JP2019015126A - Estimation method of strength of improved soil - Google Patents

Estimation method of strength of improved soil Download PDF

Info

Publication number
JP2019015126A
JP2019015126A JP2017134393A JP2017134393A JP2019015126A JP 2019015126 A JP2019015126 A JP 2019015126A JP 2017134393 A JP2017134393 A JP 2017134393A JP 2017134393 A JP2017134393 A JP 2017134393A JP 2019015126 A JP2019015126 A JP 2019015126A
Authority
JP
Japan
Prior art keywords
injection
ground
strength
improved ground
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017134393A
Other languages
Japanese (ja)
Inventor
大野 康年
Yasutoshi Ono
康年 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP2017134393A priority Critical patent/JP2019015126A/en
Publication of JP2019015126A publication Critical patent/JP2019015126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To provide an estimation method of a strength of improved soil which can promptly check a strength of improved soil to which a soil improvement chemical is injected.SOLUTION: A fluid is injected into improved soil through an injection hole after completing a step of injecting a soil improvement chemical into the injection hole and an underground gel time t of the soil improvement chemical has passed and before a predetermined time T for a cure time Tof the improved soil, thereby acquiring a relationship between an injection pressure P and an injection flow rate Q in the improved soil. Then, a coefficient k of permeability of the improved soil is calculated based on the acquired relationship between the injection pressure P and the injection flow rate Q, and a uniaxial compressive strength qu after cure of the improved soil is estimated based on the calculated coefficient k of permeability and relation data between the previously grasped uniaxial compressive strength qu after the cure time Tof the improved soil formed by the soil improvement chemical and the coefficient k of permeability.SELECTED DRAWING: Figure 1

Description

本発明は、改良地盤の強度の推定方法に関し、さらに詳しくは、地盤改良薬液を注入した改良地盤の強度を早期に確認できる改良地盤の強度の推定方法に関するものである。   The present invention relates to a method for estimating the strength of an improved ground, and more particularly to a method for estimating the strength of an improved ground that enables early confirmation of the strength of the improved ground injected with a ground improvement chemical.

液状化対策等を目的とした地盤改良方法として、地盤中に溶液系薬液やセメント系懸濁型薬液等の地盤改良薬液を注入する薬液注入工法が行われている。この工法による改良地盤の強度を早期に確認できれば、注入条件の改善やその他の観点から有益である。従来、地盤の一軸圧縮強さを確認する方法が幾つか知られている(例えば特許文献1参照)。特許文献1では、先端にスクリューポイントを有する貫入ロッドを地中に回転貫入し、段階的に貫入ロッドに負荷する荷重を変化させながら、貫入ロッドの回転トルクを測定する貫入試験方法が提案されている。しかし、この試験方法は、試験を行った時点における一軸圧縮強さを把握するものである。したがって、早期に改良地盤強度の確認を行なおうとしても、改良地盤が十分に強度を発現するまで養生させる必要がある。   As a ground improvement method for the purpose of liquefaction countermeasures or the like, a chemical solution injection method for injecting a ground improvement chemical solution such as a solution type chemical solution or a cement suspension type chemical solution into the ground is performed. If the strength of the improved ground by this method can be confirmed at an early stage, it will be beneficial from the viewpoint of improving the injection conditions and other aspects. Conventionally, several methods for confirming the uniaxial compressive strength of the ground are known (for example, see Patent Document 1). Patent Document 1 proposes an intrusion test method in which a penetrating rod having a screw point at its tip is rotationally penetrated into the ground, and the rotational torque of the penetrating rod is measured while changing the load applied to the penetrating rod in stages. Yes. However, this test method grasps the uniaxial compressive strength at the time of performing the test. Therefore, even if the improved ground strength is to be confirmed at an early stage, it is necessary to cure until the improved ground has sufficiently developed the strength.

或いは、改良地盤に対してコアボーリングを行い、採取したサンプルを用いて一軸圧縮試験を行う方法においても、試験が行えるのは改良地盤を十分に養生して強度発現した後であるので、改良地盤の強度を早期に確認するには不利になる。さらに、ボーリングにより現地土砂を採取した後に室内で試験を行う必要があるため、改良地盤強度の確認するのに長時間を要する。この方法では、サンプリングを行う際にサンプルが乱れてしてしまい、正確な強度を測定することが困難であるという問題もある。このように、従来方法では、十分に強度を発現した時点での強度を事前に把握できないため、改良地盤の強度を早期に確認するには限界があった。   Alternatively, even in the method of performing core boring on the improved ground and performing a uniaxial compression test using the collected samples, the test can be performed after the improved ground has been sufficiently cured and has developed its strength. It will be disadvantageous to confirm the strength of the early. Furthermore, since it is necessary to carry out an indoor test after collecting the local sediment by boring, it takes a long time to check the improved ground strength. In this method, the sample is disturbed when sampling is performed, and there is also a problem that it is difficult to measure an accurate intensity. Thus, in the conventional method, since the strength at the time when the strength is sufficiently developed cannot be grasped in advance, there is a limit to confirming the strength of the improved ground at an early stage.

特開2014−134067号公報JP 2014-134667 A

本発明の目的は、地盤改良薬液を注入した改良地盤の強度を早期に確認できる改良地盤の強度の推定方法を提供することにある。   The objective of this invention is providing the estimation method of the intensity | strength of the improved ground which can confirm the intensity | strength of the improved ground which injected the ground improvement chemical | medical solution at an early stage.

上記目的を達成するため本発明の改良地盤の強度の推定方法は、地盤に形成された注入孔を通じて、地盤改良薬液を注入することにより形成される改良地盤の強度の推定方法であって、前記地盤改良薬液を前記注入孔に注入する工程を完了し、前記地盤改良薬液の土中ゲルタイムが経過した後かつ、前記改良地盤の養生期間が経過する所定時間前に、前記注入孔を通じて前記改良地盤に流体を注入し、その際の前記流体の注入圧力と注入流量との関係を取得し、この取得した注入圧力と注入流量との関係に基づいて前記改良地盤の透水係数を算出し、この算出した透水係数と、予め把握されている前記地盤改良薬液により形成された改良地盤の養生期間経過後の一軸圧縮強さと透水係数との関係データとに基づいて、前記改良地盤の養生後の一軸圧縮強さを推定することを特徴とする。   In order to achieve the above object, the method for estimating the strength of the improved ground according to the present invention is a method for estimating the strength of the improved ground formed by injecting a ground improving chemical solution through an injection hole formed in the ground, After completing the step of injecting the ground improvement chemical solution into the injection hole, after the soil gel time of the ground improvement chemical solution has elapsed and before the predetermined time before the curing period of the improved ground elapses, the improved ground through the injection hole The fluid is injected into the tank, the relationship between the injection pressure and the injection flow rate of the fluid at that time is acquired, and the hydraulic conductivity of the improved ground is calculated based on the relationship between the acquired injection pressure and the injection flow rate. Based on the water permeability coefficient and the relationship data between the uniaxial compressive strength and the water permeability coefficient after the curing period of the improved ground formed by the previously known ground improvement chemical solution, after the curing of the improved ground And estimating the axial compressive strength.

本発明によれば、地盤改良薬液を注入した注入孔を利用して流体を注入し、その注入圧力と注入流量との関係を取得することで迅速かつ容易に透水係数を算出できる。さらに、この流体の注入は改良地盤が強度発現する前の養生期間中に行うことができるので、算出した透水係数と予め把握されているデータとに基づいて早期に改良地盤の強度を把握することができる。   According to the present invention, the hydraulic conductivity can be quickly and easily calculated by injecting a fluid using the injection hole into which the ground improvement chemical solution is injected, and acquiring the relationship between the injection pressure and the injection flow rate. Furthermore, since this fluid injection can be performed during the curing period before the improved ground develops strength, the strength of the improved ground should be grasped at an early stage based on the calculated permeability coefficient and previously known data. Can do.

ここで、例えば、前記流体として水を使用する。水を使用する場合には、改良地盤に与える影響が少ないので、この水を注入する前の改良地盤強度を実質的に変化させることなく改良地盤の強度を推定することができる。   Here, for example, water is used as the fluid. In the case of using water, since the influence on the improved ground is small, the strength of the improved ground can be estimated without substantially changing the strength of the improved ground before the water is injected.

或いは、前記流体として地盤改良薬液を使用することもできる。地盤改良薬液を使用する場合には、当初の改良地盤にはさらに地盤改良薬液が注入されることになるので、改良地盤の強度をより向上させることができる。また、地盤改良薬液が余っている場合は地盤改良薬液の有効利用になる。   Or a ground improvement chemical | medical solution can also be used as said fluid. When the ground improvement chemical solution is used, the ground improvement chemical solution is further injected into the initial improvement ground, so that the strength of the improvement ground can be further improved. Moreover, when the ground improvement chemical | medical solution is surplus, it becomes effective utilization of a ground improvement chemical | medical solution.

前記透水係数を算出する際に、具体的に例えば、前記注入圧力を有効注入圧力水頭に換算し、前記注入流量に対する前記有効注入圧力水頭の傾きAを求め、この求めた傾きAを下記(1)式に導入することにより、前記透水係数kを算出することもできる。
透水係数k={1/(2πLA)}ln(2L/D) ・・・(1)
ここで、Lは前記注入孔において注入した前記流体を保持する部分の長さ、Dは前記注入孔の直径である。
When calculating the hydraulic conductivity, specifically, for example, the injection pressure is converted into an effective injection pressure head, and an inclination A of the effective injection pressure head with respect to the injection flow rate is obtained. ), The water permeability coefficient k can also be calculated.
Hydraulic conductivity k = {1 / (2πLA)} ln (2L / D) (1)
Here, L is the length of the portion holding the fluid injected in the injection hole, and D is the diameter of the injection hole.

本発明の改良地盤の強度の推定方法の一例を示すフロー図である。It is a flowchart which shows an example of the estimation method of the intensity | strength of the improved ground of this invention. 現地注入試験工程を縦断面視で例示する説明図である。It is explanatory drawing which illustrates an on-site injection | pouring test process by a longitudinal cross-sectional view. 注入流量と有効注入圧力水頭の関係を例示するグラフ図である。It is a graph which illustrates the relationship between an injection | pouring flow volume and an effective injection pressure head. 養生期間経過後の一軸圧縮強さと透水係数との関係データを例示するグラフ図である。It is a graph which illustrates the relationship data of the uniaxial compressive strength after a curing period progress, and a hydraulic conductivity. 養生期間と一軸圧縮強さの関係を例示するグラフ図である。It is a graph which illustrates the relationship between a curing period and uniaxial compressive strength. 養生期間と透水係数の関係を例示するグラフ図である。It is a graph which illustrates the relationship between a curing period and a hydraulic conductivity. 地盤に薬液を注入する状況を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the condition which inject | pours a chemical | medical solution into the ground by a longitudinal cross-sectional view.

以下、本発明の改良地盤の強度の推定方法を図に示した実施形態に基づいて説明する。   Hereinafter, the method for estimating the strength of the improved ground according to the present invention will be described based on the embodiments shown in the drawings.

本発明は、図7で示すように地盤に形成された注入孔Hを通じて、地盤改良薬液G(以下、薬液Gという)を注入することにより形成される改良地盤の強度を推定する方法である。この実施形態では、削孔機から延ばしたケーシングロッドによって地盤に孔径D(m)の注入孔Hを形成し、薬液注入装置10によって薬液Gを地盤に注入している。   The present invention is a method for estimating the strength of an improved ground formed by injecting a ground improvement chemical solution G (hereinafter referred to as a chemical solution G) through an injection hole H formed in the ground as shown in FIG. In this embodiment, an injection hole H having a hole diameter D (m) is formed in the ground by a casing rod extended from the drilling machine, and the chemical solution G is injected into the ground by the chemical solution injection device 10.

図5で例示するように、薬液Gを注入することにより形成される改良地盤は、薬液Gの注入後一定期間(例えば、14日程度)まで強度(一軸圧縮強さqu)が増加し、その後はほぼ一定値となる。したがって、養生期間T経過後の改良地盤の一軸圧縮強さquをその改良地盤を測定して直接的に把握するには、少なくとも改良地盤が強度発現した後(14日以降)に測定を行う必要がある。 As illustrated in FIG. 5, in the improved ground formed by injecting the chemical solution G, the strength (uniaxial compression strength qu) increases until a certain period (for example, about 14 days) after the injection of the chemical solution G, and then Is almost constant. Therefore, the uniaxial compressive strength qu of ground improved after curing period T E to directly grasp and measure the improved ground makes measurements after at least improved ground has Strength (14 days later) There is a need.

一方、図6で例示するように、改良地盤の透水係数kは土中ゲルタイムt経過以降に一定値となる。即ち、土中ゲルタイムt以降であれば、強度発現する前の養生期間中であっても養生期間T経過後の改良地盤の透水係数kを取得することができる。そこで、本発明は、透水係数kと、透水係数kと養生期間T経過後の改良地盤の一軸圧縮強さquとの関係とを利用することにより、強度発現する前の養生期間中であっても改良地盤の強度を把握可能にしている。 On the other hand, as illustrated in FIG. 6, the permeability coefficient k of the improved ground becomes a constant value after the gel time t in the soil has elapsed. That is, if the soil gel time t later, it is possible even during curing period prior to strength development acquires permeability k of the ground improved after curing period T E. The present invention includes a permeability k, by utilizing the relationship between the uniaxial compressive strength qu the improved ground after curing period T E passed the permeability k, even during curing period before Strength However, the strength of the improved ground can be grasped.

本発明は、図1のフロー図で示すように、大きく分けて3つの工程(現地注入試験工程、透水係数算定工程、一軸圧縮強さ推定工程)で構成されている。本発明では、現地注入試験工程と透水係数算定工程を行うことで、改良地盤の透水係数kを取得し、一軸圧縮強さ推定工程において、透水係数kから一軸圧縮強さquを推定する。各工程の詳細は以下に説明する。   As shown in the flowchart of FIG. 1, the present invention is roughly composed of three processes (on-site injection test process, hydraulic conductivity calculation process, and uniaxial compressive strength estimation process). In the present invention, the on-site injection test process and the permeability coefficient calculation process are performed to acquire the permeability coefficient k of the improved ground, and the uniaxial compression strength qu is estimated from the permeability coefficient k in the uniaxial compression strength estimation process. Details of each step will be described below.

現地注入試験工程は、薬液Gを注入孔Hに注入する工程を完了し、薬液Gの土中ゲルタイムtが経過した後かつ、改良地盤の養生期間Tが経過する所定時間T前に行う。土中ゲルタイムtとは、地盤中で薬液Gがゲル化(液体が固体化する)するまでに要する時間である。土中ゲルタイムtは使用する薬液Gによって異なるが、例えば、薬液Gの注入を完了してから2時間〜12時間である。 Local injection testing process completes the step of injecting a drug solution G to the injection hole H, and after the lapse of soil gel time t of liquid G, performed before a predetermined time T has elapsed curing period T E of improved ground. The soil gel time t is the time required until the chemical solution G gels (the liquid solidifies) in the ground. The soil gel time t varies depending on the chemical solution G to be used, and is, for example, 2 hours to 12 hours after the injection of the chemical solution G is completed.

改良地盤の養生期間Tは一般的に薬液Gの注入が完了してから28日間である。上記の所定時間Tは、例えば、14日〜27日である。即ち、本発明では、薬液Gの土中ゲルタイムtの経過後、薬液Gの注入が完了してから28日以前に現地注入試験工程を行うが、薬液Gの注入が完了してから1日〜14日程度の期間(改良地盤が強度発現する前の養生期間中)に現地注入試験工程を行うことが望ましい。 Curing period T E of the improved ground is generally 28 days from the injection of the drug solution G is completed. The predetermined time T is, for example, 14 to 27 days. That is, in the present invention, after the lapse of the gel time t in the soil of the chemical solution G, the on-site injection test process is performed 28 days before the completion of the injection of the chemical solution G. It is desirable to perform the local injection test process during a period of about 14 days (during the curing period before the improved ground develops strength).

現地注入試験工程では、図2で示すように、地盤に形成された注入孔Hに流体を注入することにより、改良地盤における注入圧力P(Pa)と注入流量Q(m/s)との関係を取得する。流体としては例えば、水Wや薬液Gを使用することができる。この実施形態では現地注入試験装置1を用いて注入孔Hに水Wを注入することにより現地注入試験を行っている。 In the on-site injection test process, as shown in FIG. 2, by injecting fluid into the injection hole H formed in the ground, the injection pressure P (Pa) and the injection flow rate Q (m 3 / s) in the improved ground Get relationship. For example, water W or chemical G can be used as the fluid. In this embodiment, the local injection test is performed by injecting water W into the injection hole H using the local injection test apparatus 1.

現地注入試験装置1は、外表面にパッカ7を有する注入管2と、注入管2に接続される注入装置3と、注入管2に直接または間接的に接続される流量計4および水圧計5と、注入装置3と流量計4と水圧計5とに有線または無線で接続される演算装置6と、パッカ7に配管8を介して接続される加圧装置9とを備えている。パッカ7は、円環状の袋体である。   The on-site injection test apparatus 1 includes an injection tube 2 having a packer 7 on the outer surface, an injection device 3 connected to the injection tube 2, a flow meter 4 and a water pressure meter 5 connected directly or indirectly to the injection tube 2. And an arithmetic device 6 connected to the injection device 3, the flow meter 4 and the water pressure meter 5 by wire or wirelessly, and a pressurizing device 9 connected to the packer 7 via a pipe 8. The packer 7 is an annular bag.

注入管2は、水密性を有する管体であり、注入孔Hの孔径Dよりも小さな外径寸法を有する挿入管部2aと、挿入管部2aと注入装置3とを接続する供給管部2bとで構成されている。挿入管部2aの上端部には水圧計5が設置されていて、上端部は塞がれている。供給管部2bの中途の位置には、流量計4が設置されている。   The injection tube 2 is a water-tight tube, and has an insertion tube portion 2 a having an outer diameter smaller than the hole diameter D of the injection hole H, and a supply tube portion 2 b that connects the insertion tube portion 2 a and the injection device 3. It consists of and. A water pressure gauge 5 is installed at the upper end portion of the insertion tube portion 2a, and the upper end portion is closed. A flow meter 4 is installed in the middle of the supply pipe 2b.

注入装置3は、注入管2(供給管部2b)に所定の注入圧力Pまたは注入流量Qで水Wを供給することができる。注入装置3としては、ポンプやガスの圧力で水Wを送り出す機密水槽を例示できる。注入装置3には、注入圧力Pの脈動を少なくするために、アキュムレーターを取り付けるとよい。   The injection device 3 can supply water W to the injection pipe 2 (supply pipe part 2b) at a predetermined injection pressure P or injection flow rate Q. An example of the injection device 3 is a secret water tank that sends out water W using a pump or gas pressure. An accumulator may be attached to the injection device 3 in order to reduce the pulsation of the injection pressure P.

流量計4は、注入装置3から注入管2に供給された水Wの注入流量Qを測定する。水圧計5は、改良地盤に水Wを注入した際の注入圧力Pを測定する。流量計4と水圧計5の測定データは逐次演算装置6に入力される。   The flow meter 4 measures the injection flow rate Q of the water W supplied from the injection device 3 to the injection pipe 2. The water pressure gauge 5 measures the injection pressure P when water W is injected into the improved ground. The measurement data of the flow meter 4 and the water pressure meter 5 are input to the sequential calculation device 6.

演算装置6は、注入装置3の制御と、流量計4および水圧計5の測定データの記録と、測定データを基にした演算作業を行う。演算装置6としては、パーソナルコンピュータ等を例示できる。加圧装置9から配管8を通してパッカ7の内部にガスgまたは水を注入することによってパッカ7は膨張する。   The calculation device 6 performs control operations based on the control of the injection device 3, the recording of measurement data of the flow meter 4 and the water pressure meter 5, and the measurement data. An example of the arithmetic device 6 is a personal computer. By injecting gas g or water into the packer 7 from the pressurizing device 9 through the pipe 8, the packer 7 expands.

現地注入試験装置1を用いて改良地盤における注入圧力Pと注入流量Qとの関係を取得する手順を以下に説明する。この実施形態では、注入孔Hの孔底から上側にL(m)の位置までの間を試験区間としている。そして試験区間に注入圧力Pを段階的に上昇させながら水Wを注入し、各段階における定常時の注入流量Qを測定する。この現地注入試験工程は、地盤工学会(JGS)のJGS1322(注入による岩盤の透水試験方法)に基づいて行う。   A procedure for acquiring the relationship between the injection pressure P and the injection flow rate Q in the improved ground using the local injection test apparatus 1 will be described below. In this embodiment, the test interval is from the bottom of the injection hole H to the position of L (m) on the upper side. Then, water W is injected while increasing the injection pressure P stepwise in the test section, and the injection flow rate Q at the steady state in each step is measured. This on-site injection test process is performed based on JGS1322 (the rock permeability test method by injection) of the Geotechnical Society (JGS).

まず、注入管2の挿入管部2aを注入孔Hに挿入するようにして設置する。この際、挿入管部2aの下端部は孔底に接地させず、膨張させた際のパッカ7の下端部が注入孔Hの孔底から上側にL(m)の位置に配置されるようにする。次に、加圧装置9からガスgを供給することによってパッカ7を膨張させ、パッカ7によって挿入管部2aの外周面と注入孔Hの孔壁との間を密に塞ぐ。すなわち、注入孔Hの孔底から膨張させたパッカ7の下端部までの空間(試験区間)を密閉した状態にする。   First, the insertion tube portion 2a of the injection tube 2 is installed so as to be inserted into the injection hole H. At this time, the lower end portion of the insertion tube portion 2a is not grounded to the bottom of the hole, and the lower end portion of the packer 7 when expanded is arranged at the position L (m) above the bottom of the injection hole H. To do. Next, the packer 7 is expanded by supplying the gas g from the pressurizing device 9, and the gap between the outer peripheral surface of the insertion tube portion 2 a and the hole wall of the injection hole H is tightly closed by the packer 7. That is, the space (test section) from the bottom of the injection hole H to the lower end of the expanded packer 7 is sealed.

上記の準備を終えた後、演算装置6から注入装置3に一定の注入流量Q1で注入するように指令を入力して注入を開始する。演算装置6の指令を受けて、注入装置3は供給管部2bに水Wを供給し、挿入管部2aの下端部開口から一定の注入流量Q1で試験区間内に水Wを注入する。即ち、注入孔Hにおいて、注入した水Wを保持する部分の長さがL(m)となる。   After completing the above preparation, an instruction is input from the arithmetic unit 6 to the injection device 3 so as to inject at a constant injection flow rate Q1, and injection is started. Upon receiving a command from the arithmetic unit 6, the injection device 3 supplies water W to the supply pipe portion 2b, and injects water W into the test section at a constant injection flow rate Q1 from the lower end opening of the insertion tube portion 2a. That is, the length of the portion that holds the injected water W in the injection hole H is L (m).

一定の注入流量Q1で水Wを注入している際の注入圧力Pの経時変化は水圧計5によって逐次測定され、その測定データは演算装置6に逐次入力される。演算装置6は、逐次入力される測定データから、一定の注入流量Q1において注入圧力Pがほぼ一定になった時(定常時)の数値を読み取り、その数値を注入流量Q1における注入圧力P1として記録する。   The time-dependent change of the injection pressure P when water W is injected at a constant injection flow rate Q1 is sequentially measured by the water pressure gauge 5, and the measurement data is sequentially input to the arithmetic unit 6. The arithmetic unit 6 reads the numerical value when the injection pressure P becomes substantially constant at the constant injection flow rate Q1 (steady state) from the measurement data sequentially input, and records the numerical value as the injection pressure P1 at the injection flow rate Q1. To do.

注入流量Q1における注入圧力P1の記録を終えると、演算装置6は、注入装置3に対象地盤に注入する注入流量Q1をより流量の大きい注入流量Q2に変更するように指令を入力する。この後は、注入流量Q1で行った手順と同様の手順で注入流量Q2における注入圧力P2を記録する。この注入流量Qを変更してからその注入流量Qにおける注入圧力Pを記録するまでの手順を注入流量Q1、Q2、Q3・・・と注入流量Qを段階的に増加させて繰り返し行うことにより、注入圧力Pと注入流量Qの関係を取得する。   When the recording of the injection pressure P1 at the injection flow rate Q1 is completed, the arithmetic device 6 inputs a command to the injection device 3 so as to change the injection flow rate Q1 injected into the target ground to the injection flow rate Q2 having a higher flow rate. Thereafter, the injection pressure P2 at the injection flow rate Q2 is recorded in the same procedure as that performed at the injection flow rate Q1. By repeating the procedure from changing the injection flow rate Q to recording the injection pressure P at the injection flow rate Q while increasing the injection flow rates Q1, Q2, Q3. The relationship between the injection pressure P and the injection flow rate Q is acquired.

注入圧力Pと注入流量Qとの測定は、注入流量Qが限界注入速度を上回った時点で終了する。具体的には、注入流量Qが一定の数値(限界注入速度)を上回ると地盤に割裂が生じ、注入圧力Pの数値が低下するので、注入圧力Pが前回の測定を下回った時点で演算装置6から注入装置3に注入を終了するように指令を入力する。   The measurement of the injection pressure P and the injection flow rate Q ends when the injection flow rate Q exceeds the limit injection rate. Specifically, if the injection flow rate Q exceeds a certain value (limit injection rate), the ground will split and the value of the injection pressure P will decrease, so that the arithmetic unit when the injection pressure P falls below the previous measurement. A command is input from 6 to the injection device 3 so as to end the injection.

この実施形態では、一定の注入流量Qで試験区間に水Wを注入した際の注入圧力Pを測定したが、一定の注入圧力Pで試験区間に注入した際の注入流量Qを測定することで注入圧力Pと注入流量Qの関係を取得することもできる。また、注入流量Qが限界注入速度に達する前の段階で測定を終えることもできる。   In this embodiment, the injection pressure P when water W is injected into the test section at a constant injection flow rate Q is measured, but by measuring the injection flow rate Q when water is injected into the test section at a constant injection pressure P, The relationship between the injection pressure P and the injection flow rate Q can also be acquired. Further, the measurement can be finished before the injection flow rate Q reaches the limit injection speed.

注入装置3の制御と、流量計4および水圧計5の測定と、測定結果の記録とを作業員による人力で行なうこともできるが、この実施形態のように演算装置6を用いてこれら作業を行なうと、作業を精度よく行なえる。しかも軽労化を図ることもできる。   Although the control of the injection device 3, the measurement of the flow meter 4 and the water pressure meter 5, and the recording of the measurement result can be performed manually by an operator, these operations are performed using the arithmetic device 6 as in this embodiment. If done, work can be done with high accuracy. In addition, lighter labor can be achieved.

次の透水係数算定工程では、現地注入試験工程で取得した注入圧力Pと注入流量Qとの関係に基づいて改良地盤の透水係数kを算定する。透水係数kの算定は、この実施形態では、地盤工学会(JGS)のJGS1322(注入による岩盤の透水試験方法)に基づいて行う。注入圧力Pと注入流量Qの関係に基づいて改良地盤の透水係数kを算定する手順を以下に説明する。   In the next hydraulic conductivity calculation step, the hydraulic conductivity k of the improved ground is calculated based on the relationship between the injection pressure P and the injection flow rate Q acquired in the local injection test step. In this embodiment, the permeability coefficient k is calculated based on JGS1322 (a rock permeability test method by rock injection) of the Geotechnical Society (JGS). A procedure for calculating the hydraulic conductivity k of the improved ground based on the relationship between the injection pressure P and the injection flow rate Q will be described below.

まず、注入圧力P(Pa)を下記(2)式により有効注水圧力水頭S(m)に換算する。
S=P/r+h1−h2−h3 ・・・(2)
ここで、h1は水圧計5と試験区間中央の高さの差(m)、h2は平衡水位と試験区間中央の高さの差(m)、h3は注入管2の管内抵抗による損失水頭(m)、rは水Wの単位体積重量(N/m)である。尚、平衡水位は、JGS1311(ボーリング孔を利用した砂質・礫室地盤の地下水位の測定方法)に基づいて測定することができる。注入管2の管内抵抗による損失水頭h3は、損失水頭試験によって求めることができる。
First, the injection pressure P (Pa) is converted into an effective water injection pressure head S (m) by the following equation (2).
S = P / r + h1-h2-h3 (2)
Here, h1 is the difference in height between the hydrometer 5 and the center of the test section (m), h2 is the difference in height between the equilibrium water level and the center of the test section (m), and h3 is the head of loss due to the in-tube resistance of the injection pipe 2 ( m) and r are unit volume weights (N / m 3 ) of water W. The equilibrium water level can be measured based on JGS1311 (measuring method of groundwater level of sandy / gravel ground using a borehole). The loss head h3 due to the in-pipe resistance of the injection pipe 2 can be obtained by a loss head test.

次に、図3で示すように、有効注水圧力水頭Sを縦軸に、注入流量Qを横軸にとり、各圧力段階の測定値をプロットしたグラフを作成する。そして、注入流量Qの増加量に対する有効注水圧力水頭Sの傾きAを求める。傾きAを求める際には、注入流量Qが限界注入速度Qcrを上回る前の段階(図3におけるQ1〜Q5)までの有効注水圧力水頭Sと注入流量Qとの関係を利用して求める。傾きAは下記(3)式で表される。
A=ΔS/ΔQ ・・・(3)
また、一段階の注入圧力Pと注入流量Qから透水係数kを求める場合には、下記(4)式から傾きAを求める。
A=S/Q ・・・(4)
尚、この実施形態では、説明の便宜上グラフを作成したが、グラフを作成せずに傾きAを求めることもできる。
Next, as shown in FIG. 3, a graph is created in which the effective water injection pressure head S is plotted on the vertical axis and the injection flow rate Q is plotted on the horizontal axis, and the measured values at each pressure stage are plotted. Then, an inclination A of the effective water injection pressure head S with respect to the increase amount of the injection flow rate Q is obtained. When the slope A is obtained, it is obtained using the relationship between the effective water injection pressure head S and the injection flow rate Q up to the stage before the injection flow rate Q exceeds the limit injection rate Qcr (Q1 to Q5 in FIG. 3). The inclination A is expressed by the following equation (3).
A = ΔS / ΔQ (3)
Moreover, when calculating | requiring the hydraulic conductivity k from the injection pressure P and injection | pouring flow volume Q of one step, the inclination A is calculated | required from following (4) Formula.
A = S / Q (4)
In this embodiment, a graph is created for convenience of explanation, but the slope A can be obtained without creating a graph.

そして、(3)式または(4)式で求めた傾きAを下記(1)式に代入することにより、透水係数kを算出する。
k={1/(2πLA)}ln(2L/D) ・・・(1)
ここで、Dは注入孔Hの直径(試験区間の孔径)(m)、Lは試験区間の長さ(m)である。このように、施工現場における作業によって簡易、迅速に透水係数kを算出することができる。
And the hydraulic conductivity k is calculated by substituting the inclination A calculated | required by (3) Formula or (4) Formula (1) below.
k = {1 / (2πLA)} ln (2L / D) (1)
Here, D is the diameter of the injection hole H (hole diameter of the test section) (m), and L is the length of the test section (m). Thus, the hydraulic conductivity k can be calculated simply and quickly by the work at the construction site.

次の一軸圧縮強さ推定工程では、透水係数算定工程で算出した透水係数kと、予め把握されている薬液Gにより形成された改良地盤の養生期間T経過後の一軸圧縮強さquと養生期間T経過後のその改良地盤の透水係数kとの関係データとに基づいて、養生期間中に改良地盤の養生後の一軸圧縮強さquを推定する。 The following uniaxial compressive strength estimation step, and permeability k calculated in permeability calculation step, the uniaxial compressive strength qu after curing period T E lapse of improved ground formed by a chemical solution G which has previously been grasped cured based on the relationship data between the permeability coefficient k of the ground improved after the period T E, it estimates the uniaxial compressive strength qu after curing of improved ground during curing period.

予め把握されている薬液Gにより形成された改良地盤の養生期間T経過後の一軸圧縮強さquと透水係数kとの関係データとしては、図4に例示する両者の相関関係を用いることができる。図4のグラフ縦軸の一軸圧縮強さquは、薬液Gを注入してから28日の養生期間Tを経過した材令28日における改良地盤の一軸圧縮強さquを示している。図4のグラフ横軸は、同じく材令28日における改良地盤の透水係数kを対数係数logkで示している。 The relationship data between uniaxial compressive strength qu and permeability k after curing period T E lapse of previously grasped by formed by a chemical solution G in which the improved ground, the use of correlation between both illustrated in FIG. 4 it can. Uniaxial compressive strength of the graph vertical axis of FIG. 4 qu shows a uniaxial compressive strength qu the improved ground in wood age 28 days have elapsed curing period T E of 28 days from the injection of liquid medicine G. The horizontal axis of the graph in FIG. 4 also shows the hydraulic conductivity k of the improved ground on the 28th day of the material age as a logarithmic coefficient logk.

薬液Gにより形成された改良地盤の養生期間T経過後の一軸圧縮強さquと透水係数kとの関係データは、薬液Gを使用して作成した養生期間T経過後の改良地盤サンプルについて透水試験および一軸圧縮試験を行うことで取得することができる。より詳しくは、例えば、透水係数kは粒径(例えば、20%粒径D20)から算定し、一軸圧縮強さquは、地盤工学会(JGS)のJGS0511(土の一軸圧縮試験)に基づいて求めることができる。一軸圧縮強さquと透水係数kとの関係データは、図4で示すように、薬液Gの種類ごとに事前にグラフ等に整理しておくとよい。 Relationship data between uniaxial compressive strength qu and permeability k after curing period T E lapse of improved ground formed by a chemical solution G, for improved ground samples after curing period T E elapsed created using a chemical solution G It can be obtained by conducting a water permeability test and a uniaxial compression test. More specifically, for example, the hydraulic conductivity k is calculated from the particle size (for example, 20% particle size D 20 ), and the uniaxial compression strength qu is based on JGS0511 (uniaxial compression test of soil) of the Geotechnical Society (JGS). Can be obtained. The relational data between the uniaxial compressive strength qu and the water permeability coefficient k may be arranged in advance in a graph or the like for each type of chemical solution G as shown in FIG.

図4では、薬液Gにより形成された改良地盤サンプルAと薬液G1により形成された改良地盤サンプルBとのそれぞれの関係データが示されている。この実施形態では、薬液Gを使用しているので、改良地盤サンプルAの関係データを使用する。   In FIG. 4, the respective relationship data of the improved ground sample A formed by the chemical solution G and the improved ground sample B formed by the chemical solution G1 are shown. In this embodiment, since the chemical solution G is used, the relationship data of the improved ground sample A is used.

図4に例示するように、対数関数logkと一軸圧縮強さquとは強い相関関係を有しているので、透水係数算定工程で算出した改良地盤の透水係数kと、予め把握されている薬液Gにより形成された改良地盤の養生期間T経過後の一軸圧縮強さquと透水係数kとの関係データとを対応させることによって改良地盤の養生後の一軸圧縮強さquを推定することができる。 As illustrated in FIG. 4, the logarithmic function logk and the uniaxial compressive strength qu have a strong correlation, so that the hydraulic conductivity k of the improved ground calculated in the hydraulic conductivity calculation step and the chemical solution that has been grasped in advance. It is possible to estimate the uniaxial compressive strength qu after curing the improved ground by associating the relationship data with the uniaxial compressive strength qu and permeability k after curing period T E lapse of improved ground formed by G it can.

この実施形態では、演算装置6に予め、透水係数算定工程から一軸圧縮強さ推定工程までの作業プログラムを構築しておくことで、現地注入試験工程で取得した注入圧力Pと注入流量Qとの関係データに基づいて、各薬液Gを使用した場合の一軸圧縮強さquが自動的に推定されるようになっている。つまり、事前に作業プログラムを構築した演算装置6を用意し、各薬液Gを使用した場合の一軸圧縮強さquと透水係数kとの関係データを演算装置6に入力しておけば、現地注入試験工程から一軸圧縮強さ推定工程までの作業を自動化することができる。尚、演算装置6を設けることなく、作業員が現地注入試験工程から一軸圧縮強さ推定工程までの作業を行なうことも可能である。   In this embodiment, by constructing a work program from the hydraulic conductivity calculation process to the uniaxial compressive strength estimation process in advance in the arithmetic device 6, the injection pressure P and the injection flow rate Q acquired in the local injection test process are calculated. Based on the relational data, the uniaxial compression strength qu when each chemical solution G is used is automatically estimated. In other words, if an arithmetic device 6 in which a work program is constructed in advance is prepared and the relational data between the uniaxial compressive strength qu and the hydraulic conductivity k when each chemical solution G is used is input to the arithmetic device 6, the local injection Operations from the test process to the uniaxial compressive strength estimation process can be automated. In addition, it is also possible for an operator to perform operations from the on-site injection test process to the uniaxial compression strength estimation process without providing the arithmetic device 6.

本発明によれば、薬液Gを注入した注入孔Hを利用して流体を注入し、その注入圧力Pと注入流量Qとの関係を取得することで迅速かつ容易に改良地盤の透水係数kを算出できる。さらに、この流体の注入は改良地盤が強度発現する前の養生期間中に行うことができるので、算出した透水係数kと予め把握されているデータとに基づいて早期に改良地盤の強度(一軸圧縮強さqu)を把握することができる。   According to the present invention, the fluid is injected using the injection hole H into which the chemical solution G has been injected, and the relationship between the injection pressure P and the injection flow rate Q is acquired quickly and easily, so that the permeability coefficient k of the improved ground can be obtained. It can be calculated. Furthermore, since the fluid can be injected during the curing period before the improved ground develops strength, the strength of the improved ground (uniaxial compression) can be quickly determined based on the calculated permeability coefficient k and previously known data. Strength qu) can be grasped.

上述したとおり、改良地盤の強度を早期に確認できるので、例えば、改良地盤の強度が規定値未満である場合には、薬液Gを再度注入するなどの対策を早期に講じることができる。また、改良地盤を形成した際の薬液Gの注入仕様(注入量や注入速度等)と改良地盤の強度との関係を早期に確認できるので、後の注入作業に向けて薬液Gの注入条件を早期に改善できる。   As described above, since the strength of the improved ground can be confirmed at an early stage, for example, when the strength of the improved ground is less than a specified value, measures such as injecting the chemical solution G again can be taken early. Moreover, since the relationship between the injection specifications (injection amount, injection speed, etc.) of the chemical solution G when the improved ground is formed and the strength of the improved ground can be confirmed at an early stage, the injection conditions of the chemical solution G can be set for later injection work. Improve early.

本発明は注入孔Hが途中で屈曲して形成されている場合にも採用することができるので、例えば、構造物直下等のサンプリングやサラウンディングが困難な場所においても改良地盤の強度を確認することができる。それ故、従来方法に比して汎用性が高い。   Since the present invention can also be adopted when the injection hole H is bent in the middle, for example, the strength of the improved ground is confirmed even in places where sampling and surroundings are difficult such as directly under the structure. be able to. Therefore, it is more versatile than the conventional method.

この実施形態では、流体として水Wを使用しているので、改良地盤に与える影響が少ない。そのため、水Wを注入する前の改良地盤の強度を実質的に変化させることなく改良地盤の強度を推定することができる。   In this embodiment, since water W is used as the fluid, there is little influence on the improved ground. Therefore, the strength of the improved ground can be estimated without substantially changing the strength of the improved ground before the water W is injected.

注入孔Hに注入する流体として薬液Gを使用することもできる。薬液Gを使用する場合においても、上記で示した実施形態と同様の手順で行うことができる。   The chemical solution G can also be used as a fluid to be injected into the injection hole H. Even when the chemical solution G is used, the same procedure as in the embodiment described above can be performed.

注入孔Hに注入する流体として薬液Gを使用する場合には、当初の改良地盤にはさらに薬液Gが注入されることになるので、改良地盤の強度をより向上させることができる。また、薬液Gが余っている場合は薬液Gの有効利用になる。   When the chemical solution G is used as the fluid to be injected into the injection hole H, the chemical solution G is further injected into the original improved ground, so that the strength of the improved ground can be further improved. In addition, when the chemical solution G remains, the chemical solution G is effectively used.

1 現地注入試験装置
2 注入管
2a 挿入管部
2b 供給管部
3 注入装置
4 流量計
5 水圧計
6 演算装置
7 パッカ
8 配管
9 加圧装置
10 薬液注入装置
H 注入孔
W 水
G 地盤改良薬液
g ガス
DESCRIPTION OF SYMBOLS 1 On-site injection test apparatus 2 Injection pipe 2a Insertion pipe part 2b Supply pipe part 3 Injection apparatus 4 Flowmeter 5 Water pressure gauge 6 Arithmetic apparatus 7 Packer 8 Pipe 9 Pressurization apparatus 10 Chemical solution injection apparatus H Injection hole W Water G Ground improvement chemical solution g gas

Claims (4)

地盤に形成された注入孔を通じて、地盤改良薬液を注入することにより形成される改良地盤の強度の推定方法であって、
前記地盤改良薬液を前記注入孔に注入する工程を完了し、前記地盤改良薬液の土中ゲルタイムが経過した後かつ、前記改良地盤の養生期間が経過する所定時間前に、前記注入孔を通じて前記改良地盤に流体を注入し、その際の前記流体の注入圧力と注入流量との関係を取得し、この取得した注入圧力と注入流量との関係に基づいて前記改良地盤の透水係数を算出し、この算出した透水係数と、予め把握されている前記地盤改良薬液により形成された改良地盤の養生期間経過後の一軸圧縮強さと透水係数との関係データとに基づいて、前記改良地盤の養生後の一軸圧縮強さを推定することを特徴とする改良地盤の強度の推定方法。
A method for estimating the strength of an improved ground formed by injecting a ground improvement chemical solution through an injection hole formed in the ground,
Completing the step of injecting the ground improvement chemical solution into the injection hole, and after the gel time in the soil of the ground improvement chemical solution has elapsed and before the predetermined time before the curing period of the improved ground has passed, the improvement through the injection hole A fluid is injected into the ground, the relationship between the injection pressure and the injection flow rate of the fluid at that time is acquired, and the hydraulic conductivity of the improved ground is calculated based on the relationship between the acquired injection pressure and the injection flow rate. Based on the calculated permeability coefficient and the relational data between the uniaxial compressive strength and permeability coefficient after the curing period of the improved ground formed by the ground improvement chemical solution grasped in advance, the uniaxial after the curing of the improved ground A method for estimating the strength of improved ground, characterized by estimating compressive strength.
前記流体として、水を使用する請求項1に記載の改良地盤の強度の推定方法。   The method for estimating the strength of the improved ground according to claim 1, wherein water is used as the fluid. 前記流体として、前記地盤改良薬液を使用する請求項1に記載の改良地盤の強度の推定方法。   The method for estimating the strength of the improved ground according to claim 1, wherein the ground improvement chemical is used as the fluid. 前記透水係数を算出する際に、前記注入圧力を有効注入圧力水頭に換算し、前記注入流量に対する前記有効注入圧力水頭の傾きAを求め、この求めた傾きAを下記(1)式に導入することにより、前記透水係数kを算出する請求項1〜3のいずれかに記載の改良地盤の強度の推定方法。
透水係数k={1/(2πLA)}ln(2L/D)・・・(1)
ここで、Lは前記注入孔において注入した前記流体を保持する部分の長さ、Dは前記注入孔の直径である。
When calculating the hydraulic conductivity, the injection pressure is converted into an effective injection pressure head, the slope A of the effective injection pressure head with respect to the injection flow rate is obtained, and the obtained slope A is introduced into the following equation (1). The estimation method of the intensity | strength of the improved ground in any one of Claims 1-3 which calculates the said hydraulic conductivity k by this.
Hydraulic conductivity k = {1 / (2πLA)} ln (2L / D) (1)
Here, L is the length of the portion holding the fluid injected in the injection hole, and D is the diameter of the injection hole.
JP2017134393A 2017-07-10 2017-07-10 Estimation method of strength of improved soil Pending JP2019015126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017134393A JP2019015126A (en) 2017-07-10 2017-07-10 Estimation method of strength of improved soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017134393A JP2019015126A (en) 2017-07-10 2017-07-10 Estimation method of strength of improved soil

Publications (1)

Publication Number Publication Date
JP2019015126A true JP2019015126A (en) 2019-01-31

Family

ID=65357494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134393A Pending JP2019015126A (en) 2017-07-10 2017-07-10 Estimation method of strength of improved soil

Country Status (1)

Country Link
JP (1) JP2019015126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670670A1 (en) 2018-12-18 2020-06-24 Ricoh Company, Ltd. Nucleic acid analysis method, nucleic acid analysis program, and device for library preparation
CN114861114A (en) * 2022-03-25 2022-08-05 中南大学 Water pressure-considered calculation method for permeability coefficient of foam improved soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670670A1 (en) 2018-12-18 2020-06-24 Ricoh Company, Ltd. Nucleic acid analysis method, nucleic acid analysis program, and device for library preparation
CN114861114A (en) * 2022-03-25 2022-08-05 中南大学 Water pressure-considered calculation method for permeability coefficient of foam improved soil
CN114861114B (en) * 2022-03-25 2024-04-16 中南大学 Foam improved soil permeability coefficient calculation method considering water pressure

Similar Documents

Publication Publication Date Title
US10571384B2 (en) Methods and systems for determining gas permeability of a subsurface formation
US10416064B2 (en) Methods and systems for determining gas permeability of a subsurface formation
JP4756213B2 (en) A water-impervious test method at the in-situ location of the borehole plugging material, a water-imperviousness test system at the location of the borehole plugging material, a method of analyzing the hydraulic conductivity of the top of the borehole plugging material, a strength analysis method of the top of the borehole plugging material, and boring Experimental equipment for water blocking chamber for hole blocking material
RU2003123596A (en) METHOD AND DEVICE FOR DETERMINING THE FORM OF CRACKS IN ROCKS
WO2007020435A1 (en) Apparatus and method for determining mechanical properties of cement for a well bore
KR20080039221A (en) Apparatus for measuring in-situ stress of rock using thermal crack
Murphy et al. Thermal borehole shear device
CN105954499B (en) Saturated yielding Loess Site carries out saturated yielding place evaluating method and device after fracture grouting reinforcing
CN104532886A (en) Pile bottom sediment and pile tip foundation detecting device and method for cast-in-place piles
JP2011106843A (en) Ground strength estimation method in ground improved by drug injection
JP2014111879A (en) Method for estimating compression strength of soil cement
JP2019015126A (en) Estimation method of strength of improved soil
Chai et al. Pore pressures induced by piezocone penetration
CN117371279A (en) Karst development area-based method for verifying stability of erosion limestone at pile end of bored concrete pile foundation and bearing capacity of pile foundation
CN114136877A (en) Device and method for monitoring cementing strength of cement paste for anchor cable
JP2017002677A (en) Ground improvement chemical injection method
JP4803531B2 (en) Evaluation method of water permeability
CN108343431A (en) A kind of bedrock fracture ground water regime drift net probes into method
Standing The development of unsaturated soil mechanics at Imperial College, London
Coop et al. The axial capacity of driven piles in clay
Wu Feasibility study of centrifuge modeling of SAGD Caprock integrity
Masini et al. Experimental and numerical study of grout injections in silty soils
Ahmadi et al. AN IMPROVEMENT IN THE DETERMINATION OF END BEARING CAPACITY OF DRILLED SHAFTS IN SAND.
Yang et al. APPLICATION OF POST-GROUTING IN BRIDGE FOUNDATION REINFORCEMENT: A CASE STUDY.
JP3862595B2 (en) Measurement method of water permeability anisotropy of ground