JP2015141773A - Method for manufacturing secondary battery negative electrode - Google Patents

Method for manufacturing secondary battery negative electrode Download PDF

Info

Publication number
JP2015141773A
JP2015141773A JP2014012807A JP2014012807A JP2015141773A JP 2015141773 A JP2015141773 A JP 2015141773A JP 2014012807 A JP2014012807 A JP 2014012807A JP 2014012807 A JP2014012807 A JP 2014012807A JP 2015141773 A JP2015141773 A JP 2015141773A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014012807A
Other languages
Japanese (ja)
Other versions
JP6115786B2 (en
Inventor
祐介 小野田
Yusuke Onoda
祐介 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014012807A priority Critical patent/JP6115786B2/en
Publication of JP2015141773A publication Critical patent/JP2015141773A/en
Application granted granted Critical
Publication of JP6115786B2 publication Critical patent/JP6115786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of avoiding poor coating of a paste for forming a negative electrode active material layer, thereby manufacturing a secondary battery negative electrode excellent in quality stability.SOLUTION: A method for manufacturing a secondary battery negative electrode provided by the present invention includes: preparing a paste for forming a negative electrode active material layer, the paste including a negative electrode material and an aqueous solvent for dispersing the negative electrode material, and having a viscosity α at a shear rate: 1 sof more than 1,000 mPa s and less than 30,000 mPa s, and a viscosity β at a shear rate: 1,000 sof less than 1,300 mPa s; and applying the paste for forming a negative electrode active material layer to a negative electrode collector to form a negative electrode active material layer on the negative electrode collector.

Description

本発明は、二次電池用負極を製造する方法に関する。詳しくは、負極集電体上に負極活物質層が形成された二次電池用負極を製造する方法に関する。   The present invention relates to a method for producing a negative electrode for a secondary battery. Specifically, the present invention relates to a method for manufacturing a negative electrode for a secondary battery in which a negative electrode active material layer is formed on a negative electrode current collector.

近年、リチウム二次電池やニッケル水素電池等の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコン及び携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられている。   In recent years, secondary batteries such as lithium secondary batteries and nickel metal hydride batteries have become increasingly important as power sources mounted on vehicles using electricity as a drive source, or power sources mounted on personal computers, portable terminals, and other electrical products. . In particular, a lithium secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source for vehicle mounting.

この種の二次電池の典型的な負極は、電荷担体となる化学種を可逆的に吸蔵および放出し得る負極活物質を主成分とする負極活物質層が負極集電体の上に形成された構成の負極を備える。かかる負極活物質層は、負極活物質をバインダや増粘剤とともに適当な溶媒を添加して調製したペーストまたはスラリー状組成物(以下、「負極活物質層形成用ペースト」と略称する場合がある。)を負極集電体に付与(典型的には塗工乾燥)することによって形成される。上記負極の製造方法に関する従来技術として特許文献1が挙げられる。   In a typical negative electrode of this type of secondary battery, a negative electrode active material layer mainly composed of a negative electrode active material capable of reversibly occluding and releasing chemical species as charge carriers is formed on a negative electrode current collector. A negative electrode having the above structure. Such a negative electrode active material layer is sometimes abbreviated as a paste or slurry-like composition prepared by adding an appropriate solvent together with a binder or a thickener (hereinafter referred to as “negative electrode active material layer forming paste”). .) Is applied to the negative electrode current collector (typically, coating and drying). Patent document 1 is mentioned as a prior art regarding the manufacturing method of the said negative electrode.

特開2013−045714号公報JP 2013-045714 A

ところで、上記負極を効率よく製造するためには、負極活物質層形成用ペーストが乾きやすくなるように、該ペーストを高固形分化して溶媒を減らすことが望ましい。しかしながら、負極活物質層形成用ペーストを高固形分化すると、該ペーストの粘度が著しく増大する。そのため、該ペーストを負極集電体に塗工する際の塗工性が損なわれたり、塗工装置の配管に詰まりが生じたりする場合があった。   By the way, in order to efficiently manufacture the negative electrode, it is desirable to reduce the solvent by highly solidifying the paste so that the negative electrode active material layer forming paste can be easily dried. However, when the negative electrode active material layer forming paste is highly solid differentiated, the viscosity of the paste is remarkably increased. For this reason, there are cases where the coating property when the paste is applied to the negative electrode current collector is impaired, or the piping of the coating apparatus is clogged.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、負極活物質層形成用ペーストの塗工不良を回避し得、品質安定性に優れた二次電池用負極を製造する方法を提供することである。   The present invention has been made in view of the above points, and its main purpose is to manufacture a negative electrode for a secondary battery that can avoid poor coating of the negative electrode active material layer forming paste and has excellent quality stability. Is to provide a method.

上記目的を実現するべく、本発明により、負極集電体上に負極活物質層が形成された二次電池用の負極を製造する方法が提供される。ここで開示される製造方法は、負極活物質と該負極活物質を分散させる水系溶媒とを含み、せん断速度:1s−1のときの粘度αが1000mPa・s<α<30000mPa・sであり、且つ、せん断速度:1000s−1のときの粘度βがβ<1300mPa・sである負極活物質層形成用ペーストを調製することを包含する。また、前記負極活物質層形成用ペーストを負極集電体に付与して該負極集電体上に負極活物質層を形成することを包含する。ここで上記粘度α、βは、市販のせん断粘度計により測定され得る粘度である。例えば、当該分野で標準的なレオメータもしくはE型粘度計等のコーンプレート式粘度計を使用することにより、上記のようなせん断速度域の条件で容易に粘度を測定することができる。 In order to achieve the above object, the present invention provides a method for producing a negative electrode for a secondary battery in which a negative electrode active material layer is formed on a negative electrode current collector. The production method disclosed herein includes a negative electrode active material and an aqueous solvent in which the negative electrode active material is dispersed, and a viscosity α at a shear rate of 1 s −1 is 1000 mPa · s <α <30000 mPa · s, In addition, the method includes preparing a negative electrode active material layer forming paste having a viscosity β of β <1300 mPa · s at a shear rate of 1000 s −1 . Further, the method includes applying the negative electrode active material layer forming paste to a negative electrode current collector to form a negative electrode active material layer on the negative electrode current collector. Here, the above-mentioned viscosities α and β are viscosities that can be measured by a commercially available shear viscometer. For example, by using a cone plate viscometer such as a standard rheometer or E type viscometer in the field, the viscosity can be easily measured under the conditions of the shear rate range as described above.

ここで開示される上記構成の負極活物質層形成用ペーストは、上記のとおりの粘度特性を有する結果、静置時における安定性およびハンドリング性に優れ、塗工時にスジ等の不具合が生じ難い。そのため、上記構成のペーストを用いれば、塗工不良の発生を防止しつつ、より高性能な負極を製造することができる。   The negative electrode active material layer forming paste disclosed above has viscosity characteristics as described above. As a result, it is excellent in stability at the time of standing and handling property, and hardly causes defects such as streaks during coating. Therefore, if the paste having the above configuration is used, a higher performance negative electrode can be produced while preventing the occurrence of coating failure.

本発明の一実施形態に係る二次電池を模式的に示す図である。It is a figure which shows typically the secondary battery which concerns on one Embodiment of this invention. せん断速度と粘度との関係を示すグラフである。It is a graph which shows the relationship between a shear rate and a viscosity. せん断速度と粘度との関係を示すグラフである。It is a graph which shows the relationship between a shear rate and a viscosity. せん断速度と粘度との関係を示すグラフである。It is a graph which shows the relationship between a shear rate and a viscosity. せん断速度と粘度との関係を示すグラフである。It is a graph which shows the relationship between a shear rate and a viscosity. せん断速度と粘度との関係を示すグラフである。It is a graph which shows the relationship between a shear rate and a viscosity.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、本明細書において「二次電池」とは、繰り返し充電可能な電池一般をいい、リチウム二次電池(典型的にはリチウムイオン電池)、ニッケル水素電池、ニッケルカドミウム電池等の化学反応を伴ういわゆる化学電池と、電気二重層キャパシタ等のいわゆる物理電池とを包含する用語である。また、本明細書において「電極活物質」とは、二次電池において電荷担体となる化学種を可逆的に吸蔵および放出(典型的には挿入および脱離)可能な活物質をいう。また、本明細書中において言及するペーストの粘度は、常温において測定された粘度の値を示している。ここで「常温」とは15〜35℃の温度範囲をいい、典型的には20〜30℃の温度範囲(例えば25℃)をいう。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
In the present specification, “secondary battery” generally refers to a battery that can be repeatedly charged, and involves a chemical reaction such as a lithium secondary battery (typically a lithium ion battery), a nickel metal hydride battery, or a nickel cadmium battery. This term includes so-called chemical batteries and so-called physical batteries such as electric double layer capacitors. In the present specification, the “electrode active material” refers to an active material capable of reversibly occluding and releasing (typically inserting and removing) a chemical species that serves as a charge carrier in a secondary battery. Moreover, the viscosity of the paste mentioned in this specification has shown the value of the viscosity measured at normal temperature. Here, “normal temperature” refers to a temperature range of 15 to 35 ° C., and typically refers to a temperature range of 20 to 30 ° C. (for example, 25 ° C.).

特に限定することを意図したものではないが、以下では主として銅製の箔状負極集電体(銅箔)を有するリチウムイオン二次電池用の負極(負極シート)を例として、本発明を詳細に説明する。   Although not intended to be particularly limited, the present invention will be described in detail below, taking as an example a negative electrode (negative electrode sheet) for a lithium ion secondary battery mainly having a copper foil-shaped negative electrode current collector (copper foil). explain.

本実施形態に係るリチウムイオン二次電池用電極の製造方法は、負極集電体上に負極活物質層形成用ペーストを塗布、乾燥してなる負極活物質層を有する負極(負極シート)を製造する方法である。   The manufacturing method of the electrode for lithium ion secondary batteries which concerns on this embodiment manufactures the negative electrode (negative electrode sheet) which has the negative electrode active material layer formed by apply | coating and drying the paste for negative electrode active material layer formation on a negative electrode collector. It is a method to do.

ここに開示される負極活物質層形成用ペーストは、従来のこの種のペースト材料と同様に、負極活物質粉末と、該粉末を分散させるための水系媒体とを主体に構成される材料である。   The negative electrode active material layer forming paste disclosed herein is a material mainly composed of a negative electrode active material powder and an aqueous medium for dispersing the powder, as in the conventional paste material of this type. .

該ペーストの固形分の主体をなす負極活物質粉末としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、天然黒鉛、人造黒鉛、グラファイト、アモルファスカーボン等の炭素系材料が挙げられる。このような材料(典型的には粒子状)としては、例えば、従来公知の方法で調製される材料粉末をそのまま使用することができる。例えば、レーザ回折・散乱法に基づく平均粒径(D50径)が凡そ5μm〜20μm(好ましくは8μm〜15μm)の範囲にある粒子によって実質的に構成された材料粉末を負極活物質として好ましく用いることができる。   As the negative electrode active material powder that is the main component of the solid content of the paste, one or more of materials conventionally used in lithium ion secondary batteries can be used without particular limitation. Preferable examples include carbon-based materials such as natural graphite, artificial graphite, graphite, and amorphous carbon. As such a material (typically in particulate form), for example, a material powder prepared by a conventionally known method can be used as it is. For example, a material powder substantially composed of particles having an average particle diameter (D50 diameter) based on a laser diffraction / scattering method in the range of about 5 μm to 20 μm (preferably 8 μm to 15 μm) is preferably used as the negative electrode active material. Can do.

負極活物質層形成用ペーストは、本発明の目的を達成し得る限りにおいて、バインダや増粘剤として機能する種々のポリマーを含ませることができる。バインダとして機能するポリマーの好適例として、スチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が例示される。また、増粘剤として機能するポリマーの好適例として、カルボキシメチルセルロース(CMC)が例示される。これらポリマーを負極活物質粉末とともに適当な水系溶媒に分散させて混練することによって、負極活物質層形成用ペーストを調製することができる。
特に限定されるものではないが、負極活物質層形成用ペーストの水系溶媒を除く固形分全体に占める負極活物質粉末の含有割合は、概ね90質量%以上(例えば90質量%〜99.5質量%)とすることが適当であり、好ましくは95質量%以上(例えば95質量%〜99質量%)である。また、上記固形分全体に占めるバインダの含有割合は、概ね0.1質量%以上(例えば0.1質量%〜1質量%)とすることが適当であり、好ましくは0.5質量%以上(例えば0.5質量%〜0.8質量%)である。
The negative electrode active material layer forming paste can contain various polymers that function as binders and thickeners as long as the object of the present invention can be achieved. Preferable examples of the polymer functioning as the binder include styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and the like. Moreover, carboxymethylcellulose (CMC) is illustrated as a suitable example of the polymer which functions as a thickener. By dispersing and kneading these polymers together with the negative electrode active material powder in an appropriate aqueous solvent, a negative electrode active material layer forming paste can be prepared.
Although not particularly limited, the content ratio of the negative electrode active material powder in the total solid content excluding the aqueous solvent of the negative electrode active material layer forming paste is approximately 90% by mass or more (for example, 90% by mass to 99.5% by mass). %), And preferably 95% by mass or more (for example, 95% by mass to 99% by mass). The binder content in the entire solid content is suitably about 0.1% by mass or more (for example, 0.1% by mass to 1% by mass), preferably 0.5% by mass or more ( For example, 0.5 mass% to 0.8 mass%).

上記負極活物質粉末を分散させる水系溶媒としては、従来のこの種のペースト材料に用いられているものを特に制限なく使用することができる。典型的には、水または水を主体とする混合溶媒が好ましく用いられる。かかる混合溶媒を構成する水以外の溶媒成分としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。例えば、該水系溶媒の80質量%以上(より好ましくは90質量%以上、さらに好ましくは95質量%以上)が水である水系溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる水系溶媒が挙げられる。   As the aqueous solvent in which the negative electrode active material powder is dispersed, those used in conventional paste materials of this type can be used without particular limitation. Typically, water or a mixed solvent mainly composed of water is preferably used. As a solvent component other than water constituting such a mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used. For example, it is preferable to use an aqueous solvent in which 80% by mass or more (more preferably 90% by mass or more, more preferably 95% by mass or more) of the aqueous solvent is water. A particularly preferred example is an aqueous solvent substantially consisting of water.

ここで開示される負極製造方法に好適に使用される負極活物質層形成用ペーストは、せん断速度:1s−1のときの粘度αが1000mPa・s<α<30000mPa・s(好ましくは3000mPa・s≦α≦25000mPa・s、例えば6000mPa・s≦α≦15000mPa・s)であり、且つ、せん断速度:1000s−1のときの粘度βがβ<1300mPa・s(例えば500mPa・s≦β<1300mPa・s、好ましくはβ≦1150mPa・s、例えばβ≦1000mPa・s)である。典型的には、上記粘度α、βは、市販のレオメータにより、ペースト材料を上記いずれかのせん断速度条件でせん断して測定した粘度である。ここで開示される負極製造方法において使用される負極活物質層形成用ペーストは、1000mPa・s<α<30000mPa・sかつβ<1300mPa・sであるような粘度を有することにより、該ペーストを負極集電体に付与する際に好適な安定性、ハンドリング性および塗工性を示す。 The negative electrode active material layer forming paste suitably used for the negative electrode manufacturing method disclosed herein has a viscosity α at a shear rate of 1 s −1 of 1000 mPa · s <α <30000 mPa · s (preferably 3000 mPa · s). ≦ α ≦ 25000 mPa · s, for example 6000 mPa · s ≦ α ≦ 15000 mPa · s), and the viscosity β when the shear rate is 1000 s −1 is β <1300 mPa · s (for example, 500 mPa · s ≦ β <1300 mPa · s). s, preferably β ≦ 1150 mPa · s, for example β ≦ 1000 mPa · s). Typically, the above-mentioned viscosities α and β are viscosities measured by using a commercially available rheometer to shear the paste material under any of the above shear rate conditions. The negative electrode active material layer forming paste used in the negative electrode manufacturing method disclosed herein has a viscosity such that 1000 mPa · s <α <30000 mPa · s and β <1300 mPa · s. When it is applied to a current collector, it exhibits suitable stability, handling properties and coating properties.

即ち、せん断速度:1s−1における粘度αを1000mPa・s<αとした負極活物質層形成用ペーストは、静置時(攪拌等の操作を行わずに常温で静置した際)の安定性に優れるため、該ペーストを負極集電体に付与した際、ペースト中の固形分が沈降することなく良好な分散状態を維持し得る。そのため、ペースト中の固形分が沈降することによる種々の不具合(例えば負極活物質やバインダの偏在、それに伴う内部抵抗の増加や負極活物質層と負極集電体との密着性の低下等)を防止することができる。また、せん断速度:1s−1における粘度αをα<30000mPa・sとすることにより、ペーストのハンドリング性が向上するため、塗工時にペーストが配管(例えばダイコーター等の塗工部、タンクからコータ部までの液送部)に詰まるような不都合を回避することができる。
さらに、せん断速度:1000s−1における粘度βをβ<1300mPa・sとした負極活物質層形成用ペーストは、流動性が高く(ダイコーター等の細く狭い流路を通りやすく)、塗工性が良好である。そのため、該ペーストを負極集電体に塗工した際、塗工面にスジや厚みムラが生じることを防止することができる。
即ち、上記構成によると、ペーストの安定性、ハンドリング性および塗工性が良好であるので、塗工不良の発生を回避しつつ、負極活物質層が負極集電体から剥がれ難く、内部抵抗のより低い高性能な負極を製造することができる。
That is, the negative electrode active material layer forming paste having a viscosity α at a shear rate of 1 s −1 of 1000 mPa · s <α is stable when left standing (when left at room temperature without performing stirring or the like). Therefore, when the paste is applied to the negative electrode current collector, a good dispersion state can be maintained without the solid content in the paste being settled. For this reason, various problems caused by the solid content in the paste being settled (for example, uneven distribution of the negative electrode active material and binder, increase in internal resistance, and decrease in adhesion between the negative electrode active material layer and the negative electrode current collector). Can be prevented. Further, by setting the viscosity α at a shear rate of 1 s −1 to α <30000 mPa · s, the handleability of the paste is improved, so that the paste is applied to a pipe (for example, a coating part such as a die coater, a tank to a coater). Inconveniences such as clogging in the liquid feeding part) can be avoided.
Furthermore, the negative electrode active material layer forming paste in which the viscosity β at a shear rate of 1000 s −1 is β <1300 mPa · s has high fluidity (easy to pass through a narrow narrow channel such as a die coater), and has a coating property. It is good. Therefore, when the paste is applied to the negative electrode current collector, streaks and thickness unevenness can be prevented from occurring on the coated surface.
That is, according to the above configuration, since the paste has good stability, handling properties and coating properties, the negative electrode active material layer is difficult to peel off from the negative electrode current collector while avoiding the occurrence of poor coating, and the internal resistance is low. Lower performance negative electrodes can be produced.

かかる粘度α、βは、例えば、ペーストに含まれる増粘剤の含有割合、負極活物質の吸油量、ペーストの固形分率等を変えることによって調整することができる。負極活物質層形成用ペーストの固形分全体に占める増粘剤の含有割合としては、概ね0.2質量%〜0.7質量%にすることが適当であり、好ましくは0.3質量%〜0.5質量%である。また、負極活物質の吸油量としては、概ね40×10−5(m/kg)〜60×10−5(m/kg)にすることが適当であり、好ましくは40×10−5(m/kg)〜45×10−5(m/kg)である。ここで負極活物質の吸油量は、試薬としてアマニ油を用い、検査対象となる負極活物質に定速度ビュレットで滴定し、粘度特性の変化をトルク検出器によって測定する。そして、発生した最大トルクの70%のトルクに対応する負極活物質の単位質量あたりのアマニ油添加量を吸油量とするものとする。測定器としては、例えば株式会社あさひ総研の吸油量測定装置を使用することができる。また、ペーストの固形分率としては、概ね50質量%以上とすることが好ましく、例えば50質量%〜70質量%の範囲が適当であり、好ましくは55質量%〜65質量%であり、より好ましくは58質量%〜62質量%である。このような増粘剤の含有割合、負極活物質の吸油量、ペーストの固形分率の範囲内であると、前述した粘度α、βを有する負極活物質層形成用ペーストを好適に調製することができる。 The viscosities α and β can be adjusted, for example, by changing the content of the thickener contained in the paste, the oil absorption of the negative electrode active material, the solid content of the paste, and the like. The content of the thickener in the entire solid content of the negative electrode active material layer forming paste is appropriately 0.2% by mass to 0.7% by mass, preferably 0.3% by mass to 0.5% by mass. Further, the oil absorption amount of the negative electrode active material is suitably about 40 × 10 −5 (m 3 / kg) to 60 × 10 −5 (m 3 / kg), preferably 40 × 10 −5. (M 3 / kg) to 45 × 10 −5 (m 3 / kg). Here, the amount of oil absorption of the negative electrode active material is linseed oil as a reagent, titrated on the negative electrode active material to be inspected with a constant speed burette, and the change in viscosity characteristics is measured with a torque detector. The amount of linseed oil added per unit mass of the negative electrode active material corresponding to 70% of the generated maximum torque is taken as the oil absorption amount. As the measuring device, for example, an oil absorption measuring device of Asahi Research Institute, Ltd. can be used. Moreover, as a solid content rate of a paste, it is preferable to set it as 50 mass% or more in general, For example, the range of 50 mass%-70 mass% is suitable, Preferably it is 55 mass%-65 mass%, More preferably Is 58 mass% to 62 mass%. A negative electrode active material layer forming paste having the above-mentioned viscosities α and β is preferably prepared within the range of the content of such a thickener, the oil absorption amount of the negative electrode active material, and the solid content rate of the paste. Can do.

ここで開示される負極活物質層形成用ペーストは、典型的には上記負極活物質粉末、バインダ、増粘剤および水系溶媒を混練することによって調製することができる。好ましくは、まず、負極活物質粉末と増粘剤とを粉体の状態で混合する。次いで、粉体混合物に水系溶媒を複数回に分けて少量ずつ投入・混練(固練り)した後、さらにバインダを投入して混練するとよい。該混練に用いる装置は特に限定するものではないが、例えば、プラネタリーミキサー、ディスパー、ボールミル、ニーダ等の押出式混練機、ミキサー等が挙げられる。このような順序で各種ペースト材料を混合し、相互に練り合わせることにより、前述した粘度α、βを有する負極活物質層形成用ペーストを好適に調製することができる。   The negative electrode active material layer forming paste disclosed herein can be typically prepared by kneading the negative electrode active material powder, a binder, a thickener, and an aqueous solvent. Preferably, first, the negative electrode active material powder and the thickener are mixed in a powder state. Next, the aqueous solvent may be added to the powder mixture a plurality of times and added and kneaded (solid kneaded) in small portions, and then a binder may be added and kneaded. The apparatus used for the kneading is not particularly limited, and examples thereof include a planetary mixer, an extrusion kneader such as a disper, a ball mill, and a kneader, and a mixer. By mixing various paste materials in this order and kneading them together, the negative electrode active material layer forming paste having the aforementioned viscosity α, β can be suitably prepared.

その後、負極活物質層形成用ペーストを負極集電体に付与して該集電体上に負極活物質層を形成する工程を行う。負極活物質層形成用ペーストを負極集電体に付与する操作は、従来の一般的なリチウムイオン二次電池用負極を作製する場合と同様にして行うことができる。例えば、適当な塗工装置(ダイコーター、スリットコーター、コンマコーター等)を使用して、上記負極集電体に所定量の上記負極活物質層形成用ペーストを均一な厚さに塗工する。その後、乾燥炉で負極活物質層形成用ペースト中の水系溶媒を揮発させることによって、負極活物質層形成用ペースト中の水系溶媒を除去する。負極活物質層形成用ペーストから水系溶媒を除去することによって、負極活物質層が形成される。このようにして、負極集電体上に負極活物質層が形成された負極(負極シート)を得ることができる。なお、乾燥後、必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことによって、負極活物質層の厚みや密度を適宜調整することができる。負極活物質層形成用ペーストの塗布量(目付量)は、片面あたり約5mg/cm(固形分基準)以下とすることが好ましく、4mg/cm以下がさらに好ましい。 Then, the process of providing the negative electrode active material layer forming paste to a negative electrode collector, and forming a negative electrode active material layer on this collector is performed. The operation of applying the negative electrode active material layer forming paste to the negative electrode current collector can be performed in the same manner as in the case of producing a conventional negative electrode for a lithium ion secondary battery. For example, using a suitable coating apparatus (a die coater, a slit coater, a comma coater, etc.), a predetermined amount of the negative electrode active material layer forming paste is applied to the negative electrode current collector to a uniform thickness. Then, the aqueous solvent in the negative electrode active material layer forming paste is removed by volatilizing the aqueous solvent in the negative electrode active material layer forming paste in a drying furnace. The negative electrode active material layer is formed by removing the aqueous solvent from the negative electrode active material layer forming paste. Thus, a negative electrode (negative electrode sheet) in which a negative electrode active material layer is formed on a negative electrode current collector can be obtained. In addition, after drying, the thickness and density of a negative electrode active material layer can be suitably adjusted by performing an appropriate press process (for example, roll press process) as needed. The coating amount (weight per unit area) of the negative electrode active material layer forming paste is preferably about 5 mg / cm 2 (solid basis) or less per side, more preferably 4 mg / cm 2 or less.

ここに開示される方法により製造された負極を備えるリチウムイオン二次電池を構成するその他の材料および部材自体は、従来同種の電池に備えられるものと同様でよく、特に制限はない。以下、その他の構成要素について説明するが、本発明を係る実施形態に限定することを意図したものではない。   Other materials and members constituting the lithium ion secondary battery including the negative electrode manufactured by the method disclosed herein may be the same as those conventionally provided in the same type of battery, and are not particularly limited. Hereinafter, other components will be described, but the present invention is not intended to be limited to such embodiments.

例えば、正極(正極シート)50は、図1に示すように、シート状の正極集電体52(例えばアルミニウム箔)の上に正極活物質層54が形成された構成であり得る。正極集電体52には、例えば、厚さが凡そ15μmの帯状のアルミニウム箔が用いられている。正極集電体52の幅方向片側の縁部に沿って正極活物質層非形成部52aが設定されている。図示例では、正極活物質層54は、正極集電体52に設定された正極活物質層非形成部52aを除いて、正極集電体52の両面に保持されている。上記正極活物質層54は、正極活物質、および必要に応じて添加される導電材、バインダ、増粘剤等の各種添加材を適当な溶媒に混合されてなる組成物(正極活物質層形成用ペースト)を正極集電体52に塗布し、該溶媒を乾燥させて圧縮成型することにより形成される。   For example, the positive electrode (positive electrode sheet) 50 may have a configuration in which a positive electrode active material layer 54 is formed on a sheet-like positive electrode current collector 52 (for example, an aluminum foil), as shown in FIG. For the positive electrode current collector 52, for example, a strip-shaped aluminum foil having a thickness of about 15 μm is used. A positive electrode active material layer non-forming portion 52 a is set along an edge portion on one side in the width direction of the positive electrode current collector 52. In the illustrated example, the positive electrode active material layer 54 is held on both surfaces of the positive electrode current collector 52 except for the positive electrode active material layer non-forming portion 52 a set in the positive electrode current collector 52. The positive electrode active material layer 54 is a composition in which a positive electrode active material and various additives such as a conductive material, a binder, and a thickener added as necessary are mixed in an appropriate solvent (positive electrode active material layer formation). The paste is applied to the positive electrode current collector 52, and the solvent is dried and compression molded.

正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、リチウムと一種または二種以上の遷移金属元素(特にNi、Co、Mnのうちの少なくとも一種の遷移金属元素)とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。例えば、正極活物質に、アセチレンブラック(AB)等の導電材を混合することができる。また、正極活物質と導電材の他に、PVdF、SBR、CMC等の各種ポリマーを添加することができる。これらを適当な分散媒体に分散させて混練することによって、正極活物質層形成用ペーストを調製することができる。正極活物質層54は、このペーストを正極集電体52に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。   As the positive electrode active material, a material used as a positive electrode active material of a lithium ion secondary battery can be used. As an example of a positive electrode active material, an oxide (lithium transition metal) containing lithium and one or more transition metal elements (particularly at least one transition metal element of Ni, Co, and Mn) as constituent metal elements A positive electrode active material mainly composed of an oxide). For example, a conductive material such as acetylene black (AB) can be mixed with the positive electrode active material. In addition to the positive electrode active material and the conductive material, various polymers such as PVdF, SBR, and CMC can be added. A positive electrode active material layer forming paste can be prepared by dispersing and kneading these in an appropriate dispersion medium. The positive electrode active material layer 54 is formed by applying this paste to the positive electrode current collector 52, drying it, and pressing it to a predetermined thickness.

負極シート60は、帯状の負極集電体62と負極活物質層64とを備えている。負極集電体62には、例えば、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体62の幅方向片側には、縁部に沿って負極活物質層非形成部62aが設定されている。負極活物質層64は、負極集電体62に設定された負極活物質層非形成部62aを除いて、負極集電体62の両面に保持されている。負極活物質層64には、負極活物質や増粘剤やバインダなどが含まれている。負極活物質層64の形成方法は、前述した通りである。   The negative electrode sheet 60 includes a strip-shaped negative electrode current collector 62 and a negative electrode active material layer 64. For the negative electrode current collector 62, for example, a strip-shaped copper foil having a thickness of about 10 μm is used. On one side in the width direction of the negative electrode current collector 62, a negative electrode active material layer non-formation part 62a is set along the edge. The negative electrode active material layer 64 is held on both surfaces of the negative electrode current collector 62 except for the negative electrode active material layer non-forming portion 62 a set in the negative electrode current collector 62. The negative electrode active material layer 64 includes a negative electrode active material, a thickener, a binder, and the like. The formation method of the negative electrode active material layer 64 is as described above.

また、正負極シート50,60間に使用されるセパレータシート70の好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、合成樹脂製(例えばポリエチレン等のポリオレフィン製)多孔質セパレータシートを好適に使用し得る。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、セパレータが不要な場合(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。   Moreover, as a suitable example of the separator sheet 70 used between the positive and negative electrode sheets 50 and 60, one made of a porous polyolefin-based resin can be cited. For example, a porous separator sheet made of synthetic resin (for example, made of polyolefin such as polyethylene) can be suitably used. When a solid electrolyte or a gel electrolyte is used as the electrolyte, a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).

かかる構成の捲回電極体20を電池ケース30のケース本体32に収容し、そのケース本体32内に適当な非水電解液を配置(注液)する。ケース本体32内に上記捲回電極体20と共に収容される非水電解液としては、従来のリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。例えば、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を用いることができる。 The wound electrode body 20 having such a configuration is accommodated in the case main body 32 of the battery case 30, and an appropriate nonaqueous electrolytic solution is disposed (injected) into the case main body 32. As the non-aqueous electrolyte accommodated in the case body 32 together with the wound electrode body 20, the same non-aqueous electrolyte as that used in a conventional lithium ion secondary battery can be used without any particular limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. For example, a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3 contains LiPF 6 as a supporting salt at a concentration of about 1 mol / liter. A nonaqueous electrolyte solution can be used.

上記非水電解液を捲回電極体20とともにケース本体32に収容し、ケース本体32の開口部を蓋体34で封止することにより、本実施形態に係るリチウムイオン二次電池100の構築(組み立て)が完成する。なお、ケース本体32の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様にして行うことができる。また、上記電池ケース30の構造、大きさ、材料(例えば金属製またはラミネートフィルム製であり得る)等について特に制限はない。   The non-aqueous electrolyte is housed in the case body 32 together with the wound electrode body 20, and the opening of the case body 32 is sealed with the lid body 34, thereby constructing the lithium ion secondary battery 100 according to the present embodiment ( Assembly) is completed. In addition, the sealing process of the case main body 32 and the arrangement | positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium ion secondary battery. Moreover, there is no restriction | limiting in particular about the structure of the said battery case 30, a magnitude | size, material (For example, it can be metal or a product made from a laminate film), etc.

このようにして構築された二次電池は、上記のように電池抵抗が低く、かつ密着性のよい負極活物質層を備えた負極を用いて構築されていることから、優れた電池性能を示すものである。例えば、上記負極を用いて電池を構築することにより、サイクル特性がよい、出力特性に優れる、耐久性が高い、生産安定性がよい、のうちの少なくとも一つ(好ましくは全部)を満たす二次電池を提供することができる。   The secondary battery constructed in this way exhibits excellent battery performance because it is constructed using a negative electrode having a negative electrode active material layer with low battery resistance and good adhesion as described above. Is. For example, by constructing a battery using the negative electrode, a secondary satisfying at least one (preferably all) of good cycle characteristics, excellent output characteristics, high durability, and good production stability. A battery can be provided.

以下、本発明に関する試験例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, although the test example regarding this invention is demonstrated, it is not intending to limit this invention to what is shown to this specific example.

本発明に係るリチウムイオン二次電池用の負極を作製し、該負極における負極活物質層の引張試験を行い剥離強度について評価した。また、該負極を用いてリチウムイオン二次電池を構築し、該電池のIV抵抗を評価した。以下、具体的な方法を示す。   A negative electrode for a lithium ion secondary battery according to the present invention was prepared, and a tensile test of the negative electrode active material layer in the negative electrode was performed to evaluate the peel strength. Moreover, the lithium ion secondary battery was constructed | assembled using this negative electrode, and IV resistance of this battery was evaluated. A specific method will be described below.

負極活物質層形成用ペーストの作製を目的として、黒鉛粉末(負極活物質)とCMC粉末(増粘剤)とをプラネタリーミキサーで混合した。次いで、水系溶媒しての純水を複数回に分けて投入し、混練したのち、さらにSBR(バインダ)を混合して目的の負極活物質層形成用ペーストを得た。ここで例1〜19では、ペーストに含まれるCMCの含有量、黒鉛の吸油量、ペーストの固形分率がそれぞれ異なる。また、例1〜19では、黒鉛とCMCとSBRとの合計を100質量%としたときのSBRの含有量を0.7質量%で一定とした。各例の負極活物質層形成用ペーストの粘度を、市販されるレオメータ(アントンパール社製MCR301)を用い、液温を25℃に調整してからせん断速度を変化させて測定した。結果を表1、図2〜図6に示す。図2は例1〜3のせん断速度と粘度との関係を示すグラフであり、図3は例3、11のせん断速度と粘度との関係を示すグラフであり、図4は例9、13、17のせん断速度と粘度との関係を示すグラフであり、図5は例5、11のせん断速度と粘度との関係を示すグラフであり、図6は例12、13のせん断速度と粘度との関係を示すグラフである。   For the purpose of producing a negative electrode active material layer forming paste, graphite powder (negative electrode active material) and CMC powder (thickening agent) were mixed with a planetary mixer. Next, pure water as an aqueous solvent was added in a plurality of times, kneaded, and further mixed with SBR (binder) to obtain a target negative electrode active material layer forming paste. Here, in Examples 1 to 19, the content of CMC contained in the paste, the oil absorption of graphite, and the solid content of the paste are different. Moreover, in Examples 1-19, content of SBR was made constant with 0.7 mass% when the sum total of graphite, CMC, and SBR was 100 mass%. The viscosity of the negative electrode active material layer forming paste of each example was measured by using a commercially available rheometer (MCR301 manufactured by Anton Paar), adjusting the liquid temperature to 25 ° C., and changing the shear rate. The results are shown in Table 1 and FIGS. FIG. 2 is a graph showing the relationship between the shear rate and the viscosity in Examples 1 to 3, FIG. 3 is a graph showing the relationship between the shear rate and the viscosity in Examples 3 and 11, and FIG. 17 is a graph showing the relationship between the shear rate and the viscosity of FIG. 17, FIG. 5 is a graph showing the relationship between the shear rate and the viscosity of Examples 5 and 11, and FIG. 6 is a graph showing the relationship between the shear rate and the viscosity of Examples 12 and 13. It is a graph which shows a relationship.

Figure 2015141773
Figure 2015141773

各例の負極活物質層形成用ペーストを試験管に採取し、3日間静置した後、上澄み液の固形分率を測定した。そして、ペースト作製直後の固形分率との差分を算出した。結果を表2の該当欄に示す。ここでは固形分率の変化(差分)が少ないほど、安定性が高い(良好な分散状態が維持されている)と云える。   The negative electrode active material layer forming paste of each example was collected in a test tube and allowed to stand for 3 days, and then the solid content of the supernatant was measured. And the difference with the solid content rate immediately after paste preparation was computed. The results are shown in the corresponding column of Table 2. Here, it can be said that the smaller the change (difference) in the solid content rate, the higher the stability (a good dispersion state is maintained).

また、各例の負極活物質層形成用ペーストを長尺シート状の銅箔(厚み10μm、負極集電体)の両面にダイコーターを用いて帯状に塗布して乾燥することにより、負極集電体の両面に負極活物質層が設けられた負極シートを作製した。負極活物質層形成用ペーストの塗布量は、片面あたり約4mg/cm(固形分基準)となるように調節した。そして、上記ペーストを銅箔に塗布する際の塗工性を目視で確認した。結果を表2の該当欄に示す。ここではペーストの塗工が円滑に行われ、塗膜表面にスジムラ等が生じていないものを「○」、ダイコーターの塗工部にペーストが詰まったり、塗膜表面にスジムラなどが生じたりしたものを「×」と表記した。 In addition, the negative electrode active material layer forming paste of each example was applied to both sides of a long sheet-like copper foil (thickness 10 μm, negative electrode current collector) in a band shape using a die coater and dried, whereby a negative electrode current collector A negative electrode sheet having negative electrode active material layers provided on both sides of the body was produced. The coating amount of the negative electrode active material layer forming paste was adjusted so as to be about 4 mg / cm 2 (based on solid content) per side. And the coating property at the time of apply | coating the said paste to copper foil was confirmed visually. The results are shown in the corresponding column of Table 2. Here, the coating of the paste was performed smoothly, “○” when there was no unevenness on the coating film surface, paste stuck in the coating part of the die coater, or unevenness on the coating surface. The thing was described as "x".

各例1、6、9、11〜16、18の負極シートの剥離強度を測定した。具体的には、負極シートを測定台に載せ、負極活物質層の面を両面テープで治具に固定し、該治具を負極集電体の面に対して垂直(剥離角度が90±5°)となる方向に引っ張り、毎秒0.5mmの速度で連続的に剥がした。そして、負極活物質層が負極集電体から剥がれる間の荷重の平均値を剥離強度とした。結果を表2の該当欄に示す。   The peel strengths of the negative electrode sheets of Examples 1, 6, 9, 11-16, and 18 were measured. Specifically, the negative electrode sheet is placed on a measuring table, the surface of the negative electrode active material layer is fixed to a jig with a double-sided tape, and the jig is perpendicular to the surface of the negative electrode current collector (with a peeling angle of 90 ± 5). )) And peeled off continuously at a speed of 0.5 mm per second. And the average value of the load while a negative electrode active material layer peeled from a negative electrode electrical power collector was made into peeling strength. The results are shown in the corresponding column of Table 2.

さらに、各例1、6、9、11〜16、18の負極シートを用いて評価用セル(設計容量20mAh)を構築し、電池のIV抵抗を評価した。具体的には、各例の負極シートと2枚の正極シートとを正極活物質層と負極活物質層とが対向するように交互に積層し、両シートの間にセパレータ(PP(ポリプロピレン)/PE(ポリエチレン)/PP(ポリプロピレン)を積層した多孔質シートを使用した。)を挿入して電極体を作製した。この電極体を非水電解液とともにラミネート袋に挿入して試験用リチウムイオン二次電池(ラミネートセル)を構築した。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。 Furthermore, an evaluation cell (design capacity 20 mAh) was constructed using the negative electrode sheets of Examples 1, 6, 9, 11-16, and 18, and the IV resistance of the battery was evaluated. Specifically, the negative electrode sheet and the two positive electrode sheets of each example are alternately laminated so that the positive electrode active material layer and the negative electrode active material layer face each other, and a separator (PP (polypropylene) / A porous sheet in which PE (polyethylene) / PP (polypropylene) was laminated was used. This electrode body was inserted into a laminate bag together with a non-aqueous electrolyte to construct a test lithium ion secondary battery (laminate cell). As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4, and LiPF 6 as a supporting salt is used. What was contained at a concentration of about 1 mol / liter was used.

各評価用セルについて、初期容量の凡そ60%の充電状態(SOC60%)に調整した後、−30℃の環境雰囲気下において、3Cの電流値で2秒間の放電を行い、放電開始から2秒後の電圧値を測定し、IV抵抗を算出した。結果を表2の該当欄に示す。   After each cell for evaluation was adjusted to a charged state (SOC 60%) of about 60% of the initial capacity, discharge was performed for 2 seconds at a current value of 3C in an environmental atmosphere of −30 ° C., and 2 seconds after the start of discharge. Later voltage values were measured and IV resistance was calculated. The results are shown in the corresponding column of Table 2.

Figure 2015141773
Figure 2015141773

表1および表2に示すように、例4、8〜10、12の負極活物質層形成用ペーストは、せん断速度:1s−1のときの粘度αが1000mPa・s以下である。かかるサンプルでは、ペーストを3日間静置したあとの上澄み液の固形分率の変化が大きく、ペーストの安定性に欠けていた。また、例2、3、7、17、19の負極活物質層形成用ペーストは、せん断速度:1s−1のときの粘度αが3000mPa・s以上であり、且つ、せん断速度:1000s−1のときの粘度βが1300mPa・s以上である。かかるサンプルでは、ペーストの安定性は比較的良好であったものの、該ペーストを負極集電体に塗布した際の塗工性に欠けていた。これに対し、例1、6、11、13〜16、18の負極活物質層形成用ペーストは、せん断速度:1s−1のときの粘度αが1000mPa・s<α<30000mPa・sであり、且つ、せん断速度:1000s−1のときの粘度βがβ<1300mPa・sである。かかるサンプルでは、ペーストの安定性、塗工性がいずれも良好であり、また、該ペーストを用いて作製された電池は、負極活物質層と負極集電体との密着性が良く、内部抵抗も低かった。この結果から、1000mPa・s<α<30000mPa・s、且つ、β<1300mPa・sである負極活物質層形成用ペーストを用いることにより、電池抵抗がより低く、かつ負極活物質層が剥がれ難い、耐久性に優れた電池を構築し得ることが確認できた。 As shown in Tables 1 and 2, the negative electrode active material layer forming pastes of Examples 4, 8 to 10 and 12 have a viscosity α of 1000 mPa · s or less at a shear rate of 1 s −1 . In such a sample, the change in the solid content of the supernatant after the paste was allowed to stand for 3 days was large, and the stability of the paste was lacking. In addition, the negative electrode active material layer forming pastes of Examples 2, 3, 7, 17, and 19 have a viscosity α of 3000 mPa · s or more when the shear rate is 1 s −1 , and the shear rate is 1000 s −1 . The viscosity β is 1300 mPa · s or more. In such a sample, although the stability of the paste was relatively good, the coating property when the paste was applied to the negative electrode current collector was lacking. In contrast, the negative electrode active material layer forming pastes of Examples 1, 6, 11, 13 to 16, and 18 have a viscosity α of 1000 mPa · s <α <30000 mPa · s when the shear rate is 1 s −1 . And, the viscosity β when the shear rate is 1000 s −1 is β <1300 mPa · s. In such a sample, both the stability and the coating property of the paste are good, and the battery manufactured using the paste has good adhesion between the negative electrode active material layer and the negative electrode current collector, and has an internal resistance. Was also low. From this result, by using the negative electrode active material layer forming paste with 1000 mPa · s <α <30000 mPa · s and β <1300 mPa · s, the battery resistance is lower and the negative electrode active material layer is difficult to peel off, It was confirmed that a battery having excellent durability could be constructed.

なお、表1および表2に示すように、例1〜3はペーストの固形分率が互いに異なる。この場合、ペーストの固形分率が高いほど、高せん断時のペーストの粘度が上昇し(図2参照)、塗工性は悪くなる傾向がある。これに対し、例11では、例3と固形分率が同じであるが、黒鉛の吸油量とCMCの含有量とを調整することにより、高せん断時のペーストの粘度が低く抑えられている(図3参照)。かかる例11では、例3に比べて、高固形分率であっても塗工性が良好である。   In addition, as shown in Table 1 and Table 2, Examples 1-3 differ in the solid content rate of a paste mutually. In this case, the higher the solid content of the paste, the higher the viscosity of the paste at high shear (see FIG. 2), and the coatability tends to deteriorate. On the other hand, in Example 11, although the solid content rate is the same as Example 3, the viscosity of the paste at the time of high shear is kept low by adjusting the oil absorption amount of graphite and the content of CMC ( (See FIG. 3). In Example 11, compared with Example 3, the coatability is good even at a high solid content rate.

また、例9、13、17は、CMCの含有量が互いに異なる。この場合、CMCの含有量が大きいほど、高せん断時のペーストの粘度が上昇し(図4参照)、塗工性が悪くなる傾向がある。塗工性の観点からは、CMCの含有量は0.6質量%未満(例えば0.5質量%以下)とすることが好ましい。また、CMCの含有量が小さいほど、高せん断時のペースト粘度が低下し、静置時の安定性(沈降のしにくさ)が悪くなる傾向がある。静置時の安定性の観点からは、CMCの含有量は0.2質量%を上回る(例えば0.3質量%以上)とすることが好ましい。   Examples 9, 13, and 17 have different CMC contents. In this case, the higher the CMC content, the higher the viscosity of the paste at the time of high shear (see FIG. 4), and the coatability tends to deteriorate. From the viewpoint of coatability, the CMC content is preferably less than 0.6% by mass (for example, 0.5% by mass or less). Further, the smaller the CMC content, the lower the paste viscosity at the time of high shear, and the lower the stability at rest (the difficulty of settling). From the standpoint of stability during standing, the content of CMC is preferably more than 0.2% by mass (for example, 0.3% by mass or more).

また、例5、11は、黒鉛の吸油量が互いに異なる。この場合、黒鉛の吸油量が大きいほど、高せん断時のペーストの粘度が上昇し(図5参照)、塗工性が悪くなる傾向がある。塗工性の観点からは、黒鉛の吸油量は、56.2×10−5/kg未満(例えば50×10−5/kg以下)とすることが好ましい。 In Examples 5 and 11, the oil absorption of graphite is different from each other. In this case, the larger the oil absorption amount of graphite, the higher the viscosity of the paste at the time of high shear (see FIG. 5), and the coatability tends to deteriorate. From the viewpoint of coatability, the oil absorption of graphite is preferably less than 56.2 × 10 −5 m 3 / kg (for example, 50 × 10 −5 m 3 / kg or less).

また、例12、13は、ペーストの固形分率が互いに異なる。この場合、ペーストの固形分率が小さいほど、低せん断時のペーストの粘度が低下し(図6参照)、静置時の安定性(沈降のしにくさ)が悪くなる傾向がある。静置時の安定性の観点からは、ペーストの固形分率は、59質量%を上回る(例えば60質量%以上)とすることが好ましい。   In Examples 12 and 13, the solids content of the paste is different from each other. In this case, the smaller the solid content of the paste, the lower the viscosity of the paste at the time of low shear (see FIG. 6), and the stability at rest (hardness of settling) tends to deteriorate. From the standpoint of stability during standing, the solid content of the paste is preferably more than 59% by mass (for example, 60% by mass or more).

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、電池の種類は上述したリチウムイオン二次電池に限られず、電極体構成材料や電解質が異なる種々の内容の電池であってもよい。また、該電池の大きさおよびその他の構成についても、用途(典型的には車載用)によって適切に変更することができる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed the above-mentioned specific example is contained in the invention disclosed here. For example, the type of battery is not limited to the above-described lithium ion secondary battery, and may be batteries having various contents with different electrode body constituent materials and electrolytes. Further, the size and other configurations of the battery can be appropriately changed depending on the application (typically for in-vehicle use).

本発明に係る二次電池用の負極は、負極集電体から剥離し難く優れた接着性を有する負極活物質層を備える。かかる特性により、本発明に係る二次電池用の負極を備える二次電池は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って、かかる二次電池(当該電池を複数個直列に接続して形成される組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車のような電動機を備える自動車)を提供する。   The negative electrode for a secondary battery according to the present invention includes a negative electrode active material layer that is difficult to peel from the negative electrode current collector and has excellent adhesion. Due to such characteristics, the secondary battery including the negative electrode for the secondary battery according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Accordingly, a vehicle (typically an automobile, particularly a hybrid automobile, an electric automobile, etc.) having such a secondary battery (which may be in the form of an assembled battery formed by connecting a plurality of such batteries in series) as a power source. A motor vehicle equipped with an electric motor).

20 捲回電極体
50 正極シート
52 正極集電体
54 正極活物質層
60 負極シート
62 負極集電体
64 負極活物質層
70 セパレータシート
100 リチウムイオン二次電池
20 wound electrode body 50 positive electrode sheet 52 positive electrode current collector 54 positive electrode active material layer 60 negative electrode sheet 62 negative electrode current collector 64 negative electrode active material layer 70 separator sheet 100 lithium ion secondary battery

Claims (1)

負極集電体上に負極活物質層が形成された二次電池用負極を製造する方法であって、
負極活物質と該負極活物質を分散させる水系溶媒とを含み、せん断速度:1s−1のときの粘度αが1000mPa・s<α<30000mPa・sであり、且つ、せん断速度:1000s−1のときの粘度βがβ<1300mPa・sである負極活物質層形成用ペーストを調製すること、および、
前記負極活物質層形成用ペーストを負極集電体に付与して該負極集電体上に負極活物質層を形成すること、
を包含する、二次電池用負極の製造方法。


A method for producing a negative electrode for a secondary battery in which a negative electrode active material layer is formed on a negative electrode current collector,
A negative electrode active material and an aqueous solvent in which the negative electrode active material is dispersed, the viscosity α when the shear rate is 1 s −1 is 1000 mPa · s <α <30000 mPa · s, and the shear rate is 1000 s −1 . Preparing a negative electrode active material layer forming paste having a viscosity β of β <1300 mPa · s, and
Applying the negative electrode active material layer forming paste to a negative electrode current collector to form a negative electrode active material layer on the negative electrode current collector;
A method for producing a negative electrode for a secondary battery, comprising:


JP2014012807A 2014-01-27 2014-01-27 Method for producing negative electrode for secondary battery Active JP6115786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012807A JP6115786B2 (en) 2014-01-27 2014-01-27 Method for producing negative electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012807A JP6115786B2 (en) 2014-01-27 2014-01-27 Method for producing negative electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2015141773A true JP2015141773A (en) 2015-08-03
JP6115786B2 JP6115786B2 (en) 2017-04-19

Family

ID=53772022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012807A Active JP6115786B2 (en) 2014-01-27 2014-01-27 Method for producing negative electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP6115786B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124363A (en) * 2016-07-14 2016-11-16 曙鹏科技(深圳)有限公司 A kind of evaluating method of lithium ion battery plus-negative plate Stability of Slurry
WO2017090242A1 (en) * 2015-11-27 2017-06-01 日本ゼオン株式会社 Composition for nonaqueous secondary battery adhesive layers, adhesive layer for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2019074024A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Battery electrode manufacturing method
JP2019140040A (en) * 2018-02-14 2019-08-22 トヨタ自動車株式会社 Manufacturing method of negative electrode for lithium ion secondary battery
WO2020045246A1 (en) * 2018-08-29 2020-03-05 日本ゼオン株式会社 Composition for nonaqueous secondary battery adhesive layer, battery member for nonaqueous secondary battery and manufacturing method of said battery member for nonaqueous secondary battery, as well as manufacturing method for laminate for nonaqeuous secondary battery, and manufacturing method for nonaqueous secondary battery
JP7349465B2 (en) 2021-03-12 2023-09-22 プライムアースEvエナジー株式会社 Battery manufacturing equipment and battery manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340727A (en) * 1997-06-04 1998-12-22 Matsushita Electric Ind Co Ltd Manufacture of battery electrode and battery
JP2002208398A (en) * 2000-11-07 2002-07-26 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode
JP2006516795A (en) * 2003-04-07 2006-07-06 エルジー・ケム・リミテッド Dispersant composition in the production of electrode active material slurry and use thereof
JP2011113838A (en) * 2009-11-27 2011-06-09 Toyota Motor Corp Electrode paste for battery, method of producing electrode paste for battery, and method of manufacturing electrode plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340727A (en) * 1997-06-04 1998-12-22 Matsushita Electric Ind Co Ltd Manufacture of battery electrode and battery
JP2002208398A (en) * 2000-11-07 2002-07-26 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode
JP2006516795A (en) * 2003-04-07 2006-07-06 エルジー・ケム・リミテッド Dispersant composition in the production of electrode active material slurry and use thereof
JP2011113838A (en) * 2009-11-27 2011-06-09 Toyota Motor Corp Electrode paste for battery, method of producing electrode paste for battery, and method of manufacturing electrode plate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615379B2 (en) 2015-11-27 2020-04-07 Zeon Corporation Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017090242A1 (en) * 2015-11-27 2017-06-01 日本ゼオン株式会社 Composition for nonaqueous secondary battery adhesive layers, adhesive layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JPWO2017090242A1 (en) * 2015-11-27 2018-09-13 日本ゼオン株式会社 Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
JP7179463B2 (en) 2015-11-27 2022-11-29 日本ゼオン株式会社 Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
CN106124363A (en) * 2016-07-14 2016-11-16 曙鹏科技(深圳)有限公司 A kind of evaluating method of lithium ion battery plus-negative plate Stability of Slurry
WO2019074024A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Battery electrode manufacturing method
US11329265B2 (en) 2017-10-10 2022-05-10 Nissan Motor Co., Ltd. Method for producing battery electrode
JP6992572B2 (en) 2018-02-14 2022-01-13 トヨタ自動車株式会社 Manufacturing method of negative electrode for lithium ion secondary battery
JP2019140040A (en) * 2018-02-14 2019-08-22 トヨタ自動車株式会社 Manufacturing method of negative electrode for lithium ion secondary battery
WO2020045246A1 (en) * 2018-08-29 2020-03-05 日本ゼオン株式会社 Composition for nonaqueous secondary battery adhesive layer, battery member for nonaqueous secondary battery and manufacturing method of said battery member for nonaqueous secondary battery, as well as manufacturing method for laminate for nonaqeuous secondary battery, and manufacturing method for nonaqueous secondary battery
CN112437996A (en) * 2018-08-29 2021-03-02 日本瑞翁株式会社 Composition for non-aqueous secondary battery adhesive layer, battery member for non-aqueous secondary battery and method for producing same, method for producing laminate for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
CN112437996B (en) * 2018-08-29 2023-07-25 日本瑞翁株式会社 Composition for adhesive layer, battery member, laminate, and method for manufacturing battery
US11811087B2 (en) 2018-08-29 2023-11-07 Zeon Corporation Composition for non-aqueous secondary battery adhesive layer, battery member for non-aqueous secondary battery and method of producing same, method of producing laminate for non-aqueous secondary battery, and method of producing non-aqueous secondary battery
JP7349465B2 (en) 2021-03-12 2023-09-22 プライムアースEvエナジー株式会社 Battery manufacturing equipment and battery manufacturing method

Also Published As

Publication number Publication date
JP6115786B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN103168378B (en) Electrode for cell and utilization thereof
JP6115786B2 (en) Method for producing negative electrode for secondary battery
JP2016152066A (en) Method for manufacturing nonaqueous electrolyte secondary battery
US11011738B2 (en) Method for producing negative electrode and secondary battery, and secondary battery
JP5652666B2 (en) Method for manufacturing electrode for secondary battery
JP2013114747A (en) Lithium ion secondary battery manufacturing method
KR20200030518A (en) Method for manufacturing battery
KR101687100B1 (en) Positive electrode for nonaqueous electrolyte secondary battery and production method thereof
JP5483092B2 (en) Battery, battery electrode and method for producing the same
JP2012156061A (en) Secondary battery and manufacturing method thereof
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP5578370B2 (en) Secondary battery electrode and manufacturing method thereof
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP2016164837A (en) Positive electrode manufacturing method and positive electrode
JP2016149239A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2014143064A (en) Secondary battery and method for manufacturing the same
JP2014235856A (en) Nonaqueous electrolyte secondary battery
JP2016126900A (en) Manufacturing method for secondary battery
JP2013058362A (en) Method for manufacturing electrode for secondary battery
JP2015022913A (en) Method for producing composition for forming negative electrode active material layer
JP6780604B2 (en) Manufacturing method of negative electrode for secondary battery
JP6394986B2 (en) Method for manufacturing battery electrode
JP2012174554A (en) Method for manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R151 Written notification of patent or utility model registration

Ref document number: 6115786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151