JP4196279B2 - Estimated amount of spring water and tunnel excavation method - Google Patents

Estimated amount of spring water and tunnel excavation method Download PDF

Info

Publication number
JP4196279B2
JP4196279B2 JP2003318352A JP2003318352A JP4196279B2 JP 4196279 B2 JP4196279 B2 JP 4196279B2 JP 2003318352 A JP2003318352 A JP 2003318352A JP 2003318352 A JP2003318352 A JP 2003318352A JP 4196279 B2 JP4196279 B2 JP 4196279B2
Authority
JP
Japan
Prior art keywords
tunnel
water
amount
spring
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003318352A
Other languages
Japanese (ja)
Other versions
JP2005083124A (en
Inventor
泰志 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2003318352A priority Critical patent/JP4196279B2/en
Publication of JP2005083124A publication Critical patent/JP2005083124A/en
Application granted granted Critical
Publication of JP4196279B2 publication Critical patent/JP4196279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、湧水性地山にトンネルを掘削するに際して地山の湧水量と透水係数を推定するための方法、およびそれを利用したトンネル掘削工法に関する。   The present invention relates to a method for estimating a spring water amount and a hydraulic conductivity when excavating a tunnel in a springy ground, and a tunnel excavation method using the method.

湧水性地山にトンネルを掘削する際には、湧水を大量に排水して地下水位を低下させることが施工上有利な場合があるが、近年においては自然環境保護の観点から地下水位を人為的に低下させることは好ましくないとされ、湧水の排水を可及的に抑制することが望まれている。そのため、たとえば特許文献1に示されるように、湧水性地山に大断面のトンネルを掘削するための工法として、まず小径のパイロット孔を先行掘削してその周囲に対して止水改良を行い、その止水改良範囲を拡径して本設トンネルを構築することにより、排水量を大幅に削減し地下水位の低下を抑制するという工法が提案されている。   When excavating a tunnel in a spring ground, it may be advantageous in terms of construction to drain a large amount of spring water to lower the groundwater level, but in recent years the groundwater level has been artificially reduced from the viewpoint of protecting the natural environment. Therefore, it is not preferable to reduce the temperature of the water, and it is desired to suppress the drainage of spring water as much as possible. Therefore, as shown in Patent Document 1, for example, as a method for excavating a tunnel with a large cross section in a springy ground, first a pilot hole with a small diameter is first excavated and the water stop is improved around it, A construction method has been proposed that reduces the amount of drainage and suppresses the decrease in groundwater level by expanding the water stop improvement range and constructing a main tunnel.

上記のような場合において地山に対して適正な止水改良を行うためには、事前に地山の水理状態を正確に把握することが必要であり、そのため、たとえば特許文献2に示されるような透水試験を事前に実施して地山の湧水量や透水係数を把握することが通常である。
特開2002−201890号公報 特開平6−294116号公報
In order to make an appropriate water stop improvement for the natural ground in the above case, it is necessary to accurately grasp the hydraulic state of the natural ground beforehand, and therefore, for example, disclosed in Patent Document 2 It is normal to conduct such a permeability test in advance to understand the spring water volume and permeability coefficient of the natural ground.
JP 2002-201890 A JP-A-6-294116

ところで、特許文献1に示されるようなトンネル掘削工法においては、パイロット孔の周囲全体に適切な止水改良を行うためにはその止水改良を行うべき対象範囲のできるだけ広範囲にわたって事前に透水試験を行うことが好ましいのであるが、特許文献2に示されるように従来の透水試験は地表から大深度のボーリング孔を穿孔してそのボーリング孔から揚水を行うことを基本とするものであるので必ずしも簡易に実施できるものではなく、そのような透水試験を事前に広範囲にわたって多数箇所で行うことは、多大な手間と費用を要することから現実的ではない。   By the way, in the tunnel excavation method as shown in Patent Document 1, in order to improve the water stop appropriately for the entire periphery of the pilot hole, a water permeability test is performed in advance over the widest possible range of the water stop improvement. Although it is preferable to perform, as shown in Patent Document 2, the conventional water permeability test is based on drilling a deep borehole from the ground surface and pumping water from the borehole. It is not practical to perform such a water permeability test at a large number of locations over a wide range in advance because it requires a great deal of labor and cost.

上記事情に鑑み、本発明は本格的な透水試験によらずとも地山の湧水量を簡易に推定し得る有効適切な推定方法と、そのような方法によって掘削途中で湧水量や透水係数を推定しつつ最適な止水改良を行い得る有効適切なトンネル掘削工法を提供することを目的としている。 In view of the above circumstances, the present invention is an effective and appropriate estimation method that can easily estimate the amount of spring water in a natural mountain without using a full-scale permeability test, and estimates the amount of spring water and the permeability coefficient during excavation by such a method. The purpose of this study is to provide an effective and appropriate tunnel excavation method that can make the best water stop improvement.

請求項1の発明は、密閉型のトンネル掘進機により湧水性地山にトンネルを掘削しながらその途中で地山の湧水量を推定するための方法であって、トンネル掘進機周囲の空隙に湧出している湧水をトンネル掘進機内に排水して、空隙での水位を一定量低下させるに要する時間と排水量を測定するとともに、排水停止後に水位が回復するに要する時間を測定し、その測定値に基づいて単位時間当たりの湧水量を推定することを特徴とする。   The invention of claim 1 is a method for estimating the amount of spring water in the middle of the tunnel excavation machine while excavating the tunnel in the spring ground with a sealed tunnel excavator, Measure the time required to drain the spring water in the tunnel excavator and reduce the water level in the gap by a certain amount and the amount of drainage, and measure the time required for the water level to recover after the drainage is stopped. The amount of spring water per unit time is estimated based on the above.

請求項2の発明は、湧水性地山にトンネルを構築するべく、まず、密閉型のトンネル掘進機を掘進させつつセグメントによる覆工を行うことにより、施工するべき本設トンネルよりも小断面のパイロット坑を本設トンネルの断面内で貫通させ、次いで、パイロット坑の内側からその外側の湧水性地山に対して止水改良を行うことにより、本設トンネルの掘削予定断面よりも外側の湧水性地山を止水性地山に改良し、しかる後に、パイロット坑のセグメントを解体撤去しながら、改良した止水性地山とパイロット坑との間の環状の地山をトンネル掘進機により掘削しつつ覆工を行って本設トンネルを構築するトンネル掘削工法において、パイロット坑を掘削しながらその途中でトンネル掘進機の周囲の空隙に湧出している湧水をトンネル掘進機内に排水して、空隙での水位を一定量低下させるに要する時間と排水量を測定するとともに、排水停止後に水位が回復するに要する時間とその間の水位変化を測定することにより、それらの測定値に基づいて単位時間当たりの湧水量と周囲地山の透水係数を推定し、それらの推定値に基づいてパイロット坑の外側の湧水性地山に対する止水改良を行うことを特徴とする。 In the invention of claim 2 , in order to construct a tunnel in a springy ground, first of all, by carrying out a lining with a segment while excavating a closed type tunnel excavator, it has a smaller cross section than the main tunnel to be constructed. The pilot mine is penetrated in the cross section of the main tunnel, and then the water is improved from the inside of the pilot mine to the spring ground in the outside of the pilot mine. Improving the water-resistant ground to a water-stopped ground, and then excavating the ring-shaped ground between the improved water-stopped ground and the pilot mine with a tunnel machine while dismantling and removing the pilot mine segment. In the tunnel excavation method that constructs the main tunnel by lining, the tunnel excavator is used to excavate the pilot mine while excavating the spring water in the gap around the tunnel excavator. In addition to measuring the time required to reduce the water level in the gap by a certain amount and the amount of drainage, and measuring the time required for the water level to recover after stopping the drainage and the water level change between them, On the basis of this, it is characterized by estimating the amount of spring water per unit time and the permeability coefficient of surrounding ground, and improving the water stoppage for the spring ground outside the pilot mine based on the estimated values.

本発明の湧水量推定方法によれば、トンネル掘進機により掘削しながらその途中で周囲の空隙を通常の透水試験における試験区間に見立てた簡易な透水試験を実施することにより、湧水量を簡易に推定することができ、さしたる手間と費用を必要とせずに所望の地点における水理データを得ることができる。 According to the method for estimating the amount of spring water of the present invention, the amount of spring water can be simplified by carrying out a simple water permeability test in the middle of excavating with a tunnel excavator and assuming the surrounding void as a test section in a normal water permeability test. Therefore, hydraulic data at a desired point can be obtained without requiring any labor and cost.

本発明のトンネル掘削工法によれば、パイロット坑の掘削に際して各地点において上記の推定方法により湧水量と透水係数を推定し、それにより得られたデータをパイロット坑の外側に対する止水改良工程に反映することにより、実際の地山の状況に即した最適な止水改良を実施することが可能となる。   According to the tunnel excavation method of the present invention, when excavating the pilot mine, the amount of spring water and the hydraulic conductivity are estimated at each point by the above estimation method, and the obtained data is reflected in the water stop improvement process for the outside of the pilot mine. By doing so, it becomes possible to carry out optimal water stop improvement in accordance with the actual conditions of natural ground.

まず、図1を参照して本発明のトンネル掘削工法の一実施形態を説明する。   First, an embodiment of the tunnel excavation method of the present invention will be described with reference to FIG.

「パイロット坑の掘削工程」
湧水性地山に対して大断面のトンネル100を構築するに際し、まず、(a)に示すようにパイロット坑101を先行掘削する。パイロット坑101は、最終的に構築するべき本設トンネル100に比較して充分に小径で良く、たとえば本設トンネル100の直径が13m程度の場合にはパイロット坑101の直径は5m程度で良い。また、パイロット坑101の掘削位置は本設トンネル100の断面のほぼ中央位置とする。
“Drilling process of pilot mine”
When constructing the tunnel 100 having a large cross section with respect to the spring ground, first the pilot mine 101 is excavated as shown in FIG. The pilot mine 101 may be sufficiently smaller in diameter than the main tunnel 100 to be finally constructed. For example, when the diameter of the main tunnel 100 is about 13 m, the diameter of the pilot mine 101 may be about 5 m. The excavation position of the pilot mine 101 is approximately the center position of the cross section of the main tunnel 100.

パイロット坑101の掘削は、それ自体で止水可能な密閉型のトンネル掘進機102、たとえば密閉型のTBM、あるいは密閉型のシールド掘進機を掘進させることで行うが、いずれにしてもその掘進と同時に孔壁に対してセグメント103による覆工を行ってパイロット坑101全体の止水性を確保する。勿論、その施工に際しては、通常のトンネル掘削の場合と同様に、セグメント103をはじめとする各資機材を発進側の坑口より切羽に搬送し、ズリは発進側の坑口に向けて後方へ搬出する。   The pilot mine 101 is excavated by excavating a sealed tunnel excavator 102 that can stop water itself, for example, a sealed TBM, or a sealed shield excavator. At the same time, the hole wall is covered with the segment 103 to ensure the water stoppage of the entire pilot mine 101. Of course, in the construction, as in the case of normal tunnel excavation, each material and equipment such as the segment 103 is transported from the starting side wellhead to the face, and the slip is carried backward toward the starting side wellhead. .

「止水改良工程」
パイロット坑101を貫通させた後、(b)に示すようにその内側から周囲の地山に対して止水材を注入することにより、本設トンネル100の掘削予定断面よりも外側の地山(クロスハッチングを施した領域)を止水性地山104に改良してその止水性を確保する。その作業は、適宜の止水改良装置105を発進側の坑口からパイロット坑101内に進入させ、パイロット坑101の軸方向に所定長さずつ改良を行っては漸次前進させていけば良い。なお、止水改良に要する資機材の搬送は発進側または到達側の坑口のいずれかもしくはその双方から行えば良いが、当初は発進側の坑口から行い、次に述べるように本設トンネル100の掘削を開始した後は前方(到達側)の坑口から行うと良い。
"Water stop improvement process"
After penetrating the pilot mine 101, as shown in (b), by injecting a water-stopping material from the inside to the surrounding natural ground, the natural ground outside the planned excavation section of the main tunnel 100 ( The cross-hatched area) is improved to the water-stopping ground 104 to ensure the water-stopping. The operation may be performed by causing the appropriate water stop improvement device 105 to enter the pilot pit 101 from the starting side of the pit and making improvements gradually by a predetermined length in the axial direction of the pilot pit 101. It should be noted that transportation of materials and equipment required for water stop improvement may be carried out from either the start side or the arrival side or from both sides. After starting excavation, it is better to start from the front (arrival side) wellhead.

「本設トンネルの掘削工程」
発進側の坑口から一定距離だけ止水改良が完了したら、それを追いかけるようにして本設トンネル100の掘削に着手する。すなわち、(c)に示すように、環状のカッタを備えた開放型の全断面トンネル掘進機106を発進側の坑口から発進させ、パイロット坑101のセグメント103を解体撤去しながら、既に止水改良されている止水性地山104とパイロット坑101との間の環状の地山をその全断面トンネル掘進機106により掘削することでパイロット坑101を拡径(リーミング)する形態で本設トンネル100を掘削し、その全断面トンネル掘進機106を掘進させつつ後方にセグメント107による覆工を行って本設トンネル100を構築していく。
"Excavation process of the main tunnel"
When the water stop improvement is completed by a certain distance from the starting-side wellhead, the main tunnel 100 is started to be excavated. That is, as shown in (c), the open-type full-section tunnel excavator 106 equipped with an annular cutter is started from the start-side pit, and the segment 103 of the pilot pit 101 is dismantled and removed to improve the water stoppage. The main tunnel 100 is formed in a form in which the pilot pit 101 is expanded (reamed) by excavating an annular ground between the water-stopping ground 104 and the pilot mine 101 with a tunnel excavator 106 having a full cross section. The main tunnel 100 is constructed by excavating and lining the entire area with the segment 107 while excavating the entire cross-section tunnel excavator 106.

この際、本設トンネル100に覆工するセグメント107は通常通り発進側の坑口から切羽に向けて搬送し、ズリは切羽から発進側の坑口に向けて搬送すれば良い。また、パイロット坑101におけるセグメント103の解体撤去は、パイロット坑101内の解体予定位置に適宜の解体装置(図示略。セグメントを組み立てるためのエレクタと同様のもので良い)を配置して行い、解体したセグメント103をパイロット坑101内に設けた適宜の搬送装置により前方に搬送して到達側の坑口から搬出すれば良い。   At this time, the segment 107 covering the main tunnel 100 may be conveyed from the starting side wellhead to the face as usual, and the gap may be carried from the face to the starting side wellhead. Further, the dismantling and removal of the segment 103 in the pilot mine 101 is performed by disposing an appropriate dismantling device (not shown in the figure). What is necessary is just to convey the segment 103 forward by the suitable conveying apparatus provided in the pilot well 101, and to carry out from the arrival side wellhead.

上記の工法によれば、小径のパイロット坑101の先行掘削は通常の密閉型のトンネル掘進機102により自ずと止水性を確保しながら効率的に実施することができるし、その際に湧水を多量に排水する必要もない。また、パイロット坑101を貫通させた後にその内側から周囲地山に止水改良を行うことから、その止水改良工事には充分な資機材を投入することが可能であり、したがってその止水改良も効率的に行うことができる。そして、上記の止水改良を行いつつその後方から本設トンネル100の掘削を並行して行うとともに、本設トンネル100の掘削に際してはその周囲地山が既に止水性地山104に改良されていて自ずと止水性が確保されているから、本設トンネル100の掘削は開放型の全断面トンネル掘進機106によることで充分であるし、湧水の湧出も自ずと抑制されているので地下水を多量に排水するような必要もない。   According to the above construction method, the preliminary excavation of the small-diameter pilot mine 101 can be efficiently carried out while ensuring the water-stopping property by the normal hermetic tunnel excavator 102, and at that time, a large amount of spring water is used. There is no need to drain. In addition, since the water stop is improved from the inside to the surrounding ground after penetrating the pilot mine 101, it is possible to supply sufficient materials and equipment for the water stop improvement work. Can also be done efficiently. And while performing the above-mentioned water stop improvement, the excavation of the main tunnel 100 is performed in parallel from the rear, and the surrounding natural ground has already been improved to the water stop natural ground 104 when excavating the main tunnel 100. Since the water-stopping property is naturally secured, the excavation of the main tunnel 100 is sufficient with the open-type full-section tunnel excavator 106, and the spring water is naturally suppressed, so a large amount of groundwater is drained. There is no need to do.

ところで、上記工法においてパイロット坑101の内部からその外側の地山に対して最適な止水改良を行うためには、地山の実際の水理状態を広範囲にわたって把握する必要があるので、上記工法においてはパイロット坑101を掘削しながらその途中で周囲の地山の各位置における湧水量と透水係数を推定し、それにより得た水理データを後段の止水改良工程に反映して最適な止水改良を行うようにしている。   By the way, in order to perform the optimum water stop improvement from the inside of the pilot mine 101 to the ground outside of the pilot mine 101 in the above construction method, it is necessary to grasp the actual hydraulic state of the natural ground over a wide range. In the middle of excavating the pilot mine 101, the amount of spring water and hydraulic conductivity at each position of the surrounding ground are estimated along the way, and the obtained hydraulic data is reflected in the subsequent water stop improvement process. The water is improved.

そのため、パイロット坑101を掘削するためのトンネル掘進機102には、図2に示すようにバルクヘッド108に排水管109を接続して、このトンネル掘進機102の周囲の空隙に湧出している湧水や掘削泥水をその排水管109を通してトンネル掘進機102の内部に排水できるようにしており、かつ、バルクヘッド108の頂部付近には外部に連通してそこでの水位を検出するための水位計110を設けておく。排水管109には流量計111およびバルブ112を設けておく。なお、排水した湧水や掘削泥水は排水タンクに貯留しておいて最終的には地山に復水させると良い。また水位計110には必要に応じて水圧を測定するための水圧計113を設けておくと良い。   Therefore, in the tunnel machine 102 for excavating the pilot mine 101, a drain pipe 109 is connected to the bulkhead 108 as shown in FIG. Water or drilling mud can be drained into the tunnel machine 102 through the drain pipe 109, and a water level meter 110 for detecting the water level there is communicated with the outside near the top of the bulkhead 108. Is provided. The drain pipe 109 is provided with a flow meter 111 and a valve 112. In addition, it is better to store the drained spring water and drilling mud in a drainage tank and finally condense it into the natural ground. The water level meter 110 may be provided with a water pressure meter 113 for measuring the water pressure as required.

「湧水量の推定」
湧水量を推定するには、その地点でトンネル掘進機102を停止させ、排水管109に取り付けてあるバルブ112を開くことにより、トンネル掘進機102の周囲の空隙に湧出している湧水を排水管109から排水しつつ、その水位を水位計110により監視し、図3に示すように水位低下量δが一定値(たとえば5cm)となるに要する時間tと、その間の排水量Qを水量計111により測定する。その後、バルブ112を閉じて排水を停止すると、水位が自ずと回復していくので、水位が回復するに要する時間Tも測定する。それらの測定値t、Q、Tに基づいて単位時間当たりの湧水量Aは以下により推定することができる。
"Estimation of spring water"
In order to estimate the amount of spring water, the tunnel excavator 102 is stopped at that point, and the valve 112 attached to the drain pipe 109 is opened to drain the spring water flowing into the void around the tunnel excavator 102. While draining from the pipe 109, the water level is monitored by the water level meter 110, and as shown in FIG. 3, the time t required for the water level decrease amount δ to become a constant value (for example, 5 cm) and the drainage amount Q therebetween are determined as the water meter 111. Measure with Thereafter, when the valve 112 is closed and drainage is stopped, the water level naturally recovers, so the time T required for the water level to recover is also measured. Based on these measured values t, Q, T, the amount of spring water A per unit time can be estimated as follows.

水位低下量δが一定値となるまでの排水量Q、それに要する時間t、水位が回復するに要する時間T、地山からの単位時間当たりの湧水量A、水位低下量δが生じた空隙の容積Vとの間には、
V=Q−A×t
A=V/T
の関係があるから、これから推定するべき湧水量Aは、水位低下が生じた空隙の容積Vとは係わりなく
A=Q/(T+t)
として求めることができる。
The amount of drainage Q until the water level lowering amount δ reaches a constant value, the time t required for it, the time T required for the water level to recover, the amount of spring water A per unit time from the natural ground, and the volume of the void in which the water level lowering amount δ is generated Between V,
V = Q−A × t
A = V / T
Therefore, the amount of spring water A to be estimated from now on is not related to the volume V of the air gap where the water level is lowered. A = Q / (T + t)
Can be obtained as

なお、図3に示すように、直径5m、全長10mのトンネル掘進機102の場合において、余堀り量10cmの場合、水位低下量δを5cmに設定した場合には、そのような水位低下が生じる空隙の容積Vは200リットル程度、すなわち
V=(2×1×0.05)+(0.1×0.05×10×2)
=0.2m=200リットル
であり、そのような水位低下および水位回復に要する時間は数分ないし数十分程度に過ぎず、したがって上記の湧水量の推定(および次に示す透水係数の推定)は、たとえば作業員の交代のために定期的に設定される掘進停止時(通常は1日に2〜3回)を利用して行うことができるから、そのために全体工程が遅延することもない。
As shown in FIG. 3, in the case of the tunnel machine 102 having a diameter of 5 m and a total length of 10 m, when the surplus amount is 10 cm, and the water level drop amount δ is set to 5 cm, such a water level drop is caused. The volume V of the generated void is about 200 liters, that is, V = (2 × 1 × 0.05) + (0.1 × 0.05 × 10 × 2)
= 0.2 m 3 = 200 liters, and the time required for such water level lowering and water level recovery is only a few minutes to several tens of minutes. Therefore, the above estimation of the spring water amount (and the estimation of the hydraulic conductivity shown below) ) Can be performed, for example, by using the excavation stoppage (usually 2 to 3 times a day) that is set periodically for the replacement of workers, which may delay the entire process. Absent.

「透水係数の推定」
透水係数の推定は周知の現場透水試験(非定常水位回復法)に準じて行う。その現場透水試験は、ボーリング孔の先端に地下水が流入するストレーナー部分を設けてそこを試験区間として設定し、その試験区間内の水位を人工的に低下させた後、水位の回復状況を刻々と測定して、地下水位の回復量(測定水位と平衡水位との水位差S)と経過時間tの関係を図4に示すグラフにプロットし、初期の直線部分の傾きmを求め、次式により透水係数kを算定するものである。
k=0.66×d×log(2L/D)×m/L
ここで、k:透水係数(cm/sec)
m:グラフの初期直線部分の傾き
m=log(S1/S2)/(t2−t1)
S1:時刻t1における水位差、
S2:時刻t2における水位差
d:測定パイプの内径(cm)
D:試験区間の直径(cm)
L:試験区間の長さ(cm)
"Estimation of hydraulic conductivity"
The permeability coefficient is estimated according to the well-known field permeability test (unsteady water level recovery method). In the in-situ permeability test, a strainer part into which groundwater flows into the borehole is set as a test section, the water level in the test section is artificially lowered, and the water level recovery status is momentarily measured. Measure and plot the relationship between the groundwater level recovery (water level difference S between the measured water level and the equilibrium water level) and the elapsed time t in the graph shown in FIG. 4 to obtain the slope m of the initial straight line portion. The hydraulic conductivity k is calculated.
k = 0.66 × d 2 × log ( 2 L / D) × m / L
Where k: hydraulic conductivity (cm / sec)
m: slope of the initial straight line part of the graph
m = log (S1 / S2) / (t2-t1)
S1: Water level difference at time t1,
S2: Water level difference at time t2
d: Inner diameter of measurement pipe (cm)
D: Diameter of test section (cm)
L: Length of test section (cm)

上記の透水係数推定方法は、トンネル掘進機102の周囲の空隙を上記の現場透水試験における試験区間に見立てて、図4のグラフおよび上式により透水係数を求めるものである。 The above-described permeability coefficient estimation method is to obtain the permeability coefficient from the graph of FIG. 4 and the above formula, assuming that the void around the tunnel excavator 102 is a test section in the above-mentioned field permeability test.

具体的な数値を挙げて一例を説明すると、トンネル掘進機の直径(試験区間の直径Dに相当)が5m、長さ(試験区間の長さLに相当)が10mの場合において、その外部において水位を5cm低下させた後、水位の回復に10分間を要したとする。測定パイプの内径dは、水位低下量に相当する空隙の容積Vが200リットルと想定し、水位が5cm上昇する円筒の直径に相当するものとして224cmとする。平衡水位は測定できないので、設計時の地質断面図の地下水面からの静水圧として地下水面から50mであるとする。なお、この静水圧は、掘進停止時に水位低下させた後、水位が回復して満水になりさらに定常水圧になるまで待てば、水圧計113により計測することができる。この場合、上式における各値は、
S1=5000(cm)
S2=4995(cm)
t1=0
t2=600(sec)
m=log(5000/4995)/(t2-t1)=7.24×10−7
d=224(cm)
D=500(cm)
L=1000(cm)
となるので、これから透水係数kは
k=0.66×2242×log(2×1000/500)×7.24×10−7/1000
=1.4×10−5
として求められる。
An example will be described with specific numerical values. When the diameter of the tunnel excavator (corresponding to the diameter D of the test section) is 5 m and the length (corresponding to the length L of the test section) is 10 m, It is assumed that it took 10 minutes to recover the water level after the water level was lowered by 5 cm. The inner diameter d of the measurement pipe is assumed to be 224 cm, corresponding to the diameter of a cylinder in which the water level rises by 5 cm, assuming that the volume V of the air gap corresponding to the water level lowering amount is 200 liters. Since the equilibrium water level cannot be measured, it is assumed that the hydrostatic pressure from the groundwater surface in the geological profile at the time of design is 50 m from the groundwater surface. The hydrostatic pressure can be measured by the water pressure gauge 113 if the water level is lowered when the excavation is stopped, and then waits until the water level recovers, becomes full, and becomes a steady water pressure. In this case, each value in the above equation is
S1 = 5000 (cm)
S2 = 4995 (cm)
t1 = 0
t2 = 600 (sec)
m = log (5000/4995) / (t2-t1) = 7.24 × 10 −7
d = 224 (cm)
D = 500 (cm)
L = 1000 (cm)
Therefore, from now on, the hydraulic conductivity k is k = 0.66 × 224 2 × log (2 × 1000/500) × 7.24 × 10 −7 / 1000
= 1.4 × 10 −5
As required.

なお、透水係数と湧水量とは、深度(あるいはその地点での静水圧)をパラメータとして図5に示すような関係があるので、予め浸透流解析をもとにしてこのようなグラフを作成しておけば、上記のようにして湧水量または透水係数のいずれかを求めることで他方を概略的に推定することができるし、双方の推定値を検証することもできる。   Note that the permeability coefficient and the amount of spring water have a relationship as shown in FIG. 5 with the depth (or hydrostatic pressure at that point) as a parameter, so such a graph is created in advance based on osmotic flow analysis. Then, the other can be roughly estimated by obtaining either the amount of spring water or the permeability coefficient as described above, and both estimated values can be verified.

以上のように、本発明によれば、パイロット坑101を掘削しながらその途中でトンネル掘進機102の周囲の空隙から湧水を一時的に排水し、水位をわずかだけ低下させかつ復水させてその間の排水量と時間を測定することのみで、さしたる手間と費用を要さずに湧水量と透水係数を簡易に推定することができる。そして、そのデータを後段の止水改良工程に反映することにより、最適な止水材を選定したり、止水材の注入量を増減する等して、実際の地山の状況に応じた最適な止水改良を行うことができるし、仮に湧水が殆ど無い区間があったとすればそこでの止水改良を省略することも可能であり、合理的かつ効率的な施工が可能である。   As described above, according to the present invention, the spring water is temporarily drained from the gap around the tunnel machine 102 while the pilot mine 101 is being excavated, and the water level is slightly lowered and condensed. Only by measuring the amount of drainage and time during that period, the amount of spring water and the hydraulic conductivity can be easily estimated without the need for labor and expense. Then, by reflecting the data in the subsequent water stop improvement process, the optimum water stop material can be selected, the injection amount of the water stop material can be increased or decreased, etc. If there is a section where there is almost no spring water, it is possible to omit the water stop improvement there, and rational and efficient construction is possible.

本発明のトンネル掘削工法の一実施形態を示す図である。It is a figure which shows one Embodiment of the tunnel excavation method of this invention. 本発明の湧水量推定方法を行うためのトンネル掘進機の一例を示す図である。It is a figure which shows an example of the tunnel excavation machine for performing the spring amount estimation method of this invention. 本発明の湧水量推定方法における湧水量の推定手法を説明するための図である。It is a figure for demonstrating the estimation method of the amount of springs in the amount of springs estimation method of the present invention. 同、透水係数の推定手法を説明するための図である。It is a figure for demonstrating the estimation method of a hydraulic conductivity similarly . 同、湧水量と透水係数との関係を示す図である。 Same is a diagram showing the relationship between the groundwater discharge and permeability.

符号の説明Explanation of symbols

100 本設トンネル
101 パイロット坑
102 トンネル掘進機
109 排水管
110 水位計
100 Main tunnel 101 Pilot pit 102 Tunnel digging machine 109 Drain pipe 110 Water level gauge

Claims (2)

密閉型のトンネル掘進機により湧水性地山にトンネルを掘削しながらその途中で地山の湧水量を推定するための方法であって、トンネル掘進機周囲の空隙に湧出している湧水をトンネル掘進機内に排水して、空隙での水位を一定量低下させるに要する時間と排水量を測定するとともに、排水停止後に水位が回復するに要する時間を測定し、その測定値に基づいて単位時間当たりの湧水量を推定することを特徴とする湧水量推定方法。   A method for estimating the amount of spring water in a natural tunnel while excavating a tunnel in a spring ground with a closed tunnel tunnel machine. Measure the time and amount of drainage required to drain water into the excavator and reduce the water level in the gap by a certain amount, and measure the time required for the water level to recover after the drainage is stopped. A method for estimating the amount of spring water, characterized by estimating the amount of spring water. 湧水性地山にトンネルを構築するべく、まず、密閉型のトンネル掘進機を掘進させつつセグメントによる覆工を行うことにより、施工するべき本設トンネルよりも小断面のパイロット坑を本設トンネルの断面内で貫通させ、次いで、パイロット坑の内側からその外側の湧水性地山に対して止水改良を行うことにより、本設トンネルの掘削予定断面よりも外側の湧水性地山を止水性地山に改良し、しかる後に、パイロット坑のセグメントを解体撤去しながら、改良した止水性地山とパイロット坑との間の環状の地山をトンネル掘進機により掘削しつつ覆工を行って本設トンネルを構築するトンネル掘削工法において、
パイロット坑を掘削しながらその途中でトンネル掘進機の周囲の空隙に湧出している湧水をトンネル掘進機内に排水して、空隙での水位を一定量低下させるに要する時間と排水量を測定するとともに、排水停止後に水位が回復するに要する時間とその間の水位変化を測定することにより、それらの測定値に基づいて単位時間当たりの湧水量と周囲地山の透水係数を推定し、
それらの推定値に基づいてパイロット坑の外側の湧水性地山に対する止水改良を行うことを特徴とするトンネル掘削工法。
In order to build a tunnel in the spring ground, first of all, a pilot tunnel with a smaller cross section than the main tunnel to be constructed is constructed by lining up with a segment while excavating a closed tunnel excavator. By penetrating within the cross section, and then improving the water stoppage from the inside of the pilot mine to the springland outside the pilot mine, After that, the pilot mine segment was dismantled and removed, and the ring-shaped ground between the improved water-stopping ground and the pilot mine was excavated with a tunnel excavator and laid. In the tunnel excavation method to construct the tunnel,
While excavating the pilot mine, the spring water that is springing up in the gap around the tunnel excavator is drained into the tunnel excavator and the time and amount of drainage required to reduce the water level in the gap by a certain amount are measured. By measuring the time it takes for the water level to recover after the drainage stop and the change in the water level during that time, based on those measurements, estimate the amount of spring water per unit time and the permeability coefficient of the surrounding ground,
A tunnel excavation method characterized by the improvement of water stoppage for the spring ground outside the pilot mine based on the estimated values.
JP2003318352A 2003-09-10 2003-09-10 Estimated amount of spring water and tunnel excavation method Expired - Fee Related JP4196279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003318352A JP4196279B2 (en) 2003-09-10 2003-09-10 Estimated amount of spring water and tunnel excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003318352A JP4196279B2 (en) 2003-09-10 2003-09-10 Estimated amount of spring water and tunnel excavation method

Publications (2)

Publication Number Publication Date
JP2005083124A JP2005083124A (en) 2005-03-31
JP4196279B2 true JP4196279B2 (en) 2008-12-17

Family

ID=34417652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003318352A Expired - Fee Related JP4196279B2 (en) 2003-09-10 2003-09-10 Estimated amount of spring water and tunnel excavation method

Country Status (1)

Country Link
JP (1) JP4196279B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035142A (en) * 2014-06-05 2014-09-10 同济大学 Early warning method for sudden gushing water danger of undersea tunnel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758730B (en) * 2016-03-11 2018-10-12 山东大学 A kind of experimental rig and method of the rupture of simulation water proof rock mass gushing water
CN109681240B (en) * 2019-01-30 2024-03-12 中铁二院工程集团有限责任公司 Device and method for installing osmometer of tunnel lining water pressure monitoring system
CN111597624B (en) * 2020-05-27 2023-01-24 四川省交通勘察设计研究院有限公司 Construction method of accumulated water displacement calculation model for tunnel reverse slope tunneling construction
CN111983191B (en) * 2020-08-20 2022-09-13 中铁二十局集团有限公司 Tunnel excavation gushing water simulation device and simulation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035142A (en) * 2014-06-05 2014-09-10 同济大学 Early warning method for sudden gushing water danger of undersea tunnel

Also Published As

Publication number Publication date
JP2005083124A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
CN108468528A (en) Fourth-series deep well layered water pumping and stopping device and water pumping and stopping method thereof
JP6929179B2 (en) Hydraulic characterization method
CN112627832B (en) Method for integrating detection, treatment and monitoring operation and maintenance of water inrush and mud inrush of karst tunnel
JP2007284903A (en) Method of suppressing amount of settlement of ground in shield construction
Lande et al. Effects of drilling for tieback anchors on surrounding ground: Results from field tests
JP4196279B2 (en) Estimated amount of spring water and tunnel excavation method
CN103147741B (en) Coal bed roadside pressure relief zone width measuring method based on drill hole gas leakage
JP4614996B2 (en) Caisson with underground structure and water stop device constructed using caisson
KR101144285B1 (en) Multistage water sampler and multistage sampling method
CN109723424B (en) Method for predicting water discharge amount of underground drilling
JP5007286B2 (en) Carbon dioxide storage facility and method for underground storage of carbon dioxide
Mahdi et al. Back analysis of ground settlements induced by TBM excavation for the north extension of Paris metro, line 12
JP7106437B2 (en) Face stability evaluation method
JP3862595B2 (en) Measurement method of water permeability anisotropy of ground
JP4428888B2 (en) Method of draining pressurized water in the ground on the tunnel planning line
JP7264793B2 (en) Well repair method
CN217480219U (en) Multi-purpose pumping well structure in multilayer groundwater system
CN203114277U (en) Coal seam roadway pressure relief belt width measuring system based on drilling gas leakage
Preene et al. Pumping tests for construction dewatering in chalk
JP2626456B2 (en) Rock permeability test equipment
Seegmiller Horizontal Drains-There Use In Open Pit Mine Dewatering
Bakker et al. Ten years of bored tunnels in The Netherlands: Part I, geotechnical issues
Zimmermann et al. Using an Existing Tunnel to Dewater the St. Peter Sandstone
CN112855251A (en) Method for determining plastic area range of hydraulic punching surrounding rock based on gas extraction amount
Paterson et al. Stabilizing a landslide above Fisher Penstock, Tasmania

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees