so that the flow rate of the refrigerant in the flow path having a short distance from the terminal portion 8 is increased. For example, when the terminal portion 8 of the storage battery 6 is provided at the same position as in the first embodiment, the first supply hole 24, the second supply hole 31, and the second supply hole 31 become closer to the flow path 23a as shown in FIG. The 1 discharge hole 25 and the 2nd discharge hole 41 become large. Thus, even when the plurality of first supply holes 24, the second supply holes 31, the first discharge holes 25, and the second discharge holes 41 are provided, by changing the size of the holes, An effect can be obtained.
 本願は2013年4月2日に日本国特許庁に出願された特願2013-76740に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-76740 filed with the Japan Patent Office on April 2, 2013, the entire contents of which are incorporated herein by reference.

Claims (8)

  1.  蓄電池を冷却する蓄電池の冷却装置であって、
     前記蓄電池の壁面に沿って延設され、内部に冷媒が流れる流路が並列して形成され、前記壁面側から前記蓄電池を冷却する冷却部と、
     前記流路の並列方向に沿って延設され、前記壁面と直交する方向に沿って前記冷却部に前記冷媒を供給する供給部とを備え、
     前記冷却部には、前記蓄電池の端子部からの距離が短い箇所に設けた第1流路における前記冷媒の流速が、前記端子部からの距離が長い箇所に設けた第2流路における前記冷媒の流速よりも高くなるように供給孔が形成される蓄電池の冷却装置。
    A storage battery cooling device for cooling a storage battery,
    A cooling section that extends along the wall surface of the storage battery and in which a flow path through which a refrigerant flows is formed in parallel, and cools the storage battery from the wall surface side;
    A supply unit that extends along the parallel direction of the flow paths and supplies the refrigerant to the cooling unit along a direction orthogonal to the wall surface;
    In the cooling part, the refrigerant flow rate in the first flow path provided in a place where the distance from the terminal part of the storage battery is short, and the refrigerant in the second flow path provided in a place where the distance from the terminal part is long. The storage battery cooling device in which the supply hole is formed so as to be higher than the flow rate of the battery.
  2.  請求項1に記載の蓄電池の冷却装置であって、
     前記供給孔は、前記第1流路の延長上に形成される蓄電池の冷却装置。
    It is a cooling device of the storage battery according to claim 1,
    The supply hole is a storage battery cooling device formed on an extension of the first flow path.
  3.  請求項1または2に記載の蓄電池の冷却装置であって、
     前記冷却部には、前記第1流路の延長上に前記冷却部から前記冷媒を排出する排出孔が形成される蓄電池の冷却装置。
    A cooling device for a storage battery according to claim 1 or 2,
    A cooling device for a storage battery, wherein a discharge hole for discharging the refrigerant from the cooling unit is formed in the cooling unit on an extension of the first flow path.
  4.  請求項1から3のいずれか一つに記載の蓄電池の冷却装置であって、
     前記流路の並列方向に沿って延設された排出部を備え、
     前記供給部、及び前記排出部は、前記壁面の面方向と直交する方向の長さが前記冷却部の長手方向の長さよりも短く、前記冷却部に接合する接合部を備える蓄電池の冷却装置。
    A cooling device for a storage battery according to any one of claims 1 to 3,
    A discharge portion extending along the parallel direction of the flow paths,
    The said supply part and the said discharge part are the cooling devices of a storage battery provided with the junction part which the length of the direction orthogonal to the surface direction of the said wall surface is shorter than the length of the longitudinal direction of the said cooling part, and joins the said cooling part.
  5.  請求項1から4のいずれか一つに記載の蓄電池の冷却装置であって、
     前記冷却部には前記供給孔が複数形成され、
     前記供給孔は、前記端子部からの距離が短くなるほど大きくなる蓄電池の冷却装置。
    The storage battery cooling device according to any one of claims 1 to 4,
    A plurality of the supply holes are formed in the cooling unit,
    The supply hole is a cooling device for a storage battery that increases as the distance from the terminal portion decreases.
  6.  請求項5に記載の蓄電池の冷却装置であって、
     前記冷却部には前記冷却部から前記冷媒を排出する排出孔が複数形成され、
     前記排出孔は、前記端子部からの距離が短くなるほど大きくなる蓄電池の冷却装置。
    The storage battery cooling device according to claim 5,
    A plurality of discharge holes for discharging the refrigerant from the cooling unit are formed in the cooling unit,
    The cooling device for a storage battery, wherein the discharge hole becomes larger as the distance from the terminal portion becomes shorter.
  7.  請求項1から6のいずれか一つに記載の蓄電池の冷却装置であって、
     隣接する流路は、仕切部によって仕切られる蓄電池の冷却装置。
    A cooling device for a storage battery according to any one of claims 1 to 6,
    The adjacent channel is a cooling device for a storage battery partitioned by a partition.
  8.  請求項1から7のいずれか一つに記載の蓄電池の冷却装置であって、
     前記蓄電池は組電池である蓄電池の冷却装置。
    A storage battery cooling device according to any one of claims 1 to 7,
    The storage battery is an assembled battery cooling device.
PCT/JP2014/058874 2013-04-02 2014-03-27 Storage battery cooling device WO2014162978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076740 2013-04-02
JP2013076740A JP6075631B2 (en) 2013-04-02 2013-04-02 Battery cooling device

Publications (1)

Publication Number Publication Date
WO2014162978A1 true WO2014162978A1 (en) 2014-10-09

Family

ID=51658276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058874 WO2014162978A1 (en) 2013-04-02 2014-03-27 Storage battery cooling device

Country Status (2)

Country Link
JP (1) JP6075631B2 (en)
WO (1) WO2014162978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017107878U1 (en) * 2017-12-22 2019-03-25 Reinz-Dichtungs-Gmbh Plate-like fluid container

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300034B2 (en) * 2015-03-19 2018-03-28 株式会社オートネットワーク技術研究所 Power storage module
KR102280096B1 (en) * 2017-10-17 2021-07-21 주식회사 엘지에너지솔루션 Battery pack having function to block the inflow of leakage coolant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093484A (en) * 1999-09-28 2001-04-06 Matsushita Electric Ind Co Ltd Assembled sealed secondary battery
JP2006156382A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Secondary battery module
JP2008159440A (en) * 2006-12-25 2008-07-10 Calsonic Kansei Corp Vehicular battery cooling system
JP2008204763A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Power storage device
JP2009252473A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Cooling structure of power storage device and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093484A (en) * 1999-09-28 2001-04-06 Matsushita Electric Ind Co Ltd Assembled sealed secondary battery
JP2006156382A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Secondary battery module
JP2008159440A (en) * 2006-12-25 2008-07-10 Calsonic Kansei Corp Vehicular battery cooling system
JP2008204763A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Power storage device
JP2009252473A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Cooling structure of power storage device and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017107878U1 (en) * 2017-12-22 2019-03-25 Reinz-Dichtungs-Gmbh Plate-like fluid container

Also Published As

Publication number Publication date
JP2014203564A (en) 2014-10-27
JP6075631B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5983565B2 (en) Cooler
CN103383171B (en) Heat exchanger
JP5343007B2 (en) Liquid cooling system
US10422592B2 (en) Double-sided cooler
JP5803963B2 (en) Cooler
JP4845912B2 (en) Liquid cooling system
JP2007281163A5 (en)
JP5217172B2 (en) Fuel cell stack structure
JP6477276B2 (en) Cooling plate and information processing apparatus provided with cooling plate
JP2007335588A (en) Heat sink and condenser
JP2011134979A (en) Liquid cooling type heat sink
JP2011242119A (en) Header tank for heat exchanger
JP2011108891A (en) Stacked cooler
JP2009266937A (en) Stacked cooler
WO2014162978A1 (en) Storage battery cooling device
JP5078630B2 (en) Liquid cooling system
JP2010278286A (en) Heat sink apparatus
JP5145981B2 (en) Parts cooling structure
JP2009266936A (en) Stacked cooler
JP5740119B2 (en) Cooling system
JP2015149361A (en) cooler
JP2020004766A (en) Cooler
JP2019054224A (en) Liquid-cooled type cooling device
JP6557962B2 (en) Cooler
TW202334598A (en) Liquid cooling device and liquid cooling system having the liquid cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779743

Country of ref document: EP

Kind code of ref document: A1