JP2018038217A - Ground fault detection system of railway vehicle - Google Patents

Ground fault detection system of railway vehicle Download PDF

Info

Publication number
JP2018038217A
JP2018038217A JP2016171385A JP2016171385A JP2018038217A JP 2018038217 A JP2018038217 A JP 2018038217A JP 2016171385 A JP2016171385 A JP 2016171385A JP 2016171385 A JP2016171385 A JP 2016171385A JP 2018038217 A JP2018038217 A JP 2018038217A
Authority
JP
Japan
Prior art keywords
ground fault
current
occurrence
detection system
railway vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016171385A
Other languages
Japanese (ja)
Other versions
JP6764732B2 (en
Inventor
佐藤 春雄
Haruo Sato
春雄 佐藤
菅谷 誠
Makoto Sugaya
誠 菅谷
淳司 川崎
Junji Kawasaki
淳司 川崎
真哉 佐藤
Masaya Sato
真哉 佐藤
賢一 吉川
Kenichi Yoshikawa
賢一 吉川
彰 小塚
Akira Kozuka
彰 小塚
裕 笹本
Yutaka Sasamoto
裕 笹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
East Japan Railway Co
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co, Toshiba Infrastructure Systems and Solutions Corp filed Critical East Japan Railway Co
Priority to JP2016171385A priority Critical patent/JP6764732B2/en
Publication of JP2018038217A publication Critical patent/JP2018038217A/en
Application granted granted Critical
Publication of JP6764732B2 publication Critical patent/JP6764732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve compactification of a system in a ground fault detection system of a railway vehicle capable of determining occurrence of a ground fault and a place of its occurrence when a ground fault occurs.SOLUTION: A ground fault detection system of a railway vehicle for detecting occurrence of a ground fault is mounted on an organization comprising a plurality of current collecting units for collecting current, a high voltage circuit driven by power captured by the current collecting units, and a high voltage bus electrically connected to the plurality of current collecting units. Further, the ground fault detection system comprises: a plurality of ammeters (11, 13) for measuring a current flowing through the plurality of current collecting units and a current flowing through the high voltage bus; a ground fault determination unit (24) for detecting occurrence of a ground fault by detecting that at least one of the plurality of ammeters is saturated; and a position determination unit (27) for determining a place of the occurrence of the ground fault based on a direction of the current flowing through the high voltage bus detected by the plurality of ammeters.SELECTED DRAWING: Figure 2

Description

本発明は、鉄道車両において地絡の発生を検出する鉄道車両の地絡検出システムに関する。   The present invention relates to a railway vehicle ground fault detection system that detects the occurrence of a ground fault in a railway vehicle.

鉄道車両では、架線から集電した電力をモータ駆動回路或いは電源回路などの高電圧回路へ供給し、走行用モータおよび様々な電気機器が駆動される。通常、1つの編成には複数の集電部が設けられる。「編成」とは、複数の鉄道車両が連結された構成を指す。一方、複数の集電部は高圧母線(「引通し線」とも呼ばれる)を介して互いに電気的に接続される。これにより、何れかの集電部が架線から離線したときでも編成の一部の機器で停電が生じることを防止でき、また、集電部にスパークが発生することを抑止できる。   In a railway vehicle, electric power collected from an overhead wire is supplied to a high voltage circuit such as a motor drive circuit or a power supply circuit to drive a traveling motor and various electric devices. Usually, one knitting is provided with a plurality of current collectors. “Formation” refers to a configuration in which a plurality of railway vehicles are connected. On the other hand, the plurality of current collectors are electrically connected to each other via a high-voltage bus (also referred to as a “lead-through”). Thereby, even when any of the current collectors is disconnected from the overhead wire, it is possible to prevent a power failure from occurring in a part of the equipment of the knitting, and it is possible to suppress the occurrence of a spark in the current collector.

鉄道車両においては、非常に稀にではあるが、高圧母線或いは高圧母線に接続された電力線に地絡が生じる恐れがある。地絡が生じると、架線から接地点へ非常に大きな電流が流れ、変電所では、過大な電流が検出されて、速やかに送電が遮断される。そのため、編成への電力供給が断たれる。従って、地絡により、同一架線に接続されている全ての編成への電力供給が停止する。   In a railway vehicle, although it is very rare, a ground fault may occur in a high-voltage bus or a power line connected to the high-voltage bus. When a ground fault occurs, a very large current flows from the overhead line to the grounding point, and an excessive current is detected at the substation, and the power transmission is immediately cut off. Therefore, the power supply to the knitting is cut off. Therefore, the power supply to all the trains connected to the same overhead line is stopped due to the ground fault.

上記のような地絡が生じた場合には、各編成において、一旦、全ての集電部が架線から切り離される。また、変電所では、自動的に電力が再投入される。そこで、各編成の運転士は、各集電部を順番に1つずつ架線に接続し、再び、地絡が発生するか確認する。運転士は、このような操作を繰り返し行うことで、何れの編成の何れの箇所で地絡が発生したのかを特定することができる。   When the above-mentioned ground fault occurs, in each knitting, all the current collectors are once disconnected from the overhead wire. In addition, at the substation, power is automatically turned on again. Therefore, the driver of each organization connects each current collector to the overhead line one by one in order, and checks again whether a ground fault occurs. The driver can identify the location where the ground fault has occurred in which knitting by repeatedly performing such an operation.

しかしながら、架線には一編成につき複数の集電部が接続されているため、一回の操作で短絡箇所を見つけるのは困難であった。このため、確認作業の過程で何度も地絡を発生させてしまい、変電所において何度も送電の遮断と電力の再投入とが繰り返されると、変電所の遮断器が焼損するなどの問題が生じる恐れがあった。変電所に問題が波及すると、短時間のうちに通常の運行に復旧することは非常に難しくなる。   However, since a plurality of current collectors are connected to the overhead wire per one formation, it is difficult to find a short-circuit portion by a single operation. For this reason, ground faults are generated many times in the process of confirmation work, and if the interruption of power transmission and the reapplying of power are repeated many times at the substation, the circuit breaker of the substation will burn out. There was a risk of occurrence. If a problem spreads to a substation, it will be very difficult to restore normal operation in a short time.

また、本発明に関連する先行技術として、特許文献1の段落0043−0051には、集電部からの入力電流に基づいて地絡の発生を判定し、母線に流れる電流の向きから編成内の故障点を推定するシステムが示されている。   Further, as prior art related to the present invention, in paragraphs 0043-0051 of Patent Document 1, occurrence of a ground fault is determined based on the input current from the current collector, and the direction of the current flowing through the bus bar A system for estimating the point of failure is shown.

特開2012−223020号公報JP 2012-223020 A

特許文献1のシステムのように、地絡が発生したときに、集電部に流れる電流と、母線に流れる電流とを検出することで、地絡発生の判定と発生箇所の推定を行うことができる。また、母線に設置される断流器および電流計の数を増やすことで、地絡の発生箇所の特定および切り離しをより細かく行うことができる。
しかしながら、地絡電流は非常に大きいため、地絡電流を計測する電流計のサイズは非常に大きくなる。従って、特許文献1のシステムでは、複数の大きな電流計を1つの鉄道車両に搭載することになり、鉄道車両においてシステムの配置スペースの確保が難しいという課題が生じる。
As in the system of Patent Document 1, when a ground fault occurs, it is possible to determine the occurrence of a ground fault and estimate the location of occurrence by detecting the current flowing through the current collector and the current flowing through the bus. it can. Further, by increasing the number of current breakers and ammeters installed on the busbars, it is possible to more precisely identify and disconnect the location where the ground fault occurs.
However, since the ground fault current is very large, the size of the ammeter for measuring the ground fault current becomes very large. Therefore, in the system of Patent Document 1, a plurality of large ammeters are mounted on one railway vehicle, and there is a problem that it is difficult to secure a system arrangement space in the railway vehicle.

本発明は、地絡の発生時に地絡の発生と発生箇所とを判定できる鉄道車両の地絡検出システムにおいて、システムのコンパクト化を図ることを目的とする。   An object of the present invention is to make the system compact in a ground fault detection system for a railway vehicle that can determine the occurrence and location of a ground fault when a ground fault occurs.

本発明は、上記目的を達成するため、
集電を行う複数の集電部と、前記集電部によって取り込まれた電力によって駆動される高電圧回路と、前記複数の集電部と電気的に接続される高圧母線とを備える編成に搭載されて、地絡の発生を検出する鉄道車両の地絡検出システムにおいて、
前記複数の集電部を流れる電流と前記高圧母線に流れる電流とを計測する複数の電流計と、
前記複数の電流計の少なくとも1つが飽和したことを検知して地絡の発生を判定する地絡判定部と、
前記複数の電流計が検出した前記高圧母線に流れる電流の方向に基づいて地絡の発生箇所を判定する位置判定部と、
を備えることを特徴としている。
In order to achieve the above object, the present invention
Mounted on a knitting comprising a plurality of current collectors for collecting current, a high voltage circuit driven by the power taken in by the current collector, and a high-voltage bus bar electrically connected to the plurality of current collectors In a railway vehicle ground fault detection system that detects the occurrence of a ground fault,
A plurality of ammeters for measuring a current flowing through the plurality of current collectors and a current flowing through the high-voltage bus;
A ground fault determination unit that detects that at least one of the plurality of ammeters is saturated and determines the occurrence of a ground fault;
A position determination unit that determines a location where a ground fault occurs based on a direction of current flowing through the high-voltage bus detected by the plurality of ammeters;
It is characterized by having.

この構成によれば、地絡判定部は電流計が飽和したことを検知して地絡の発生を判定するので、電流計として、地絡電流を計測できる大きなサイズの電流計でなく、地絡電流によって飽和する小さなサイズの電流計を採用できる。従って、1つの鉄道車両に搭載される複数の電流計のトータルの体積を小さくできる。従って、地絡発生および発生箇所の判定を行うことができ、且つ、システムのコンパクト化を図ることができる。   According to this configuration, since the ground fault determination unit detects that the ammeter is saturated and determines the occurrence of the ground fault, the ammeter is not a large-sized ammeter that can measure the ground fault current, but the ground fault. A small ammeter that saturates with current can be used. Therefore, the total volume of a plurality of ammeters mounted on one railway vehicle can be reduced. Therefore, it is possible to determine the occurrence of a ground fault and the location where the fault has occurred, and to make the system compact.

好ましくは、前記複数の集電部の電圧をそれぞれ計測する複数の電圧計を備え、
前記地絡判定部は、前記複数の電流計の少なくとも1つが飽和したことと、前記複数の電圧計の計測とに基づいて、地絡の発生を判定する構成としてもよい。
地絡が発生すると、地絡電流によって、或いは変電所の送電遮断によって、集電部の電圧がゼロになる。上記構成によれば、地絡以外の要因によって電流計の飽和が生じた場合に、電圧計の計測結果によって地絡の発生でないことを判断できる。従って、地絡の誤検出が回避される分、電流計のサイズをより小さくすることができる。
Preferably, it comprises a plurality of voltmeters that respectively measure the voltages of the plurality of current collectors,
The ground fault determination unit may determine the occurrence of a ground fault based on the fact that at least one of the plurality of ammeters is saturated and the measurement of the plurality of voltmeters.
When a ground fault occurs, the voltage at the current collector becomes zero due to a ground fault current or due to a power transmission interruption at a substation. According to the above configuration, when the ammeter is saturated due to a factor other than the ground fault, it can be determined from the measurement result of the voltmeter that no ground fault has occurred. Therefore, the size of the ammeter can be further reduced as much as erroneous detection of a ground fault is avoided.

さらに好ましくは、前記地絡判定部は、前記編成の車輪が空転したことを示す空転検知信号が入力された場合に、地絡の発生でないと判定するように構成してもよい。
空転が生じると、高電圧回路に一時的に大きな電流が流れて電流計が飽和する場合がある。しかし、上記構成によれば、空転検知信号により地絡の発生でないと判定できる。従って、地絡の誤検出が回避される分、電流計のサイズをより小さくすることができる。
More preferably, the ground fault determination unit may be configured to determine that no ground fault has occurred when an idling detection signal indicating that the wheel of the formation has slipped is input.
When idling occurs, a large current temporarily flows in the high voltage circuit, and the ammeter may be saturated. However, according to the above configuration, it can be determined that a ground fault has not occurred due to the idling detection signal. Therefore, the size of the ammeter can be further reduced as much as erroneous detection of a ground fault is avoided.

ここで、本発明に係る鉄道車両の地絡検出システムは、前記複数の電圧計および前記複数の電流計のうち1つの鉄道車両に搭載される電圧計および電流計、前記地絡判定部、ならびに前記位置判定部が、1ユニット化されているとよい。
この構成によれば、鉄道車両への地絡検出システムの取付け作業性が向上する。
また、前記複数の電流計の各々は変流器であるとよい。
この構成によれば、小さいサイズの電流計により、出力の飽和に基づいて地絡電流を検出することができる。
Here, the ground fault detection system for a railway vehicle according to the present invention includes a voltmeter and an ammeter mounted on one railway vehicle among the plurality of voltmeters and the plurality of ammeters, the ground fault determination unit, and The position determination unit may be a single unit.
According to this configuration, the workability of attaching the ground fault detection system to the railway vehicle is improved.
Each of the plurality of ammeters may be a current transformer.
According to this configuration, the ground fault current can be detected based on the output saturation with a small-sized ammeter.

さらに、本発明に係る鉄道車両の地絡検出システムは、地絡発生の判定条件を調整する学習部をさらに備えてもよい。
この構成によれば、学習部によって地絡発生の判定条件の調整が行われて、より精度の高い地絡発生の判定が可能となる。
Furthermore, the railway vehicle ground fault detection system according to the present invention may further include a learning unit that adjusts a determination condition for occurrence of a ground fault.
According to this configuration, the determination of the occurrence of ground fault is performed by the learning unit, and the determination of the occurrence of ground fault can be made with higher accuracy.

本発明の鉄道車両の地絡検出システムによれば、地絡の発生時に地絡の発生と発生箇所との判定を行え、さらに、システムをコンパクトに構成することができる。   According to the ground fault detection system for a railway vehicle of the present invention, it is possible to determine the occurrence of a ground fault and the location where the fault has occurred when the ground fault occurs, and it is possible to make the system compact.

本発明の第1実施形態に係る地絡検出システムを示す構成図である。It is a lineblock diagram showing the ground fault detection system concerning a 1st embodiment of the present invention. 第1実施形態に係る地絡検出システムの論理部を示す構成図である。It is a block diagram which shows the logic part of the ground fault detection system which concerns on 1st Embodiment. パンタ点電流計の出力特性を示すグラフである。It is a graph which shows the output characteristic of a panta point ammeter. 本発明の第2実施形態の地絡検出システムを示す構成図である。It is a block diagram which shows the ground fault detection system of 2nd Embodiment of this invention. 第2実施形態に係る地絡検出システムの論理部を示す構成図である。It is a block diagram which shows the logic part of the ground fault detection system which concerns on 2nd Embodiment. 第3実施形態に係る地絡検出システムの論理部を示す構成図である。It is a block diagram which shows the logic part of the ground fault detection system which concerns on 3rd Embodiment.

以下、本発明の各実施の形態について図面を参照して詳細に説明する。
(第1実施の形態)
図1は、本発明の第1実施形態に係る地絡検出システムを示す構成図である。図2は、第1実施形態に係る地絡検出システムの論理部を示す構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a configuration diagram illustrating a ground fault detection system according to a first embodiment of the present invention. FIG. 2 is a configuration diagram illustrating a logic unit of the ground fault detection system according to the first embodiment.

本実施形態の鉄道車両の地絡検出システムは、1つの編成に搭載されて地絡の発生を検出するシステムである。「編成」とは、複数の鉄道車両が連結された構成を示す。1つの編成を構成する複数の鉄道車両Mには、集電部1が搭載される鉄道車両Mと、集電部1が搭載されない鉄道車両Mとが含まれる。集電部1は例えばパンタグラフである。集電部1が搭載される鉄道車両Mには、電力線1Aと地絡検出ユニット2と高電圧回路であるVVVFインバータ4とが搭載され、これに隣接する鉄道車両Mには、高電圧回路であるSIV5が搭載される。電力線1Aは、集電部1からVVVF(Variable Voltage Variable Frequency)インバータ4およびSIV(Static Inverter)5へ電力を供給する。   The railway vehicle ground fault detection system of the present embodiment is a system that is mounted on one train and detects the occurrence of a ground fault. “Formation” indicates a configuration in which a plurality of railway vehicles are connected. The plurality of railway vehicles M constituting one train includes a railway vehicle M on which the current collector 1 is mounted and a railway vehicle M on which the current collector 1 is not mounted. The current collector 1 is, for example, a pantograph. The railway vehicle M on which the current collector 1 is mounted is equipped with a power line 1A, a ground fault detection unit 2, and a VVVF inverter 4 that is a high voltage circuit. A certain SIV5 is installed. The power line 1 </ b> A supplies power from the current collector 1 to a VVVF (Variable Voltage Variable Frequency) inverter 4 and a SIV (Static Inverter) 5.

編成には、複数の鉄道車両Mに渡って敷設された1つの高圧母線3が設けられる。高圧母線3は、各集電部1の電力線1Aに接続される。高圧母線3によって複数の集電部1が電気的に接続されることで、何れかの集電部1が架線から離線したときに一部の高電圧回路が停電するという事態を避けることができる。さらに、集電部1が架線から離線したり再着線したりする際のスパークの発生が抑止される。   For knitting, one high-voltage bus 3 laid over a plurality of railway vehicles M is provided. The high-voltage bus 3 is connected to the power line 1 </ b> A of each current collector 1. A plurality of current collectors 1 are electrically connected by the high-voltage bus 3, so that it is possible to avoid a situation in which some of the high-voltage circuits fail when one of the current collectors 1 is disconnected from the overhead line. . Furthermore, the occurrence of sparks when the current collector 1 is disconnected from the overhead wire or reconnected is suppressed.

VVVFインバータ4は、電力線1Aを介して供給された電力を変換して走行用モータに出力する。VVVFインバータ4は、さらに、鉄道車両の車輪が空転した場合にこれを検知して空転検知信号を出力する。車輪が空転した場合には、VVVFインバータ4に過大な電流が流れるため、空転検知信号に基づいてVVVFインバータ4の出力を低下させる制御が行われる。
SIV5は、電力線1Aを介して供給された電力を変換して鉄道車両Mの各種の電気部品に出力する。
The VVVF inverter 4 converts the power supplied via the power line 1A and outputs it to the traveling motor. Further, the VVVF inverter 4 detects when the wheel of the railway vehicle slips and outputs a slip detection signal. When the wheel idles, an excessive current flows through the VVVF inverter 4, so that control is performed to reduce the output of the VVVF inverter 4 based on the idling detection signal.
The SIV 5 converts the electric power supplied via the power line 1A and outputs it to various electric components of the railway vehicle M.

次に、地絡検出システムについて説明する。
地絡検出システムは、複数の地絡検出ユニット2を信号線を介して互いに接続して構成される。各地絡検出ユニット2は、パンタ点電流計11と、断流器12と、横流電流計13とを備え、これらの各要素が1つの筐体に収容されてユニット化されている。複数の地絡検出ユニット2のうち少なくとも1つには、図2の論理部20が設けられている。なお、横流の計測が不要な鉄道車両Mにおいては、横流電流計13が省略されてもよい。各地絡検出ユニット2は、集電部1を有する複数の鉄道車両Mに搭載され、例えば車両下部に固定される。ここで、パンタ点電流計11および横流電流計13は、本発明に係る電流計に相当する。
Next, the ground fault detection system will be described.
The ground fault detection system is configured by connecting a plurality of ground fault detection units 2 to each other via signal lines. The local fault detection unit 2 includes a panta point ammeter 11, a current breaker 12, and a cross current ammeter 13, and each of these elements is housed in a single casing to form a unit. At least one of the plurality of ground fault detection units 2 is provided with the logic unit 20 of FIG. Note that the cross current ammeter 13 may be omitted in the railway vehicle M that does not require cross current measurement. The local fault detection unit 2 is mounted on a plurality of railway vehicles M having the current collector 1, and is fixed to the lower part of the vehicle, for example. Here, the panta point ammeter 11 and the cross current ammeter 13 correspond to the ammeter according to the present invention.

図3は、パンタ点電流計の出力特性を示すグラフである。
パンタ点電流計11は、集電部1の電力線1Aに取り付けられてその電流を計測する。パンタ点電流計11は、例えば変流器(CT:Current Transformer)である。図3の出力特性に示すように、パンタ点電流計11は、地絡電流を計測できる大容量の電流計でなく、電力線1Aに地絡電流が流れたときに出力が飽和する小容量の電流計である。但し、VVVFインバータ4とSIV5との総合的な最大消費電流より十分大きな電流で飽和するように、サイズが選択される。
FIG. 3 is a graph showing the output characteristics of the panta-point ammeter.
The panta point ammeter 11 is attached to the power line 1 </ b> A of the current collector 1 and measures its current. The panta point ammeter 11 is, for example, a current transformer (CT). As shown in the output characteristics of FIG. 3, the panta-point ammeter 11 is not a large-capacity ammeter that can measure the ground fault current, but a small-capacity current that saturates when the ground fault current flows through the power line 1A. It is a total. However, the size is selected so as to saturate at a current sufficiently larger than the overall maximum current consumption of the VVVF inverter 4 and SIV5.

パンタ点電流計11の出力部には、出力が飽和したことを検知する飽和検知部21(図2を参照)が設けられている。飽和検知部21は、出力が飽和したか否かを示す2値の信号を出力する。飽和検知部21は、例えば、パンタ点電流計11の出力と飽和閾値Lth(図3を参照)とを比較するコンパレータなどにより構成できる。
断流器12は、母線断流器(BLB:Bus Line Breaker)であり、集電部1の電力線1Aと高圧母線3との接続部に設けられる。断流器12は、運転台からの信号に基づいて接続状態と切断状態とに切り替わる。
A saturation detector 21 (see FIG. 2) for detecting that the output has been saturated is provided at the output unit of the panta-point ammeter 11. The saturation detection unit 21 outputs a binary signal indicating whether or not the output is saturated. The saturation detection unit 21 can be configured by, for example, a comparator that compares the output of the pantograph ammeter 11 with the saturation threshold Lth (see FIG. 3).
The circuit breaker 12 is a bus line breaker (BLB), and is provided at a connection portion between the power line 1 </ b> A of the current collector 1 and the high voltage bus 3. The current breaker 12 is switched between a connected state and a disconnected state based on a signal from the cab.

横流電流計13は、高圧母線3の断流器12の周辺に取り付けられ、高圧母線3に流れる電流を計測する。横流電流計13は、例えば変流器(CT:Current Transformer)である。横流電流計13は、地絡が発生したときに高圧母線3に流れる電流の向きを計測できればよく、例えばパンタ点電流形11と同程度の電流容量を有する電流計が採用される。
横流電流計13の出力部には、横流電流計13の出力の正負を検知する方向検知部22が設けられている。方向検知部22は、電流方向を示す2値の信号を出力する。
The cross current ammeter 13 is attached around the breaker 12 of the high voltage bus 3 and measures the current flowing through the high voltage bus 3. The cross current ammeter 13 is, for example, a current transformer (CT). The cross current ammeter 13 only needs to be able to measure the direction of the current flowing through the high voltage bus 3 when a ground fault occurs. For example, an ammeter having a current capacity similar to that of the punter current type 11 is employed.
A direction detector 22 that detects the positive / negative of the output of the cross current ammeter 13 is provided at the output portion of the cross current ammeter 13. The direction detection unit 22 outputs a binary signal indicating the current direction.

論理部20は、図2に示すように、地絡発生を判定する地絡判定部24と、地絡の発生箇所の判定を行う位置判定部27と、地絡発生時に地絡の発生と発生箇所の情報を運転台等に出力する出力回路28とを備える。
地絡判定部24は、ORゲートであり、複数の飽和検知部21の信号が入力され、複数のパンタ点電流計11のうち少なくとも1つが飽和したときに、地絡発生を示す信号を出力する。
As shown in FIG. 2, the logic unit 20 includes a ground fault determination unit 24 that determines the occurrence of a ground fault, a position determination unit 27 that determines a location where a ground fault occurs, and the occurrence and occurrence of a ground fault when a ground fault occurs. And an output circuit 28 for outputting information on the location to the cab or the like.
The ground fault determination unit 24 is an OR gate, and outputs a signal indicating the occurrence of a ground fault when the signals of the plurality of saturation detection units 21 are input and at least one of the plurality of punter point ammeters 11 is saturated. .

位置判定部27は、所定の論理演算を行う論理回路であり、複数の方向検知部22の信号に基づいて、地絡の発生箇所を特定し、発生箇所を表わす信号を出力する。例えば、5号車および8号車の鉄道車両Mに2つの横流電流計13が設けられ(図1を参照)、1号車を先頭、10号車を後尾とする編成について説明する。この場合、2つの横流電流計13の電流方向が両方とも前方と検知されれば、位置判定部27は、先頭の電力系統ブロックU1で地絡発生と判定する。また、電流方向が5号車では後方と検知され、8号車では前方と検知されれば、位置判定部27は、中間の電力系統ブロックU2で地絡発生と判定する。また、電流方向が両方とも後方と検知されれば、位置判定部27は、後方の電力系統ブロックU3で地絡発生と判定する。位置判定部27は、このように予め決められた論理演算を行って演算結果の信号を出力する。   The position determination unit 27 is a logic circuit that performs a predetermined logical operation, specifies a location where a ground fault has occurred based on signals from the plurality of direction detection units 22, and outputs a signal representing the location. For example, a description will be given of a knitting in which two cross current meters 13 are provided in the railway car M of the fifth car and the eighth car (see FIG. 1), with the first car as the head and the tenth car as the tail. In this case, if both the current directions of the two cross current ammeters 13 are detected as being forward, the position determination unit 27 determines that a ground fault has occurred in the leading power system block U1. Further, if the current direction is detected as backward in the fifth car and detected as forward in the eighth car, the position determination unit 27 determines that a ground fault has occurred in the intermediate power system block U2. If both current directions are detected as being backward, the position determination unit 27 determines that a ground fault has occurred in the rear power system block U3. The position determination unit 27 performs a predetermined logical operation in this way and outputs a signal of the operation result.

なお、図1では、横流電流計13の配置と個数、ならびに、地絡の発生箇所として識別できる電力系統ブロックU1〜U3を、簡略化して示している。実際には、もっと多くの横流電流計13が設けられることで、より正確な地絡発生箇所の判定が行われる。例えば、横流電流計13は、さらに3号車の地絡検出ユニット2に設けられてもよい。また、横流電流計13は、さらに5号車の地絡検出ユニット2における断流器12より後尾側の高圧母線3に設けられてもよい。この場合、4つの横流電流計13の電流方向に基づいて地絡の発生箇所をより詳細に識別することができる。   In FIG. 1, the arrangement and the number of the cross current ammeters 13 and the power system blocks U1 to U3 that can be identified as the occurrence points of the ground fault are shown in a simplified manner. Actually, more cross current ammeters 13 are provided, so that a more accurate determination of a ground fault occurrence location is performed. For example, the cross current ammeter 13 may be further provided in the ground fault detection unit 2 of the third car. Further, the cross current ammeter 13 may be further provided on the high voltage bus 3 on the rear side of the breaker 12 in the ground fault detection unit 2 of the fifth car. In this case, the occurrence location of the ground fault can be identified in more detail based on the current directions of the four cross current ammeters 13.

出力回路28は、地絡判定部24から地絡発生の信号が出力された場合に、地絡発生信号と位置判定部27の発生箇所を示す信号とを保持し、保持した信号を乗務員室へ出力する。この出力により、乗務員室の運転台に、地絡発生の表示と、地絡発生箇所を示す表示とがなされて、これらが乗務員に通知される。   When the ground fault occurrence signal is output from the ground fault determination unit 24, the output circuit 28 holds the ground fault generation signal and the signal indicating the location of the position determination unit 27, and sends the held signal to the crew cabin. Output. With this output, a ground fault occurrence display and a display indicating the ground fault occurrence location are displayed on the cab of the crew cabin, and these are notified to the crew.

<地絡検出動作>
続いて、地絡が発生した場合の検出動作について説明する。
編成の通常の運行時、集電部1が集電して電力線1Aに流れる電流はVVVFインバータ4とSIV5の総合的な最大消費電流以下となる。従って、複数のパンタ点電流計11の出力は飽和せず、地絡判定部24は地絡発生の判定を行わない。
一方、編成内の電力系統で地絡が発生した場合、地絡点に向かって架線から大きな地絡電流が流れる。従って、複数のパンタ点電流計11の少なくとも1つの出力が飽和する。すると、少なくとも1つの飽和検知部21(図2を参照)から検知信号が出力されて、これにより地絡判定部24から地絡発生信号が出力される。
<Ground fault detection operation>
Next, the detection operation when a ground fault occurs will be described.
During normal operation of knitting, the current collected by the current collector 1 and flowing through the power line 1A is less than the total maximum current consumption of the VVVF inverter 4 and SIV5. Therefore, the outputs of the plurality of panta-point ammeters 11 do not saturate, and the ground fault determination unit 24 does not determine whether a ground fault has occurred.
On the other hand, when a ground fault occurs in the power system in the train, a large ground fault current flows from the overhead line toward the ground fault point. Therefore, at least one output of the plurality of panta-point ammeters 11 is saturated. Then, a detection signal is output from at least one saturation detection unit 21 (see FIG. 2), and thereby a ground fault generation signal is output from the ground fault determination unit 24.

また、地絡が発生した場合、高圧母線3においても地絡点に向かって地絡電流が流れ、この電流の向きが横流電流計13によって計測される。そして、これらの電流方向の検知信号が位置判定部27に入力される。そして、所定の論理演算が行われて、位置判定部27から地絡の発生箇所を示す信号が出力される。
地絡発生の信号と発生箇所の信号が出力されると、出力回路28はこれらの信号を保持して、運転台に出力する。
When a ground fault occurs, a ground fault current flows toward the ground fault point also in the high-voltage bus 3, and the direction of this current is measured by the cross current ammeter 13. Then, these current direction detection signals are input to the position determination unit 27. Then, a predetermined logical operation is performed, and a signal indicating a ground fault occurrence location is output from the position determination unit 27.
When the ground fault generation signal and the signal of the occurrence location are output, the output circuit 28 holds these signals and outputs them to the cab.

以上のように、第1実施形態の地絡検出システムによれば、パンタ点電流計11と横流電流計13との計測によって、編成内で地絡が発生した場合に、地絡発生の判定と発生箇所の判定とを行うことができる。さらに、パンタ点電流計11として、電力線1Aに地絡電流が流れたときに出力が飽和する小容量の電流計が採用されているので、パンタ点電流計11のサイズを大幅に小さくできる。また、横流電流計13も同様に小さなサイズの電流計を採用できる。従って、地絡検出ユニット2を小型化でき、システム全体のコンパクト化を図ることができる。   As described above, according to the ground fault detection system of the first embodiment, when a ground fault occurs in the knitting due to the measurement by the panta point ammeter 11 and the cross current ammeter 13, The occurrence location can be determined. Furthermore, since the panta point ammeter 11 is a small capacity ammeter whose output is saturated when a ground fault current flows through the power line 1A, the size of the panta point ammeter 11 can be greatly reduced. Similarly, the cross current ammeter 13 may be a small ammeter. Therefore, the ground fault detection unit 2 can be downsized, and the entire system can be downsized.

また、第1実施形態の地絡検出システムによれば、地絡発生の判定と発生箇所の判定とが二値信号を用いた簡単な論理演算によって実現できる。従って、単純な論理回路によって論理部20を構成できる。   Further, according to the ground fault detection system of the first embodiment, the determination of the occurrence of the ground fault and the determination of the occurrence location can be realized by a simple logical operation using a binary signal. Therefore, the logic unit 20 can be configured by a simple logic circuit.

(第2実施形態)
図4は、本発明の第2実施形態に係る地絡検出システムを示す構成図である。図5は、第2実施形態に係る地絡検出システムの論理部を示す構成図である。
第2実施形態の地絡検出システムは、地絡発生の判定条件の一部を変更したものであり、その他の構成は第1実施形態と同様である。同様の構成については、同一符号を付して詳細な説明を省略する。
(Second Embodiment)
FIG. 4 is a block diagram showing a ground fault detection system according to the second embodiment of the present invention. FIG. 5 is a configuration diagram illustrating a logic unit of the ground fault detection system according to the second embodiment.
The ground fault detection system of the second embodiment is obtained by changing a part of the determination condition for the occurrence of ground fault, and the other configuration is the same as that of the first embodiment. About the same structure, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図4に示すように、第2実施形態の各地絡検出ユニット2は、第1実施形態の構成に加えて、パンタ点電圧計14を備える。パンタ点電圧計14は、例えば直流計器用変圧器(DCPT:Direct Current Potential Transformer)であり、集電部1の電力線1Aと接地電位との間の電圧を計測する。
図5に示すように、パンタ点電圧計14の出力部には低電圧検知部23が設けられている。低電圧検知部23は、電力線1Aの電圧が地絡によって低下した低電圧であるか否かを検知し、検知結果を示す二値の信号を出力する。或いは、低電圧検知部23は、地絡の発生によって変電所で送電が遮断されたときの架線電圧であるか否かを検知し、検知結果を示す二値の信号を出力する構成としてもよい。
As shown in FIG. 4, the local fault detection unit 2 of the second embodiment includes a panta point voltmeter 14 in addition to the configuration of the first embodiment. The panta point voltmeter 14 is, for example, a direct current potential transformer (DCPT) and measures a voltage between the power line 1A of the current collector 1 and the ground potential.
As shown in FIG. 5, a low voltage detection unit 23 is provided at the output unit of the panta point voltmeter 14. The low voltage detection unit 23 detects whether or not the voltage of the power line 1A is a low voltage that has decreased due to a ground fault, and outputs a binary signal indicating the detection result. Alternatively, the low voltage detection unit 23 may be configured to detect whether it is an overhead line voltage when power transmission is interrupted at the substation due to the occurrence of a ground fault, and to output a binary signal indicating the detection result. .

第2実施形態において、地絡検出システムの論理部20Aは、図5に示すように、地絡判定部24Aを備える。地絡判定部24Aは、複数の飽和検知部21の信号を入力して論理和を出力するORゲート25と、ANDゲート26とを備える。   In the second embodiment, the logic unit 20A of the ground fault detection system includes a ground fault determination unit 24A as shown in FIG. The ground fault determination unit 24 </ b> A includes an OR gate 25 that inputs signals of the plurality of saturation detection units 21 and outputs a logical sum, and an AND gate 26.

ANDゲート26は、ORゲート25の出力と、複数の低電圧検知部23の出力と、空転検知信号の反転信号とを入力し、これらの論理積を演算して地絡発生か否かを示す信号を出力する。空転検知信号とは、上述したように鉄道車両Mの車輪が空転したことを示す信号であり、VVVFインバータ4から出力される。   The AND gate 26 receives the output of the OR gate 25, the outputs of the plurality of low voltage detectors 23, and the inverted signal of the idling detection signal, and calculates the logical product of these to indicate whether or not a ground fault has occurred. Output a signal. The idling detection signal is a signal indicating that the wheel of the railway vehicle M has idled as described above, and is output from the VVVF inverter 4.

第2実施形態のパンタ点電流計11は、第1実施形態のものと比較して、さらに容量の小さいものを採用してもよい。例えば、パンタ点電流計11の出力飽和レベルは、VVVFインバータ4とSIV5との総合の最大消費電流と同等、或いは、これより低いレベルになってもよい。   The panta point ammeter 11 of the second embodiment may employ a smaller capacity than that of the first embodiment. For example, the output saturation level of the panta-point ammeter 11 may be equal to or lower than the total maximum current consumption of the VVVF inverter 4 and SIV5.

<地絡検出動作>
第2実施形態においても、編成の通常の運行時、集電部1から電力線1Aを介して流れる電流はVVVFインバータ4とSIV5の総合的な最大消費電流より大幅に低く、複数のパンタ点電流計11の出力は飽和しない。よって、ORゲート25の出力値は「0」、ANDゲート26の出力値は「0」となり、地絡判定部24Aは地絡発生の信号を出力しない。
<Ground fault detection operation>
Also in the second embodiment, during normal operation of the knitting, the current flowing from the current collector 1 through the power line 1A is significantly lower than the overall maximum current consumption of the VVVF inverter 4 and SIV5, and a plurality of panta-point ammeters The output of 11 is not saturated. Therefore, the output value of the OR gate 25 is “0”, the output value of the AND gate 26 is “0”, and the ground fault determination unit 24A does not output a signal indicating the occurrence of a ground fault.

また、編成の運行時、車両の空転が生じて一時的にVVVFインバータ4に大電流が流れた場合、パンタ点電流計11の飽和レベルが低いと、この大電流によって何れかの飽和検知部21から飽和を示す信号が出力される場合がある。しかしながら、この場合でも、ANDゲート26には空転検知信号の反転信号(出力値「0」)が入力される。よって、ANDゲート26の出力値は「0」となり、地絡判定部24Aは地絡発生の信号を出力しない。   In addition, when the train is idling and a large current flows temporarily to the VVVF inverter 4 during the knitting operation, if the saturation level of the panta-point ammeter 11 is low, any saturation detection unit 21 is caused by this large current. May output a signal indicating saturation. However, even in this case, the inverted signal (output value “0”) of the idling detection signal is input to the AND gate 26. Therefore, the output value of the AND gate 26 is “0”, and the ground fault determination unit 24A does not output a ground fault occurrence signal.

また、編成の運行時、架線からの集電部1の離線と再着線とがあって架線からVVVFインバータ4又はSIV5に突入電流が流れた場合には、パンタ点電流計11の飽和レベルが低いと、何れかの飽和検知部21から飽和を示す信号が出力される場合がある。或いは、VVVFインバータ4とSIV5の消費電流が非常に大きくなった場合には、パンタ点電流計11の飽和レベルが低いと、何れかの飽和検知部21から飽和を示す信号が出力される場合がある。しかしながら、これらの場合、架線には高電圧が加わっているので、複数の低電圧検知部23の出力値は「0」となる。従って、ORゲート25の出力値が「1」になっても、ANDゲートの出力値は「0」となり、地絡判定部24Aは地絡発生の判定を行わない。   In addition, when there is a disconnection and reconnection of the current collector 1 from the overhead line during knitting operation, and a rush current flows from the overhead line to the VVVF inverter 4 or SIV 5, the saturation level of the panta-point ammeter 11 is If it is low, a signal indicating saturation may be output from any of the saturation detectors 21. Alternatively, when the current consumption of the VVVF inverter 4 and SIV5 becomes very large, if the saturation level of the pantograph ammeter 11 is low, a signal indicating saturation may be output from one of the saturation detectors 21. is there. However, in these cases, since a high voltage is applied to the overhead wire, the output values of the plurality of low voltage detection units 23 are “0”. Therefore, even if the output value of the OR gate 25 becomes “1”, the output value of the AND gate becomes “0”, and the ground fault determination unit 24A does not determine the occurrence of the ground fault.

一方、編成内で地絡が発生した場合、地絡点に向かって架線から大きな地絡電流が流れる。従って、複数のパンタ点電流計11の少なくとも1つの出力は飽和し、ORゲート25の出力値は「1」になる。また、この時、車輪の空転は生じないため、空転検知信号の反転信号の値も「1」となる。さらに、地絡によって架線電圧は低下し、複数の低電圧検知部23の出力値は「1」となる。よって、ANDゲートの出力値は「1」となり、地絡判定部24Aから地絡発生の信号が出力される。よって、出力回路28から、地絡発生の信号と発生箇所の信号とが運転台に出力される。   On the other hand, when a ground fault occurs in the knitting, a large ground fault current flows from the overhead line toward the ground fault point. Accordingly, at least one output of the plurality of punter point ammeters 11 is saturated, and the output value of the OR gate 25 becomes “1”. At this time, since the wheel does not slip, the value of the inversion signal of the slip detection signal is also “1”. Further, the overhead line voltage decreases due to the ground fault, and the output values of the plurality of low voltage detection units 23 become “1”. Therefore, the output value of the AND gate is “1”, and a ground fault occurrence signal is output from the ground fault determination unit 24A. Thus, the output circuit 28 outputs a ground fault generation signal and a generation location signal to the cab.

以上のように、第2実施形態の地絡検出システムによれば、パンタ点電圧計14により集電部1の電圧が計測され、パンタ点電流計11の出力が飽和した場合でも、集電部1の電圧が地絡を示す低電圧になっていない場合に、地絡発生の判定が行われない。従って、地絡発生の誤判定を防止でき、その分、パンタ点電流計11として、より小型の電流計を採用できる。従って、地絡検出ユニット2のよりコンパクト化を図ることができる。   As described above, according to the ground fault detection system of the second embodiment, even when the voltage of the current collector 1 is measured by the panta point voltmeter 14 and the output of the panta point ammeter 11 is saturated, the current collector When the voltage of 1 is not a low voltage indicating a ground fault, the occurrence of the ground fault is not determined. Accordingly, it is possible to prevent erroneous determination of occurrence of a ground fault, and accordingly, a smaller ammeter can be employed as the panta point ammeter 11. Therefore, the ground fault detection unit 2 can be made more compact.

また、第2実施形態の地絡検出システムによれば、地絡発生の判定を行うための信号が全て二値の信号なので、単純な論理回路によって論理部20Aを構成できる。   Further, according to the ground fault detection system of the second embodiment, since all signals for determining the occurrence of ground fault are binary signals, the logic unit 20A can be configured by a simple logic circuit.

(第3実施形態)
図6は、第3実施形態に係る地絡検出システムの論理部を示す構成図である。
第3実施形態の地絡検出システムは、学習部31によって飽和検知部21の検知条件、方向検知部22の検知条件、低電圧検知部23の検知条件を適宜調整可能にしたものである。以下、第2実施形態と同様の構成については、詳細な説明を省略する。
第3実施形態では、飽和検知部21、方向検知部22、低電圧検知部23が、各々の検知条件を、複数の設定パラメータを用いて詳細に設定できるように構成されている。検知条件の設定パラメータとしては、例えば検知レベル、信号の変化量、信号の変化率、信号の変化タイミング、信号の変化パターンなど、様々なパラメータを採用してよい。
(Third embodiment)
FIG. 6 is a configuration diagram illustrating a logic unit of the ground fault detection system according to the third embodiment.
In the ground fault detection system according to the third embodiment, the learning unit 31 can appropriately adjust the detection condition of the saturation detection unit 21, the detection condition of the direction detection unit 22, and the detection condition of the low voltage detection unit 23. Hereinafter, detailed description of the same configuration as that of the second embodiment will be omitted.
In the third embodiment, the saturation detection unit 21, the direction detection unit 22, and the low voltage detection unit 23 are configured such that each detection condition can be set in detail using a plurality of setting parameters. For example, various parameters such as a detection level, a signal change amount, a signal change rate, a signal change timing, and a signal change pattern may be adopted as detection condition setting parameters.

学習部31は、例えば地絡のフィールド試験において動作するように構成される。地絡のフィールド試験では、実際に様々なパターンで地絡を発生させて、地絡検出システムが地絡発生の判定を正しく行えるか試験される。或いは、地絡と誤判定されやすい様々なパターンの状況を発生させて、地絡検出システムが地絡発生と誤判定しないか試験される。
学習部31は、外部から試験結果情報と、論理部20Aの判定結果である地絡発生および発生箇所の信号を入力する。学習部31は、両者の情報を比較することで、論理部20Aが正しい判定を行ったか、誤った判定を行ったか判別できる。
The learning unit 31 is configured to operate in, for example, a ground fault field test. In the ground fault field test, ground faults are actually generated in various patterns to test whether the ground fault detection system can correctly determine the occurrence of the ground fault. Alternatively, various patterns of situations that are likely to be erroneously determined as ground faults are generated, and the ground fault detection system is tested for erroneous determination as a ground fault occurrence.
The learning unit 31 inputs the test result information and the signal of the occurrence of the ground fault and the occurrence location as the determination result of the logic unit 20A from the outside. The learning unit 31 can determine whether the logic unit 20A has made a correct determination or an incorrect determination by comparing both pieces of information.

さらに、学習部31は、各パンタ点電流計11、各横流電流計13、および各パンタ点電圧計14の出力を入力し、正しい判定が行われた場合に、これらの出力に規則性がないか探索処理を行う。また、学習部31は、誤判定が行われた場合に、これらの出力に規則性が無いか探索処理を行う。
探索処理の結果、学習部31は、誤判定が行われた場合の規則性と、正しい判定が行われた場合の規則性とから、誤判定を少なくし且つ正しい判定を実現可能な飽和検知部21、方向検知部22、低電圧検知部23の各検知条件を抽出する。そして、各検知条件に合わせて、飽和検知部21、方向検知部22、低電圧検知部23の設定パラメータの値を修正する。
Further, the learning unit 31 inputs the outputs of the respective panta point ammeters 11, the respective cross current ammeters 13, and the respective panta point voltmeters 14, and when the correct determination is made, these outputs have no regularity. Or search processing. In addition, when an erroneous determination is made, the learning unit 31 performs a search process for whether there is regularity in these outputs.
As a result of the search process, the learning unit 31 can reduce the misjudgment and realize the correct judgment from the regularity when the misjudgment is performed and the regularity when the correct judgment is performed. 21, each detection condition of the direction detection unit 22 and the low voltage detection unit 23 is extracted. And according to each detection condition, the value of the setting parameter of the saturation detection part 21, the direction detection part 22, and the low voltage detection part 23 is corrected.

このような設定パラメータの修正により、地絡検出システムによる地絡の誤判定を少なくし、確実で正確な地絡の判定が行われるように、地絡検出システムの動作を修正することができる。
以上のように、第3実施形態の地絡検出システムによれば、確実で正確な地絡の判定を行えるので、その分、パンタ点電流計11、横流電流計13、パンタ点電圧計14として、より小型の計測器を適用することが可能となる。よって、システムのよりコンパクト化を図ることができる。
By correcting the setting parameters in this way, it is possible to correct the operation of the ground fault detection system so that erroneous determination of ground faults by the ground fault detection system is reduced and the determination of ground faults is performed reliably and accurately.
As described above, according to the ground fault detection system of the third embodiment, since a reliable and accurate determination of the ground fault can be performed, the panta point ammeter 11, the cross current ammeter 13, and the punter point voltmeter 14 are accordingly provided. It becomes possible to apply a smaller measuring instrument. Therefore, the system can be made more compact.

なお、学習部31は、地絡試験において動作させるのではなく、編成の通常の運行中に動作するように構成してもよい。この場合、学習部31へは地絡発生の判定がなされた場合に、作業員から学習部31に正常な判定であったか誤った判定であったかの情報を与えるように構成するとよい。また、学習部31は、飽和検知部21、方向検知部22、低電圧検知部23の検知条件を修正するのではなく、例えば、地絡判定部24A、或いは位置判定部27の論理判断の条件を修正するように構成してもよい。この場合、地絡判定部24Aと位置判定部27との論理判断の条件は、例えば信号の発生順序や遅延条件などを含めて、より詳細に設定できるように構成し、学習部31が、これらのパラメータを適宜に修正する構成とすればよい。   In addition, you may comprise the learning part 31 not to operate | move in a ground fault test, but to operate | move during the normal operation | movement of a organization. In this case, when it is determined that a ground fault has occurred, the learning unit 31 may be configured to give information about whether the determination is a normal determination or an incorrect determination to the learning unit 31 from the worker. In addition, the learning unit 31 does not correct the detection conditions of the saturation detection unit 21, the direction detection unit 22, and the low voltage detection unit 23, but, for example, the ground fault determination unit 24A or the logical determination condition of the position determination unit 27 You may comprise so that it may correct. In this case, the logic determination conditions between the ground fault determination unit 24A and the position determination unit 27 can be set in more detail including, for example, signal generation order and delay conditions, and the learning unit 31 The configuration may be such that these parameters are appropriately corrected.

以上、本発明の各実施の形態について説明した。しかし、本発明は上記の実施形態に限られるものではない。例えば、上記実施形態では、論理部20、20Aを、1つの地絡検出ユニット2に収容した構成を示したが、例えば論理部20は運転台に設けて各地絡検出ユニット2と信号線を介して接続される構成としてもよい。また、上記実施形態では、パンタ点電流計11と横流電流計13とを断流器12と同じ筐体に収容したユニット化した構成を示したが、これらは別々に鉄道車両に搭載されてもよい。また、上記実施形態では、パンタ点電流計が飽和したことに基づいて地絡の発生を判定する構成を示したが、横流電流計が飽和したことに基づいて地絡の発生を判定するようにしてもよい。その他、実施の形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the configuration in which the logic units 20 and 20A are accommodated in one ground fault detection unit 2 is shown. However, for example, the logic unit 20 is provided in the cab and is connected to the local fault detection unit 2 and the signal line. It is good also as a structure connected. Moreover, in the said embodiment, although the united structure which accommodated the panta point ammeter 11 and the cross current ammeter 13 in the same housing | casing as the circuit breaker 12 was shown, even if these were separately mounted in a rail vehicle. Good. In the above embodiment, the configuration in which the occurrence of the ground fault is determined based on the saturation of the pantograph ammeter is shown. However, the generation of the ground fault is determined based on the saturation of the cross current ammeter. May be. In addition, the details shown in the embodiments can be changed as appropriate without departing from the spirit of the invention.

1 集電部
1A電力線
2 地絡検出ユニット
3 高圧母線
4 VVVFインバータ
5 SIV
11 パンタ点電流計(電流計)
13 横流電流計(電流計)
14 パンタ点電圧計(電圧計)
20、20A 論理部
21 飽和検知部
22 方向検知部
23 低電圧検知部
24、24A 地絡判定部
25 ORゲート
26 ANDゲート
27 位置判定部
28 出力回路
31 学習部
DESCRIPTION OF SYMBOLS 1 Current collecting part 1A power line 2 Ground fault detection unit 3 High voltage bus 4 VVVF inverter 5 SIV
11 Panta-point ammeter (ammeter)
13 Cross current meter (Ammeter)
14 Punta point voltmeter (voltmeter)
20, 20A Logic unit 21 Saturation detection unit 22 Direction detection unit 23 Low voltage detection unit 24, 24A Ground fault determination unit 25 OR gate 26 AND gate 27 Position determination unit 28 Output circuit 31 Learning unit

Claims (6)

集電を行う複数の集電部と、前記集電部によって取り込まれた電力によって駆動される高電圧回路と、前記複数の集電部と電気的に接続される高圧母線とを備える編成に搭載されて、地絡の発生を検出する鉄道車両の地絡検出システムにおいて、
前記複数の集電部を流れる電流と前記高圧母線に流れる電流とを計測する複数の電流計と、
前記複数の電流計の少なくとも1つが飽和したことを検知して地絡の発生を判定する地絡判定部と、
前記複数の電流計が検出した前記高圧母線に流れる電流の方向に基づいて地絡の発生箇所を判定する位置判定部と、
を備えることを特徴とする鉄道車両の地絡検出システム。
Mounted on a knitting comprising a plurality of current collectors for collecting current, a high voltage circuit driven by the power taken in by the current collector, and a high-voltage bus bar electrically connected to the plurality of current collectors In a railway vehicle ground fault detection system that detects the occurrence of a ground fault,
A plurality of ammeters for measuring a current flowing through the plurality of current collectors and a current flowing through the high-voltage bus;
A ground fault determination unit that detects that at least one of the plurality of ammeters is saturated and determines the occurrence of a ground fault;
A position determination unit that determines a location where a ground fault occurs based on a direction of current flowing through the high-voltage bus detected by the plurality of ammeters;
A ground fault detection system for a railway vehicle, comprising:
前記複数の集電部の電圧をそれぞれ計測する複数の電圧計を備え、
前記地絡判定部は、前記複数の電流計の少なくとも1つが飽和したことと、前記複数の電圧計の計測とに基づいて、地絡の発生を判定することを特徴とする請求項1記載の鉄道車両の地絡検出システム。
A plurality of voltmeters for measuring the voltages of the plurality of current collectors,
The ground fault determination unit determines occurrence of a ground fault based on at least one of the plurality of ammeters being saturated and measurement of the plurality of voltmeters. Railway vehicle ground fault detection system.
前記地絡判定部は、前記編成の車輪が空転したことを示す空転検知信号が入力された場合に、地絡の発生でないと判定することを特徴とする請求項2記載の鉄道車両の地絡検出システム。   The ground fault of the railway vehicle according to claim 2, wherein the ground fault determination unit determines that a ground fault has not occurred when an idling detection signal indicating that the wheel of the train has slipped is input. Detection system. 前記複数の電圧計および前記複数の電流計のうち1つの鉄道車両に搭載される電圧計および電流計、前記地絡判定部、ならびに前記位置判定部が、1ユニット化されていることを特徴とする請求項2又は請求項3に記載の鉄道車両の地絡検出システム。   The voltmeter and ammeter mounted on one railway vehicle among the plurality of voltmeters and the plurality of ammeters, the ground fault determination unit, and the position determination unit are unitized. The ground fault detection system for a railway vehicle according to claim 2 or 3. 前記複数の電流計の各々は変流器であることを特徴とする請求項1から請求項4の何れか一項に記載の鉄道車両の地絡検出システム。   5. The railway vehicle ground fault detection system according to claim 1, wherein each of the plurality of ammeters is a current transformer. 6. 地絡発生の判定条件を調整する学習部をさらに備えたことを特徴とする請求項1から請求項5の何れか一項に記載の鉄道車両の地絡検出システム。   The railway vehicle ground fault detection system according to any one of claims 1 to 5, further comprising a learning unit that adjusts a determination condition for occurrence of a ground fault.
JP2016171385A 2016-09-02 2016-09-02 Railroad vehicle ground fault detection system Active JP6764732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171385A JP6764732B2 (en) 2016-09-02 2016-09-02 Railroad vehicle ground fault detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171385A JP6764732B2 (en) 2016-09-02 2016-09-02 Railroad vehicle ground fault detection system

Publications (2)

Publication Number Publication Date
JP2018038217A true JP2018038217A (en) 2018-03-08
JP6764732B2 JP6764732B2 (en) 2020-10-07

Family

ID=61567913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171385A Active JP6764732B2 (en) 2016-09-02 2016-09-02 Railroad vehicle ground fault detection system

Country Status (1)

Country Link
JP (1) JP6764732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208569A1 (en) * 2021-03-29 2022-10-06 株式会社日立インダストリアルプロダクツ Electric vehicle and electric vehicle system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167872A (en) * 1985-01-21 1986-07-29 Sumitomo Electric Ind Ltd Current detecting device
JPH07177603A (en) * 1993-12-17 1995-07-14 Toshiba Toransupooto Eng Kk Power supply protective system for electric vehicle
JP2001069672A (en) * 1999-08-25 2001-03-16 Sumitomo Electric Ind Ltd Charging and discharging controller
JP2004242395A (en) * 2003-02-04 2004-08-26 Toshiba Corp Protective relay system, protective relay setting apparatus, and protective relay
WO2010146643A1 (en) * 2009-06-15 2010-12-23 株式会社 日立製作所 Driving system for railroad vehicle
JP2012223020A (en) * 2011-04-12 2012-11-12 Toshiba Corp Electric vehicle system
WO2014128936A1 (en) * 2013-02-22 2014-08-28 三菱電機株式会社 Railroad vehicle propulsion control device
JP2015210087A (en) * 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167872A (en) * 1985-01-21 1986-07-29 Sumitomo Electric Ind Ltd Current detecting device
JPH07177603A (en) * 1993-12-17 1995-07-14 Toshiba Toransupooto Eng Kk Power supply protective system for electric vehicle
JP2001069672A (en) * 1999-08-25 2001-03-16 Sumitomo Electric Ind Ltd Charging and discharging controller
JP2004242395A (en) * 2003-02-04 2004-08-26 Toshiba Corp Protective relay system, protective relay setting apparatus, and protective relay
WO2010146643A1 (en) * 2009-06-15 2010-12-23 株式会社 日立製作所 Driving system for railroad vehicle
JP2012223020A (en) * 2011-04-12 2012-11-12 Toshiba Corp Electric vehicle system
WO2014128936A1 (en) * 2013-02-22 2014-08-28 三菱電機株式会社 Railroad vehicle propulsion control device
JP2015210087A (en) * 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208569A1 (en) * 2021-03-29 2022-10-06 株式会社日立インダストリアルプロダクツ Electric vehicle and electric vehicle system
JP7441374B2 (en) 2021-03-29 2024-02-29 株式会社日立インダストリアルプロダクツ Electric vehicles and electric vehicle systems

Also Published As

Publication number Publication date
JP6764732B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
CN105486923B (en) Bus leakage resistance estimation for electrical isolation testing and diagnostics
CN108603909B (en) Method and apparatus for detecting a fault of a transmission line in an electric power system
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
WO2016017040A1 (en) Vehicle system and control method therefor
JP2016006407A (en) Detection device for output current and ground fault resistance
EP3985402A1 (en) Insulation resistance detection circuit and method
CN205202752U (en) AC electric locomotive traction system
JP6767215B2 (en) Railroad vehicle ground fault detection system
JP2018038217A (en) Ground fault detection system of railway vehicle
EP2799892A1 (en) Breakdown detection device and detection method thereof
JP2010239837A (en) Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault
CN110875700B (en) Motor phase sequence reverse connection fault diagnosis method and system
CN103770650A (en) Locomotive traction and auxiliary system integrated grounding protection device
US20240042863A1 (en) Method and Equipment for Monitoring a Failure in a High-Voltage Circuit of a Vehicle, and High-Voltage Circuit System
JP4921246B2 (en) Ground fault distance relay
JP2014202696A (en) Electrical leak detection method
US9841798B2 (en) Battery, battery controller, and method for the secured digital transmission of current measurement values
JP6161527B2 (en) Transmission line protection relay
EP3850376B1 (en) System for checking the electrical insulation in converters for electric cars
CN117233662B (en) Grounding point detection method for subway multi-converter parallel traction transmission system
CN106885965B (en) Device and method for fault detection of frequency converter
CN212514946U (en) DC600V improved power supply for electric locomotive to passenger car and online insulation detection circuit thereof
CN216969360U (en) Train power supply cabinet with ground resistance loop and railway passenger train
JP2005082094A (en) Short-circuiting position detection device for vehicle
JP2007282337A (en) Device for determining line wire grounded circuit in direct-current electric railroad

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6764732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250