JP3862595B2 - Measurement method of water permeability anisotropy of ground - Google Patents

Measurement method of water permeability anisotropy of ground Download PDF

Info

Publication number
JP3862595B2
JP3862595B2 JP2002129708A JP2002129708A JP3862595B2 JP 3862595 B2 JP3862595 B2 JP 3862595B2 JP 2002129708 A JP2002129708 A JP 2002129708A JP 2002129708 A JP2002129708 A JP 2002129708A JP 3862595 B2 JP3862595 B2 JP 3862595B2
Authority
JP
Japan
Prior art keywords
water
ground
hollow tube
packer
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002129708A
Other languages
Japanese (ja)
Other versions
JP2003321827A (en
Inventor
孝昭 清水
雅路 青木
国光 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2002129708A priority Critical patent/JP3862595B2/en
Publication of JP2003321827A publication Critical patent/JP2003321827A/en
Application granted granted Critical
Publication of JP3862595B2 publication Critical patent/JP3862595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、原位置地盤の透水係数の測定方法の技術分野に属し、更に云えば、単孔での透水試験であって、原位置地盤における水平方向の透水係数および鉛直方向の透水係数をそれぞれ測定する、地盤の透水異方性の測定方法に関する。
【0002】
【従来の技術】
一般に自然地盤は層構造を形成しているため、水平方向の透水係数(k)と鉛直方向の透水係数(k)とが異なる、所謂「透水異方性」を有する地盤が多く存在する。
【0003】
従来より地盤の透水係数を原位置で測定する方法として、チューブ法、ピエゾメータ法、オーガー法、パッカー法等の単孔式透水試験や、タイス(Theis)法やヤコブ(Jacob)法等の多孔式揚水試験が実施されている。
しかしながら、これら各測定方法では、いずれも水平方向の透水係数が支配的であり、鉛直方向の透水係数を評価することができない。
【0004】
このような状況に対して、水平方向の透水係数と鉛直方向の透水係数とを評価する方法、即ち「透水異方性」を測定する方法が種々研究されている。例えば、
(1)特許2796748号には、単一ボーリング孔周辺の透水異方性を測定する単孔式透水試験の一例が開示されている。該発明は、ボーリング孔の深度方向に複数のパッカーと圧力センサとを交互に設置し、1つのパッカー区間から注水による変動水圧(浸透流)を発生させ、地盤中へ伝播する応答水圧を他のパッカー区間に設置された圧力センサで計測し、その計測の結果を基に円筒座標系透水性分布モデルによる数値解析を行って地盤の水平および鉛直方向の透水係数を求め、地盤の透水異方性を測定する方法である。
【0005】
(2)特許2788954号には、ボーリング孔の周辺一帯における透水異方性を測定する多孔揚水試験の一例が開示されている。該発明は、ケーシング材および充填材によりスクリーン部と盲管部を設け、更にスクリーン部同士における水の流れを遮断する止水装置を設けた揚水井および観測井において、前記揚水井の任意のスクリーン部から地下水を揚水し、地盤の帯水層に水圧の変動を発生させ、その水圧変動を前記観測井の全スクリーン部の水圧計で計測し、水平および鉛直方向の透水係数を求め、地盤の透水異方性を測定する方法である。
【0006】
【本発明が解決しようとする課題】
しかしながら、上記(1)の技術は、水平および鉛直方向の透水係数の算定に複雑な円筒座標系透水分布モデルによる数値解析を採用するため、当該数値解析に対する専門知識を有した者でなければ実施することはできず、汎用性に乏しいとの問題がある。更に、地盤の透水性の試験区間は、最初に削孔したボーリング孔の深度に限定される問題もある。
【0007】
一方、上記(2)の技術は、複数本のボーリング孔を掘削して透水異方性を測定するため、測定施設が大規模なものとなり、作業の労力およびコストが嵩む問題がある。
【0008】
また、上記(2)の技術のような多孔式揚水試験は、透水異方性の評価に際して複雑な数値解析を必要とする。そのため、やはり前記数値解析に対する専門知識を持った者でなければ実施することができず、汎用性には乏しいとの問題がある。
【0009】
更に、上記(2)の技術は、地盤の透水係数の試験区間が最初に削孔したボーリング孔の深度に限定されてしまう問題や、ボーリング孔の深度方向について連続的な透水性を求められない問題がある。
【0010】
つまり、上記(1)および(2)の技術は、いずれもi)複雑な数値解析を要する煩雑な方法であること、ii)透水試験に要する費用が嵩むこと、iii)試験区間がボーリング孔の深度に限定されること等の理由から地盤の透水異方性を測定する一般的な手段とは成り得なかった。
【0011】
本発明の目的は、以上の問題点を解決し、簡単且つ安価に地盤の水平方向の透水係数および鉛直方向の透水係数を求めることができる、地盤の透水異方性の測定方法を提供することにある。
【0012】
【課題を解決するための手段】
上記した従来の技術の課題を解決するための手段として、請求項1に記載した発明に係る地盤の透水異方性の測定方法は、
地盤にボーリング孔を削孔し、該ボーリング孔にケーシングパイプを建込む段階と、
内壁面にパッカーを設けた中空管を前記ボーリング孔の底から直下の地盤中へ圧入し、前記パッカーを膨張させた後に、前記ケーシングパイプ内に設置した揚水ポンプで当該ボーリング孔内の地下水を一定の揚水量で揚水し、前記中空管の上下両端部付近に設置した圧力センサで水圧を計測し、前記揚水量および上下の圧力センサが計測した水圧に基いて、次式
【数3】

Figure 0003862595
により鉛直方向の透水係数kを求める段階と、
前記中空管をパッカーおよびその内側の土壌と共に引き抜いて、その跡に裸孔を形成し、ピエゾメーター法により前記裸孔の水平方向の透水係数を求める段階とから成ることを特徴とする。
【0013】
請求項2に記載した発明に係る地盤の透水異方性の測定方法は、
地盤にボーリング孔を削孔し、該ボーリング孔にケーシングパイプを建込む段階と、
内壁面にパッカーを設けた中空管を前記ボーリング孔の底から直下の地盤中へ圧入し、前記パッカーを膨張させた後に、前記ケーシングパイプ内に設置した揚水ポンプで当該ボーリング孔内の地下水を揚水して水位を低下させ、その後揚水を停止して水圧の経時変化を前記中空管の上下両端部付近に設置した圧力センサで計測し、上下の圧力センサが計測した時刻t,tにおける水圧に基いて、次式
【数4】
Figure 0003862595
により鉛直方向の透水係数kを求める段階と、
前記中空管をパッカーおよび中空管内の土壌と共に引き抜いて、その跡に裸孔を形成し、ピエゾメーター法により前記裸孔の水平方向の透水係数を求める段階とから成ることを特徴とする。
【0014】
請求項3記載の発明は、請求項1又は2に記載した地盤の透水異方性の測定方法において、
水平方向の透水係数を求める段階が終了した後に、裸孔の底面深度までケーシングパイプを挿入する段階と、
内壁面にパッカーを設けた中空管を前記裸孔の底から直下の地盤中へ圧入して、鉛直方向の透水係数kを求める段階と、
前記中空管をパッカーおよび中空管内の土壌と共に引き抜いて、その跡に裸孔を形成し、ピエゾメーター法により前記裸孔の水平方向の透水係数を求める段階を繰り返し行うことを特徴とする。
【0015】
【発明の実施の形態】
以下、図面を参照して請求項1〜3に記載した発明に係る地盤の透水異方性の測定方法について説明する。
図1A〜Fは、請求項1に記載した発明の実施形態を概略的な手順で示している。
【0016】
先ず、図1Aは地盤にボーリング孔10を削孔した段階を示し、続く図1Bは前記ボーリング孔10にケーシングパイプ1を建込んで孔壁10aの保護と地下水の水平方向浸透流を遮断した段階を示す。
【0017】
図1Cは、内壁面にパッカー4を設けた中空管2を前記ボーリング孔10の底から直下の地盤中へ圧入した段階を示す。斯くして、前記中空管2によりその内側の土壌11への水平方向浸透流が遮断され、鉛直方向透水係数の試験区間が形成される。
【0018】
前記中空管2の外径は、前記ケーシングパイプ1の内径と略同径である。また、この中空管2の上下両端の周縁部付近には、それぞれ試験区間の上下における各地下水の水圧をそれぞれ計測する圧力センサ3,3が設けられている。
【0019】
図1Dは、鉛直方向の透水試験の段階を示す。
この段階では、先ず、前記パッカー4を液圧(水圧)又はガス圧(空気圧)にて適度に膨張させ、中空管2の内壁面とその内側の土壌11との境界部に発生しがちの「水みち」を完全に遮断する。しかる後に、所謂「定常法」に則り、前記ケーシングパイプ1内に設置した揚水ポンプ6でボーリング孔10内の地下水を一定の揚水量Qで揚水し、中空管2内の土壌11を乱すことなく試験区間の土壌11に対して鉛直方向の浸透流を発生させる。なお、前記揚水ポンプ6によって汲み上げられる地下水の揚水量Qは、地上に設置された計測システム(図示せず)により観測し記録される。
【0020】
斯くして、上記した浸透流を発生させた状態の下において、圧力センサ3,3で試験区間の上下のおける各水圧を計測し、その計測信号はケーブル(図示せず)を介して前記計測システムへ送信し、観測・記録される。
【0021】
前記揚水量Qおよび上下の圧力センサ3,3が計測した試験区間の上下における各地下水の水圧に基いて、次式
【0022】
【数5】
Figure 0003862595
により鉛直方向の透水係数kを求める。前記水頭差Δhは、圧力センサ3,3が計測した試験区間、即ち中空管2の上下両端部の各水圧を基に求める。
【0023】
因みに、上記[数1]の計算は前記計測システムにより自動的に算出される。また、中空管2の長さLおよび中空管2内の土壌11の透水断面積Aの数値は、既知量として予め計測システムへデータ入力を行い設定する。
なお、上記[数1]の計算は、前記計測システムによる算出に限定されず、人の手作業によって算出しても好適に実施できる。
【0024】
次に図1Eは、中空管2をパッカー4および中空管2内の土壌11と共に引き抜いてその跡に裸孔5を形成した段階を示す。この水平方向透水係数の試験区間となる裸孔5では、水平方向の浸透流が鉛直方向の浸透流を無視できるほどに支配的になり、水平方向の透水係数kの測定に適した状態となる。
【0025】
図1Fは、ピエゾメーター法を用いて前記裸孔5における水平方向の透水係数kを求める段階を示す。なお、このピエゾメータ法の透水試験は、地盤工学会発行の「地盤調査法」に沿って「定常法」又は「非定常法」のいずれかの方法で実施する。ここで、前記「地盤調査法」に記載されている透水係数は、水平・鉛直の両方の影響を含んだ平均的な透水係数であるが、上述したように、地盤が層構造を成していることと、裸孔5の形状の縦横比より、水平方向の透水係数が支配的になるため、ピエゾメータ法による透水係数を水平方向の透水係数(水平透水係数)としている。
【0026】
斯くして、前記土壌11が属する地盤層についての透水異方性の測定は終了する。
【0027】
図2G〜Iは、以上に説明した請求項1記載の発明を実施した後に、更に連続して裸孔5の底から直下の土壌12の透水異方性を測定する手順の一部を概略的に示している。
図2Gは、図1Fに示した前記裸孔5における水平方向の透水係数を求める段階が終了した直後の状態を示す。
【0028】
図2Hは、前記裸孔5の底面深度までケーシングパイプ1を挿入し、裸孔5の孔壁5aを保護すると共に前記孔壁5aからの浸透流を遮断する段階を示す。ケーシングパイプ1を挿入する際には、図2に示すようにケーシング材1’を前記ケーシングパイプ1の上端部へ継ぎ足し、ボーリング孔10の上部に土壌がむき出しになった裸孔部位を生じないようにする。前記ケーシング材1’には、前記裸孔5の深さL以上の長さのパイプが好適に使用される。
【0029】
次に図2Iは、内壁面にパッカー4を設けた中空管2を前記裸孔跡の底から直下の地盤中へ圧入する段階を示す。
【0030】
その後、前記図2Iの段階が終了した後に、請求項1に記載した発明の手法(定常法)または後述する請求項2に記載した発明の手法(非定常法)により鉛直方向の透水係数kを求める上記図1Dまたは後記図3Dに示す段階と同様の処理が実施される。続いて、前記中空管2をパッカー4および中空管2内の土壌12と共に引き抜き、その跡に裸孔を形成してピエゾメーター法により前記裸孔の水平方向の透水係数を求める上記図1Eおよび図1Fに示す段階と同様の処理が実施される(以上、請求項3記載の発明)。
【0031】
斯くして、ボーリング孔10に沿った鉛直方向に連続的な地盤の透水異方性の測定が可能となる。つまり、最初に掘削したボーリング孔の深さに限定されることなく、自由に所望深度の地盤まで連続的に透水異方性が測定可能となる。
【0032】
次に図3A〜Fは、請求項2に記載した発明の実施形態を概略的な手順で示している。なお、請求項1に記載した地盤の透水異方性の測定方法と共通する部分は説明を省略する。
【0033】
図3A〜Cは、上記請求項1記載の発明の手順を示した図1A〜Cの段階と同様に実施されるため、上記のとおり説明は省略する。
【0034】
図3Dは、鉛直方向の透水試験の段階を示す。
この段階では、先ず、前記パッカー4に液圧(水圧)又はガス圧(空気圧)で適度に膨張させ、中空管2の内壁面とその内側の土壌14との境界部に発生しがちの「水みち」を完全に遮断する。
【0035】
その後、所謂「非定常法」に則り、前記ボーリング孔10内に設置した揚水ポンプ6で地下水を揚水して水位を一旦低下させ、その後、揚水を停止し、中空管2内の土壌14を乱すことなく試験区間の土壌14に対して鉛直方向の浸透流を発生させる。そして、しかる後にボーリング孔10内の水圧の経時変化を前記中空管2の上下両端部付近に設置した圧力センサ3,3で計測し、その計測信号はケーブル(図示せず)を介して地上に設置した計測システム(図示せず)へ送信され、観測し記憶される。
【0036】
その後、上下の圧力センサが計測した任意の時刻t,tにおける水圧に基いて、次式
【0037】
【数6】
Figure 0003862595
により鉛直方向の透水係数kを求める。各時刻t,tにおける水頭差Δh ,Δhは、前記時刻t,tに中空管2の上下端部に設けた圧力センサ3,3が計測した各水圧を基に求める。
【0038】
因みに、前記[数2]の計算は、前記計測システムにより自動的に算出される。また、中空管2の長さLおよび中空管2内の土壌11の透水断面積Aの数値は、既知量として予め計測システムへデータ入力を行い設定する。
なお、上記[数2]の計算は、前記計測システムによる算出に限定されず、人の手作業によって算出しても好適に実施できる。
【0039】
図3Eおよび図3Fは、上記した請求項1記載の発明における図1Eおよび図1Fの段階と同様の処理が実施され、前記土壌14が属する地盤層の透水異方性の測定は終了する。
【0040】
また、本実施形態について、ボーリング孔10に沿った鉛直方向に連続的な地盤の透水異方性の測定は、上記した請求項1記載の発明と同様の手法により実施できる。即ち、前記図3Fに示す段階の後に上記図2Hおよび図2Iに示す段階と同様の処理を実施し、その後前記図3D〜Fに示す段階の処理を実施して目的地盤の透水異方性を測定する。
【0041】
以上に説明したように、請求項1〜3に記載した発明に係る透水異方性の測定方法によれば、簡単な工程作業と簡単な計算とで地盤の透水異方性を測定することができる。
また、測定施設が従来に比べ小規模で済むので、コストを大幅に低減することができる。
【0042】
加えて、同じ孔にて一連の順序で水平方向の透水係数(k)と鉛直方向の透水係数(k)を測定し地盤の透水異方性を測定できるので、地下水対策における遮水壁の合理的な設計が可能となり、延いては遮水壁の根入れ長さの低減による原価低減と工期短縮が図れる。更に、遮水壁外側の地下水評価による周辺地下水環境負荷の低減を考慮した揚水計画も立案できる。
【0043】
そして、最初に掘削したボーリング孔の深さに限定されることなく、自由に所望深度の地盤まで連続的に透水異方性を測定できる。
【0044】
以上には本発明の好適な実施形態を説明したが、本発明の実施形態以外にも、本発明の要旨を逸脱することなく、当業者が通常行う種々の応用、変更による実施も可能であることを付言する。例えば、中空管を地盤に挿入する手段として、下端の縁周部にビットを装備した中空管を用いて回転による掘削貫入させても好適に実施可能である。
【0045】
【本発明が奏する効果】
本発明に係る請求項1〜3に記載した地盤の透水異方性の測定方法によれば、簡単且つ安価に地盤の水平方向の透水係数および鉛直方向の透水係数を求め、透水異方性を調査することができる。
【0046】
更に、最初に掘削したボーリング孔の深さに限定されることなく、自由に所望深度の地盤まで連続的に透水異方性を測定できる。
【0047】
また、同じ孔にて一連の順序で水平方向の透水係数と鉛直方向の透水係数を測定し地盤の透水異方性を測定できるので、地下水対策における遮水壁の合理的な設計が可能となり、延いては遮水壁の根入れ長さの低減による原価低減と工期短縮が図れる。更に、遮水壁外側の地下水評価による周辺地下水環境負荷の低減を考慮した揚水計画も立案できる。
【図面の簡単な説明】
【図1】A〜Fは、請求項1に記載した発明の概略的な手順を示す説明図である。
【図2】G〜Iは、ボーリング孔に沿った鉛直方向に連続的な地盤の透水異方性の測定方法の手順の一部を概略的に示す説明図である。
【図3】A〜Fは、請求項2に記載した発明の概略的な手順を示す説明図である。
【符号の説明】
10 ボーリング孔
1 ケーシングパイプ
4 パッカー
2 中空管
6 揚水ポンプ
3 圧力センサ
5 裸孔
10a,5a 孔壁
11,12,14 土壌
鉛直透水係数(鉛直方向の透水係数)
中空管の長さ
Δh 水頭差
Q 揚水量
A 中空管内の土壌の透水断面積
,t 時刻
Δh 時刻tにおける水頭差
Δh 時刻tにおける水頭差[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of the method of measuring the hydraulic conductivity of the in-situ ground, and more specifically, is a single-hole permeability test, in which the horizontal and vertical hydraulic conductivity of the in-situ ground are respectively determined. The present invention relates to a method for measuring the permeability anisotropy of the ground.
[0002]
[Prior art]
In general, since natural ground has a layered structure, there are many grounds with so-called “permeability anisotropy” in which the horizontal hydraulic conductivity (k h ) and the vertical hydraulic conductivity (k v ) are different. .
[0003]
Conventional methods for measuring the hydraulic conductivity of the ground in situ include single-hole permeability tests such as the tube method, piezometer method, auger method and packer method, and porous methods such as the Theis method and the Jacob method. Pumping tests are being conducted.
However, in each of these measurement methods, the water permeability coefficient in the horizontal direction is dominant, and the water permeability coefficient in the vertical direction cannot be evaluated.
[0004]
In such a situation, various methods for evaluating the horizontal hydraulic conductivity and the vertical hydraulic conductivity, that is, the method of measuring “water permeability anisotropy” have been studied. For example,
(1) Japanese Patent No. 2796748 discloses an example of a single hole type water permeability test for measuring water permeability anisotropy around a single bore hole. The present invention alternately installs a plurality of packers and pressure sensors in the depth direction of the borehole, generates a fluctuating water pressure (osmotic flow) by water injection from one packer section, and sets the response water pressure propagating into the ground to the other Measured with a pressure sensor installed in the packer section, and based on the measurement results, numerical analysis was performed using a cylindrical coordinate system permeability distribution model to determine the horizontal and vertical hydraulic conductivity of the ground, and the permeability anisotropy of the ground Is a method of measuring.
[0005]
(2) Japanese Patent No. 2788954 discloses an example of a porous pumping test for measuring water permeability anisotropy in the entire area around the borehole. The invention provides a pumping well and an observation well provided with a screen part and a blind pipe part by a casing material and a filler, and further provided with a water stop device for blocking water flow between the screen parts. The groundwater is pumped up from the ground, and the fluctuation of the water pressure is generated in the ground aquifer.The water pressure fluctuation is measured with the water pressure gauges of all the screens of the observation well, and the horizontal and vertical hydraulic conductivity is obtained. This is a method for measuring water permeability anisotropy.
[0006]
[Problems to be solved by the present invention]
However, since the technique (1) employs a numerical analysis based on a complicated cylindrical coordinate system permeability distribution model to calculate the hydraulic conductivity in the horizontal and vertical directions, it must be performed by those who do not have expertise in the numerical analysis. There is a problem that it cannot be done and is not versatile. Further, there is a problem that the permeability test section of the ground is limited to the depth of the first drilled borehole.
[0007]
On the other hand, the technique (2) has a problem that the measurement facility becomes large-scale because of excavation of a plurality of boring holes and the permeability anisotropy is measured, and the labor and cost of the work increase.
[0008]
In addition, the porous pumping test as in the technique (2) requires complicated numerical analysis when evaluating the permeability anisotropy. For this reason, there is a problem that it cannot be carried out unless it is a person who has expertise in numerical analysis, and the versatility is poor.
[0009]
Furthermore, the technique of (2) does not require the problem that the test section of the permeability coefficient of the ground is limited to the depth of the bored hole first drilled or continuous permeability in the depth direction of the borehole. There's a problem.
[0010]
That is, the techniques (1) and (2) are both i) a complicated method requiring complicated numerical analysis, ii) the cost required for the water permeability test is increased, and iii) the test section is a borehole. It cannot be a general means for measuring the permeability anisotropy of the ground because of limited depth.
[0011]
The object of the present invention is to provide a method for measuring the permeability anisotropy of the ground, which solves the above-mentioned problems and can determine the hydraulic permeability coefficient in the horizontal direction and the vertical permeability coefficient of the ground easily and inexpensively. It is in.
[0012]
[Means for Solving the Problems]
As a means for solving the problems of the conventional technology described above, the method for measuring the permeability anisotropy of the ground according to the invention described in claim 1 is:
Drilling a borehole in the ground, and building a casing pipe in the borehole;
A hollow tube provided with a packer on the inner wall surface is press-fitted into the ground immediately below from the bottom of the boring hole, and after the packer is expanded, groundwater in the boring hole is drained by a pumping pump installed in the casing pipe. The water is pumped at a constant pumping amount, and the water pressure is measured by pressure sensors installed near the upper and lower ends of the hollow tube. Based on the pumping amount and the water pressure measured by the upper and lower pressure sensors,
Figure 0003862595
And determining a vertical permeability k v a,
The hollow tube is pulled out together with the packer and the soil inside thereof, and a bare hole is formed in the trace, and a horizontal water permeability coefficient of the bare hole is obtained by a piezometer method.
[0013]
The method for measuring the permeability anisotropy of the ground according to the invention described in claim 2 is:
Drilling a borehole in the ground, and building a casing pipe in the borehole;
A hollow tube provided with a packer on the inner wall surface is press-fitted into the ground immediately below from the bottom of the boring hole, and after the packer is expanded, groundwater in the boring hole is drained by a pumping pump installed in the casing pipe. The water level is lowered by pumping water, and then the pumping is stopped, and the time change of the water pressure is measured by pressure sensors installed near the upper and lower ends of the hollow tube, and the times t 1 and t 2 measured by the upper and lower pressure sensors are measured. Based on the water pressure in the following formula:
Figure 0003862595
And determining a vertical permeability k v a,
The hollow tube is pulled out together with the packer and the soil in the hollow tube, a bare hole is formed in the trace, and a horizontal water permeability coefficient of the bare hole is obtained by a piezometer method.
[0014]
Invention of Claim 3 is the measuring method of the water permeability anisotropy of the ground described in Claim 1 or 2,
After the step of obtaining the horizontal hydraulic conductivity is completed, inserting the casing pipe to the bottom depth of the bare hole;
A step of press-fitting a hollow tube provided with a packer on the inner wall surface into the ground immediately below from the bottom of the bare hole to obtain a vertical permeability coefficient k v ;
The hollow tube is pulled out together with the packer and the soil in the hollow tube, a bare hole is formed in the trace, and a step of obtaining a horizontal water permeability coefficient of the bare hole by a piezometer method is repeatedly performed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method for measuring the water permeability anisotropy of the ground according to the first to third aspects of the invention will be described with reference to the drawings.
1A to F show an embodiment of the invention described in claim 1 in a schematic procedure.
[0016]
First, FIG. 1A shows a stage in which a boring hole 10 is drilled in the ground, and subsequent FIG. 1B shows a stage in which a casing pipe 1 is built in the boring hole 10 to protect the hole wall 10a and to prevent horizontal seepage flow of groundwater. Indicates.
[0017]
FIG. 1C shows a stage in which the hollow tube 2 provided with the packer 4 on the inner wall surface is press-fitted from the bottom of the boring hole 10 into the ground immediately below. Thus, the hollow tube 2 blocks the horizontal osmotic flow into the soil 11 inside the hollow tube 2 and forms a test section with a vertical hydraulic conductivity.
[0018]
The outer diameter of the hollow tube 2 is substantially the same as the inner diameter of the casing pipe 1. In addition, pressure sensors 3 and 3 for measuring the water pressures of the groundwater in the upper and lower portions of the test section are provided in the vicinity of the peripheral portions of the upper and lower ends of the hollow tube 2.
[0019]
FIG. 1D shows the stage of the vertical permeability test.
At this stage, first, the packer 4 is appropriately expanded by hydraulic pressure (water pressure) or gas pressure (air pressure), and tends to be generated at the boundary between the inner wall surface of the hollow tube 2 and the soil 11 inside thereof. Completely cut off the “water path”. Thereafter, in accordance with the so-called “steady state method”, the groundwater in the borehole 10 is pumped at a constant pumping amount Q by the pump 6 installed in the casing pipe 1 to disturb the soil 11 in the hollow tube 2. Without generating an osmotic flow in the vertical direction with respect to the soil 11 in the test section. The amount Q of groundwater pumped up by the pump 6 is observed and recorded by a measurement system (not shown) installed on the ground.
[0020]
Thus, under the state in which the osmotic flow is generated, the water pressures above and below the test section are measured by the pressure sensors 3 and 3, and the measurement signal is measured via a cable (not shown). It is transmitted to the system and observed and recorded.
[0021]
Based on the amount of pumped water Q and the water pressure of each groundwater above and below the test section measured by the upper and lower pressure sensors 3 and 3, the following equation:
[Equation 5]
Figure 0003862595
Request vertical permeability k v a. The water head difference Δh is obtained based on the test sections measured by the pressure sensors 3, 3, that is, the water pressures at the upper and lower ends of the hollow tube 2.
[0023]
Incidentally, the calculation of the above [Equation 1] is automatically calculated by the measurement system. The numerical value of the length L of the hollow tube 2 and the cross-sectional area A of the soil 11 in the hollow tube 2 is set by inputting data to the measurement system in advance as a known amount.
Note that the calculation of the above [Equation 1] is not limited to the calculation by the measurement system, and can be suitably carried out even if it is calculated manually.
[0024]
Next, FIG. 1E shows a stage in which the hollow tube 2 is pulled out together with the packer 4 and the soil 11 in the hollow tube 2 to form a bare hole 5 at the trace. In bare hole 5 becomes the horizontal permeability of the test period, the state in which the horizontal flow dominant becomes negligible in the vertical direction of flow, suitable for measuring horizontal permeability k h Become.
[0025]
Figure 1F shows a step of determining a horizontal permeability k h in the open hole 5 with a piezometer method. In addition, the permeability test of this piezometer method is carried out by either “steady method” or “unsteady method” in accordance with “Ground Survey Method” published by the Geotechnical Society. Here, the hydraulic conductivity described in the “Ground Survey Method” is an average hydraulic conductivity including both horizontal and vertical effects. As described above, the ground has a layered structure. Since the horizontal permeability coefficient is more dominant than the aspect ratio of the shape of the bare hole 5, the permeability coefficient by the piezometer method is set as the horizontal permeability coefficient (horizontal permeability coefficient).
[0026]
Thus, the measurement of water permeability anisotropy for the ground layer to which the soil 11 belongs is completed.
[0027]
2G to I schematically illustrate a part of the procedure for continuously measuring the permeability anisotropy of the soil 12 immediately below the bottom of the bare hole 5 after implementing the invention according to claim 1 described above. It shows.
FIG. 2G shows a state immediately after the step of obtaining the horizontal hydraulic conductivity in the bare hole 5 shown in FIG. 1F is completed.
[0028]
FIG. 2H shows a step of inserting the casing pipe 1 to the depth of the bottom surface of the bare hole 5 to protect the hole wall 5a of the bare hole 5 and to block the permeation flow from the hole wall 5a. When the casing pipe 1 is inserted, as shown in FIG. 2, the casing material 1 ′ is added to the upper end of the casing pipe 1 so as not to form a bare hole portion where soil is exposed at the upper portion of the boring hole 10. To. A pipe having a length equal to or greater than the depth L of the bare hole 5 is preferably used for the casing material 1 ′.
[0029]
Next, FIG. 2I shows a step of press-fitting the hollow tube 2 provided with the packer 4 on the inner wall surface from the bottom of the bare hole trace into the ground immediately below.
[0030]
Thereafter, after the step of FIG. 2I is completed, the vertical hydraulic conductivity k v is obtained by the method of the invention described in claim 1 (steady method) or the method of the invention described in claim 2 described later (unsteady method). The same processing as that shown in FIG. 1D or FIG. 3D described later is performed. Subsequently, the hollow tube 2 is pulled out together with the packer 4 and the soil 12 in the hollow tube 2, a bare hole is formed in the trace, and the horizontal permeability coefficient of the bare hole is obtained by the piezometer method. And the process similar to the step shown to FIG. 1F is implemented (above, invention of Claim 3).
[0031]
In this way, it is possible to measure the water permeability anisotropy of the ground continuously in the vertical direction along the borehole 10. In other words, the permeability anisotropy can be continuously measured freely up to the ground at a desired depth without being limited to the depth of the first drilled borehole.
[0032]
3A to F show an embodiment of the invention described in claim 2 in a schematic procedure. In addition, description is abbreviate | omitted about the part which is common in the measuring method of the water permeability anisotropy of the ground described in Claim 1.
[0033]
3A to 3C are carried out in the same manner as the stage of FIGS. 1A to 1C showing the procedure of the invention according to the first aspect, and thus the description thereof is omitted as described above.
[0034]
FIG. 3D shows the stage of the vertical permeability test.
In this stage, first, the packer 4 is appropriately expanded by hydraulic pressure (water pressure) or gas pressure (pneumatic pressure) and is generated at the boundary between the inner wall surface of the hollow tube 2 and the soil 14 inside thereof. Completely cut off the water path.
[0035]
Thereafter, in accordance with the so-called “unsteady method”, the groundwater is pumped up by the pump 6 installed in the borehole 10 to lower the water level once, and then the pumping is stopped to remove the soil 14 in the hollow tube 2. An osmotic flow in the vertical direction is generated with respect to the soil 14 in the test section without being disturbed. After that, the time-dependent change in the water pressure in the borehole 10 is measured by pressure sensors 3 and 3 installed near the upper and lower ends of the hollow tube 2, and the measurement signal is transmitted to the ground via a cable (not shown). Is transmitted to a measurement system (not shown) installed in and observed and stored.
[0036]
After that, based on the water pressure at arbitrary times t 1 and t 2 measured by the upper and lower pressure sensors,
[Formula 6]
Figure 0003862595
Request vertical permeability k v a. Each time t 1, the water head difference in t 2 Delta] h 1, Delta] h 2 obtains based on each pressure where the time t 1, t 2 the pressure sensor 3, 3 provided on a lower end portion of the hollow tube 2 is measured .
[0038]
Incidentally, the calculation of [Expression 2] is automatically calculated by the measurement system. The numerical value of the length L of the hollow tube 2 and the cross-sectional area A of the soil 11 in the hollow tube 2 is set by inputting data to the measurement system in advance as a known amount.
Note that the calculation of the above [Equation 2] is not limited to the calculation by the measurement system, and can be suitably carried out even if it is calculated manually.
[0039]
In FIGS. 3E and 3F, the same processing as that in FIGS. 1E and 1F in the first aspect of the invention described above is performed, and the measurement of the hydraulic anisotropy of the ground layer to which the soil 14 belongs is completed.
[0040]
Moreover, about this embodiment, the measurement of the water permeability anisotropy of the ground continuous along the boring hole 10 in the vertical direction can be performed by the same method as that of the first aspect of the present invention. That is, after the step shown in FIG. 3F, the same processing as the step shown in FIGS. 2H and 2I is performed, and then the steps shown in FIGS. taking measurement.
[0041]
As described above, according to the method for measuring water permeability anisotropy according to the first to third aspects of the invention, it is possible to measure the water permeability anisotropy of the ground with simple process work and simple calculation. it can.
In addition, since the measurement facility is smaller than conventional ones, the cost can be greatly reduced.
[0042]
In addition, it is possible to measure the permeability anisotropy of the measured soil the permeability in the horizontal direction in the sequential order at the same hole (k h) and vertical permeability (k v), impervious wall in groundwater protection As a result, the cost can be reduced and the construction period can be shortened by reducing the penetration length of the impermeable wall. Furthermore, a pumping plan that takes into account the reduction of the environmental load of the surrounding groundwater can be made by evaluating the groundwater outside the impermeable wall.
[0043]
And, it is not limited to the depth of the first drilled borehole, and the permeability anisotropy can be measured continuously and freely up to the ground at a desired depth.
[0044]
The preferred embodiments of the present invention have been described above. However, other than the embodiments of the present invention, various applications and modifications usually performed by those skilled in the art are possible without departing from the spirit of the present invention. I will add that. For example, as a means for inserting the hollow tube into the ground, it is possible to suitably carry out the excavation penetration by rotation using a hollow tube equipped with a bit at the peripheral edge of the lower end.
[0045]
[Effects of the present invention]
According to the method for measuring the hydraulic permeability anisotropy of the ground according to claims 1 to 3 according to the present invention, the horizontal hydraulic permeability coefficient and the vertical hydraulic permeability coefficient of the ground are obtained easily and inexpensively, and the hydraulic permeability anisotropy is determined. Can be investigated.
[0046]
In addition, the permeability anisotropy can be measured continuously and freely up to the desired depth without being limited to the depth of the first drilled borehole.
[0047]
In addition, since the horizontal permeability coefficient and the vertical permeability coefficient can be measured in the same hole in a series of steps and the permeability anisotropy of the ground can be measured, rational design of the impermeable wall for groundwater countermeasures becomes possible. As a result, the cost can be reduced and the construction period can be shortened by reducing the length of the impermeable wall. Furthermore, a pumping plan that takes into account the reduction of the environmental load of the surrounding groundwater can be made by evaluating the groundwater outside the impermeable wall.
[Brief description of the drawings]
FIGS. 1A to 1F are explanatory views showing a schematic procedure of the invention described in claim 1; FIGS.
FIGS. 2A to 2I are explanatory views schematically showing a part of a procedure of a method for measuring the permeability anisotropy of a ground continuous along a boring hole in a vertical direction. FIGS.
FIGS. 3A to 3F are explanatory views showing a schematic procedure of the invention described in claim 2; FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Boring hole 1 Casing pipe 4 Packer 2 Hollow pipe 6 Pumping pump 3 Pressure sensor 5 Bare hole 10a, 5a Hole wall 11, 12, 14 Soil k v Vertical permeability coefficient (Vertical permeability coefficient)
L Length of hollow tube Δh Water head difference Q Pumping amount A Water cross section of soil in hollow tube t 1 , t 2 Time Δh 1 Water head difference at time t 1 Δh 2 Water head difference at time t 2

Claims (3)

地盤にボーリング孔を削孔し、該ボーリング孔にケーシングパイプを建込む段階と、
内壁面にパッカーを設けた中空管を前記ボーリング孔の底から直下の地盤中へ圧入し、前記パッカーを膨張させた後に、前記ケーシングパイプ内に設置した揚水ポンプで当該ボーリング孔内の地下水を一定の揚水量で揚水し、前記中空管の上下両端部付近に設置した圧力センサで水圧を計測し、前記揚水量および上下の圧力センサが計測した水圧に基いて、次式
Figure 0003862595
により鉛直方向の透水係数kを求める段階と、
前記中空管をパッカーおよびその内側の土壌と共に引き抜いて、その跡に裸孔を形成し、ピエゾメーター法により前記裸孔の水平方向の透水係数を求める段階とから成ることを特徴とする、地盤の透水異方性の測定方法。
Drilling a borehole in the ground, and building a casing pipe in the borehole;
A hollow tube provided with a packer on the inner wall surface is press-fitted into the ground immediately below from the bottom of the boring hole, and after the packer is expanded, groundwater in the boring hole is drained by a pumping pump installed in the casing pipe. Water is pumped at a constant pumping amount, and the water pressure is measured by pressure sensors installed near the upper and lower ends of the hollow tube. Based on the pumping amount and the water pressure measured by the upper and lower pressure sensors,
Figure 0003862595
And determining a vertical permeability k v a,
The hollow pipe is pulled out together with the packer and the soil inside thereof, a bare hole is formed in the trace, and a horizontal permeability coefficient of the bare hole is obtained by a piezometer method. Of measuring water permeability anisotropy.
地盤にボーリング孔を削孔し、該ボーリング孔にケーシングパイプを建込む段階と、
内壁面にパッカーを設けた中空管を前記ボーリング孔の底から直下の地盤中へ圧入し、前記パッカーを膨張させた後に、前記ケーシングパイプ内に設置した揚水ポンプで当該ボーリング孔内の地下水を揚水して水位を低下させ、その後揚水を停止して水圧の経時変化を前記中空管の上下両端部付近に設置した圧力センサで計測し、上下の圧力センサが計測した時刻t,tにおける水圧に基いて、次式
Figure 0003862595
により鉛直方向の透水係数kを求める段階と、
前記中空管をパッカーおよび中空管内の土壌と共に引き抜いて、その跡に裸孔を形成し、ピエゾメーター法により前記裸孔の水平方向の透水係数を求める段階とから成ることを特徴とする、地盤の透水異方性の測定方法。
Drilling a borehole in the ground, and building a casing pipe in the borehole;
A hollow tube provided with a packer on the inner wall surface is press-fitted into the ground immediately below from the bottom of the boring hole, and after the packer is expanded, groundwater in the boring hole is drained by a pumping pump installed in the casing pipe. The water level is lowered by pumping water, and then the pumping is stopped, and the time change of the water pressure is measured by pressure sensors installed near the upper and lower ends of the hollow tube, and the times t 1 and t 2 measured by the upper and lower pressure sensors are measured. Based on the water pressure at
Figure 0003862595
And determining a vertical permeability k v a,
The hollow pipe is pulled out together with the packer and the soil in the hollow pipe, a bare hole is formed in the trace, and a horizontal permeability coefficient of the bare hole is obtained by a piezometer method. Of measuring water permeability anisotropy.
水平方向の透水係数を求める段階が終了した後に、裸孔の底面深度までケーシングパイプを挿入する段階と、
内壁面にパッカーを設けた中空管を前記裸孔の底から直下の地盤中へ圧入して、鉛直方向の透水係数kを求める段階と、
前記中空管をパッカーおよび中空管内の土壌と共に引き抜いて、その跡に裸孔を形成し、ピエゾメーター法により前記裸孔の水平方向の透水係数を求める段階を繰り返し行うことを特徴とする、請求項1又は2に記載した地盤の透水異方性の測定方法。
After the step of obtaining the horizontal hydraulic conductivity is completed, inserting the casing pipe to the bottom depth of the bare hole;
A step of press-fitting a hollow tube provided with a packer on the inner wall surface into the ground immediately below from the bottom of the bare hole to obtain a vertical permeability coefficient k v ;
The hollow tube is pulled out together with the packer and the soil in the hollow tube, a bare hole is formed in the trace, and a step of obtaining a horizontal water permeability coefficient of the bare hole by a piezometer method is repeatedly performed. Item 3. The method for measuring the water permeability anisotropy of the ground described in Item 1 or 2.
JP2002129708A 2002-05-01 2002-05-01 Measurement method of water permeability anisotropy of ground Expired - Lifetime JP3862595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129708A JP3862595B2 (en) 2002-05-01 2002-05-01 Measurement method of water permeability anisotropy of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129708A JP3862595B2 (en) 2002-05-01 2002-05-01 Measurement method of water permeability anisotropy of ground

Publications (2)

Publication Number Publication Date
JP2003321827A JP2003321827A (en) 2003-11-14
JP3862595B2 true JP3862595B2 (en) 2006-12-27

Family

ID=29543037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129708A Expired - Lifetime JP3862595B2 (en) 2002-05-01 2002-05-01 Measurement method of water permeability anisotropy of ground

Country Status (1)

Country Link
JP (1) JP3862595B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104153340B (en) * 2014-07-22 2016-04-13 河海大学 One is soil body vibration velocity and pore water pressure sensing equipment and mounting method under water
CN105951704A (en) * 2016-05-19 2016-09-21 中国电建集团成都勘测设计研究院有限公司 Testing apparatus and method for on-site standard water injection by bore hole
CN106018234A (en) * 2016-05-19 2016-10-12 中国电建集团成都勘测设计研究院有限公司 Borehole based in-situ simple water injection test device and test method
CN108896742B (en) * 2018-08-01 2023-09-29 中国华能集团有限公司 System for quantitatively analyzing shale anisotropy and application method thereof

Also Published As

Publication number Publication date
JP2003321827A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US10465471B2 (en) Treatment methods for water or gas reduction in hydrocarbon production wells
Mair et al. Pressuremeter testing: methods and interpretation
RU2362875C2 (en) Method of evaluating pressure in underground reservoirs
CA2399527C (en) Method for determining formation characteristics in a perforated wellbore
Chapuis Overdamped slug test in monitoring wells: review of interpretation methods with mathematical, physical, and numerical analysis of storativity influence
JP4756213B2 (en) A water-impervious test method at the in-situ location of the borehole plugging material, a water-imperviousness test system at the location of the borehole plugging material, a method of analyzing the hydraulic conductivity of the top of the borehole plugging material, a strength analysis method of the top of the borehole plugging material, and boring Experimental equipment for water blocking chamber for hole blocking material
CA2851874C (en) Formation pressure sensing system
CN106192971B (en) A kind of artesian water water-level observation well construction and the method for multilayer water-level observation
CN104379870A (en) Method for determining a permeability or mobility of a radial flow response of a reservoir
Yihdego Hydraulic in situ testing for mining and engineering design: packer test procedure, preparation, analysis and interpretation
CN110080194A (en) Explore pressure injection instrument and its application
US20220178251A1 (en) System and method for evaluating static elastic modulus of subterranean formation
JP2019060100A (en) Hydraulic property evaluation method
NO20171557A1 (en) Draw-down pressure apparatus, systems, and methods
JP3862595B2 (en) Measurement method of water permeability anisotropy of ground
JP3353714B2 (en) Pore water measurement method and apparatus
Ratnam et al. A field permeability measurement technique using a conventional self-boring pressuremeter
JP4196279B2 (en) Estimated amount of spring water and tunnel excavation method
CN108930534B (en) Method and device for correcting temperature influence of nuclear magnetic resonance formation while drilling
JP2018154969A (en) Method for estimating spring water pressure of natural ground
US10753203B2 (en) Systems and methods to identify and inhibit spider web borehole failure in hydrocarbon wells
JP2626456B2 (en) Rock permeability test equipment
Palmer et al. Comparison of borehole testing techniques and their suitability in the hydrogeological investigation of mine sites
CN116384042A (en) Bedrock fracture water pressure-bearing characteristic analysis method based on deep foundation pit water pumping test
CN112855251A (en) Method for determining plastic area range of hydraulic punching surrounding rock based on gas extraction amount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3862595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

EXPY Cancellation because of completion of term