JP2018041616A - Coating device of electrode paste - Google Patents

Coating device of electrode paste Download PDF

Info

Publication number
JP2018041616A
JP2018041616A JP2016174624A JP2016174624A JP2018041616A JP 2018041616 A JP2018041616 A JP 2018041616A JP 2016174624 A JP2016174624 A JP 2016174624A JP 2016174624 A JP2016174624 A JP 2016174624A JP 2018041616 A JP2018041616 A JP 2018041616A
Authority
JP
Japan
Prior art keywords
electrode paste
coating
viscosity
pressure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016174624A
Other languages
Japanese (ja)
Other versions
JP6709505B2 (en
Inventor
瑛 山下
Akira Yamashita
瑛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016174624A priority Critical patent/JP6709505B2/en
Publication of JP2018041616A publication Critical patent/JP2018041616A/en
Application granted granted Critical
Publication of JP6709505B2 publication Critical patent/JP6709505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a coating device of an electrode paste capable of setting the coating gap to an appropriate value, even when a high viscosity electrode paste is used, while reducing occurrence of manufacturing loss in a preparation stage.SOLUTION: A coating device 1 includes: a coating die 30 discharging an electrode paste; a circulation passage 20 for circulating the electrode paste; a pressure measurement unit 40 for measuring the pressure of the electrode paste in the circulation passage 20; and an interval setting unit 50 for setting a coating gap d on the basis of the measured pressure of the electrode paste. A diameter φ of a pipe 22 in the circulation passage 20 to which the pressure measurement unit 40 is attached is set for a median value μ of the measured value of viscosity of the electrode paste, so as to satisfy the following formula (1): (μ/2000)+5≤φ≤(μ/1000)+10 ... (1), in the formula (1), unit of μ is mPa s, and the unit of φ is mm.SELECTED DRAWING: Figure 1

Description

本発明は、電極活物質層の前駆体である電極ペーストを電極集電体に塗工する電極ペーストの塗工装置に関する。   The present invention relates to an electrode paste coating apparatus that coats an electrode current collector, which is a precursor of an electrode active material layer, onto an electrode current collector.

リチウムイオン二次電池、ニッケル水素電池等の二次電池は、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として好ましく用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車、ハイブリッド自動車等の車両に搭載して用いられる高出力電源(例えば、車両の駆動輪に連結されたモータを駆動させる電源)として重要性が高まっている。
これらの二次電池の電極は、例えば、活物質を適当な溶媒(例えば水)に分散させて混練した電極ペーストを調製し、当該電極ペーストを箔状の電極集電体に塗工して乾燥することにより製造される。
In recent years, secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries are preferably used as so-called portable power sources such as personal computers and portable terminals and power sources for driving vehicles. In particular, a lithium-ion secondary battery that is lightweight and obtains a high energy density is a high-output power source (for example, a power source that drives a motor connected to a driving wheel of the vehicle) used in a vehicle such as an electric vehicle or a hybrid vehicle. ) Is becoming increasingly important.
For the electrodes of these secondary batteries, for example, an electrode paste prepared by dispersing an active material in a suitable solvent (for example, water) and kneading is prepared, and the electrode paste is applied to a foil-shaped electrode current collector and dried. It is manufactured by doing.

このような電極ペーストを電極集電体に塗工するに際しては、例えば、特許文献1に記載の塗工方法が用いられる。この塗工方法は、塗工ダイと塗工液(電極ペースト)のタンクとの間で塗工液を循環させる循環回路内の塗工液の圧力及び流量を検出し、検出した圧力及び流量に基づいて塗工液の粘度を推定する。そして、推定した粘度と塗工ダイの塗工幅との相関関係に基づいて、塗工ダイの吐出口と基材(電極集電体)との間隔である塗工ギャップの初期値を決定する。これによって、電極ペーストの塗工開始時において、塗工幅を早期に目標値へと安定させて準備段階における破棄製品を減少させることができる。   When coating such an electrode paste on an electrode current collector, for example, a coating method described in Patent Document 1 is used. This coating method detects the pressure and flow rate of the coating liquid in the circulation circuit that circulates the coating liquid between the coating die and the tank of the coating liquid (electrode paste). Based on this, the viscosity of the coating solution is estimated. Then, based on the correlation between the estimated viscosity and the coating width of the coating die, the initial value of the coating gap, which is the distance between the discharge port of the coating die and the substrate (electrode current collector), is determined. . As a result, at the start of coating the electrode paste, the coating width can be stabilized to the target value at an early stage, and discarded products in the preparation stage can be reduced.

特開2012−254401号公報JP 2012-254401 A

ところで、近年では、電極ペーストの乾燥時間を短縮して電極の生産速度を向上させるために、溶媒の量を従来よりも少なくした高固形分かつ高粘度(粘度:8000〜15000mPa・s)の電極ペーストが用いられている。   By the way, in recent years, an electrode paste having a high solid content and a high viscosity (viscosity: 8000 to 15000 mPa · s) in which the amount of the solvent is smaller than that in the past in order to shorten the drying time of the electrode paste and improve the electrode production rate. Is used.

しかし、かかる高固形分かつ高粘度の電極ペーストを用いると、循環経路における圧力(配管圧損)の測定結果に大きなばらつきが生じて、電極ペーストの粘度を正確に推定することが難しくなる場合がある。このような場合、塗工ギャップの初期値を適正な値に設定することができず、塗工開始後の塗工幅が安定しなくなったり、塗工後の電極ペーストにエアー巻き込みによるスジが発生したりして準備段階における製造ロスが増加する恐れがある。
さらに、近年では、生産速度の向上のために塗工速度が高速に設定される傾向もあり、このことも、塗工開始後から塗工幅が安定するまでに生じる製造ロスが増加する原因となっている。
However, when such an electrode paste having a high solid content and a high viscosity is used, the measurement result of the pressure (pipe pressure loss) in the circulation path may vary greatly, and it may be difficult to accurately estimate the viscosity of the electrode paste. In such a case, the initial value of the coating gap cannot be set to an appropriate value, and the coating width after the start of coating becomes unstable, or streaks due to air entrainment occur in the electrode paste after coating. As a result, manufacturing loss in the preparation stage may increase.
Furthermore, in recent years, there is a tendency that the coating speed is set to be high in order to improve the production speed, and this is also a cause of an increase in manufacturing loss that occurs after the start of coating until the coating width becomes stable. It has become.

本発明は、かかる点に鑑みてなされたものであり、その主な目的は、高粘度の電極ペーストを使用した場合であっても、塗工ギャップの初期値を適正な値に設定することができ、準備段階における製造ロスの発生を低減することができる電極ペーストの塗工装置を提供することである。   The present invention has been made in view of such a point, and its main purpose is to set the initial value of the coating gap to an appropriate value even when a high-viscosity electrode paste is used. It is possible to provide an electrode paste coating apparatus that can reduce the production loss in the preparation stage.

上記目的を実現するべく、本発明によって以下の構成の電極ペーストの塗工装置が提供される。   In order to achieve the above object, the present invention provides an electrode paste coating apparatus having the following configuration.

ここで開示される電極ペーストの塗工装置は、電極活物質を含む電極ペーストを貯蔵する貯蔵タンクと、貯蔵タンクから供給された電極ペーストを電極集電体の表面に向けて吐出する塗工ダイと、塗工ダイに供給される前の電極ペーストを循環させる循環経路と、循環経路における電極ペーストの圧力を測定する圧力測定部と、圧力測定部により測定された循環経路における電極ペーストの圧力に基づいて電極ペーストの塗工開始時の塗工ダイと電極集電体との間隔を設定する間隔設定部とを備えている。
そして、ここで開示される電極ペーストの塗工装置では、圧力測定部が取り付けられた循環経路の配管の直径φが、電極ペーストの粘度の実測値の中央値μに対して下記の式(1)を満たすように設定されている。
(μ/2000)+5≦φ≦(μ/1000)+10 (1)
なお、上記式1において、μの単位はmPa・sであり、φの単位はmmである。
An electrode paste coating apparatus disclosed herein includes a storage tank that stores an electrode paste containing an electrode active material, and a coating die that discharges the electrode paste supplied from the storage tank toward the surface of the electrode current collector. A circulation path for circulating the electrode paste before being supplied to the coating die, a pressure measurement unit for measuring the pressure of the electrode paste in the circulation path, and a pressure of the electrode paste in the circulation path measured by the pressure measurement unit And an interval setting unit for setting an interval between the coating die and the electrode current collector at the start of coating the electrode paste.
In the electrode paste coating apparatus disclosed herein, the diameter φ of the circulation path pipe to which the pressure measuring unit is attached is expressed by the following equation (1) with respect to the median μ of the actual measurement value of the viscosity of the electrode paste. ) Is set to satisfy.
(Μ / 2000) + 5 ≦ φ ≦ (μ / 1000) +10 (1)
In the above formula 1, the unit of μ is mPa · s, and the unit of φ is mm.

高粘度の電極ペーストを用いた場合に、圧力測定部においてばらつきの小さな測定結果を得るためには、圧力測定部が取り付けられた循環経路の配管の直径を大きくして圧力測定部の感度を低下させるという方法がある。しかし、循環経路の配管の直径を大きくし過ぎると、圧力測定部の感度が下がり過ぎてしまい、この場合も電極ペーストの圧力を正確に測定することができなくなる。   In order to obtain measurement results with little variation in the pressure measurement unit when using high-viscosity electrode paste, the diameter of the piping in the circulation path to which the pressure measurement unit is attached is increased to reduce the sensitivity of the pressure measurement unit. There is a way to make it. However, if the diameter of the piping of the circulation path is made too large, the sensitivity of the pressure measuring unit will be too low, and in this case as well, the pressure of the electrode paste cannot be measured accurately.

ここで開示される電極ペーストの塗工装置は、上記した圧力測定部の感度に関するトレードオフの関係を考慮して、電極ペーストの粘度の実測値の中央値μと、循環経路の配管の直径φとの関係を式(1)のように規定している。
かかる式(1)に基づいて循環経路の配管の直径φを定めることによって、電極ペーストの圧力を測定結果のばらつきの影響を十分小さくすることができ、かつ、塗工ギャップを適切に設定できる程度に圧力測定部の感度を低下させることができる。これによって、高粘度の電極ペーストを使用した場合であっても、塗工開始時の塗工ギャップを適正値に設定して準備段階における製造ロスの発生を低減することができる。
The electrode paste coating apparatus disclosed herein takes into account the trade-off relationship regarding the sensitivity of the pressure measurement unit described above, and the median value μ of the measured value of the viscosity of the electrode paste and the diameter φ of the piping of the circulation path (1) is defined.
By determining the diameter φ of the circulation path piping based on the formula (1), the influence of variation in the measurement result of the pressure of the electrode paste can be sufficiently reduced, and the coating gap can be appropriately set. In addition, the sensitivity of the pressure measuring unit can be reduced. Accordingly, even when a high-viscosity electrode paste is used, it is possible to set the coating gap at the start of coating to an appropriate value and reduce the production loss at the preparation stage.

本発明の一実施形態に係る電極ペーストの塗工装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the coating apparatus of the electrode paste which concerns on one Embodiment of this invention. 循環経路の圧損と電極ペーストの粘度との関係を示すグラフであって、縦軸は循環時圧損(kPa)を示し、横軸はペースト粘度(mPa・s)を示している。It is a graph which shows the relationship between the pressure loss of a circulation path, and the viscosity of an electrode paste, Comprising: The vertical axis | shaft shows the pressure loss (circulation) at the time of a circulation, and the horizontal axis shows the paste viscosity (mPa * s). 適正ギャップと電極ペーストの粘度との関係を示すグラフであって、縦軸は適正ギャップ(μm)を示し、横軸はペースト粘度(mPa・s)を示している。It is a graph which shows the relationship between an appropriate gap and the viscosity of an electrode paste, Comprising: A vertical axis | shaft shows the appropriate gap (micrometer) and the horizontal axis shows the paste viscosity (mPa * s). 適正ギャップと循環経路の圧損との関係を示すグラフであって、縦軸は適正ギャップ(μm)を示し、横軸は循環時圧損(kPa)を示している。It is a graph which shows the relationship between the appropriate gap and the pressure loss of a circulation path, Comprising: A vertical axis | shaft shows the appropriate gap (micrometer) and the horizontal axis has shown the pressure loss at the time of circulation (kPa). 本発明の他の実施形態に係る電極ペーストの塗工装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the coating apparatus of the electrode paste which concerns on other embodiment of this invention. 試験例15の塗工装置を用いた場合の塗工幅の推移を示すグラフである。It is a graph which shows transition of the coating width at the time of using the coating apparatus of Test Example 15.

以下、図を参照しながら本実施形態に係る電極ペーストの塗工装置を説明する。   Hereinafter, an electrode paste coating apparatus according to the present embodiment will be described with reference to the drawings.

なお、本明細書において「二次電池」とは、リチウムイオン二次電池やニッケル水素電池などを含む充放電可能な電池をいう。また、本明細書において「活物質」とは、正極側又は負極側において蓄電に関与する物質(化合物)をいう。   In the present specification, the “secondary battery” refers to a chargeable / dischargeable battery including a lithium ion secondary battery, a nickel metal hydride battery, and the like. Further, in this specification, the “active material” refers to a substance (compound) involved in power storage on the positive electrode side or the negative electrode side.

図1は本実施形態に係る電極ペーストの塗工装置を模式的に示す図である。図1に示すように、本実施形態に係る塗工装置1は、貯蔵タンク10と、塗工ダイ30と、循環経路20と、圧力測定部40と、間隔設定部50とを備えている。   FIG. 1 is a diagram schematically showing an electrode paste coating apparatus according to this embodiment. As shown in FIG. 1, the coating apparatus 1 according to the present embodiment includes a storage tank 10, a coating die 30, a circulation path 20, a pressure measurement unit 40, and an interval setting unit 50.

貯蔵タンク10には電極活物質を含む電極ペーストが貯蔵されており、供給管21を介して貯蔵タンク10と塗工ダイ30とが接続されている。また、塗工ダイ30は、バックアップロール80上を搬送される電極集電体Sに対向するように配置されており、塗工ダイ30と電極集電体Sとの間には所定の塗工ギャップdが設けられている。   An electrode paste containing an electrode active material is stored in the storage tank 10, and the storage tank 10 and the coating die 30 are connected via a supply pipe 21. The coating die 30 is disposed so as to face the electrode current collector S conveyed on the backup roll 80, and a predetermined coating is provided between the coating die 30 and the electrode current collector S. A gap d is provided.

また、本実施形態に係る塗工装置1は、上記した供給管21とリターン配管22とからなる循環経路20を備えている。リターン配管22は、一端が塗工ダイ30上流の供給管21に接続され、他端が貯蔵タンク10に接続されている。また、図示は省略するが、供給管21とリターン配管22との接続部分には三方弁が設けられており、この三方弁によって電極ペーストの吐出と循環を切り替えることができるように構成されている。   In addition, the coating apparatus 1 according to this embodiment includes a circulation path 20 including the supply pipe 21 and the return pipe 22 described above. The return pipe 22 has one end connected to the supply pipe 21 upstream of the coating die 30 and the other end connected to the storage tank 10. Although not shown, a connection portion between the supply pipe 21 and the return pipe 22 is provided with a three-way valve, and the three-way valve is configured to switch between discharge and circulation of the electrode paste. .

そして、上記した循環経路20の配管(図1においてはリターン配管22)には、循環中の電極ペーストの圧力を測定する圧力測定部40が設けられている。本実施形態の圧力測定部40は、一対の圧力計41、42により構成されており、当該一対の圧力計41、42の測定結果の差に基づいてリターン配管22の配管圧損を測定する。
この一対の圧力計41、42の各々は、間隔設定部50に接続されている。この間隔設定部50には、圧力計41、42の測定結果に基づいて電極ペーストの粘度を推定する粘度推定部52が設けられている。
例えば、粘度推定部52には、図2に示すような電極ペースト循環中のリターン配管22の配管圧損(循環時圧損:kPa)と、電極ペーストの粘度(ペースト粘度:mPa・s)との関係を示すデータが予め記憶されており、このデータに基づいて配管圧損の測定結果から電極ペーストの粘度を推定する。なお、図2は、リターン配管22の直径φが15mm、電極ペーストの流量が950g/minの場合の例を示したものである。
And the pressure measurement part 40 which measures the pressure of the electrode paste in circulation is provided in piping (return piping 22 in FIG. 1) of the above-mentioned circulation path 20. The pressure measurement unit 40 according to the present embodiment includes a pair of pressure gauges 41 and 42 and measures the pipe pressure loss of the return pipe 22 based on the difference between the measurement results of the pair of pressure gauges 41 and 42.
Each of the pair of pressure gauges 41 and 42 is connected to the interval setting unit 50. The interval setting unit 50 is provided with a viscosity estimating unit 52 that estimates the viscosity of the electrode paste based on the measurement results of the pressure gauges 41 and 42.
For example, in the viscosity estimation unit 52, the relationship between the pipe pressure loss (circulation pressure loss: kPa) of the return pipe 22 during circulation of the electrode paste and the viscosity of the electrode paste (paste viscosity: mPa · s) as shown in FIG. Is stored in advance, and the viscosity of the electrode paste is estimated from the measurement result of the piping pressure loss based on this data. FIG. 2 shows an example in which the return pipe 22 has a diameter φ of 15 mm and the electrode paste flow rate is 950 g / min.

そして、間隔設定部50は、粘度推定部52が推定した電極ペーストの粘度に基づいて、塗工ギャップdの初期値を設定する。
間隔設定部50には、例えば、図3に示すような電極ペーストの粘度(ペースト粘度:mPa・s)と塗工ギャップdの適正値(適正ギャップ:μm)との関係を示すデータが予め記憶されており、このデータに基づいて電極ペーストの粘度から塗工ギャップdの適正値を算出する。そして、算出した適正値になるように塗工ダイ30とバックアップロール80との距離を調整して、塗工開始時の塗工ギャップdの初期値を設定する。
この図3は、ペースト粘度(x)と適正ギャップ(y)との関係を下記の一次関数の式(2)で表しており、この式(2)の相関係数Rは0.9825である。なお、この式(2)は間隔設定部50に設定されている関係式の一例であり、式の係数は塗工幅の目標値や塗工ダイ30に応じて変化する。
y=−0.0005x+74.911 (2)
And the space | interval setting part 50 sets the initial value of the coating gap d based on the viscosity of the electrode paste which the viscosity estimation part 52 estimated.
For example, data indicating the relationship between the viscosity of the electrode paste (paste viscosity: mPa · s) and the appropriate value of the coating gap d (appropriate gap: μm) as shown in FIG. Based on this data, the appropriate value of the coating gap d is calculated from the viscosity of the electrode paste. Then, the distance between the coating die 30 and the backup roll 80 is adjusted so that the calculated appropriate value is obtained, and an initial value of the coating gap d at the start of coating is set.
In FIG. 3, the relationship between the paste viscosity (x) and the appropriate gap (y) is expressed by the following linear function equation (2). The correlation coefficient R 2 of the equation (2) is 0.9825. is there. The equation (2) is an example of a relational expression set in the interval setting unit 50, and the coefficient of the expression changes according to the target value of the coating width and the coating die 30.
y = −0.0005x + 74.911 (2)

そして、本実施形態に係る塗工装置1では、高粘度の電極ペーストを用いた場合であっても、正確な電極ペーストの粘度を推定することができるように、上記した循環経路20の配管の直径が電極ペーストの粘度の実測値に応じて設定されている。   And in the coating apparatus 1 which concerns on this embodiment, even if it is a case where a high-viscosity electrode paste is used, in order to estimate the viscosity of an accurate electrode paste, piping of the above-mentioned circulation path 20 is possible. The diameter is set according to the measured value of the viscosity of the electrode paste.

具体的には、本実施形態に係る塗工装置では、圧力計41、42が取り付けられたリターン配管22の直径φ[mm]が、電極ペーストの粘度の実測値の中央値μ[mPa・s]に対して下記の式(1)を満たすように設定されている。
(μ/2000)+5≦φ≦(μ/1000)+10 (1)
上記式(1)における電極ペーストの粘度の実測値の中央値μは、例えば、一般的なレオメータを用いて、せん断速度2.51s−1の条件で測定した電極ペーストの粘度の実測値の上限値および下限値に基づいて算出される。なお、この中央値μには、必ずしも、上限値と下限値との間の値をそのまま用いる必要はなく、上限値と下限値との間の値を基準値として所定の範囲内(±100mPa・s、好ましくは±50mPa・s)の値を設定してもよい。
Specifically, in the coating apparatus according to the present embodiment, the diameter φ [mm] of the return pipe 22 to which the pressure gauges 41 and 42 are attached is the median value μ [mPa · s] of the actually measured value of the viscosity of the electrode paste. ] Is set so as to satisfy the following formula (1).
(Μ / 2000) + 5 ≦ φ ≦ (μ / 1000) +10 (1)
The median value μ of the measured value of the viscosity of the electrode paste in the above formula (1) is, for example, the upper limit of the measured value of the viscosity of the electrode paste measured under the condition of a shear rate of 2.51 s −1 using a general rheometer. It is calculated based on the value and the lower limit value. It is not always necessary to use the value between the upper limit value and the lower limit value as it is as the median value μ, but within a predetermined range (± 100 mPa · s, preferably ± 50 mPa · s).

上記したように、配管圧損の測定結果のばらつきを小さくして、高粘度の電極ペーストを使用することによる影響を小さくするには、圧力測定部40が取り付けられたリターン配管22の直径φを大きくして圧力測定部40の感度を低下させるという方法がある。しかし、リターン配管22の直径φを大きくし過ぎると、圧力測定部40の感度が下がり過ぎてしまい、この場合も塗工ギャップdを適正値に設定することが困難になる。   As described above, in order to reduce the variation in the measurement result of the pipe pressure loss and reduce the influence of using the high-viscosity electrode paste, the diameter φ of the return pipe 22 to which the pressure measuring unit 40 is attached is increased. Then, there is a method of reducing the sensitivity of the pressure measuring unit 40. However, if the diameter φ of the return pipe 22 is excessively increased, the sensitivity of the pressure measuring unit 40 is excessively lowered, and in this case as well, it is difficult to set the coating gap d to an appropriate value.

上記した式(1)は、配管圧損の測定結果のばらつきの影響を十分小さくすることができ、かつ、塗工ギャップdを適切に設定できる程度に、圧力測定部40の感度を低下させるリターン配管22の直径φの範囲を規定したものである。この式は、電極ペーストの粘度の実測値の中央値μに基づいて設定されているため、高粘度の電極ペーストを使用した場合であっても、塗工開始時の塗工ギャップdを適正値に設定して準備段階における製造ロスの発生を低減することができる。   The above equation (1) is a return pipe that reduces the sensitivity of the pressure measuring unit 40 to such an extent that the influence of variations in the measurement result of the pipe pressure loss can be sufficiently reduced and the coating gap d can be appropriately set. The range of the diameter φ of 22 is defined. Since this equation is set based on the median value μ of the measured value of the viscosity of the electrode paste, the coating gap d at the start of coating is an appropriate value even when a high-viscosity electrode paste is used. Therefore, it is possible to reduce the production loss in the preparation stage.

なお、上記した実施形態においては、圧力測定部40がリターン配管22に取り付けられているため、式(1)に基づいてリターン配管22の直径φを設定しているが、式(1)に基づいて直径を設定する配管はリターン配管に限定されない。例えば、図5に示すように、供給管21側に圧力測定部40が取り付けられている場合には、この供給管21の直径が上記式(1)を満たすように設定することによって、高粘度の電極ペーストを使用した場合であっても、塗工開始時の塗工ギャップdを適正値に設定することができる。   In the above-described embodiment, since the pressure measuring unit 40 is attached to the return pipe 22, the diameter φ of the return pipe 22 is set based on the formula (1), but based on the formula (1). The diameter setting pipe is not limited to the return pipe. For example, as shown in FIG. 5, when the pressure measuring unit 40 is attached to the supply pipe 21 side, the diameter of the supply pipe 21 is set so as to satisfy the above formula (1). Even when this electrode paste is used, the coating gap d at the start of coating can be set to an appropriate value.

また、上記した実施形態においては、図2に示す関係式に基づいて電極ペーストの粘度(ペースト粘度:mPa・s)を推定し、図3に示す関係式に基づいてペースト粘度から適正ギャップを算出しているが、図4に示すように、循環経路20の配管圧損と塗工ギャップdの適正値との関係を予め調べておき、配管圧損の測定結果から塗工ギャップdの適正値を直接算出してもよい。
図4は、電極ペースト循環中の循環経路の配管圧損と塗工ギャップの適正値との関係を示すグラフであって、図2および図3に示す関係式を換算することによって得られる。なお、この図4に示すグラフは、電極ペーストの粘度の実測値の中央値が10300mPa・sの場合のデータであり、循環時の配管圧損(x)と塗工ギャップの適正値(y)との関係は下記の一次関数の式(3)で表される。また、この式(3)の相関係数Rは0.989である。
y=−0.0333x+75.934 (3)
In the embodiment described above, the viscosity of the electrode paste (paste viscosity: mPa · s) is estimated based on the relational expression shown in FIG. 2, and the appropriate gap is calculated from the paste viscosity based on the relational expression shown in FIG. However, as shown in FIG. 4, the relationship between the piping pressure loss of the circulation path 20 and the appropriate value of the coating gap d is examined in advance, and the appropriate value of the coating gap d is directly determined from the measurement result of the piping pressure loss. It may be calculated.
FIG. 4 is a graph showing the relationship between the piping pressure loss in the circulation path during circulation of the electrode paste and the appropriate value of the coating gap, and is obtained by converting the relational expressions shown in FIGS. 2 and 3. The graph shown in FIG. 4 is data in the case where the median value of the measured viscosity of the electrode paste is 10300 mPa · s, and the pipe pressure loss (x) during circulation and the appropriate value (y) of the coating gap Is expressed by the following linear function equation (3). Further, the correlation coefficient R 2 of the equation (3) is 0.989.
y = -0.0333x + 75.934 (3)

[試験例]
以下、本発明に関する試験例を説明するが、この試験例は本発明を限定することを意図したものではない。
[Test example]
Hereinafter, although the test example regarding this invention is demonstrated, this test example is not intending limiting this invention.

本試験例では、表1に示すように、粘度が異なる複数種類の電極ペーストを用意し、各々の電極ペーストの粘度の実測値の上限値と下限値を測定し、測定結果に基づいて電極ペーストの粘度の実測値の中央値(MPa・S)を設定した。そして、設定した中央値から式(1)に基づいた配管の直径の下限(φmin)と上限(φmax)を算出し、このφminとφmaxの範囲内の直径の配管を用いた試験例と、φminとφmaxの範囲外の配管を用いた試験例を設けた。   In this test example, as shown in Table 1, a plurality of types of electrode pastes having different viscosities are prepared, the upper limit value and the lower limit value of the actual measured values of the viscosity of each electrode paste are measured, and the electrode paste is based on the measurement results. The median value (MPa · S) of the actually measured value of the viscosity was set. Then, a lower limit (φmin) and an upper limit (φmax) of the diameter of the pipe based on the formula (1) are calculated from the set median value, a test example using a pipe having a diameter within the range of φmin and φmax, and φmin And a test example using piping outside the range of φmax.

なお、本試験例においては、電極ペーストとして、リチウム遷移金属複合酸化物を含む正極ペースト(NV値(固形分率):63.5%)を用い、正極ペーストの流量を1.5L/min(合材目付10.2mg/cm)に設定した。 In this test example, a positive electrode paste (NV value (solid content ratio): 63.5%) containing a lithium transition metal composite oxide was used as the electrode paste, and the flow rate of the positive electrode paste was 1.5 L / min ( The composite weight per unit area was set to 10.2 mg / cm 2 .

そして、正極ペーストの塗工開始前に、正極ペーストを循環経路で循環させながら循環経路における配管圧損を測定し、測定結果に基づいて圧力計の感度を求めると共に、相関係数Rを算出した。結果を表1に示す。 And before starting the coating of the positive electrode paste, the pipe pressure loss in the circulation path was measured while circulating the positive electrode paste in the circulation path, and the sensitivity of the pressure gauge was obtained based on the measurement result, and the correlation coefficient R 2 was calculated. . The results are shown in Table 1.

さらに、配管圧損の測定結果に基づいて塗工ギャップの初期値を設定した後、電極集電体を60m/minの搬送速度で搬送しながら塗工ダイから正極ペーストを吐出することによって正極シートの作製を開始した。このとき、所望の塗工幅が得られるまでに生じた廃棄品の長さ(ロス長さ[mm])を測定し、測定結果が3μm以下であった場合を「可」と評価した。結果を表1に示す。   Furthermore, after setting the initial value of the coating gap based on the measurement result of the piping pressure loss, the positive electrode sheet was discharged by discharging the positive electrode paste from the coating die while conveying the electrode current collector at a conveying speed of 60 m / min. Production started. At this time, the length (loss length [mm]) of the waste product generated until the desired coating width was obtained was measured, and the case where the measurement result was 3 μm or less was evaluated as “good”. The results are shown in Table 1.

なお、配管圧損の測定結果に基づいた塗工ギャップの設定は下記の式(4)に示す一次関数に基づいて行った。
y=−ax+b (4)
y:塗工ギャップの適正値(μm)
a:圧力計の感度
b:任意の定数
x:配管圧損の測定結果(kPa)
In addition, the setting of the coating gap based on the measurement result of piping pressure loss was performed based on the linear function shown in the following formula (4).
y = −ax + b (4)
y: Appropriate value of coating gap (μm)
a: Sensitivity of pressure gauge b: Arbitrary constant x: Measurement result of piping pressure loss (kPa)

Figure 2018041616
Figure 2018041616

表1中の試験例1、5、8、11に示すように、上記した式(1)で定めた下限値(φmin)よりも配管の直径を小さくした場合、圧力計の感度が上昇する一方で相関係数Rが低下してロス長さが大きくなった。これは、配管の直径を小さくして感度を上昇させすぎた(感度:0.06以上)ことによって、配管圧損の測定結果のばらつきの影響が大きくなったためと解される。
一方、試験例4、7、13に示すように、式(1)で定めた上限値(φmax)よりも配管の直径を大きくした場合もロス長さが大きくなった。これは、圧力計の感度0.02未満と低くなりすぎて正確な配管圧損を測定できなくなったためと解される。
As shown in Test Examples 1, 5, 8, and 11 in Table 1, when the diameter of the pipe is made smaller than the lower limit (φmin) determined by the above equation (1), the sensitivity of the pressure gauge increases. in loss length is greater correlation coefficient R 2 decreases. This is considered to be because the influence of the variation in the measurement result of the pipe pressure loss is increased by reducing the diameter of the pipe and increasing the sensitivity too much (sensitivity: 0.06 or more).
On the other hand, as shown in Test Examples 4, 7, and 13, the loss length was also increased when the diameter of the pipe was made larger than the upper limit value (φmax) defined in Equation (1). This is because the pressure gauge sensitivity is less than 0.02 and the piping pressure loss cannot be measured accurately.

一方、配管の直径φを下限値(φmin)と上限値(φmax)の間に設定した試験例2、3、6、9、10、12では、0.02以上という十分な感度を得ながら、かつ、0.98以上という高い相関係数Rを得ることができた。そして、算出した粘度に基づいて塗工ギャップを設定して正極シートを作製することによって、ロス長さを3mm以下に抑制することができることを確認した。 On the other hand, in Test Examples 2, 3, 6, 9, 10, and 12 in which the diameter φ of the pipe was set between the lower limit (φmin) and the upper limit (φmax), while obtaining sufficient sensitivity of 0.02 or more, In addition, a high correlation coefficient R 2 of 0.98 or more could be obtained. And it confirmed that loss length could be suppressed to 3 mm or less by setting a coating gap based on the computed viscosity and producing a positive electrode sheet.

2.試験B
次に、正極ペーストの流量を試験Aよりも小さくした場合であっても同等の効果が得られるか否かについて調べるために試験Bを行った。
この試験Bにおいては、正極ペーストの流量を0.6L/minに変更したことを除いて試験Aと同じ条件で試験を行った(試験例14〜16)。各々の試験例の試験条件および試験結果を表2に示す。
2. Test B
Next, in order to investigate whether or not the same effect can be obtained even when the flow rate of the positive electrode paste is smaller than that of the test A, the test B was performed.
In Test B, tests were performed under the same conditions as Test A except that the flow rate of the positive electrode paste was changed to 0.6 L / min (Test Examples 14 to 16). Table 2 shows the test conditions and test results of each test example.

Figure 2018041616
Figure 2018041616

表2に示すように、正極ペーストの流量を変更させた場合であっても、試験例15のように、式(1)に基づいて算出した直径の下限値(φmin)と上限値(φmax)の範囲内に、循環経路の配管の直径を設定することによって製造ロスの発生を適切に抑制できることが確認できた。   As shown in Table 2, even when the flow rate of the positive electrode paste was changed, the lower limit value (φmin) and the upper limit value (φmax) of the diameter calculated based on the formula (1) as in Test Example 15 It was confirmed that the production loss can be appropriately suppressed by setting the diameter of the piping of the circulation path within the range of.

さらに、試験Bにおいては、試験例15の塗工開始直後における塗工幅の推移を調べた。結果を図6に示す。なお、図6中の点線は塗工ギャップの変化を示しており、実線は正極ペーストの塗工幅を示している。そして、横軸が塗工時間(sec)を示し、右側の縦軸が塗工幅(mm)、左側の縦軸が塗工ギャップ(μm)を示している。さらに、図6中の二点鎖線は塗工幅の規格の上限値および下限値を示しており、一点鎖線は塗工幅の規格の中央値を示している。
図6に示すように、塗工開始直後は塗工ギャップと塗工幅の何れかに若干の変動が生じていたが、常に塗工幅の規格の範囲内に維持されていた。このことから、試験例15のように、式(1)に基づいて算出した直径の下限値(φmin)と上限値(φmax)の範囲内に循環経路の配管の直径を設定することによって、塗工開始直後から適切な塗工幅で電極ペーストを塗工することができるため、製造ロスの発生を適切に抑制できることが確認できた。
Furthermore, in Test B, the transition of the coating width immediately after the start of coating in Test Example 15 was examined. The results are shown in FIG. In addition, the dotted line in FIG. 6 has shown the change of the coating gap, and the continuous line has shown the coating width of the positive electrode paste. The horizontal axis indicates the coating time (sec), the right vertical axis indicates the coating width (mm), and the left vertical axis indicates the coating gap (μm). Further, a two-dot chain line in FIG. 6 indicates an upper limit value and a lower limit value of the coating width standard, and a one-dot chain line indicates a median value of the coating width standard.
As shown in FIG. 6, immediately after the start of coating, there was a slight change in either the coating gap or the coating width, but it was always maintained within the standard range of the coating width. Therefore, as in Test Example 15, by setting the diameter of the piping of the circulation path within the range of the lower limit value (φmin) and the upper limit value (φmax) of the diameter calculated based on the formula (1), Since it was possible to apply the electrode paste with an appropriate coating width immediately after the start of the process, it was confirmed that production loss could be appropriately suppressed.

以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment is only an illustration and what changed and modified the above-mentioned specific example is included in the invention disclosed here.

ここに開示される技術によれば、各種用途向けの二次電池を生産性高く製造することができる。この二次電池は、例えば、自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用され得る。また、ここで開示される技術によって得られる二次電池は、それらの複数個を直列および/または並列に接続してなる組電池の形態で使用することができる。したがって、ここに開示される技術によると、かかる二次電池(組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)の生産性の向上に貢献し得る。   According to the technology disclosed herein, secondary batteries for various applications can be manufactured with high productivity. This secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Moreover, the secondary battery obtained by the technique disclosed here can be used in the form of an assembled battery formed by connecting a plurality of them in series and / or in parallel. Therefore, according to the technology disclosed herein, a vehicle (typically an automobile, particularly a hybrid automobile, an electric automobile, a fuel cell automobile, etc.) having such a secondary battery (which may be in the form of an assembled battery) as a power source. This can contribute to the improvement of productivity of automobiles equipped with electric motors.

1 塗工装置
10 貯蔵タンク
20 循環経路
21 供給管
22 リターン配管
30 塗工ダイ
40 圧力測定部
41、42 圧力計
50 間隔設定部
52 粘度推定部
80 バックアップロール
d 塗工ギャップ
S 電極集電体
DESCRIPTION OF SYMBOLS 1 Coating apparatus 10 Storage tank 20 Circulation path 21 Supply pipe 22 Return pipe 30 Coating die 40 Pressure measurement part 41, 42 Pressure gauge 50 Space | interval setting part 52 Viscosity estimation part 80 Backup roll d Coating gap S Electrode current collector

Claims (1)

電極活物質を含む電極ペーストを貯蔵する貯蔵タンクと、
前記貯蔵タンクから供給された前記電極ペーストを電極集電体の表面に向けて吐出する塗工ダイと、
前記塗工ダイに供給される前の前記電極ペーストを循環させる循環経路と、
前記循環経路における前記電極ペーストの圧力を測定する圧力測定部と、
前記圧力測定部により測定された前記循環経路における前記電極ペーストの圧力に基づいて、前記電極ペーストの塗工開始時の前記塗工ダイと前記電極集電体との間隔を設定する間隔設定部と
を備えた電極ペーストの塗工装置であって、
前記圧力測定部が取り付けられた前記循環経路の配管の直径φが、前記電極ペーストの粘度の実測値の中央値μに対して下記の式(1)を満たすように設定されている、電極ペーストの塗工装置。
(μ/2000)+5≦φ≦(μ/1000)+10 (1)
なお、上記式1において、μの単位はmPa・sであり、φの単位はmmである。

A storage tank for storing an electrode paste containing an electrode active material;
A coating die for discharging the electrode paste supplied from the storage tank toward the surface of the electrode current collector;
A circulation path for circulating the electrode paste before being supplied to the coating die;
A pressure measuring unit for measuring the pressure of the electrode paste in the circulation path;
Based on the pressure of the electrode paste in the circulation path measured by the pressure measuring unit, an interval setting unit that sets an interval between the coating die and the electrode current collector at the start of application of the electrode paste; An electrode paste coating apparatus comprising:
An electrode paste in which the diameter φ of the piping of the circulation path to which the pressure measuring unit is attached is set so as to satisfy the following formula (1) with respect to the median value μ of the measured value of the viscosity of the electrode paste Coating equipment.
(Μ / 2000) + 5 ≦ φ ≦ (μ / 1000) +10 (1)
In the above formula 1, the unit of μ is mPa · s, and the unit of φ is mm.

JP2016174624A 2016-09-07 2016-09-07 Electrode paste coating equipment Active JP6709505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016174624A JP6709505B2 (en) 2016-09-07 2016-09-07 Electrode paste coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016174624A JP6709505B2 (en) 2016-09-07 2016-09-07 Electrode paste coating equipment

Publications (2)

Publication Number Publication Date
JP2018041616A true JP2018041616A (en) 2018-03-15
JP6709505B2 JP6709505B2 (en) 2020-06-17

Family

ID=61623984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174624A Active JP6709505B2 (en) 2016-09-07 2016-09-07 Electrode paste coating equipment

Country Status (1)

Country Link
JP (1) JP6709505B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188698A1 (en) * 2018-03-27 2019-10-03 株式会社Ihi回転機械エンジニアリング Liquid material supply device
US20210218017A1 (en) * 2020-01-14 2021-07-15 Toyota Jidosha Kabushiki Kaisha Method of producing electrode mixture paste and method of producing non-aqueous secondary battery
US20220283069A1 (en) * 2021-03-08 2022-09-08 Honda Motor Co., Ltd. Viscosity measuring system
WO2023085671A1 (en) * 2021-11-09 2023-05-19 주식회사 엘지에너지솔루션 Electrode slurry-supplying apparatus, coating apparatus, and die coater
US11978889B2 (en) * 2020-01-14 2024-05-07 Toyota Jidosha Kabushiki Kaisha Method of producing electrode mixture paste and method of producing non-aqueous secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031395A (en) * 2021-08-27 2023-03-07 주식회사 엘지에너지솔루션 Electrode slurry coating device for secondary battery and electrode slurry coating method using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188698A1 (en) * 2018-03-27 2019-10-03 株式会社Ihi回転機械エンジニアリング Liquid material supply device
JP2019171248A (en) * 2018-03-27 2019-10-10 株式会社Ihi回転機械エンジニアリング Liquid material supply device
JP6993276B2 (en) 2018-03-27 2022-01-13 株式会社Ihi回転機械エンジニアリング Liquid material supply device
US20210218017A1 (en) * 2020-01-14 2021-07-15 Toyota Jidosha Kabushiki Kaisha Method of producing electrode mixture paste and method of producing non-aqueous secondary battery
US11978889B2 (en) * 2020-01-14 2024-05-07 Toyota Jidosha Kabushiki Kaisha Method of producing electrode mixture paste and method of producing non-aqueous secondary battery
US20220283069A1 (en) * 2021-03-08 2022-09-08 Honda Motor Co., Ltd. Viscosity measuring system
US11940364B2 (en) * 2021-03-08 2024-03-26 Honda Motor Co., Ltd. Viscosity measuring system
WO2023085671A1 (en) * 2021-11-09 2023-05-19 주식회사 엘지에너지솔루션 Electrode slurry-supplying apparatus, coating apparatus, and die coater

Also Published As

Publication number Publication date
JP6709505B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6709505B2 (en) Electrode paste coating equipment
CN105015360B (en) Automobile power cell SOF monitoring method
JP6880689B2 (en) Die
TW201727990A (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
KR101980974B1 (en) Method for producing negative electrode and secondary battery, and secondary battery
JP2013044580A (en) State measuring apparatus for secondary battery
US20130062571A1 (en) Method for preparing electrode active material slurry and electrochemical capacitor comprising electrode using electrode active material slurry prepared by the method
US9231242B2 (en) Method for producing non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode paste
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
JP3680985B2 (en) Method for manufacturing battery sheet electrode
JP2012216375A (en) Coating device and coating film formation system
JP2017210680A (en) Metal foil, production method of metal foil, and production method of electrode using them
JP2013232365A (en) Electrode slurry supply device and method
CN103606703A (en) Lithium ion battery with uniform and stable current density
CN101587045B (en) Method for evaluating brittle damage of electrode slice of lithium ion battery
JP2015141773A (en) Method for manufacturing secondary battery negative electrode
JP2012179540A (en) Coating apparatus and coating film formation system
JPWO2012046265A1 (en) Estimation apparatus and estimation method
EP2894696B1 (en) Apparatus and method for manufacturing an electricity storage material
JP4359989B2 (en) Continuous production equipment for battery plates
CN114551779A (en) Method for manufacturing electrode and electrode paste coating apparatus
US20210249692A1 (en) Method and device for producing electrode body
CN112290033B (en) Method for measuring surface area of plate grid
KR20220052662A (en) Electrode manufacturing method for electric double layer capacitor
JP2017135055A (en) Powder for separator, slurry for separator, lithium ion battery, and method of manufacturing lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200506

R151 Written notification of patent or utility model registration

Ref document number: 6709505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151