JP2018036088A - Polarization domain visualization/observation method and device of ferroelectric substance - Google Patents

Polarization domain visualization/observation method and device of ferroelectric substance Download PDF

Info

Publication number
JP2018036088A
JP2018036088A JP2016167750A JP2016167750A JP2018036088A JP 2018036088 A JP2018036088 A JP 2018036088A JP 2016167750 A JP2016167750 A JP 2016167750A JP 2016167750 A JP2016167750 A JP 2016167750A JP 2018036088 A JP2018036088 A JP 2018036088A
Authority
JP
Japan
Prior art keywords
ferroelectric
electric field
thin film
polarization domain
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167750A
Other languages
Japanese (ja)
Other versions
JP6842080B2 (en
Inventor
潤也 堤
Junya Tsutsumi
潤也 堤
悟志 松岡
Satoshi Matsuoka
悟志 松岡
佐智雄 堀内
Sachio Horiuchi
佐智雄 堀内
洋平 上村
Yohei Kamimura
洋平 上村
俊人 荒井
Toshito Arai
俊人 荒井
達生 長谷川
Tatsuo Hasegawa
達生 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016167750A priority Critical patent/JP6842080B2/en
Publication of JP2018036088A publication Critical patent/JP2018036088A/en
Application granted granted Critical
Publication of JP6842080B2 publication Critical patent/JP6842080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a visualization/observation method and device of a polarization domain of a ferroelectric substance allowing observation at a high speed and high resolution by a simple observation method.SOLUTION: Positive and negative electric fields having a magnitude that does not invert a polarization domain are generated alternately at a cycle T in a ferroelectric substance thin film. The transmitted light or reflected light of monochromatic light that is radiated to the ferroelectric substance thin film synchronously with the cycle is imaged by a two-dimensional optical detector. A difference image between one set of images imaged in a positive electric field and negative electric field is obtained. An integrated image generated from a plurality of difference images is obtained to provide a contrast, and the cycle T is shifted to a short time side and a noise removal of the difference images is performed.SELECTED DRAWING: Figure 8

Description

本発明は、強誘電体の分極ドメインを可視化観察する方法及びその装置に関し、特に、強誘電体に電場を印加したときの微細な光学的変化から分極ドメインを可視化観察する方法及びその装置に関する。   The present invention relates to a method and apparatus for visualizing and observing a polarization domain of a ferroelectric, and more particularly to a method and apparatus for visualizing and observing a polarization domain from a minute optical change when an electric field is applied to a ferroelectric.

強誘電体にその分極の向きと逆向きに電場を印加すると、ある閾値以上で、強誘電体内部に電場と同じ向きに分極ドメインが出現する。一方、電場と逆向きのドメインは静電エネルギーを最小化するように徐々に反転していって、最終的には強誘電体全体で分極が反転する。この分極反転現象において、物質内の不純物や格子欠陥などの影響によって反転しないドメインが残存してしまう場合がある。かかる場合、電場−分極特性におけるヒステリシスループが得られず、メモリ素子としての記憶特性に大きな影響が生じる。そこで、強誘電体の動作確認や劣化過程の解析などにおいて分極ドメインを直接、観察できる方法が求められる。   When an electric field is applied to a ferroelectric material in the direction opposite to the polarization direction, a polarization domain appears in the same direction as the electric field inside the ferroelectric material at a certain threshold value or more. On the other hand, the domain opposite to the electric field is gradually reversed so as to minimize the electrostatic energy, and finally the polarization is reversed in the entire ferroelectric substance. In this polarization inversion phenomenon, a domain that does not invert may remain due to the influence of impurities or lattice defects in the substance. In such a case, a hysteresis loop in the electric field-polarization characteristics cannot be obtained, and the memory characteristics as a memory element are greatly affected. Therefore, there is a need for a method capable of directly observing the polarization domain in confirming the operation of the ferroelectric and analyzing the deterioration process.

ここまで、分極ドメインを可視化観察する方法としては、走査型電子顕微鏡(SEM)、圧電応答顕微鏡(PFM)、第二次高調波発生(SHG)顕微鏡、又はテラヘルツ放射顕微鏡などの顕微鏡を用いた観察方法が提案されている。また、顕微電場変調分光法なども提案されている。このうち、顕微電場変調分光法は、強誘電体に電場を印加することで生じる光透過率・反射率のわずかな変化から分極ドメインを可視化しようとするものである。   Up to now, as a method for visualizing and observing the polarization domain, observation using a microscope such as a scanning electron microscope (SEM), a piezoelectric response microscope (PFM), a second harmonic generation (SHG) microscope, or a terahertz emission microscope is used. A method has been proposed. Microscopic electric field modulation spectroscopy has also been proposed. Among these, the microscopic electric field modulation spectroscopy is intended to visualize the polarization domain from a slight change in light transmittance and reflectance caused by applying an electric field to a ferroelectric.

例えば、特許文献1では、電場の印加によって、電場の向きと同方向及び反対方向の各分極ドメインの光学吸収ピークの位置が光波長に対して反対方向にシフトすることを利用して、分極ドメインの可視化を顕微鏡下で行って分極マッピングする方法を開示している。ここでは、印加できる電場の大きさから反射率の変化は10-6〜10-3程度しか得られず、このような微小な変化を直接的に観察するのは困難なことを述べている。そこで、交流電場を印加し、これに同期した信号を検出するロック−イン検出法によって反射率の微小な変化に対する観察精度を上げるとしている。 For example, in Patent Document 1, by applying the application of an electric field, the position of the optical absorption peak of each polarization domain in the same direction and in the opposite direction to the direction of the electric field is shifted in the opposite direction with respect to the light wavelength. Is a method for performing polarization mapping by performing visualization under a microscope. Here, it is stated that the change in reflectance is only about 10 −6 to 10 −3 due to the magnitude of the electric field that can be applied, and it is difficult to directly observe such a minute change. In view of this, the observation accuracy for a minute change in reflectivity is improved by a lock-in detection method in which an alternating electric field is applied and a signal synchronized with the applied electric field is detected.

特開2004−85399号公報JP 2004-85399 A

上記したように、検査工程などの現場でも用い得る簡易且つ高速な強誘電体の分極ドメインの観察方法、例えば、真空環境を準備せずとも簡易に観察できる方法が求められる。そこで、光学顕微鏡を用いた顕微電場変調分光法などが考慮されるが、強誘電体の分極ドメインのわずかな光学変化を可視化できたとしても、その分極反転の状態を判別できる程度に高分解能で観察することは容易ではない。   As described above, there is a need for a simple and fast method for observing a polarization domain of a ferroelectric material that can be used in the field such as an inspection process, for example, a method that can be easily observed without preparing a vacuum environment. Therefore, microscopic electric field modulation spectroscopy using an optical microscope is considered, but even if a slight optical change in the polarization domain of the ferroelectric material can be visualized, the resolution is high enough to determine the state of polarization inversion. It is not easy to observe.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、簡易な観察方法でありながら、高速且つ高い分解能をもって観察できる強誘電体の分極ドメインの可視化観察方法及びその装置の提供を目的とする。   The present invention has been made in view of the above situation, and its object is to visualize the polarization domain of a ferroelectric material that can be observed at high speed and with high resolution while being a simple observation method. It is an object to provide a method and its apparatus.

本発明による強誘電体の分極ドメインを可視化観察する方法は、強誘電体薄膜に前記分極ドメインを反転させない大きさの正負の電場を周期Tで交互に形成させるとともに、これと同期させて前記強誘電体薄膜に照射した単色光の透過光又は反射光を二次元光検出器によって撮像し、正電場及び負電場のそれぞれで撮像された1組の画像の差イメージを得る可視化観察方法において、前記差イメージの複数からの積算イメージを得てコントラストを与えるとともに、前記周期Tを短時間側にシフトさせて前記差イメージのノイズ除去を図ることを特徴とする。   According to the method of visualizing and observing the polarization domain of a ferroelectric according to the present invention, a positive and negative electric field having a magnitude that does not invert the polarization domain is alternately formed in a ferroelectric thin film with a period T, and the ferroelectric domain is synchronized with the ferroelectric domain. In the visualization observation method, the transmitted light or reflected light of monochromatic light irradiated on the dielectric thin film is imaged by a two-dimensional photodetector, and a difference image between a set of images captured in each of a positive electric field and a negative electric field is obtained. An accumulated image from a plurality of difference images is obtained to give contrast, and the period T is shifted to a short time side to remove noise from the difference image.

かかる発明によれば、真空環境を準備せずとも簡易に観察でき、しかも、強誘電体の分極ドメインの分極反転の状態を判別できる程度に高分解能且つ高速に観察することができる。   According to this invention, it is possible to observe easily without preparing a vacuum environment, and to observe with high resolution and high speed to such an extent that the state of polarization inversion of the polarization domain of the ferroelectric can be determined.

上記した発明において、前記電場の方向を前記強誘電体薄膜の面内で可変とすることを特徴としてもよい。かかる発明によれば、分極ドメインの向きと電場方向とを垂直とならないようにオフセットさせ得るので常に観察を与えることができるのである。   In the above-described invention, the direction of the electric field may be variable in the plane of the ferroelectric thin film. According to this invention, since the polarization domain direction and the electric field direction can be offset so as not to be perpendicular, observation can always be given.

上記した発明において、前記単色光の波長は、200〜2000nmの範囲内にあることを特徴としてもよい。かかる発明によれば、幅広い強誘電体材料について可視化観察が可能になるのである。   In the above-described invention, the wavelength of the monochromatic light may be in the range of 200 to 2000 nm. According to this invention, a wide range of ferroelectric materials can be visualized and observed.

上記した発明において、前記周期Tは、10Hz〜1000Hzの周波数に対応することを特徴としてもよい。かかる発明によれば、通常、10-4オーダーの光学的変化を短時間で可視化できるのである。 In the above-described invention, the period T may correspond to a frequency of 10 Hz to 1000 Hz. According to this invention, an optical change of the order of 10 −4 can usually be visualized in a short time.

更に、本発明による強誘電体の分極ドメインを可視化観察する装置は、前記強誘電体薄膜に単色光を照射する光源と、強誘電体薄膜に正負の電場を周期Tで交互に形成させるファンクションジェネレータと、前記単色光の透過光又は反射光を集光し二次元光検出器上に結像させる光学系と、前記二次元光検出器の画像信号を処理する画像処理手段と、を含み、前記画像処理手段は、周期Tに同期させて正電場及び負電場のそれぞれで撮像された1組の画像の差イメージを得るとともに、前記差イメージの複数からの積算イメージを得てコントラストを与えるとともに、前記ファンクションジェネレータは、前記周期Tを短時間側にシフトさせて前記差イメージのノイズ除去を図ることを特徴とする。   Further, the apparatus for visualizing and observing the polarization domain of the ferroelectric according to the present invention includes a light source for irradiating the ferroelectric thin film with monochromatic light, and a function generator for alternately forming positive and negative electric fields on the ferroelectric thin film with a period T. An optical system that collects the transmitted light or reflected light of the monochromatic light and forms an image on a two-dimensional photodetector, and an image processing means that processes an image signal of the two-dimensional photodetector, The image processing means obtains a difference image of a set of images captured in each of a positive electric field and a negative electric field in synchronization with the period T, obtains an integrated image from a plurality of the difference images, and gives contrast. The function generator is characterized in that the period T is shifted to a short time side to remove noise from the difference image.

かかる発明によれば、真空環境を準備せずとも簡易に観察でき、しかも、強誘電体の分極ドメインの分極反転の状態を判別できる程度に高分解能且つ高速に観察することができる。   According to this invention, it is possible to observe easily without preparing a vacuum environment, and to observe with high resolution and high speed to such an extent that the state of polarization inversion of the polarization domain of the ferroelectric can be determined.

上記した発明において、前記強誘電体薄膜に複数対の電極を与えて前記電場の方向を前記強誘電体薄膜の面内で可変とすることを特徴としてもよい。かかる発明によれば、分極ドメインの向きと電場方向とを垂直とならないようにオフセットさせ得るので常に観察を与えることができるのである。   In the above-described invention, a plurality of pairs of electrodes may be provided on the ferroelectric thin film so that the direction of the electric field is variable in the plane of the ferroelectric thin film. According to this invention, since the polarization domain direction and the electric field direction can be offset so as not to be perpendicular, observation can always be given.

上記した発明において、前記単色光の波長は、200〜2000nmの範囲内にあることを特徴としてもよい。かかる発明によれば、幅広い強誘電体材料について可視化観察が可能になるのである。   In the above-described invention, the wavelength of the monochromatic light may be in the range of 200 to 2000 nm. According to this invention, a wide range of ferroelectric materials can be visualized and observed.

上記した発明において、前記周期Tは、10Hz〜1000Hzの周波数に対応することを特徴としてもよい。かかる発明によれば、通常、10-4オーダーの光学的変化を短時間で可視化できるのである。 In the above-described invention, the period T may correspond to a frequency of 10 Hz to 1000 Hz. According to this invention, an optical change of the order of 10 −4 can usually be visualized in a short time.

本発明による観察装置を示す図である。It is a figure which shows the observation apparatus by this invention. 本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 電極位置に対する分極反転を説明する図である。It is a figure explaining the polarization inversion with respect to an electrode position. 実施例で用いた強誘電体の構造式である。3 is a structural formula of a ferroelectric material used in Examples. 本発明の観察方法の一例を示す図である。It is a figure which shows an example of the observation method of this invention. 撮像タイミングを示すタイムチャートである。It is a time chart which shows an imaging timing. 分極ドメインの可視化例である。It is an example of visualization of a polarization domain. 電場による光透過率の変化率と光波長との関係を示すグラフである。It is a graph which shows the relationship between the change rate of the light transmittance by an electric field, and light wavelength. 分極ドメインの時間変化の可視化例である。It is an example of visualization of the time change of a polarization domain.

まず、本発明の1つの実施例による強誘電体の分極ドメイン観察装置について述べる。   First, a ferroelectric polarization domain observation apparatus according to one embodiment of the present invention will be described.

図1に示すように、分極ドメイン観察装置1は、基板11上に与えられた強誘電体からなる薄膜試料10に光源20から単色光を導き照射するとともに、ファンクションジェネレータ30によって薄膜試料10の一対の電極12間に正負の電場を所定周期Tで交互に形成させる装置である。ファンクションジェネレータ30によって生成された電圧変動、例えば、周期Tの矩形パルス電圧は昇圧アンプ32からプローバー34を経て電極12に与えられる。   As shown in FIG. 1, the polarization domain observation apparatus 1 guides and irradiates monochromatic light from a light source 20 to a thin film sample 10 made of a ferroelectric material provided on a substrate 11, and uses a pair of thin film samples 10 by a function generator 30. In this device, positive and negative electric fields are alternately formed with a predetermined period T between the electrodes 12. A voltage fluctuation generated by the function generator 30, for example, a rectangular pulse voltage having a period T, is applied from the booster amplifier 32 to the electrode 12 through the prober 34.

ここでは、光源20からの光を光路切り換え器23によって光ファイバ24a又は24bのいずれかへと導くようになっており、透過モードでは、レンズ26aによって薄膜試料10に光が照射され、反射モードでは、レンズ26bによって薄膜試料10に光が照射される。   Here, the light from the light source 20 is guided to either the optical fiber 24a or 24b by the optical path switch 23. In the transmission mode, the thin film sample 10 is irradiated with light by the lens 26a, and in the reflection mode. The thin film sample 10 is irradiated with light by the lens 26b.

透過モード及び反射モードのいずれであっても、薄膜試料10からの光が対物レンズ27を経て二次元光検出器28に導かれ結像される。二次元光検出器28で電気信号に変換された画像信号は、画像処理装置40で画像処理されて表示器42に表示される。   In either the transmission mode or the reflection mode, the light from the thin film sample 10 is guided to the two-dimensional photodetector 28 through the objective lens 27 and imaged. The image signal converted into an electric signal by the two-dimensional photodetector 28 is subjected to image processing by the image processing device 40 and displayed on the display 42.

ここで、画像処理装置40での画像処理は、周期Tに同期させて正電場及び負電場のそれぞれで撮像された1組の画像の差イメージを得るとともに、この差イメージの複数からの積算イメージを得て高いコントラストを得るものである。なお、これについては後述する。   Here, the image processing in the image processing apparatus 40 obtains a difference image of a set of images captured in each of the positive electric field and the negative electric field in synchronization with the period T, and an integrated image from a plurality of the difference images. To obtain high contrast. This will be described later.

光源20は、ハロゲンランプ、重水素ランプ、キセノンランプなどを用い得て、かかるランプ光を分光器又はバンドパスフィルタ22を通して単色化した紫外−近赤外域の光を薄膜試料10に照射する。また、紫外−近赤外域の波長域の単色光を直接取り出すことの出来るLEDも適宜、用い得る。   The light source 20 may be a halogen lamp, a deuterium lamp, a xenon lamp, or the like, and irradiates the thin film sample 10 with light in the ultraviolet-near infrared region obtained by monochromatizing such lamp light through a spectroscope or bandpass filter 22. Moreover, LED which can take out the monochromatic light of the wavelength range of an ultraviolet-near infrared region directly can also be used suitably.

二次元光検出器28は、300−1000nmに感度を有するCMOSカメラやCCDカメラ、1000nm以上の近赤外域に感度を有するInGaAsカメラやHgCdTeカメラを使用し得る。300nm以下の紫外域については、CCDやCMOSカメラにイメージインテンシファイアを装着することで感度をもたせてもよい。   As the two-dimensional photodetector 28, a CMOS camera or a CCD camera having sensitivity in the range of 300 to 1000 nm, an InGaAs camera or a HgCdTe camera having sensitivity in the near infrared region of 1000 nm or more can be used. In the ultraviolet region of 300 nm or less, sensitivity may be given by attaching an image intensifier to a CCD or CMOS camera.

かかるイメージングデバイスは、後述するように、対物レンズ27の視野で決まる面積範囲の情報を二次元光検出器28で一括して取得することができるため、スポット状に集光した光を走査する測定方法に比べて高速且つ広範囲に分極ドメインを観察することができる。また、対物レンズ27の視野については、例えば、10cm四方の大面積の薄膜試料10に適用させることもできるのである。さらに、二次元光検出器28に結像する空間分解能は、二次元光検出器28の画素密度と対物レンズ27の開口数と光源20からの光の波長に依存しており、高開口数の対物レンズ27と高画素密度の二次元光検出器28を用いることで、光の回折限界に相当する高い空間分解能、例えば、従来技術(特許文献1)では、10μm程度の空間分解能が限界とされていたが、これを数100nm程度にまであげることができるのである。   As will be described later, such an imaging device can collectively acquire information on the area range determined by the field of view of the objective lens 27 with the two-dimensional photodetector 28, so that the measurement is performed by scanning the light collected in a spot shape. Compared with the method, the polarization domain can be observed at a high speed and in a wide range. Further, the visual field of the objective lens 27 can be applied to the thin film sample 10 having a large area of 10 cm square, for example. Furthermore, the spatial resolution of the image formed on the two-dimensional photodetector 28 depends on the pixel density of the two-dimensional photodetector 28, the numerical aperture of the objective lens 27, and the wavelength of light from the light source 20, and has a high numerical aperture. By using the objective lens 27 and the two-dimensional photodetector 28 having a high pixel density, a high spatial resolution corresponding to the diffraction limit of light, for example, the spatial resolution of about 10 μm is limited in the prior art (Patent Document 1). However, this can be increased to about several hundred nm.

次に、本発明の原理について、図2及び3を用いて説明する。   Next, the principle of the present invention will be described with reference to FIGS.

図2(a)に示すように、強誘電体薄膜試料10の光透過率や反射率の信号強度は電場に依存してわずかに変化する。例えば、正電場を形成したときの信号強度をA、一方で、負電場に切り換えたときの信号強度をBとする。この変化dは電場の大きさにも依存するが、分極ドメインを反転させない程度の大きさの電場の切り換えでは、通常、10-4オーダーと非常に小さく、この検出には非常に高い感度の計測手法を要求される。つまり、強誘電体薄膜試料10に正電場を形成させたときと、負電場を形成させたときの差イメージdには、光源20の強度や二次元光検出器28の感度の時間的な揺らぎが含まれており、これらは10-4オーダーの透過率や反射率の変化よりも大きくなってしまう(例えば、図2(a)のD参照、D>>d)。このため、正電場を形成した状態と負電場を形成した状態で光強度をそれぞれ積算したとしても(図2(a)のA及びB)、これらのイメージの差分dでは、時間的な揺らぎDに打ち消されて検出することはできなかった。 As shown in FIG. 2A, the signal intensity of light transmittance and reflectance of the ferroelectric thin film sample 10 slightly changes depending on the electric field. For example, let A be the signal strength when a positive electric field is formed, and B be the signal strength when switched to a negative electric field. Although this change d depends on the magnitude of the electric field, switching of the electric field that does not invert the polarization domain is usually very small on the order of 10 −4. A method is required. That is, the difference image d between when the positive electric field is formed on the ferroelectric thin film sample 10 and when the negative electric field is formed shows temporal fluctuations in the intensity of the light source 20 and the sensitivity of the two-dimensional photodetector 28. These are larger than changes in transmittance and reflectance on the order of 10 −4 (for example, see D in FIG. 2A, D >> d). For this reason, even if the light intensities are integrated in a state in which a positive electric field is formed and in a state in which a negative electric field is formed (A and B in FIG. 2 (a)), the temporal fluctuation D in the difference d between these images It was canceled and could not be detected.

一方、図2(b)に示すように、上記したような時間的な揺らぎDよりも早い時間スケールで正電場と負電場のスイッチ(変調)を繰り返し、各周期での正電場及び負電場の印加状態(図2(b)のF1及びF2)でのイメージを撮像してそれぞれの差分d1、2、d3......dnを求め、差分イメージを積算d1+d2+d3+.....+dnすることで、揺らぎの影響を取り除くのである。 On the other hand, as shown in FIG. 2 (b), the positive electric field and negative electric field switches (modulation) are repeated on a time scale earlier than the temporal fluctuation D as described above, and the positive electric field and the negative electric field in each cycle are repeated. An image in the applied state (F1 and F2 in FIG. 2B) is taken and the respective differences d 1, d 2 , d 3 . . . . . . d n is obtained and the difference image is integrated d 1 + d 2 + d 3 +. . . . . + By d n, it is to remove the effect of fluctuation.

つまり、上記した装置1における強誘電体薄膜10の分極ドメインを可視化観察する方法は、強誘電体薄膜10に分極ドメインを反転させない大きさの正負の電場を周期Tで交互に形成させるとともに、これと同期させて強誘電体薄膜10に照射した単色光の透過光又は反射光を二次元光検出器28によって撮像し、正電場及び負電場のそれぞれで撮像された1組の画像の差イメージを得る可視化観察方法である。そして、一対の正負の電場の差イメージを複数積算し積算イメージを得てコントラストを与えるのである。   In other words, the method of visualizing and observing the polarization domain of the ferroelectric thin film 10 in the apparatus 1 described above causes the ferroelectric thin film 10 to alternately form positive and negative electric fields with a period T so as not to invert the polarization domain. The two-dimensional photodetector 28 images monochromatic transmitted or reflected light irradiated on the ferroelectric thin film 10 in synchronism with the image, and a difference image between a set of images captured in each of a positive electric field and a negative electric field is obtained. It is a visualization observation method to obtain. Then, a plurality of difference images of a pair of positive and negative electric fields are integrated to obtain an integrated image to give contrast.

このとき、周期Tを短時間側にシフトさせることで差イメージのノイズ除去を図ることが可能となる。この電場の変調は、ファンクションジェネレータ30によって行い、その変調周波数は、T=15Hz−1kHzであることが好ましい。高周波数の方が、低周波数の揺らぎを受けにくく、短時間で積算回数を稼げるため、高感度な検出に有利である。このためには、高周波数での撮像が可能な高フレームレート(30〜2000fps)の二次元光検出器28を用いることが好ましい。なお、二次元光検出器28は、ノイズレベルが可能な限り低く、ダイナミックレンジが広く、感度を有する波長域がより広いことが好ましい。これと合わせ、高速の画像処理装置40を用いることで、二次元光検出器28での撮像と並行して、上記した正電場及び負電場のイメージの差分を求め、その積算処理を行うことができるようになる。つまり、撮像を終えてから差分イメージの積算処理を行う場合に比べて、大幅に短い時間で測定を完了することが可能となるのである。   At this time, the noise of the difference image can be removed by shifting the period T to the short time side. The electric field is modulated by the function generator 30, and the modulation frequency is preferably T = 15 Hz-1 kHz. The high frequency is less susceptible to low frequency fluctuations, and the number of integration can be increased in a short time, which is advantageous for highly sensitive detection. For this purpose, it is preferable to use a two-dimensional photodetector 28 having a high frame rate (30 to 2000 fps) capable of imaging at a high frequency. The two-dimensional photodetector 28 preferably has a noise level as low as possible, a wide dynamic range, and a wider wavelength range having sensitivity. In addition to this, by using the high-speed image processing device 40, the difference between the positive electric field image and the negative electric field image is obtained in parallel with the imaging by the two-dimensional photodetector 28, and the integration process is performed. become able to. That is, the measurement can be completed in a significantly shorter time than when the difference image integration process is performed after the imaging is completed.

なお、一対の電極12によって与えられる電場の方向が強誘電体薄膜10の面内で可変とすることで、分極ドメインの向きと電場方向とを垂直とならないようにオフセットさせて常に観察できるようにすることが好ましい。例えば、後述する一対の電極12を複数対方向設けて観察を行うことが考慮できる。   The direction of the electric field applied by the pair of electrodes 12 is variable in the plane of the ferroelectric thin film 10 so that the direction of the polarization domain and the direction of the electric field are offset so as not to be perpendicular so that observation is always possible. It is preferable to do. For example, it can be considered to perform observation by providing a plurality of pairs of electrodes 12 to be described later.

ところで、図4に示すように、強誘電体薄膜試料10では、一対の電極12を薄膜の主面に対して、同一面に与える(横型、図4(a)参照)、又は、両面に与える(縦型、図4(b)参照)ことが可能である。前者では、主面と平行な方向に分極をもつドメインを、縦型の配置では、基板と垂直な方向に分極をもつドメインを可視化可能である。   By the way, as shown in FIG. 4, in the ferroelectric thin film sample 10, a pair of electrodes 12 are provided on the same surface with respect to the main surface of the thin film (horizontal type, see FIG. 4 (a)), or applied to both surfaces. (Vertical type, see FIG. 4B). In the former, a domain having polarization in a direction parallel to the main surface can be visualized, and in a vertical arrangement, a domain having polarization in a direction perpendicular to the substrate can be visualized.

ここで、図4(b)に示すような縦型の配置において、透過光によるイメージングを行う場合、上下一対の電極12にITOなどの光源20からの光に対して透明な電極か、光を透過させる程度に薄い金属薄膜を用いる。一方、反射光によるイメージングを行う場合、光を入射する側のみ上記したような電極を与えることとなる。いずれにしても、透過光によるイメージングを行う場合には、強誘電体薄膜試料10の厚さを光が透過できる程度に薄くしなければならない。   Here, in the vertical arrangement as shown in FIG. 4B, when imaging with transmitted light is performed, the pair of upper and lower electrodes 12 are either transparent electrodes with respect to the light from the light source 20 such as ITO or light. A thin metal film that is thin enough to transmit is used. On the other hand, when imaging by reflected light is performed, the electrodes as described above are provided only on the light incident side. In any case, when imaging with transmitted light is performed, the thickness of the ferroelectric thin film sample 10 must be thin enough to transmit light.

上記した分極ドメイン観察装置1及び観察方法によれば、真空環境を準備せずとも簡易に観察でき、しかも、強誘電体の分極ドメインの分極反転の状態を判別できる程度に高分解能且つ高速に観察することができるのである。   According to the polarization domain observation apparatus 1 and the observation method described above, observation can be performed easily without preparing a vacuum environment, and at a high resolution and at a high speed so that the state of polarization inversion of the polarization domain of the ferroelectric can be determined. It can be done.

次に、図5に示すような、[H−dppz][Hca](2,3−ジ(2−ピリジニル)ピラジン(dppz)とクロラニル酸(H2ca)からなるプロトン移動塩からなる強誘電体薄膜(この詳細については、例えば、S. Horiuchi et al., J. Am. Chem. Soc. 135, 4492 (2013)を参照できる。)について、上記した装置で分極ドメイン観察を行った観察例について説明する。   Next, as shown in FIG. 5, a ferroelectric thin film made of a proton transfer salt made of [H-dppz] [Hca] (2,3-di (2-pyridinyl) pyrazine (dppz) and chloranilic acid (H2ca). (For details, see, for example, S. Horiuchi et al., J. Am. Chem. Soc. 135, 4492 (2013).) An observation example in which polarization domain observation is performed with the above-described apparatus is described. To do.

まず、図6に示すように、ストライプ状に複数の平行な電極101を蒸着したガラス基板100を用意し、この上に有機強誘電体を溶媒に溶かした溶液104をピペット103の先端から滴下した(図6(a)参照)。ここでは、溶媒にはアセトンを用い、その濃度は0.2wt%、基板への滴下量は30μLとした。   First, as shown in FIG. 6, a glass substrate 100 on which a plurality of parallel electrodes 101 are deposited in a stripe shape is prepared, and a solution 104 in which an organic ferroelectric substance is dissolved in a solvent is dropped onto the pipette 103 from the tip of the pipette 103. (See FIG. 6 (a)). Here, acetone was used as the solvent, the concentration was 0.2 wt%, and the amount dropped onto the substrate was 30 μL.

この上から撥水処理を施したガラス基板105を被せることで、溶液104をガラス基板100の上に薄く濡れ広がった状態とする(図6(b)参照)。この状態で室温にて静置し、溶媒が蒸発するのを数時間から数日間放置し、ガラス板105を除去する(図6(c)参照)。これにより、基板100上の電極101間に跨がった状態の薄片状の強誘電体単結晶薄膜104aを成長させ得る。   The glass substrate 105 that has been subjected to water repellent treatment is covered from above, so that the solution 104 is thinly spread over the glass substrate 100 (see FIG. 6B). In this state, it is allowed to stand at room temperature, and the solvent is allowed to evaporate for several hours to several days, and the glass plate 105 is removed (see FIG. 6C). As a result, the flaky ferroelectric single crystal thin film 104a in a state straddling between the electrodes 101 on the substrate 100 can be grown.

観察方法は以下の如きである。なお、ここでは図1を参照して説明する。   The observation method is as follows. Here, description will be given with reference to FIG.

単結晶薄膜10(図6の104aに対応)を与えられた基板100を装置1の光学レンズ26aに対向させて配置し、電極12(図6の電極101に対応)にプローバー34を当てて電気的接触を与える。光学レンズ26aを調節して単結晶薄膜11にピントを合わせ、波長530nmの光を照射する。電極12間に、ファンクションジェネレータ30及び昇圧アンプ32を用いて、45Hzの繰返し周期で+15Vと−15Vの電圧を交互に印加する。   A substrate 100 provided with the single crystal thin film 10 (corresponding to 104a in FIG. 6) is arranged to face the optical lens 26a of the apparatus 1, and a prober 34 is applied to the electrode 12 (corresponding to the electrode 101 in FIG. 6) to perform electricity. Give a positive contact. The single-crystal thin film 11 is focused by adjusting the optical lens 26a, and light having a wavelength of 530 nm is irradiated. A voltage of +15 V and −15 V is alternately applied between the electrodes 12 using a function generator 30 and a boost amplifier 32 at a repetition period of 45 Hz.

一方、この2倍の繰返し周期(90Hz)のトリガを二次元光検出器(CMOSカメラ)28に入力し、+15Vの電圧を印加した正状態と−15Vの電圧を印加した負状態のそれぞれについて撮像を行う。   On the other hand, a trigger with a double repetition period (90 Hz) is input to the two-dimensional photodetector (CMOS camera) 28, and imaging is performed for each of a positive state to which a voltage of + 15V is applied and a negative state to which a voltage of -15V is applied. I do.

図7には、印加電圧のタイムチャートと、撮像トリガのタイムチャートを示した。22ms毎に繰り返される矩形状の正負のパルスにおいて、同じタイミングで11ms毎に撮像するのである。   FIG. 7 shows a time chart of applied voltage and a time chart of imaging trigger. In a rectangular positive / negative pulse repeated every 22 ms, images are taken every 11 ms at the same timing.

撮像と並行して、画像処理装置40において、各周期で撮像された正負状態のイメージの差分及び積算処理を行う。その結果を以下に示す。   In parallel with the imaging, the image processing apparatus 40 performs a difference and integration process between positive and negative images captured in each cycle. The results are shown below.

まず、図8(a)に示すように、3分程度の測定時間で、白黒の境界線を明確に表したイメージを得ることができた。また、図8(b)に示すように、公知のPFMによる観察(例えば、S. V. Kalinin et al., Jpn. J. Appl. Phys. 46, 5674 (2007)に参照される。)でも同様のイメージを得られた。つまり、図8(a)に示す灰色と白色部分が分極の向きを180度反転させたドメインに相当するのである。   First, as shown in FIG. 8A, it was possible to obtain an image clearly showing the black and white boundary line in a measurement time of about 3 minutes. Further, as shown in FIG. 8 (b), a similar image is obtained by observation with a known PFM (for example, refer to SV Kalinin et al., Jpn. J. Appl. Phys. 46, 5674 (2007)). Was obtained. That is, the gray and white portions shown in FIG. 8A correspond to domains in which the direction of polarization is reversed by 180 degrees.

また、図8(a)において、上向きの分極をもつドメイン(灰色部、上向き矢印参照)と下向きの分極をもつドメイン(白色部、下向き矢印参照)のそれぞれについて、電場による光透過率の変化率(ΔT/T)を光の波長を変えて測定した。   Further, in FIG. 8A, the change rate of the light transmittance due to the electric field for each of the domain having an upward polarization (see gray part and upward arrow) and the domain having a downward polarization (see white part and downward arrow). (ΔT / T) was measured by changing the wavelength of light.

図9に示すように、照射波長530nmにおいて、上向きのドメインは負の変化率(勾配p1を参照)を示すのに対し、下向きのドメインは正の変化率(勾配p2を参照)を示しており、差イメージの分極ドメインのコントラストは、この変化率の差によるものである。   As shown in FIG. 9, at an irradiation wavelength of 530 nm, the upward domain shows a negative rate of change (see slope p1), while the downward domain shows a positive rate of change (see slope p2). The contrast of the polarization domain in the difference image is due to this difference in rate of change.

次に、強誘電体([H−dppz][Hca])に分極ドメインを反転させる閾値以上の電圧(100V)を与えて、上記同様にして時間経過に沿って撮像を行った。   Next, the ferroelectric substance ([H-dppz] [Hca]) was applied with a voltage (100 V) that is equal to or higher than the threshold value for inverting the polarization domain, and imaged over time in the same manner as described above.

図10に示すように、時間経過にともない、徐々に分極ドメインが反転して変化する様子を観察できた。更に、反転しきらず残ったドメイン(r部参照、なお、上下の黒色部は電極を示す部分である。)を可視化できた。かかるドメインの可視化は、強誘電体材料の性能劣化の要因を明らかにするなどの目的において非常に有用であると考えられる。   As shown in FIG. 10, it was observed that the polarization domain gradually reversed and changed over time. Furthermore, it was possible to visualize the domain that remained without being inverted (see the r portion, where the upper and lower black portions are the portions indicating electrodes). Such visualization of the domain is considered to be very useful for the purpose of clarifying the cause of performance deterioration of the ferroelectric material.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。   As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to this, A person skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so.

1 分極ドメイン観察装置
10 強誘電体薄膜試料
12 電極
20 光源
22 フィルタ
23 光路切り換え器
24 光ファイバ
26 レンズ
28 二次元光検出器
30 ファンクションジェネレータ
32 昇圧アンプ
40 画像処理装置
42 表示器
DESCRIPTION OF SYMBOLS 1 Polarization domain observation apparatus 10 Ferroelectric thin film sample 12 Electrode 20 Light source 22 Filter 23 Optical path switcher 24 Optical fiber 26 Lens 28 Two-dimensional photodetector 30 Function generator 32 Booster amplifier 40 Image processing apparatus 42 Display

Claims (8)

強誘電体の分極ドメインを可視化観察する方法であって、
強誘電体薄膜に前記分極ドメインを反転させない大きさの正負の電場を周期Tで交互に形成させるとともに、これと同期させて前記強誘電体薄膜に照射した単色光の透過光又は反射光を二次元光検出器によって撮像し、正電場及び負電場のそれぞれで撮像された1組の画像の差イメージを得る可視化観察方法において、前記差イメージの複数からの積算イメージを得てコントラストを与えるとともに、前記周期Tを短時間側にシフトさせて前記差イメージのノイズ除去を図ることを特徴とする強誘電体の分極ドメイン可視化観察方法。
A method for visualizing and observing the polarization domain of a ferroelectric,
In the ferroelectric thin film, positive and negative electric fields having a magnitude that does not invert the polarization domain are alternately formed with a period T, and in synchronism with this, transmitted or reflected monochromatic light irradiated on the ferroelectric thin film is In a visualization observation method for obtaining a difference image of a set of images imaged by each of a positive electric field and a negative electric field by imaging with a two-dimensional photodetector, obtaining an integrated image from a plurality of the difference images and providing contrast, A method for visualizing and observing a polarization domain of a ferroelectric substance, wherein the period T is shifted to a short time side to remove noise from the difference image.
前記電場の方向を前記強誘電体薄膜の面内で可変とすることを特徴とすることを特徴とする請求項1記載の強誘電体の分極ドメイン可視化観察方法。   2. The ferroelectric polarization domain visualization observation method according to claim 1, wherein the direction of the electric field is variable in the plane of the ferroelectric thin film. 前記単色光の波長は、200〜2000nmの範囲内にあることを特徴とする請求項1又は2に記載の分極ドメイン可視化観察方法。   The polarization domain visualization observation method according to claim 1 or 2, wherein the wavelength of the monochromatic light is in a range of 200 to 2000 nm. 前記周期Tは、10Hz〜1000Hzの周波数に対応することを特徴とする請求項1乃至3のうちの1つに記載の分極ドメイン可視化観察方法。   4. The polarization domain visualization observation method according to claim 1, wherein the period T corresponds to a frequency of 10 Hz to 1000 Hz. 強誘電体の分極ドメインを可視化観察する装置であって、
前記強誘電体薄膜に単色光を照射する光源と、
強誘電体薄膜に正負の電場を周期Tで交互に形成させるファンクションジェネレータと、
前記単色光の透過光又は反射光を集光し二次元光検出器上に結像させる光学系と、
前記二次元光検出器の画像信号を処理する画像処理手段と、を含み、
前記画像処理手段は、周期Tに同期させて正電場及び負電場のそれぞれで撮像された1組の画像の差イメージを得るとともに、前記差イメージの複数からの積算イメージを得てコントラストを与えるとともに、
前記ファンクションジェネレータは、前記周期Tを短時間側にシフトさせて前記差イメージのノイズ除去を図ることを特徴とする強誘電体の分極ドメイン可視化観察装置。
An apparatus for visualizing and observing the polarization domain of a ferroelectric,
A light source for irradiating the ferroelectric thin film with monochromatic light;
A function generator that alternately forms positive and negative electric fields in a ferroelectric thin film with a period T;
An optical system that focuses the transmitted light or reflected light of the monochromatic light and forms an image on a two-dimensional photodetector;
Image processing means for processing an image signal of the two-dimensional photodetector,
The image processing means obtains a difference image of a set of images captured in each of a positive electric field and a negative electric field in synchronization with the period T, obtains an integrated image from a plurality of the difference images, and gives contrast. ,
The ferroelectric generator domain visualization observation apparatus, wherein the function generator shifts the period T to a short time side to remove noise from the difference image.
前記強誘電体薄膜に複数対の電極を与えて前記電場の方向を前記強誘電体薄膜の面内で可変とすることを特徴とする請求項5記載の強誘電体の分極ドメイン可視化観察装置。   6. The ferroelectric polarization domain visualization observation apparatus according to claim 5, wherein a plurality of pairs of electrodes are provided on the ferroelectric thin film so that the direction of the electric field is variable in the plane of the ferroelectric thin film. 前記単色光の波長は、200〜2000nmの範囲内にあることを特徴とする請求項5又は6に記載の分極ドメイン可視化観察装置。   The polarization domain visualization observation apparatus according to claim 5 or 6, wherein the wavelength of the monochromatic light is in a range of 200 to 2000 nm. 前記周期Tは、10Hz〜1000Hzの周波数に対応することを特徴とする請求項5乃至7のうちの1つに記載の分極ドメイン可視化観察装置。
The polarization domain visualization observation apparatus according to claim 5, wherein the period T corresponds to a frequency of 10 Hz to 1000 Hz.
JP2016167750A 2016-08-30 2016-08-30 Polarization domain visualization observation method of ferroelectrics and its equipment Active JP6842080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167750A JP6842080B2 (en) 2016-08-30 2016-08-30 Polarization domain visualization observation method of ferroelectrics and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167750A JP6842080B2 (en) 2016-08-30 2016-08-30 Polarization domain visualization observation method of ferroelectrics and its equipment

Publications (2)

Publication Number Publication Date
JP2018036088A true JP2018036088A (en) 2018-03-08
JP6842080B2 JP6842080B2 (en) 2021-03-17

Family

ID=61564732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167750A Active JP6842080B2 (en) 2016-08-30 2016-08-30 Polarization domain visualization observation method of ferroelectrics and its equipment

Country Status (1)

Country Link
JP (1) JP6842080B2 (en)

Also Published As

Publication number Publication date
JP6842080B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP5525336B2 (en) Defect inspection method and defect inspection apparatus
JP5311595B2 (en) Microscope and observation method
WO2020013325A1 (en) Image generation device and image generation method
CN113412416B (en) Ultra-fast chemical imaging by wide field photothermal sensing of infrared absorption
JP2012132741A (en) Time-resolved fluorescence measuring device and method
JPWO2014125729A1 (en) Measuring apparatus and measuring method
JP6357245B2 (en) Optical analyzer and biomolecule analyzer
Hoover et al. Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems
JPWO2020053967A1 (en) Electron beam device
WO2012086195A1 (en) Time-resolved fluorescence measurement device and method
JP2000346802A (en) Inspecting device for inside of element and its method
Webb et al. High-speed wide-field imaging of microcircuitry using nitrogen vacancies in diamond
CN113251916A (en) Femtosecond interference scattering microscopic imaging system and measuring method
KR100924574B1 (en) Polariscopic phase microscopy
JPH08211296A (en) Confocal scanning type optical microscope
CN112033538B (en) Ultrafast image device based on spectrum-time mapping
JP2018531424A (en) Dynamic lock-in detection bandwidth for SRS imaging
JP2018531424A6 (en) Dynamic lock-in detection bandwidth for SRS imaging
JP6842080B2 (en) Polarization domain visualization observation method of ferroelectrics and its equipment
CN112595699B (en) Ultrafast dynamic imaging system and method based on single-molecule quantum coherence
CN101738164A (en) Method for demarcating four-quadrant detector in real time
JP6652265B2 (en) Method for observing organic sample, observation holder and observation stage used for the method
Jürgens et al. Diagnostics of fs Laser‐Induced Plasmas in Solid Dielectrics
JP6279081B2 (en) Optical analyzer
Nakagawa et al. Sequentially Timed All-Optical Mapping Photography for Real-Time Monitoring of Laser Ablation: Breakdown and Filamentation in Picosecond and Femtosecond Regimes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6842080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250