JP2018040671A - Method of estimating cavity volume in concrete structure - Google Patents
Method of estimating cavity volume in concrete structure Download PDFInfo
- Publication number
- JP2018040671A JP2018040671A JP2016174601A JP2016174601A JP2018040671A JP 2018040671 A JP2018040671 A JP 2018040671A JP 2016174601 A JP2016174601 A JP 2016174601A JP 2016174601 A JP2016174601 A JP 2016174601A JP 2018040671 A JP2018040671 A JP 2018040671A
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- pressure
- concrete structure
- measurement data
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
Abstract
Description
本発明は、コンクリート構造物内の空洞量推定方法に関し、より詳しくは、コンクリート構造物であるPC構造物のシース管に存在するPCグラウト未充填部の空洞量を算出するPC構造物のグラウト未充填部の空洞量推定方法に関するものである。 The present invention relates to a method for estimating a void amount in a concrete structure. More specifically, the present invention relates to a method for estimating a void amount in a PC grout unfilled portion existing in a sheath pipe of a PC structure that is a concrete structure. The present invention relates to a method for estimating a cavity amount in a filling portion.
PC鋼材等の緊張材でコンクリートにプレストレスを付与したポストテンション方式のPC構造物は、PC鋼材を腐食から保護し,構造物と一体化させる目的で,シース管内にPCグラウトが充填されている。しかし,古い構造物の一部には施工当時の材料性能や施工技術の未熟さから,十分にPCグラウトが充填されていない箇所が存在することが知られている。こうしたPCグラウトの充填不足箇所におけるPC鋼材の腐食・破断のおそれがあり、これらに起因するPC構造物の耐荷性能の低下が懸念されている。そして、このようなPC構造物の機能回復には、充填不足箇所にPCグラウトを再注入することが有効と考えられている。なお、PC構造物とは、橋梁(PC桁、PC床版、セグメント)、建築物の梁などのコンクリート構造物にテンションを加えた高強度鋼材(PC緊張材)を配置し,コンクリートにプレストレス(圧縮力)を与えることで,引張力に弱くひび割れ易いコンクリートの特性を改善した構造物を指している。 Post-tension type PC structures in which prestress is applied to concrete with PC steel or other tendon material, PC grout is filled in the sheath tube for the purpose of protecting the PC steel from corrosion and integrating it with the structure. . However, it is known that some old structures are not fully filled with PC grout because of the material performance and construction techniques at the time of construction. There is a concern that the PC steel material may be corroded or broken at such insufficiently filled portions of the PC grout, and there is a concern that the load resistance performance of the PC structure may be reduced due to the corrosion. In order to recover the function of such a PC structure, it is considered effective to reinject the PC grout into the insufficiently filled portion. PC structures are prestressed concrete by placing high-strength steel materials (PC tendons) with tension on concrete structures such as bridges (PC girders, PC floor slabs, segments) and building beams. By giving (compressive force), it refers to a structure that has improved properties of concrete that is weak against tensile force and easily cracked.
PC構造物にPCグラウトを再注入するには、構造物の表面からシース管までPC構造物のコンクリート部分を削孔するとともに、その削孔した孔にグラウトホースを接続してPCグラウトを注入する。PC構造物へのグラウト再注入の実施にあたっては、シース管内の空隙に対してどの程度再充填できたかを確認する必要があり、また端部や橋面からグラウトが漏出していないかなど施工の安全管理の側面からも、注入予定のPCグラウトの量を事前に把握しておくことが重要である。つまり、PC構造物に存在するPCグラウト未充填部の空洞量を事前に把握する必要がある。 To reinject PC grout into the PC structure, drill the concrete part of the PC structure from the surface of the structure to the sheath tube, and inject the PC grout by connecting a grout hose to the drilled hole. . When reinjecting grout into a PC structure, it is necessary to check how much refilling of the voids in the sheath tube is possible, and whether the grout has leaked from the end or bridge surface. From the aspect of safety management, it is important to know in advance the amount of PC grout to be injected. That is, it is necessary to grasp in advance the amount of cavities in the PC grout unfilled portion existing in the PC structure.
このようなコンクリート構造物の空洞量推定方法として、例えば、特許文献1には、コンクリート構造物(PC構造物100)に穿孔し、この孔(調査孔130)から所定圧力で所定量の気体を流入又は流出させ、計測圧力を前記所定圧力で除した圧力比の時間変動により前記孔(調査孔130)に連通する空洞120の容量を計測するコンクリート構造物の空洞検査方法が記載されている(特許文献1の特許請求の範囲の請求項1、明細書の段落[0013]〜[0019]、図面の図1〜図4等参照)。 As a method for estimating the amount of voids in a concrete structure, for example, in Patent Document 1, a concrete structure (PC structure 100) is drilled, and a predetermined amount of gas is supplied from the hole (inspection hole 130) at a predetermined pressure. A method for inspecting a cavity of a concrete structure is described in which the capacity of the cavity 120 communicating with the hole (inspection hole 130) is measured by time variation of the pressure ratio obtained by flowing in or out and dividing the measured pressure by the predetermined pressure ( (See claim 1 of patent document 1, paragraphs [0013] to [0019] of the specification, FIGS. 1 to 4 of the drawings, etc.).
また、特許文献2には、コンクリート構造物(PC構造物100)に穿孔し、この孔(調査孔130)から一定の圧力及び流量に調整した気体を前記孔に連通する空洞120に流入又は流出させ、圧力変動を時間情報と共に計測し、流入開始後に計測圧力が増大し始めて一定値に集束する前の時間範囲において所定の基準圧力に到達する時間により空洞120の容量を求めるコンクリート構造物の空洞検査方法が記載されている(特許文献2の特許請求の範囲の請求項1,4、明細書の段落[0020]〜[0025]、図面の図5〜図8等参照)。 In Patent Document 2, a concrete structure (PC structure 100) is perforated, and a gas adjusted to a constant pressure and flow rate flows into or out of the cavity 120 communicating with the hole from the hole (inspection hole 130). The cavity of a concrete structure is obtained by measuring the pressure fluctuation together with time information, and obtaining the capacity of the cavity 120 by the time to reach a predetermined reference pressure in the time range before the measured pressure starts to increase and converge to a constant value after the start of inflow An inspection method is described (refer to claims 1 and 4 in claims of Patent Document 2, paragraphs [0020] to [0025] of the specification, and FIGS. 5 to 8 of the drawings).
しかし、特許文献1及び2に記載のコンクリート構造物の空洞検査方法は、室内実験結果で得られた検量線にもとづくため、計測条件の様々な実際のコンクリート構造物に適用した場合は、誤差が大きくなることがあり、実用的ではないという問題があった。 However, the method for inspecting a cavity of a concrete structure described in Patent Documents 1 and 2 is based on a calibration curve obtained from a laboratory experiment result, and therefore, when applied to an actual concrete structure with various measurement conditions, there is an error. There is a problem that it may become large and is not practical.
何故なら、特許文献1及び2に記載のコンクリート構造物の空洞検査方法の室内実験では、気体の通過経路(断面形状)が一定であるのに対し、実構造物では、グラウトが一部充填されたことで狭小区間が存在することがあり、この場合計測時の気体の流速が減少することで、圧力の時間変動はこれの影響を大きく受けるため、推定誤差が大きくなるからである。 This is because in the laboratory experiment of the concrete structure cavity inspection method described in Patent Documents 1 and 2, the gas passage (cross-sectional shape) is constant, whereas the actual structure is partially filled with grout. This is because there may be a narrow section, and in this case, since the gas flow velocity during measurement decreases, the time variation of pressure is greatly affected by this, and the estimation error becomes large.
また、大気圧が変化すれば、計測される圧力比の時間変動も異なるため、これを考慮しないと推定誤差を生じてしまうし、また外気と構造物内の気温差の影響で推定誤差を生む可能性がある。また、シール部30の気密性を短時間で確保することは困難であり、作業性に課題がある。このため、気密性を保つのが困難であり、誤差を生む原因となる。つまり、特許文献1及び2に記載の検量線に依存したコンクリート構造物の空洞検査方法では、圧力の時間変動は現場や構造物の環境によって大きく左右されるため、実構造物では、非常に誤差が過大となる場合があり、安定した良好な精度を満足できるものではないという問題があった。 Also, if the atmospheric pressure changes, the time variation of the measured pressure ratio will also differ, so if this is not taken into account, an estimation error will occur, and an estimation error will be generated due to the effect of the temperature difference between the outside air and the structure. there is a possibility. Moreover, it is difficult to ensure the airtightness of the seal portion 30 in a short time, and there is a problem in workability. For this reason, it is difficult to maintain airtightness, causing an error. In other words, in the cavity inspection method for a concrete structure that relies on the calibration curve described in Patent Documents 1 and 2, the time variation of pressure is greatly affected by the site and the environment of the structure. May become excessive, and there is a problem that stable good accuracy cannot be satisfied.
そして、実際のコンクリート構造物では、シース管などの空洞にひび割れや開孔が存在し、空洞の気密性が確保されていないことが多く、その発見も容易ではない。そのため、コンクリート構造物に存在する空洞が外気と連通した漏気状態で、且つ、その漏気が大きい(時間あたりの漏気量が多量)場合であっても、精度よく空洞量の推定が可能なコンクリート構造物の空洞量推定方法が切望されている。 In an actual concrete structure, cracks and holes are present in cavities such as sheath tubes, and the airtightness of the cavities is often not ensured, and the discovery is not easy. Therefore, even if the cavities in the concrete structure are in a state of leakage that communicates with the outside air and the leakage is large (a large amount of leakage per hour), the amount of cavities can be estimated accurately. There is a great need for a method for estimating the void volume of concrete structures.
そこで、本発明は、上述した問題を鑑みて案出されたものであり、その目的とするところは、コンクリート構造物の空洞からの漏気が大きい条件において、大気圧や気温の変化など現場の気象条件や空洞形状に左右されず、精度よくその空洞の容積を推定可能なコンクリート構造物の空洞量推定方法を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to provide a site where the leakage from the cavity of the concrete structure is large, such as changes in atmospheric pressure and temperature. It is an object of the present invention to provide a method for estimating the amount of cavities in a concrete structure that can accurately estimate the volume of the cavities regardless of weather conditions and the shape of the cavities.
請求項1に記載のコンクリート構造物の空洞量推定方法は、コンクリート構造物の内部に存在する空洞の容積を当該空洞が外気と連通した漏気状態で推定して算出するコンクリート構造物の空洞量推定方法であって、前記空洞と、所定の圧力まで減圧した容積既知の減圧容器と、を開放閉塞自在な開閉バルブを介して連通させ、前記減圧容器内の圧力と、前記空洞内と連通する空気の圧力を、前記開閉バルブの開放前後に亘り所定時間計測して複数の計測データを取得するとともに、前記開閉バルブの開放後に計測した混合気体の圧力の複数の計測データのなかから決定係数R2を用いて近似に使用する計測データを選択するステップを有し、選択した計測データから近似した関数を基に混合気体の圧力P3を決定し、混合気体の圧力P3を理想気体の状態方程式から導出した次式に代入して前記空洞の容積を算出することを特徴とする。 The method for estimating a void amount of a concrete structure according to claim 1, wherein the void volume of the concrete structure is calculated by estimating the volume of the cavity existing inside the concrete structure in a leaked state where the cavity communicates with the outside air. In the estimation method, the cavity and a decompression container having a known volume that has been decompressed to a predetermined pressure are communicated with each other via an openable / closable open / close valve, and the pressure in the decompression container is communicated with the interior of the cavity. The air pressure is measured for a predetermined time before and after the opening of the on-off valve to obtain a plurality of measurement data, and the determination coefficient R is determined from among the plurality of measurement data of the pressure of the mixed gas measured after the opening of the on-off valve. comprising the step of selecting the measurement data used to approximated using 2, to determine the pressure P 3 of the gas mixture based on the function approximated from the selected measurement data, the pressure P 3 of the gas mixture ideal It is substituted into the following equation derived from the equation of state of the body and calculating the volume of the cavity.
請求項2に記載のコンクリート構造物の空洞量推定方法は、請求項1に記載のコンクリート構造物の空洞量推定方法において、前記計測データを選択するステップでは、決定係数R2が0.99以上となる連続する区間の計測データであり、且つ、計測データの個数が10以上となるように選択することを特徴とする。 The method for estimating the void amount of a concrete structure according to claim 2 is the method for estimating the void amount of a concrete structure according to claim 1, wherein the determination coefficient R 2 is 0.99 or more in the step of selecting the measurement data. The measurement data is selected so that the number of measurement data is 10 or more.
請求項3に記載のコンクリート構造物の空洞量推定方法は、請求項1又は2に記載のコンクリート構造物の空洞量推定方法において、近似した前記関数は、時間を変数とする一次関数であることを特徴とする。 The method for estimating the void amount of a concrete structure according to claim 3 is the method for estimating the void amount of a concrete structure according to claim 1 or 2, wherein the approximated function is a linear function with time as a variable. It is characterized by.
請求項1〜3に記載の発明によれば、空洞に時間あたりの漏気量が多い条件において、大気圧や気温の変化など現場の気象条件や構造物内の空洞形状に左右されず、コンクリート構造物の空洞量を精度よく推定することができる。 According to the first to third aspects of the invention, in a condition where the amount of air leakage per hour is large in the cavity, the concrete is not affected by the on-site weather conditions such as changes in atmospheric pressure or temperature and the cavity shape in the structure. The amount of cavities in the structure can be estimated with high accuracy.
特に、請求項2に記載の発明によれば、大気圧の影響を受ける区間のデータを排除できるので、さらに精度よくコンクリート構造物の空洞量を推定することができる。 In particular, according to the invention described in claim 2, since the data of the section affected by the atmospheric pressure can be excluded, it is possible to estimate the cavity amount of the concrete structure with higher accuracy.
特に、請求項3に記載の発明によれば、真空度が高い区間は大気圧付近の漏気速度変化の影響を受けず直線的に変化すると考えられるため、一次関数に直線近似することで、コンクリート構造物の空洞からの漏気が大きい条件における回帰モデルとして最適であり、さらに精度よくコンクリート構造物の空洞量を推定することができる。 In particular, according to the invention described in claim 3, since the section with a high degree of vacuum is considered to change linearly without being affected by the change in the leak rate near the atmospheric pressure, by approximating the linear function linearly, It is optimal as a regression model under conditions where air leakage from the cavity of the concrete structure is large, and the amount of cavity of the concrete structure can be estimated more accurately.
以下、本発明に係るコンクリート構造物の空洞量推定方法を実施するための一実施形態について図面を参照しながら詳細に説明する。 Hereinafter, an embodiment for carrying out a method for estimating a void amount of a concrete structure according to the present invention will be described in detail with reference to the drawings.
[空洞量推定システム]
先ず、図1を用いて、本発明の実施形態に係るコンクリート構造物の空洞量推定方法に用いる空洞量推定システムについて説明する。本実施形態に係る空洞量推定システム1は、所定の真空圧力まで減圧する真空ポンプ2と、この真空ポンプ2とパイプ等で連通する容積(本実施形態では約10L)既知の減圧容器3と、この減圧容器3内の圧力を計測する圧力センサ4と、前記減圧容器3内の温度を計測する温度センサ5と、これらの圧力センサ4と温度センサ5で計測した計測値を記録するデータロガー6と、このデータロガー6と電気的に接続され、所定のプログラムにより後述の空洞量推定方法を実行して計算するパソコン7などから構成されている。
[Cavity estimation system]
First, the cavity amount estimation system used in the method for estimating a cavity amount of a concrete structure according to an embodiment of the present invention will be described with reference to FIG. A cavity amount estimation system 1 according to this embodiment includes a vacuum pump 2 that reduces pressure to a predetermined vacuum pressure, a known pressure reducing container 3 having a volume (about 10 L in this embodiment) that communicates with the vacuum pump 2 through a pipe, and the like. A pressure sensor 4 that measures the pressure in the decompression vessel 3, a temperature sensor 5 that measures the temperature in the decompression vessel 3, and a data logger 6 that records measurement values measured by the pressure sensor 4 and the temperature sensor 5. And a personal computer 7 that is electrically connected to the data logger 6 and performs calculation by executing a cavity amount estimation method described later by a predetermined program.
この空洞量推定システム1は、その減圧容器3が、例えば、コンクリート構造物として例示するPC構造物101のコンクリート内に埋設されたシース管102に連通する孔である削孔部103に、開閉バルブ9を介して接続パイプ104によりに接続され、この接続パイプ104内の圧力と温度を計測するため、前述の圧力センサ4、温度センサ5と同構成の圧力センサ4’と温度センサ5’が設置され、これらの圧力センサ4’と温度センサ5’がデータロガー6に接続される。 This cavity amount estimation system 1 includes an opening / closing valve in which a decompression container 3 is formed in a hole forming portion 103 which is a hole communicating with a sheath tube 102 embedded in concrete of a PC structure 101 exemplified as a concrete structure. In order to measure the pressure and temperature in the connection pipe 104, a pressure sensor 4 ′ and a temperature sensor 5 ′ having the same configuration as the pressure sensor 4 and the temperature sensor 5 are installed. These pressure sensor 4 ′ and temperature sensor 5 ′ are connected to the data logger 6.
そして、開閉バルブ8を開いて真空ポンプ2で減圧容器3内を所定の真空度まで減圧して開閉バルブ8を閉じたうえ、開閉バルブ9を開放して、2つの圧力センサ4、4’と2つの温度センサ5,5’で計測した計測値がデータロガー6を介してパソコン7に取り込こまれ、パソコン7によりシース管102に存在するグラウト未充填部である空洞Xの空洞量が推定計算される。なお、具体的な推定方法は、後で詳述する。 Then, the opening / closing valve 8 is opened, the inside of the decompression vessel 3 is depressurized to a predetermined degree of vacuum by the vacuum pump 2, the opening / closing valve 8 is closed, the opening / closing valve 9 is opened, and the two pressure sensors 4, 4 ′ Measurement values measured by the two temperature sensors 5 and 5 ′ are taken into the personal computer 7 via the data logger 6, and the personal computer 7 estimates the amount of the cavity X that is an unfilled portion of the grout existing in the sheath tube 102. Calculated. A specific estimation method will be described in detail later.
[推定原理]
次に、図1を用いて、本発明のコンクリート構造物の空洞量推定方法の推定原理について説明する。本発明のコンクリート構造物の空洞量推定方法の推定原理としては、理想気体の状態方程式(ボイル・シャルルの法則とアボガドロの法則を組み合わせた式:PV=nRT)を用いてコンクリート構造物の未知の空洞容積である空洞量を推定して算出する。
[Estimation principle]
Next, the estimation principle of the method for estimating the void amount of the concrete structure of the present invention will be described with reference to FIG. As the estimation principle of the void amount estimation method of the concrete structure of the present invention, the unknown state of the concrete structure is determined by using the ideal gas equation of state (formula combining Boyle-Charles' law and Avogadro's law: PV = nRT). The cavity volume, which is the cavity volume, is estimated and calculated.
但し、圧力等の計測対象となる気体には、空気を用いる。勿論、空気は、窒素、酸素、水蒸気、二酸化炭素、その他微量気体からなる実在混合気体であり、理想気体ではない。理想気体の状態方程式は、分子自身の大きさと分子間力の影響を無視しているため、理想気体の状態方程式を実在気体に適用すると高圧条件になるほど誤差が大きくなってしまう。しかし、理想気体ではなく実在気体であっても低圧条件では理想気体に近い挙動を示すため、本発明のコンクリート構造物の空洞量推定方法では、計測対象気体である空気を減圧環境で計測することで誤差なく理想気体の状態方程式を適用できるようにしている。減圧環境であれば、混合気体であっても、物質量の変化(化学反応や結露などの状態変化)がなければ、単一気体として理想気体の状態方程式を適用できると考えられる。 However, air is used as the gas to be measured such as pressure. Of course, air is an actual mixed gas composed of nitrogen, oxygen, water vapor, carbon dioxide, and other trace gases, and is not an ideal gas. Since the equation of state of the ideal gas ignores the influence of the size of the molecule itself and the intermolecular force, when the ideal gas equation of state is applied to a real gas, the error increases as the pressure condition increases. However, even if it is not an ideal gas but a real gas, it exhibits behavior close to that of an ideal gas under low pressure conditions. Therefore, in the method for estimating the amount of cavities in a concrete structure according to the present invention, the measurement target air is measured in a reduced pressure environment. Therefore, the equation of state of ideal gas can be applied without error. In a reduced pressure environment, even if it is a mixed gas, the state equation of an ideal gas can be applied as a single gas if there is no change in the amount of substance (change in state such as chemical reaction or condensation).
このような考え方により、減圧容器3内の気体について(1)式が成立すると仮定する。ここで、P1:減圧容器内の気体の圧力、V1:減圧容器内の気体の容積、n1:減圧容器内の気体のモル数、R:気体定数、T1:減圧容器内の気体の温度である。 Based on this concept, it is assumed that the formula (1) is established for the gas in the decompression vessel 3. Where P 1 is the pressure of the gas in the decompression container, V 1 is the volume of the gas in the decompression container, n 1 is the number of moles of the gas in the decompression container, R is the gas constant, and T 1 is the gas in the decompression container. Temperature.
容積の推定対象である空洞X内の気体について(2)式が成立すると仮定する。ここで、P2:空洞内の気体の圧力、V2:空洞内の気体の容積、n2:空洞内の気体のモル数、R:気体定数、T2:空洞内の気体の温度である。 It is assumed that equation (2) holds for the gas in the cavity X that is the volume estimation target. Where P 2 is the pressure of the gas in the cavity, V 2 is the volume of the gas in the cavity, n 2 is the number of moles of the gas in the cavity, R is the gas constant, and T 2 is the temperature of the gas in the cavity. .
これらの減圧容器3内の気体と空洞X内の気体を開閉バルブ9を開放して混合させた後の混合気体について(3)式が成立すると仮定する。ここで、P3:混合気体の圧力、V3:混合気体の容積、n3:混合気体のモル数、R:気体定数、T3:混合気体の温度である。 It is assumed that equation (3) holds for the mixed gas after the gas in the decompression vessel 3 and the gas in the cavity X are mixed by opening the opening / closing valve 9. Here, P 3 is the pressure of the mixed gas, V 3 is the volume of the mixed gas, n 3 is the number of moles of the mixed gas, R is the gas constant, and T 3 is the temperature of the mixed gas.
また、圧力変化による容器の変形は微小として無視すれば、(4)式が成立する。 Further, if the deformation of the container due to the pressure change is negligible, the equation (4) is established.
そして、気体の混合後に物質量の変化がないと仮定すれば、(5)式が成立する。 If it is assumed that there is no change in the amount of substance after gas mixing, the equation (5) is established.
(1)式、(2)式、(3)式をモル数nについて整理して(5)式に代入すると(6)式となる。 When formulas (1), (2), and (3) are arranged in terms of the number of moles n and substituted into formula (5), formula (6) is obtained.
この(6)式から(4)式を用いてV3を消去して、V2について整理すると、空洞Xの空洞量の推定式である(7)式が得られる。ここで、V1は既知のため、P1,P2,P3,T1,T2,T3を計測することにより、未知数の空洞Xの容積(空洞量)であるV2を算出できることになる。 Eliminating V 3 using the equations (6) to (4) and rearranging V 2 , equation (7), which is an estimation equation for the amount of cavity X, is obtained. Here, since V 1 is known, by measuring P 1 , P 2 , P 3 , T 1 , T 2 , T 3 , it is possible to calculate V 2 that is the volume (cavity amount) of an unknown number of cavities X become.
なお、気体混合前後の温度変化が僅かの場合、これを無視しても推定値に与える影響は殆ど無い。よって、温度を無視した簡易推定式を以下に示す。V1は既知のため、この(8)式によりP1,P2,P3を現場で計測することで、未知数のV2を算出できることになる。 In addition, when the temperature change before and after gas mixing is slight, even if this is ignored, there is almost no influence on the estimated value. Therefore, a simple estimation formula ignoring the temperature is shown below. Since V 1 is already known, an unknown number of V 2 can be calculated by measuring P 1 , P 2 , and P 3 on-site using this equation (8).
なお、物質量の変化がないと仮定して(7)式及び(8)式を導出したが、実際のコンクリート構造物では、空洞Xの気密性が確保されていないことが多く、漏気して物質量が増加する場合がある。また、空洞内に水が浸水している場合は、減圧後水が水蒸気として気化することで、混合後の気体の物質量が増加する。しかし、後述の使用する計測データの選択及びそのデータからの混合気体の圧力の近似による補正方法を導入することにより、これら物質量の変化の影響を排除することができる。 It should be noted that Equation (7) and Equation (8) were derived on the assumption that there was no change in the amount of material. However, in actual concrete structures, the airtightness of the cavity X is often not ensured, causing leakage. The amount of substances may increase. In addition, when water is immersed in the cavity, the amount of gas after mixing increases because water after being decompressed vaporizes as water vapor. However, the influence of the change in the amount of these substances can be eliminated by introducing the correction method based on the selection of the measurement data to be used, which will be described later, and the approximation of the pressure of the mixed gas from the data.
次に、図1を用いて、本発明の実施形態に係るコンクリート構造物の空洞量推定方法について具体的に説明する。 Next, with reference to FIG. 1, a concrete structure cavity amount estimation method according to an embodiment of the present invention will be described in detail.
(コンクリート構造物の削孔)
先ず、削孔機などを用いて、コンクリート構造物として例示するPC構造物101のコンクリート部分を削孔し、PC構造物101の外表面からシース管102まで到達する孔である削孔部103を穿孔して設ける。
(Drilling of concrete structures)
First, using a drilling machine or the like, a concrete portion of the PC structure 101 exemplified as a concrete structure is drilled, and a drilling portion 103 that is a hole reaching the sheath tube 102 from the outer surface of the PC structure 101 is formed. Perforated and provided.
(シース管の開削)
次に、シース管102内に挿通されている図示しないPC鋼材などの緊張材を傷つけないように注意しながらシース管102の削孔部103と接する部分を切り開いて開削する。
(Sheath tube excavation)
Next, a portion of the sheath tube 102 that comes into contact with the hole 103 is cut and opened while taking care not to damage a tension material such as a PC steel material (not shown) inserted into the sheath tube 102.
(空洞の確認)
次に、削孔した削孔部103に内視鏡等を挿入してシース管102内を目視により、空洞Xの有無を確認する。空洞Xが確認された場合は、空洞量の推定を行う。
(Cavity confirmation)
Next, an endoscope or the like is inserted into the drilled hole 103, and the presence or absence of the cavity X is confirmed by visual inspection of the inside of the sheath tube 102. When the cavity X is confirmed, the amount of the cavity is estimated.
(接続パイプの設置)
次に、削孔部103に減圧容器3と連通するホースと接続するための接続パイプ104を取り付けて固定し、削孔部103、接続パイプ104を介して減圧容器3と空洞Xを連通する。但し、ホース先端に吸盤式のパッドを取り付けてPC構造物101の表面に直接接続する場合は、この接続パイプ104は不要である。
(Installation of connecting pipe)
Next, the connecting pipe 104 for connecting to the hole 103 is connected to a hose that communicates with the decompression vessel 3, and the decompression vessel 3 and the cavity X are communicated with each other through the hole 103 and the connection pipe 104. However, when a suction cup type pad is attached to the tip of the hose and directly connected to the surface of the PC structure 101, the connection pipe 104 is unnecessary.
(減圧容器内の減圧)
次に、開閉バルブ8を開いて真空ポンプ2で減圧容器3内を所定の真空度まで減圧する。本実施形態では、95%の真空度、即ち、−95[kPa]まで減圧し、開閉バルブ8を閉じる。勿論、所定の真空度は、真空ポンプ2の排気能力やPC構造物101の規模や空洞の状況に応じて適宜定められるものであって、95%の真空度に限られないのは云うまでもない。
(Decompression in the decompression vessel)
Next, the opening / closing valve 8 is opened, and the inside of the decompression vessel 3 is decompressed to a predetermined degree of vacuum by the vacuum pump 2. In this embodiment, the pressure is reduced to 95%, that is, −95 [kPa], and the on-off valve 8 is closed. Of course, the predetermined degree of vacuum is appropriately determined according to the exhaust capacity of the vacuum pump 2, the scale of the PC structure 101, and the situation of the cavity, and it goes without saying that the degree of vacuum is not limited to 95%. Absent.
(圧力、温度変化の計測)
次に、2つの圧力センサ4、4’と2つの温度センサ5,5’により所定の制御時間毎にインターバル計測(本実施形態では、0.2秒のインターバル計測)を開始する。この計測では、中間弁である開閉バルブ9を開栓・解放し、減圧容器3内の空気と空洞X内の空気とを混合させ、時間情報とともに減圧容器3内の空気の圧力、温度と空洞X内の空気の圧力、温度に相当する開閉バルブ9外の削孔部103側の圧力、温度を計測する。各圧力、温度の計測は、圧力センサ4、4’と温度センサ5,5により計測し、計測データをデータロガー6により記録する。このデータロガー6を介してパソコン7に計測データが取り込まれて空洞量計算に用いられる。
(Measurement of pressure and temperature change)
Next, interval measurement (in this embodiment, 0.2 second interval measurement) is started at predetermined control times by the two pressure sensors 4, 4 ′ and the two temperature sensors 5, 5 ′. In this measurement, the opening / closing valve 9 as an intermediate valve is opened and released, the air in the decompression vessel 3 and the air in the cavity X are mixed, and the pressure, temperature, and cavity of the air in the decompression vessel 3 along with the time information. The pressure and temperature on the side of the hole forming portion 103 outside the on-off valve 9 corresponding to the pressure and temperature of the air in X are measured. Each pressure and temperature is measured by the pressure sensors 4 and 4 ′ and the temperature sensors 5 and 5, and the measurement data is recorded by the data logger 6. The measurement data is taken into the personal computer 7 through the data logger 6 and used for the cavity amount calculation.
開閉バルブ9の開栓後、各所の空気の圧力は瞬時に変化するが、圧力センサ4、4’と温度センサ5,5による計測は、その後10秒程度、計測を継続する。開閉バルブ9の開栓直後の数秒(1.5秒)間は、圧力振動の影響が大きいと考えらえるうえ、後述のように、漏気の影響を受けずに直線的に変化する区間を選別して計測データを使用するためである。 After opening the on-off valve 9, the air pressure at each location changes instantaneously, but the measurement by the pressure sensors 4, 4 'and the temperature sensors 5, 5 continues for about 10 seconds thereafter. For several seconds (1.5 seconds) immediately after opening the on-off valve 9, it can be considered that the influence of pressure vibration is large, and, as will be described later, a section that changes linearly without being affected by leakage. This is because the measurement data is used after sorting.
(空洞量の計算)
次に、取り込んだ計測データを用いてパソコン7により空洞Xの容積である空洞量を算出する。算出式は、前述の(8)式を用い、空洞Xの容積(空洞量)V2を算出する。これにより、温度センサ5,5による計測が不要となり、温度センサ5,5を設置する必要がなくなる。
(Calculation of void volume)
Next, the cavity amount which is the volume of the cavity X is calculated by the personal computer 7 using the acquired measurement data. As a calculation formula, the volume (cavity amount) V 2 of the cavity X is calculated using the above-described formula (8). Thereby, the measurement by the temperature sensors 5 and 5 becomes unnecessary, and it becomes unnecessary to install the temperature sensors 5 and 5.
本実施形態に係るコンクリート構造物の空洞量推定方法では、空洞量の計算に際して、圧力センサ4、4’で計測した圧力の計測データをそのまま、(8)式に代入するのではなく、一旦、計測データを直線となる1次関数に線形近似し、近似した値を用いて混合気体の圧力P3を決定し、(8)式に代入して空洞Xの容積(空洞量)V2を算出する。空洞Xからの漏気や空洞Xに溜まった水などの影響による気体の物質量変化の影響と、開閉バルブ9の弁開放直後の圧力振動による圧力センサ4、4’の計測誤差の影響を排除することができるからである。 In the void amount estimation method for the concrete structure according to the present embodiment, when calculating the void amount, the pressure measurement data measured by the pressure sensors 4 and 4 ′ are not directly substituted into the equation (8), The measurement data is linearly approximated to a linear function, the pressure P 3 of the gas mixture is determined using the approximate value, and is substituted into equation (8) to calculate the volume (cavity volume) V 2 of the cavity X To do. Eliminates the effects of gas mass changes due to air leakage from the cavity X, water accumulated in the cavity X, and the measurement error of the pressure sensors 4, 4 'due to pressure vibration immediately after the opening of the on-off valve 9 Because it can be done.
(近似に使用する計測データを選択するステップ)
次に、本実施形態に係るコンクリート構造物の空洞量推定方法における、近似に使用する計測データを選択するステップについて説明する。
(Step of selecting measurement data used for approximation)
Next, the step of selecting measurement data used for approximation in the method for estimating the amount of cavities in a concrete structure according to the present embodiment will be described.
図2に示すように、前述の線形近似した値を用いて混合気体の圧力P3を決定する手法としては、圧力振動の影響が大きいと考えられる開閉バルブの開栓直後の1.5秒分のデータを棄却した後、前後10秒分のデータ(50データ)をそれぞれ最小二乗法により直線近似する。しかし、この手法は、コンクリート構造物の空洞からの漏気が小さい場合には有用であるが、漏気が大きくなると短時間で真空度が大気圧迄開放され、大気圧付近では内外の圧力差が小さくなることで漏気速度が低下することによる影響などを受け推定値に大きな誤差が生まれるおそれがある。 As shown in FIG. 2, as a method of determining the pressure P 3 of the mixed gas using the above-mentioned linear approximation, 1.5 seconds immediately after opening of the opening / closing valve considered to be greatly affected by pressure vibration. Then, the data for 10 seconds before and after (50 data) are linearly approximated by the least square method. However, this method is useful when the leak from the cavity of the concrete structure is small, but when the leak increases, the degree of vacuum is released to atmospheric pressure in a short time, and the pressure difference between the inside and outside is close to atmospheric pressure. There is a possibility that a large error will be generated in the estimated value due to the influence of the decrease in the air leakage rate due to the decrease in the value.
但し、漏気の穴の大きさなどコンクリート構造物の空洞からの漏気経路の全断面積が経時的に変化しないのであれば、大気圧に対して十分な負圧が保たれている区間においては漏気による真空度の低下は時間に比例すると考えられる。そのため、その区間の計測データを用いて線形近似した場合は、回帰分析により導かれた直線の相関性を評価すると、その直線は強い相関を示すはずである。本実施形態に係るコンクリート構造物の空洞量推定方法では、この点に着目し、相関の強い区間のデータのみで回帰分析を用いて近似線の関数を決定する。 However, if the total cross-sectional area of the air leakage path from the cavity of the concrete structure, such as the size of the air leakage hole, does not change over time, in a section where sufficient negative pressure is maintained with respect to atmospheric pressure It is considered that the decrease in the degree of vacuum due to air leakage is proportional to time. Therefore, when the linear approximation is performed using the measurement data of the section, when the correlation of the straight line derived by the regression analysis is evaluated, the straight line should show a strong correlation. In the method for estimating the void amount of the concrete structure according to the present embodiment, paying attention to this point, the function of the approximate line is determined using regression analysis only with the data of the section having a strong correlation.
よって、本実施形態に係るコンクリート構造物の空洞量推定方法では、開閉バルブの開放後に計測した混合気体の圧力の複数の計測データのなかから決定係数R2を用いて近似に使用する計測データを選択し、選択した計測データから近似した一次関数を基に混合気体の圧力P3を決定する。 Accordingly, the cavity estimation method of concrete structures according to the present embodiment, the measurement data to be used for approximation by using the determined coefficient R 2 from the plurality of measurement data of the pressure of the mixed gas was measured after opening of the closing valve The pressure P 3 of the mixed gas is determined based on a linear function approximated from the selected measurement data.
決定係数R2の定義は、複数存在するが、一般的な定義としては、変動のうち回帰式によって説明できる割合を表わし、次式による。寄与率とも呼ばれ、決定係数R2が1に近いと、残差変動が小さくよい回帰モデルであると評価できる。 There are a plurality of definitions of the determination coefficient R 2 , but as a general definition, it represents a ratio that can be explained by a regression equation among fluctuations, and is based on the following equation. It is also called a contribution rate, and when the determination coefficient R 2 is close to 1, it can be evaluated as a good regression model with small residual fluctuation.
本実施形態に係るコンクリート構造物の空洞量推定方法における計測データの選択手法は、開閉バルブ開放後のデータについて直線区間のデータのみを用いるため、経過時間が長いデータから削除するように使用する計測データを選定する。これは、真空度が高い区間は大気圧付近の漏気速度変化の影響を受けず、直線的に変化するためである。具体的には、図3に示すように、大気圧の影響を受ける区間のデータを使用しないように、決定係数の値を見ながらデータ使用範囲を絞り込む。また、データの使用範囲は必要以上に狭めると近似線が漏気の影響だけでなく、計測器のノイズによる影響を受けるため、データの個数は、出来る限り多い方が良い。 The measurement data selection method in the method for estimating the cavity amount of the concrete structure according to the present embodiment uses only the data of the straight section for the data after opening the on-off valve, so that the measurement used to delete from the data having a long elapsed time. Select data. This is because the section with a high degree of vacuum changes linearly without being affected by the change in the leak rate near the atmospheric pressure. Specifically, as shown in FIG. 3, the data use range is narrowed while looking at the value of the determination coefficient so as not to use the data of the section affected by the atmospheric pressure. If the data usage range is narrowed more than necessary, the approximate line is affected not only by the influence of air leakage but also by the noise of the measuring instrument. Therefore, the number of data should be as large as possible.
このため、本実施形態に係るコンクリート構造物の空洞量推定方法では、図4に示すように、使用するデータは原則として−20kPa付近の所定圧力以下の区間、且つ、データ使用範囲は10データ(2秒)以上とする。これは過去の計測結果より、−20kPaより真空度の低い区間では大気圧との圧力差の影響を大きく受け、またデータ使用範囲を10データ未満とすると計測データが計測器のノイズによる影響を大きく受け、計測結果に誤差をもたらすためである。但し、計測システムを変更する場合はデータ使用範囲については使用する計測器の精度、ノイズによる影響、データの取得間隔等から適切に判断する必要がある。 For this reason, in the method for estimating the amount of cavities in the concrete structure according to the present embodiment, as shown in FIG. 4, the data to be used is in principle a section below a predetermined pressure near −20 kPa, and the data usage range is 10 data ( 2 seconds) or more. From the past measurement results, this is greatly affected by the pressure difference from the atmospheric pressure in the section where the degree of vacuum is lower than −20 kPa, and if the data use range is less than 10 data, the measurement data is greatly affected by the noise of the measuring instrument. This is to cause an error in the measurement result. However, when changing the measurement system, it is necessary to appropriately determine the data usage range from the accuracy of the measuring instrument used, the influence of noise, the data acquisition interval, and the like.
具体的には、図4に示すように、決定係数R2が0.99以上となる連続する区間の計測データであり、且つ、計測データの個数が10以上となる最も強い相関性を示す範囲のデータを選択する。 Specifically, as shown in FIG. 4, measurement data in a continuous section where the determination coefficient R 2 is 0.99 or more, and a range showing the strongest correlation in which the number of measurement data is 10 or more. Select the data.
なお、本実施形態に係るコンクリート構造物の空洞量推定方法における、近似に使用する計測データを選択するステップの適用範囲は、漏気による影響を持つときに限られる。これは、コンクリート構造物の空洞が、完全に密閉された空間では、開閉バルブの開放後の圧力変動のグラフは横這いになり、データの変化は計測機器のノイズが支配的となる。すると、本来真空度が一定になる区間でデータがノイズによって変動することとなるため、グラフの相関性が非常に弱くなり、強い相関を示すデータを得ることが出来ないためである。 In addition, the application range of the step which selects the measurement data used for approximation in the cavity amount estimation method of the concrete structure according to the present embodiment is limited to when there is an influence due to air leakage. This is because in a space where the cavity of the concrete structure is completely sealed, the graph of pressure fluctuation after opening of the on-off valve becomes flat, and the noise of the measuring instrument is dominant in the data change. Then, since the data fluctuates due to noise in a section where the degree of vacuum is essentially constant, the correlation of the graph becomes very weak and data showing a strong correlation cannot be obtained.
そして、本実施形態に係るコンクリート構造物の空洞量推定方法では、以上に説明した計測データを選択するステップで選択した計測データのみを用いて1次関数に線形近似し、近似した値から混合気体の圧力P3を決定し、(8)式に代入して空洞Xの容積(空洞量)V2を算出する。 And in the cavity amount estimation method of the concrete structure which concerns on this embodiment, it uses the measurement data selected at the step which selects the measurement data demonstrated above, it linearly approximates to a linear function, and it is mixed gas from the approximated value. The volume P of the cavity X (cavity amount) V 2 is calculated by substituting the pressure P 3 in the formula (8).
以上説明した本発明の実施形態に係るコンクリート構造物の空洞量推定方法によれば、大気圧の影響を受ける区間のデータを使用しないで、選択された計測データから線形近似し、空洞量を推定する。このため、空洞に時間あたりの漏気量が多い条件においても、大気圧や気温の変化など現場の気象条件と構造物内の空洞形状に左右されずに、極めて精度良くコンクリート構造物の空洞量を推定して算出することができる。 According to the method for estimating the cavity amount of the concrete structure according to the embodiment of the present invention described above, the cavity amount is estimated by linear approximation from the selected measurement data without using the data of the section affected by the atmospheric pressure. To do. For this reason, even under conditions where there is a large amount of air leakage per hour in the cavity, the cavity volume of the concrete structure is extremely accurate, regardless of the on-site weather conditions such as changes in atmospheric pressure and temperature and the cavity shape in the structure. Can be estimated and calculated.
なお、本発明の実施形態に係るコンクリート構造物の空洞量推定方法について詳細に説明したが、前述した又は図示した実施形態は、いずれも本発明を実施するにあたって具体化した一実施形態を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。特に、混合気体の圧力を決定する際に、一次関数に線形近似するものを例示して説明したが、近似する関数は、一次関数に限られず、その他の多項式関数、指数関数、対数関数、三角関数などの曲線や、曲線と直線とを組み合わせた回帰モデルであってもよい。 In addition, although the cavity amount estimation method for a concrete structure according to the embodiment of the present invention has been described in detail, the above-described or illustrated embodiments all show one embodiment embodied in carrying out the present invention. However, the technical scope of the present invention should not be construed in a limited manner. In particular, when determining the pressure of a mixed gas, a linear approximation to a linear function has been described as an example, but the approximation function is not limited to a linear function, and other polynomial functions, exponential functions, logarithmic functions, trigonometric functions, etc. A regression model combining a curve such as a function or a curve and a straight line may be used.
また、コンクリート構造物としてPC構造物を例示して説明したが、プレストレス等を加えない他のコンクリート構造物でも構わない。また、コンクリート構造物の空洞としてシース管内のグラウト未充填部を例示して説明したが、ジャンカなどコンクリート構造物にできた空洞と減圧容器とを何らかの方法により連通することができれば、本空洞量推定方法を適用することが可能である。 Moreover, although the PC structure was illustrated and demonstrated as a concrete structure, the other concrete structure which does not add prestress etc. may be sufficient. In addition, the grout unfilled portion in the sheath tube was illustrated as an example of the cavity of the concrete structure. However, if the cavity formed in the concrete structure such as a junker and the decompression vessel can be communicated with each other by any method, this cavity amount estimation It is possible to apply the method.
さらに、空洞に削孔して削孔部103を設け、減圧容器3と空洞Xを連通する場合を例示して説明したが、クラックなど初めからコンクリート構造物の内部の空洞と表面とを連通する孔等がある場合は、勿論、削孔して孔を設ける必要はないのは明らかである。 Furthermore, although the case where the hole 103 is provided by drilling in the cavity and the decompression vessel 3 and the cavity X communicate with each other has been described as an example, the interior of the concrete structure such as a crack is communicated with the surface from the beginning. Obviously, if there are holes or the like, there is no need to drill holes to provide holes.
1 :空洞量推定システム
2 :真空ポンプ
3 :減圧容器
4,4’ :圧力センサ
5,5’ :温度センサ
6 :データロガー
7 :パソコン
8,9 :開閉バルブ
101 :PC構造物
102 :シース管
103 :削孔部
104 :接続パイプ
X :空洞
1: Cavity estimation system 2: Vacuum pump 3: Depressurized container 4, 4 ′: Pressure sensor 5, 5 ′: Temperature sensor 6: Data logger 7: Personal computer 8, 9: Open / close valve 101: PC structure 102: Sheath tube 103: Drilling part 104: Connection pipe X: Cavity
Claims (3)
前記空洞と、所定の圧力まで減圧した容積既知の減圧容器と、を開放閉塞自在な開閉バルブを介して連通させ、前記減圧容器内の圧力と、前記空洞内と連通する空気の圧力を、前記開閉バルブの開放前後に亘り所定時間計測して複数の計測データを取得するとともに、
前記開閉バルブの開放後に計測した混合気体の圧力の複数の計測データのなかから決定係数R2を用いて近似に使用する計測データを選択するステップを有し、
選択した計測データから近似した関数を基に混合気体の圧力P3を決定し、混合気体の圧力P3を理想気体の状態方程式から導出した次式に代入して前記空洞の容積を算出すること
を特徴とするコンクリート構造物内の空洞量推定方法。
The cavity and a decompression container with a known volume that has been decompressed to a predetermined pressure are communicated via an open / close valve that can be freely opened and closed, and the pressure in the decompression container and the pressure of the air that communicates with the interior of the cavity are While measuring for a predetermined time before and after opening the on-off valve, obtain multiple measurement data,
Comprising the step of selecting the measurement data to be used for approximation by using the determined coefficient R 2 from the plurality of measurement data of the pressure of the mixed gas was measured after opening of the closing valve,
Determine the pressure P 3 of the gas mixture based on the function approximated from the selected measurement data, and calculate the volume of the cavity by substituting the pressure P 3 of the gas mixture into the following equation derived from the equation of state of the ideal gas A method for estimating the amount of cavities in a concrete structure characterized by the above.
を特徴とする請求項1に記載のコンクリート構造物内の空洞量推定方法。 In the step of selecting the measurement data, selection is made so that the measurement data is a continuous section in which the determination coefficient R 2 is 0.99 or more and the number of measurement data is 10 or more. Item 2. A method for estimating a void amount in a concrete structure according to item 1.
を特徴とする請求項1又は2に記載のコンクリート構造物内の空洞量推定方法。 The method of estimating a void amount in a concrete structure according to claim 1 or 2, wherein the approximated function is a linear function having time as a variable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016174601A JP6762814B2 (en) | 2016-09-07 | 2016-09-07 | Method of estimating the amount of cavities in a concrete structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016174601A JP6762814B2 (en) | 2016-09-07 | 2016-09-07 | Method of estimating the amount of cavities in a concrete structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018040671A true JP2018040671A (en) | 2018-03-15 |
JP6762814B2 JP6762814B2 (en) | 2020-09-30 |
Family
ID=61625827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016174601A Active JP6762814B2 (en) | 2016-09-07 | 2016-09-07 | Method of estimating the amount of cavities in a concrete structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6762814B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020056256A (en) * | 2018-10-03 | 2020-04-09 | オリエンタル白石株式会社 | Grout reinjection automatic construction system and grout reinjection automatic construction method |
CN112577452A (en) * | 2020-11-25 | 2021-03-30 | 中铁建工集团有限公司 | Volume measurement method of non-connected karst cave |
JP2021085825A (en) * | 2019-11-29 | 2021-06-03 | 国立大学法人群馬大学 | Method for estimating amount of hollow in concrete structure |
CN113065092A (en) * | 2021-03-04 | 2021-07-02 | 一汽奔腾轿车有限公司 | Method for calculating volume of brake vacuum tank |
CN114575596A (en) * | 2022-01-25 | 2022-06-03 | 北京城建十六建筑工程有限责任公司 | Pump sending concrete measurement system |
CN115900871A (en) * | 2023-03-02 | 2023-04-04 | 江苏煤炭地质物测队 | Measuring equipment for detecting roadbed cavity area |
-
2016
- 2016-09-07 JP JP2016174601A patent/JP6762814B2/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020056256A (en) * | 2018-10-03 | 2020-04-09 | オリエンタル白石株式会社 | Grout reinjection automatic construction system and grout reinjection automatic construction method |
JP7170264B2 (en) | 2018-10-03 | 2022-11-14 | オリエンタル白石株式会社 | Grout re-injection automatic construction system and grout re-injection automatic construction method |
JP2021085825A (en) * | 2019-11-29 | 2021-06-03 | 国立大学法人群馬大学 | Method for estimating amount of hollow in concrete structure |
CN112577452A (en) * | 2020-11-25 | 2021-03-30 | 中铁建工集团有限公司 | Volume measurement method of non-connected karst cave |
CN113065092A (en) * | 2021-03-04 | 2021-07-02 | 一汽奔腾轿车有限公司 | Method for calculating volume of brake vacuum tank |
CN114575596A (en) * | 2022-01-25 | 2022-06-03 | 北京城建十六建筑工程有限责任公司 | Pump sending concrete measurement system |
CN115900871A (en) * | 2023-03-02 | 2023-04-04 | 江苏煤炭地质物测队 | Measuring equipment for detecting roadbed cavity area |
CN115900871B (en) * | 2023-03-02 | 2023-05-16 | 江苏煤炭地质物测队 | Measuring equipment for detecting roadbed cavity area |
Also Published As
Publication number | Publication date |
---|---|
JP6762814B2 (en) | 2020-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018040671A (en) | Method of estimating cavity volume in concrete structure | |
US10416064B2 (en) | Methods and systems for determining gas permeability of a subsurface formation | |
US11371905B2 (en) | Methods for detecting leakage in permeability measurement system | |
Bjegović et al. | Test methods for concrete durability indicators | |
KR101082737B1 (en) | Evaluation method of compressive strength for structural concrete | |
US10866183B2 (en) | In-situ HIC growth monitoring probe | |
CN109282783A (en) | A kind of concrete carbonization depth original position damage-free measuring apparatus and method | |
DeSouza et al. | A field test for evaluating high performance concrete covercrete quality | |
JP5997864B1 (en) | Cavity estimation method in concrete structures | |
Claisse et al. | A vacuum-air permeability test for in situ assessment of cover concrete | |
JP4521066B2 (en) | Prediction method of corrosion occurrence time of steel in concrete | |
JP7302823B2 (en) | Method for estimating void volume in concrete structure | |
Talukdar et al. | Modelling the effects of structural cracking on carbonation front advance into concrete | |
Claisse et al. | Test methods for measuring fluid transport in cover concrete | |
RU2529455C1 (en) | Method to determine thermal volume expansion coefficient of liquid | |
JP4108568B2 (en) | Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete | |
JP2010025757A (en) | Tracer testing method | |
JP2008051561A (en) | Volume calculation method, volume calculation apparatus, and refrigerant leakage test apparatus | |
Kamat et al. | Real-time chloride diffusion coefficient in concrete using embedded resistivity sensors | |
JP2019015126A (en) | Estimation method of strength of improved soil | |
JP2997863B2 (en) | Method and apparatus for measuring the volume of exfoliated parts and cavities of concrete, mortar, etc. in structures and other cavities | |
Sun et al. | Concepts to Enhance Specification and Inspection of Curing Effectiveness in Concrete Pavement Design and Construction | |
JP7170264B2 (en) | Grout re-injection automatic construction system and grout re-injection automatic construction method | |
JP2018169239A (en) | Method and system for inspecting cavity | |
RU94709U1 (en) | DEVICE FOR DETERMINING THERMOPHYSICAL QUALITIES OF BUILDINGS AND CONSTRUCTION FACILITIES OF BUILDINGS AND CONSTRUCTIONS ON TEMPERATURE CONDUCTIVITY IN NATURAL CONDITIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6762814 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |